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Abstract

Secure multi-party computation (MPC) has been thoroughly studied over the past decades.
The vast majority of works assume a full communication pattern: every party exchanges mes-
sages with all the network participants over a complete network of point-to-point channels. This
can be problematic in modern large scale networks, where the number of parties can be of the
order of millions, as for example when computing on large distributed data.

Motivated by the above observation, Boyle, Goldwasser, and Tessaro [TCC 2013] recently
put forward the notion of communication locality, namely, the total number of point-to-point
channels that each party uses in the protocol, as a quality metric of MPC protocols. They
proved that assuming a public-key infrastructure (PKI) and a common reference string (CRS),
an MPC protocol can be constructed for computing any n-party function, with communication

locality O(logc n) and round complexity O(logc
′
n), for appropriate constants c and c′. Their

protocol tolerates a static (i.e., non-adaptive) adversary corrupting up to t < ( 1
3 − ε)n parties

for any given constant 0 < ε < 1
3 . These results leave open the following questions:

(1) Can we achieve low communication locality and round complexity while tolerating adaptive
adversaries?
(2) Can we achieve low communication locality with optimal resiliency t < n/2?

In this work we answer both questions affirmatively. First, we consider the model from
[TCC 2013], where we replace the CRS with a symmetric-key infrastructure (SKI). In this
model we give a protocol with communication locality and round complexity polylog(n) (as in
the [TCC 2013] work) which tolerates up to t < n/2 adaptive corruptions, under a standard
intractability assumption for adaptively secure protocols, namely, the existence of enhanced
trapdoor permutations and secure erasures. This is done by using the SKI to derive a sequence
of random hidden communication graphs among players. A central new technique then shows
how to use these graphs to emulate a complete network in polylog(n) rounds while preserving
the polylog(n) locality. Second, we show how we can even remove the SKI setup assumption at
the cost, however, of increasing the communication locality (but not the round complexity) by
a factor of

√
n.
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1 Introduction

Secure multi-party computation (MPC for short) allows a set of n parties to securely compute any
given function f on their private data. Ensuing the seminal works in the area [45, 29, 3, 15], the
systematic study of the problem over the last decades has lead to great improvements regarding
several efficiency measures, such as communication complexity (number of exchanged messages),
round complexity, and computation complexity. Until recently, however, essentially all MPC results
required all parties to communicate directly with each other over a complete network of point to
point channels, or by having access to a broadcast channel. While this requirement may be harmless
when the number of participants is small compared to the complexity of the function f , it is highly
problematic in settings where the number of parties is a dominant factor1.

Communication locality in MPC. Recently, Boyle, Goldwasser, and Tessaro [7], building on
work by King et al. on Byzantine agreement [36, 37] 2, introduced a new efficiency metric called
communication locality to address such settings. Informally, the communication locality of a pro-
tocol is the total number of different point-to-point channels that each party uses in the protocol.
The protocols provided in [7] for the computation of any polynomial time function f achieve a com-
munication locality of polylog(n) assuming a public-key infrastructure (PKI), a common reference
string (CRS), and the existence of a semantically secure public-key encryption and existentially un-
forgeable signatures. An example of a scenario where the complexity of the function may be much
smaller than the number of parties, is when securely computing the output of a sublinear algorithm,
which takes inputs from a small subset of q = o(n) of parties. (Sublinear algorithms are particularly
useful for computing statistics on large populations.) By assuming, in addition to the PKI and
semantically secure public-key encryption, the existence of a multi-signature scheme [42, 41], a (cer-
tifiable) fully homomorphic encryption (FHE) [8, 9], and simulation-sound adaptive non-interactive
zero-knowledge (NIZK) [5, 23], the authors also obtain a protocol for computing sublinear func-
tions, which communicates O((κ+n) ·polylog(n))-bit messages3 and terminates in polylog(n)+O(q)
rounds.

The solution of [7], however, has two major limitations:

(1) It cannot tolerate an adaptive adversary who may choose the parties to corrupt on the fly during
the protocol execution; it only tolerates a static adversary who decides on the faulty parties
prior to the protocol execution.

(2) It achieves a sub-optimal resiliency of t < (1/3− ε)n corrupted parties, for any given constant
0 < ε < 1/3, whereas traditional MPC protocols in the computational setting (without the low
communication locality requirement) can tolerate up to t < n/2 corruptions.

Our results. In this paper, we first show that by replacing the CRS with a slightly different setup
assumption, namely, a symmetric-key infrastructure (SKI) [21] where every pair of participants
shares a uniformly random key that is unknown to other participants, we can overcome both of
the above limitations. Specificially, we construct adaptively secure MPC protocols with commu-
nication locality polylog(n) tolerating any t < n/2 corruptions. (As mentioned above, this is the
optimal number of corruptions that can be tolerated, even in the complete communication setting
without the extra requirement of communication locality [29, 16].) Looking ahead, we will show

1 Interestingly, recent implementation results report remarkable performance of the state-of-the-art solutions for
small instances of the problem such as three-party computation [6] or in a lab environment when broadcast is assumed
for free (e.g., [4, 40, 17, 18, 19, 34]).

2[36, 37] in fact achieve “almost-everywhere” Byzantine agreement [22], which does not guarantee that all honest
players will receive an output (see “Other related work” below).

3κ is the security parameter.

1



how the SKI can be interpreted as a special type of random initial communication graph which
dictates which pairs of players can send point-to-point messages to each other to start with. The
graph is shared but “hidden:” each player will only know the restricted subset of polylog(n) players
it can send messages to and receive messages from.4.

Next, we show that we can remove the additional SKI assumption at the cost of increasing the
communication locality by a factor of

√
n. Both of our constructions assume the existence of a

family of enhanced trapdoor permutations. This is the weakest known general assumption which is
sufficient for adaptively secure MPC over non-private channels assuming secure erasures [1, 26, 27].

We remark that in order to circumvent the shortcomings in [7] we need to develop new and
quite different techniques, as the limitations to sub-optimal resiliency and non-adaptive adversaries
seem to be inherent in ther approach. This can be seen as follows. In [7], the parties elect n input
committees C1, . . . , Cn, as well as one “supreme” committee C—all of size polylog(n)—in a way that
ensures that (with high probability) at least a 2/3 fraction of the parties in each committee are
honest. Each protocol message of party pi is then secret-shared to committee Ci, which re-shares
it to the parties of the supreme committee C. Subsequently, the members of C compute the output
of the given function on the shared inputs and return it to the users (by sharing it to the input
committees, which then reconstruct to their associated input parties). All sharings are private and
robust so long as the adversary does not corrupt more than 1/3 of a committee members.

Clearly, the above cannot work if the adversary is allowed to adaptively corrupt parties de-
pending on his view of the election process. Such an adversary might choose to corrupt more
than a 1/3 fraction of the parties in some committee5 and thus violate the privacy of the protocol.
Furthermore, even for a static adversary, the above approach cannot yield an optimally resilient
(i.e., t < n/2) protocol, as an adversary who non-adaptively corrupts dn/2e − 1 of the parties has
a noticeable probability of corrupting 1/3 (or even 1/2) of the parties in some committee.

Interestingly, we note that under the additional assumptions of FHE and multi-signatures, [7]
obtains better communication complexity for computing sublinear algorithms than directly applying
our approach. Improving the communication complexity of our protocols is an enthralling direction
for future research.

Other related work. Our result should be contrasted with the work of Dani et al. [20], which
provides MPC in the information-theoretic setting assuming perfectly private communication chan-
nels with communication complexity of O(

√
n), but only offers security against a static adversary

and t < n/3 corruptions. For the problem of Byzantine agreement (BA), King and Saia [35] show
how to construct a protocol that is secure against adaptive corruptions, and where the communi-
cation complexity of every party is Õ(n). This leads to a BA protocol with Õ(n) communication
locality; however, their protocol only tolerates t < (13−ε)n corruptions (and is specific to Byzantine
agreement).

Another related body of work is on conducting Byzantine agreement and MPC when players are
not connected via a point-to-point network but rather via a sparse, public network. This has been
studied both in the context of BA [22, 44, 13, 14] and of MPC [25, 36, 37]. These results inevitably
only achieve the so called almost-everywhere versions of the problems, as the protocols “give up”
a number x = ω(1) of honest parties (and provide no guarantees for them). The interested reader
may refer to Appendix A for a short survey of the corresponding literature.

4In fact, one may alternatively state our setup as having the players share an initial hidden random graph, and
our result as a reduction from this setup.

5Recall that the adversary has a linear corruption “budget” t < (1/3−ε)n and the committees are of size polylog(n).
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1.1 Overview of our results and techniques

In this paper we establish the feasibility of secure multiparty computation with low (i.e., polylog(n))
communication locality both for static and for adaptive adversaries corrupting any t < n/2 parties.
Our constructions assume a PKI and a symmetric-key infrastructure (SKI—see details below).
Furthermore, our protocols have polylog(n) round complexity. In more detail, we show the following:

Theorem 1. Assuming a PKI, an SKI, and trapdoor permutations with a reversed domain sampler,
there exists an MPC protocol secure against an adaptive adversary corrupting up to t < n/2 parties
and satisfying the following properties with overwhelming probability:

(Polylogarithmic communication locality) Every party communicates with at most O(log1+ε n)
other parties, for some constant ε > 0.

(Polylogarithmic round complexity) The protocol terminates after O(logε
′
n) rounds, for some

constant ε′ > 0.

Since we wish to obtain MPC with guaranteed output delivery for all honest players, our bound
on t < n

2 is optimal. Furthermore, if we do not wish to “give up” any party in the protocol, then
the best communication locality that one can hope to attain is ω(log n)6, and hence our protocols
are near optimal in terms of communication locality as well.

Next, we show that we can completely get rid of the SKI setup (while still guaranteeing adaptive
security) at the cost of increasing the communication locality (but not the round complexity). That
is, we show:

Theorem 2. Assuming a PKI and trapdoor permutations with a reversed domain sampler, there
exists an MPC protocol secure against an adaptive adversary corrupting up to t < n/2 parties and
satisfying the following conditions with overwhelming probability:

Every party communicates with at most O(
√
n log1+ε n) other parties, for some constant ε > 0.

The protocol terminates after O(logε
′
n) rounds for some constant ε′ > 0.

In the remainder of this section we summarize our main techniques and provide a high-level
overview of our MPC construction. Before we do that, we describe our model in a bit more
detail. All parties are connected via a complete network of point-to-point channels. For simplicity,
we assume that the channels are secure; however, as we assume a public-key infrastructure (PKI),
these channels can be implemented by encryption and authentication [29]. Furthermore, we assume
synchronous communication, i.e., our protocols proceed in rounds where messages send in any round
are delivered by the end of the round. An adversary can adaptively corrupt t < n/2 parties and
cannot observe whether or not two honest parties communicated. Against such adaptive attacks, our
protocols assume atomic simultaneous multi-send operations [30, 24] and erasures (cf. Section 2). In
addition, our construction assumes a symmetric-key infrastructure (denoted SKI), where every pair
(i, j) of parties shares a uniformly random key ski,j ∈ {0, 1}κ for some security parameter κ. Note
that there does not seem to be a direct way of getting rid of the SKI assumption without increasing
the communication locality, as the direct approach of using the PKI for fair exchange would require
(at least) a round where every party communicates with all other parties to exchange the pairwise
keys keys. Removing the SKI assumption without increasing the locality is an intriguing open
problem.

SKI as a hidden graph setup. Central to our results is a novel way of interpreting/transforming
a symmetric key-infrastructure into a special type of setup, which we refer to as hidden-graph setup
(HG).

6If a party communicates with only O(logn) parties in the protocol, then an adversary can simply guess these
O(logn) parties (with non-negligible probability) and corrupt them, thereby isolating this honest party.
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Let G = (V,E) be an undirected graph, where V = [n] is the vertex set and E is the set
of edges in G. In slight abuse of notation, we also use E to denote the adjacency matrix of
G, i.e., E(i, j) = E(j, i) = 1 if there is an edge in G connecting vertices i and j; otherwise
E(i, j) = E(j, i) = 0. We let G(n, p) = (V,E) denote the Erdős-Rényi random graph on n vertices
where for every i, j ∈ V , Pr[(i, j) ∈ E] = p. We refer to such a graph as a p-random graph.

We say that the parties in [n] hold a hidden p-random graph setup (p-HG)7 if, after sampling
G = G(n, p), every party i ∈ [n] is given his corresponding row E(i, j) for j ∈ [n] and no other
information on E. Note that instead of the näıve encoding which would require n bits (i.e., give
each party the full vector corresponding to his row in E), we can simply give each party i a vector
Γ(i) which includes the parties i communicates with over the bilateral secure channel. Thus if party
i communicates with q parties, his p-HG setup will be of size q log(n).8

We now show how such a HG can be efficiently (and locally) computed from a SKI: Recall that
in an SKI every pair of parties i and j is given a uniformly random key ski,j . We use this key as
a seed to a pseudo-random function (PRF). Parties i and j will use the PRF (keyed with ski,j) to
(locally) compute the random coins needed to sample (i, j) for the graph G; i.e., i and j will use
the output of the PRF as coins in a sampling algorithm which picks a bit b to be 1 with probability
p. If b = 1, then i and j will communicate with each other directly in the protocol and (i, j) will be
an edge in the communication graph G. The security of the PRF ensures that the bit b computed
as above is distributed indistinguishably from the output of the sampling algorithm on uniformly
random coins. Without loss of generality, we will henceforth assume that the PRF keys that parties
share can be used to sample as many random graphs as needed.

Our adaptively secure construction will make use of several (polylog(n)-many) independent
HG’s. A sequence of `-many HG’s that is indistinguishable from a sequence of ` independent
p-HG’s can be generated as above, by querying the PRF on distinct (fixed) inputs.

Overview of our construction. At the heart of our construction lies a protocol for reliable
message transmission (RMT) in this communication-constrained setting. Such a protocol allows a
sender i to reliably send a message to a receiver j. Note that as we assume a completely connected
network, a trivial way of implementing RMT would be for party i to use the point-to-point channel
he shares with each j ∈ [n]. However, our goal is to achieve RMT where each party utilizes only a
polylogarithmic number of its direct point-to-point channels. Clearly, in such a setting we cannot
allow the adversary to know the neighbors of an honest party i ∈ [n] as this would enable the
adversary to “cut-off” (i.e., isolate) party i from the rest of the parties by corrupting all of its
neighbors.

This is where the hidden-graph setup comes in handy: Every party will only exchange messages
with its neighbors in this hidden graph and ignore all other interfaces.9 As we show, an adversary
who corrupts up to any constant fraction q < 1 of parties cannot make the length of the shortest
honest path between any two honest parties to be greater than logε

′
(n), for some ε′ > 0, except

with negligible probability. In particular, we show that if G′ denotes the graph that is obtained
by deleting from G all parties/nodes that such an adversary corrupts, then with overwhelming
probability, every two nodes in G′ (i.e., every two honest parties) are connected (in G′) by a path of
length at most logε

′
n. Thus, parties can achieve RMT by simply “flooding” the network; i.e., party

i will simply send message m, signed under its signing key, to all its neighbors; then, for logε
′
(n)

7Throughout this paper we only consider p = log1+ε(n)
n

for some ε > 0. Whenever ε is clear from the context we
might omit p and just refer to the setup as a “(hidden) random graph setup.”

8In our setting q = polylog(n) with overwhelming probability, thus, we get that a hidden graph setup is also of
size polylog(n).

9Note that the adversary might try to send messages to honest parties using all the corrupted parties. However,
the honest parties will ignore messages from all parties that are not their neighbors in their hidden graphs.
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rounds, all parties in every round, will simply forward (the first validly signed) message that they
receive to all its neighbors. Since i and j are connected by a path of length N = logε

′
n in G′, then

after N rounds, j will receive at least one copy of m that is signed under i’s signing key and hence
will reliably receive the message m. Observe that the above RMT protocol tolerates any constant
fraction q < 1 of corruptions (i.e., up to t ≤ qn corrupted parties) and requires a standard PKI for
digital signatures (in addition to the HG). We assume standard digital signatures secure against
chosen-plaintext attacks. Further, since the message is guaranteed to reach all honest parties within
N rounds, the above RMT protocol can be used to have a message sent to all honest parties.10

Unfortunately, the above approach only works for a static adversary. The reason is that, while
corrupting parties (even adaptively) and learning their setup, does not reveal anything about the
hidden graph (other than the neighbors of corrupted parties themselves), the protocol itself might
reveal whether or not (i, j) ∈ E for honest parties i, j ∈ [n]. For example, if an adversarial party i
sends a message to another adversarial party j, and j receives this message in 3 rounds, then it must
be the case that there exists a path of length 3 between i and j. One might think that we can get
around this problem by simply having i encrypt the message under j’s public key; this, however, is
completely useless in the case when j is corrupted. Another idea might be to have i delay sending
its message; however, this too is useless when i is corrupted.11 As a result, constructing an RMT
protocol for the adaptive-corruption case ends up being much more challenging than in the static
case.

The high-level idea behind the protocol for the adaptive case is to sample a new Erdős-Rényi
random graph G = G(n, p), with p = logε n

n , at every round of the protocol. As long as the total
number of rounds of the protocol is polylogarithmic, so will be the total number of point-to-point
channels that an honest party uses (since in each round, every honest party might speak to at most
polylog(n)—potentially new—neighbors). The intuition for choosing a different HG for each round
is that any corruptions made by the adversary before round i are independent of the graph selected
in round i and hence this would be equivalent to the static adversary case. However, now proving
that honest parties can communicate reliably (and that there exists a path of bounded length
between any two honest parties) is delicate, constituting the crux of our technical result. In fact,
the assumption of erasures plays a crucial role in our adaptive-security arguments. Specifically,
we will assume that once any party forwards (i.e., multi-sends) a message to its neighbors, it
immediately erases the identities of these neighbors. This will ensure that the adversary cannot
corrupt a party who sends a message in round i, trace the origin of this message back to the sender’s
neighbor, and eliminate the entire tree rooted at this neighbor.

Having RMT, the next step is to design the MPC protocol. Recall that our goal is a protocol with
full security (i.e., including fairness) an optimal resiliency (i.e., tolerating t < n/2 corruptions) [16,
29]. One idea to achieve this is as follows: Since we have already established RMT between any two
honest parties, we can invoke any known MPC protocol Π secure for t < n/2 assuming authenticated
channels, over the virtual network induced by RMT. Whenever party i is instructed in Π to send
a message m to party j, we invoke RMT for this purpose. This approach would give an MPC
protocol tolerating up to t < n/2 corruptions, but does work generically (for any protocol Π) in
combination with our simulated communication channels.

To see why, observe that in our adaptively secure protocol, an increase of the round complexity
implies the same (asymptotic) increase of the honest parties’ communication locality. Indeed, since
using our RMT, every party communicates with O(logc n) (potentially new) parties in every round

10Note, however, that if the sender is corrupted, there is no guarantee that the message is sent consistently.
11Note that we want to use RMT for every pair of parties; thus, the adversary might use information on the HG

learned in an execution of RMT with a corrupted sender and/or receiver to attack another RMT with honest sender
and receiver.
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1 ≤ ` ≤ D, we can only afford to run a protocol that runs in logc
′
n number of rounds for some c′ > 0.

Thus, in order for the above idea to work we need an adaptive MPC protocol over point-to-point
authenticated channels which terminates in polylog(n) rounds. Such a protocol can be obtained by
taking any constant-round MPC protocol that utilizes a point-to-point network of secure channels
and a broadcast channel (e.g., the protocol in [2]), and modifying it as follows: (1) transmission
over the point-to-point secure channels are emulated by calls to our RMT protocol where the
message is encrypted using adaptively secure encryption [1], and (2) calls to the broadcast channel
are emulated by a (randomized, authenticated) broadcast protocol which terminates in polylog(n)
rounds (cf. the protocol in [33]).

Remark 1 (Static security). Our primary goal in this paper is adaptive security. However, in the
static security setting our approach yields a protocol with polylog(n) locality which relies only on
semantically secure public-key encryption and existentially unforgeable signatures (as in [7]). The
protocol tolerates an optimal number of t < n/2 corruptions and assumes a PKI and a (single)
hidden graph setup12(instead of the PKI and CRS assumed in [7]).

Finally, we show (Section 5) how to avoid the SKI assumption, at the expense of an increased
communication locality (but not round complexity)—cf. Theorem 2. In a nutshell, the parties will
compute some kind of alternate random graph setup by having each party locally decide which of
his n point-to-point channels he will use; a channel between two (honest) parties i, j ∈ [n] is then
used only if both parties choose it. By adequately setting the probability of the honest parties’
decisions, the resulting communication graph will include an Erdős-Rényi graph which will allow us
to use our ideas from the SKI-based construction, with a guaranteed O(

√
n logδ n) communication

locality, for some constant δ > 0.

2 Model, Definitions and Building Blocks

As already mentioned earlier, we assume all parties share a public-key infrastructure (PKI) as well
as a symmetric-key infrastructure (SKI). In other words, every party has a public-key, secret-key
pair (for a digital signature scheme); every party i ∈ [n] receives party j’s public-key (for all j ∈ [n]).
In addition, every pair of parties i, j ∈ [n] share a secret key ski,j . Parties are connected by a fully
connected synchronous network; however, in our constructions every party will only communicate
with polylog(n) other parties.

We allow up to t < n
2 of the parties to be adaptively corrupted by a rushing adversary (meaning

that the adversary is allowed to corrupt parties dynamically during the protocol execution and
depending on his view, and that the adversary is able to postpone the sending of any given round’s
messages until after he receives the messages from the honest parties, resp.). Against such an
adaptive adversary we assume atomic simultaneous multi-send and secure erasures. Concretely, in
each round, whenever an uncorrupted party i is instructed to send a message m to the set P ⊆ [n] of
its neighbors (via the direct point-to-point channels he shares with them), then once i is activated
for sending (by the rushing adversary) for that round, it can send the message to all these neighbors
and delete information related to this transmission (e.g., the identities of these neighbors) before
the adversary has a chance to corrupt it. Note that although this stricter communication model is
essential for our proofs, it is not necessary for the static corruption case. We refer to [30, 24] for a
discussion about the implications of assuming simultaneous multi-send.

12Note that, instead of an SKI, a single copy of our hidden graph can be represented as polylog(n) bits held by
each party corresponding to the vector of the indices of its neighbours.
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We consider the standard simulation-based notion of security for multiparty protocols via the
real/ideal world paradigm. In other words (and informally), we require that for every probabilistic-
polynomial time adversary A (that corrupts t of the parties) in a real-world execution of the
protocol, there exists a corresponding PPT adversary S in the ideal world who can simulate the
output of A given only access to the ideal world where S only learns the output of the evaluated
function. We prove our results for standalone security. We refer the reader to [10, 11] for further
details on this notion of security for multiparty computation. Throughout, we assume that n > κ,
the security parameter.

Our constructions rely on the standard intractability assumption for adaptively secure multi-
party protocols with ersasures, namely, the existence of a family of enhanced trapdoor permu-
tations [26, 27, 28]. This assumption is sufficient for all the primitives used in this paper,
namely: Pseudo-random functions (PRFs) [32], existentially unforgeable signatures (assuming a
PKI setup) [32], and constant-round adaptively secure MPC over a point-to-point network with
(authenticated) broadcast [2] (see below).

Definition 3 ([43, 38]). A protocol for parties P = P1, · · · , Pn, where a distinguished player (called
the dealer) P ∗ ∈ P holds an initial input m, is a broadcast protocol tolerating t malicious parties if
the following conditions hold for any adversary controlling at most t parties:

Agreement: All honest parties output the same value v.

Validity: If the dealer is honest, then v = m.

Broadcast protocols that assume a public-key infrastructure are usually termed authenticated.
We also make use of the following fact about expected-constant-round broadcast and Byzantine

agreement protocols, implicit in [33].

Theorem 4 ([33]). Assuming a PKI, there exists a protocol ΠBC which achieves broadcast with
overwhelming probability against t < n/2 adaptive corruptions, running for log1+c(n) rounds on a
complete network, for some constant c > 0.

3 Reliable Communication in the Locality Model

In this section we prove our results for Reliable Message Transmission (RMT) between every pair
of honest parties in our communication-constrained setting, assuming a standard PKI (for digital
signatures) as well as an SKI, as defined above. The constructions in this section tolerate any
constant fraction of corrupted parties than what is required for fully secure MPC; that is, we only
assume that the number of corrupted parties in t ≤ qn, for constant q < 1 (arbitrarily close to 1).

3.1 Static security

We first show an RMT protocol that is secure against static corruptions. This will illustrate some
of the ideas that are needed for our adapively secure construction.

Setup phase. Recall that we work in a model in which parties share a public-key as well as a
symmetric-key infrastructure. That is, in the setup phase, party i receives a private key ski for a
signature scheme, and every party j receives the public key vki corresponding to ski, for all i ∈ [n].

The SKI allows for a hidden p-random graph setup (p-HG), with p = log1+ε n
n (for appropriately

chosen ε > 0), as explained above. Note that, because in this section we assume only a single
shared hidden graph, it is sufficient (in fact equivalent) that the keys in the SKI are one-bit long.
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Construction idea. The hidden graph setup ensures that the adversary does not get to know
whether party i communicates with party j, unless he corrupts one of them. We show that given
such a p-HG, an adversary who (non-adaptively) corrupts any constant fraction q of the parties
cannot isolate any of the honest parties. In fact, we show a much stronger property for the graph G′

formed by removing (in the hidden graph) t = qn corrupted nodes; namely, that with overwhelming
probability (in n), every pair (i, j) of honest parties is connected by a path of length at most
N = logε

′
(n), for some ε′ > 0 which depends only on ε. Note that since parties start with a PKI,

we only require that honest parties i, j ∈ [n] are connected by a path of length N = logε
′
(n), for

some ε′ > 0 in graph G′. Parties can then achieve RMT by simply “flooding” the network; i.e.,
party i will simply send message m, signed under its signing key, to all its neighbors. Next, each
party in every round simply forwards the (first validly signed) message that it receives to all of
its neighbors. A formal description of the non-adaptively secure protocol for a sender i to reliably
send a message m to a receiver j, denoted by RMTi,j(m), is as follows. (Let Γ(i) denote party i’s
neighbors in G.)

Protocol RMTi,j(m)

1. Round 1: Party i sends (m, sigski(m)) to all nodes in Γ(i).

2. For each round ρ = 2, . . . , logε
′
(n):

For every party k ∈ [n] \ {i, j}: If a message (m,σ), where σ is party i’s valid signature
on m, was received for the first time from some of its neighbors, i.e., some node in Γ(i), in
the previous round, then party k sends (m,σ) to all its neighbors and halts. (If multiple
validly signed pairs were received in that round for the first time, then take the first one in a
lexicographic order.)

For receiver j: If a message (m,σ), where σ is party i’s valid signature on m, is received for
the first time from some node in Γ(j) then output m and halt. (If multiple validly signed
pairs are received in that round for the first time, then take the first one in a lexicographic
order.)

The security of protocol RMTi,j(m) (stated in Theorem 7) can be argued as follows: If i and j
are connected by a path of length N in G′, then after N rounds j will receive at least one copy of m
that is signed under i’s signing key, and hence will reliably receive the message m. Thus we simply
need to argue that the above holds for some N = polylog(n). To this direction, we first prove the
following lemma, which implies RMT between i and j for all honest i, j ∈ [n].

Lemma 5. Let G = (V,E) be a hidden p-random graph, and let A be an adversary who non-
adaptively chooses a set of parties to corrupt and by doing so learns all their neighbors in G.
Denote by U ⊆ V the set of corrupted nodes, and by G′ the subgraph on V \ U resulting from

erasing all nodes in U . If for some constant q < 1, |U | ≤ qn and p = d
n = log1+ε n

n , then, for any

constant 0 < k < 1−q
2 , G′ is an expander graph with edge expansion kd.

Proof. Since each pair of vertices in G′ is still connected with probability p independently of U , G′ is
a random graph G((1−q)n, p). Let n′ = (1−q)n and 0 < k < 1−q

2 . Then, for each S ⊆ V ′ = V \U ,

|S| = r ≤ n′

2 , we have

eG′(S, S) =
∑

v∈S,v′∈S

Xv,v′ ,

where Xv,v′ is the indicator whether there exists an edge between v and v′. Then

E[eG′(S, S)] =
∑

v∈S,v′∈S

E[Xv,v′ ] = |S||S|p = r(n′ − r)p.

8



By the Chernoff bound,

Pr[eG′(S, S) < kd|S|] ≤ e−
(
1− kn

n′−r

)2
r(n′−r)p

=

e−
(

1− kn
n′−r

)2
(n′−r)

2n

rd

=

e−
(
n′−r
n −k

)2

2·n
′−r
n


rd

.

Since 0 < r < n′

2 , we have

1− q
2

=
n′

2n
≤ n′ − r

n
≤ n′

n
= 1− q < 1.

Thus, (
n′−r
n − k

)2
2 · n′−rn

≥ 1

2
·
(

1− q
2
− k
)2

= c > 0.

For d = log1+ε n, we have

Pr[eG′(S, S) < kd|S|] ≤
(
e−c
)rd

=

(
1

nc′ log
ε n

)r
,

and by the union bound, the probability that eG′(S, S) < kd|S| for some subset S, |S| ≤ |V ′|/2 is
bounded by

n′
2∑

r=1

∑
S,|S|=r

Pr[eG′(S, S) < kd|S|] ≤

n′
2∑

r=1

(
n′

r

)(
1

nc′ log
ε n

)r

≤

n′
2∑

r=1

nr
(

1

nc′ log
ε n

)r

=

n′
2∑

r=1

(
1

nc′ log
ε n−1

)r
<

1
nc′ logε n−1

1− 1
nc′ logε n−1

= λ(n),

where λ(n) represents a function that is negligible in n. Therefore, G′ is an expander with edge
expansion kd with overwhelming probability.

The next corollary follows immediately from Lemma 5, by using the fact that an expander
graph as above has polylogarithmic diameter except with negligible probability. We make use
of the following intuitive terminology: for a given graph G = ([n], E) we say that two parties i
and j in [n] are G-connected by an honest path of length ` if there exists a sequence of connected
nodes PATH(i, j) from i to j in G such that for every node k ∈ PATH(i, j), node k is honest, and
|PATH(i, j)| = `.

Corollary 6. Let ε > 0, p = log1+ε n
n , and G be a hidden p-random graph. For any adversary who

(non-adaptively) corrupts at most t = qn parties, the following holds except with negligible (in n)
probability: there exists some ε′ > 0 which depends only on ε such that any two honest parties are
G-connected by an honest path of length at most logε

′
(n).
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The security of protocol RMTi,j(m) follows now easily from the above corollary, as no matter
how the (static) adversary chooses the corrupted parties he cannot increase the diameter of the
graph defined by the honest parties and the hidden graph setup to more than polylog(n).

Theorem 7. Let 0 < q < 1, and T ⊂ [n] be the set of (non-adaptively) corrupted parties,
|T | = t ≤ qn. Assuming a PKI and an SKI, then RMTi,j is a secure RMT protocol between any
two honest nodes i, j ∈ [n]\T satisfying the following two conditions with overwhelming probability:

1. Every party communicates with at most O(log1+ε n) other parties;

2. the protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof. Since Lemma 5 shows that any message sent by an honest i will reach every honest j
within O(logε

′
(n)) rounds, it follows from the unforgeability property of the signature scheme that

j will always accept the message sent by honest i. Hence, the above protocol is a secure RMT
protocol. The communication locality of the protocol follows from the degree of G = G(n, p) which
is O(log1+ε n), except with negligible probability.

Parallel composition of RMT. In our MPC construction, we will require all nodes to execute
their respective RMT protocols in parallel (simultanesouly). That is, let mi,j be the message
that node i wishes to send to j via the RMT protocol, denoted RMTi,j(mi,j) as above. Now,
let RMTall(m) denote the protocol executed by all parties when RMTi,j(mi,j) for all i, j ∈ [n] are
executed in parallel. (That is, in round k of RMTall(m), all parties execute the kth round of protocol
RMTi,j(mi,j), for all i, j ∈ [n]). RMTall(·) is composed of n2 individual RMT protocols. We have
the following corollary.

Corollary 8. For all honest i, j ∈ [n], RMTall(m) is a reliable message transmission protocol for
sending mi,j from i to j, satisfying the following properties:

1. Every party communicates with at most O(log1+ε n) other parties in the protocol.

2. The protocol terminates after O(logε
′
n) rounds for some ε′ > 0.

Proof. From Lemma 5 we have that any message sent by any honest i will reach every honest
j within O(logε

′
n) rounds. Hence, from this and the unforgeability of the underlying signature

scheme, it follows by a standard hybrid argument that every honest j will always accept the
message sent by any honest i at the end of RMTall(m). Furthermore, note that the protocol’s
round complexity is equal to the maximum round complexity of its components, which equals
O(logε

′
n). Further, note that the communication locality of every party in RMTall(m) is equal to

the communication locality of the party in RMTi,j(mi,j), for any i, j ∈ [n]. Hence, the corollary
follows.

3.2 Adaptively secure RMT

As discussed in the Section 1.1 the above proof technique fails against adaptive adversaries. Infor-
mally, the issue is that an adversary can use the round in which a corrupted party/relayer receives
a message to deduce information on the communication graph (see Section 1.1 for more details
and a concrete example). In this section we describe an RMT protocol that is secure against such
an adaptive adversary. The idea is have the parties use a different, independent communication
graph for each round in the transmission scheme. As long as the transmission scheme does not have
more than polylog(n) rounds and in each round, every party communicates with at most polylog(n)
(additional) parties, the overall locality with be polylog(n).
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The main challenge in the above idea is to prove that in this dynamically updated communi-
cation graph, the message will reach each recipient through an honest path in at most polylog(n)
rounds. Proving this constitute the main technical contribution of our work. The (adaptively se-
cure) RMT protocol AdRMT is similar to the protocol in the static case, except that in round ρ
parties forward messages received in the previous round to their neighbours in the communication
graph Gρ. We first describe the corresponding setup that it requires.

Setup phase. As in the static case, the parties share both a PKI and an SKI. The SKI will be
used here in the same spirit, except that instead of generating one Erdős-Rényi graph, G = G(n, p)
with p = logε n

n , it will be used to generate D such graphs, denoted G = (G1, . . . , GD). These graphs
can be sampled using the same PRF key ski,j that parties i and j share. As before, every node only
knows its own neighbors, and when the adversary corrupts a node j, he only learns j’s neighbors
in G1, . . . , GD. At the end of this process, the parties erase the secret keys from their SKI.

The protocol is described below, followed by security statement and a high-level description of
its proof. (The formal proof can be found in Appendix B.)

Protocol AdRMTi,j(m)

1. Round 1: Party i sends (m, sigski(m)) to all its neighbors in graph G1.

2. For each round ρ = 2, . . . , logε
′
(n):

For every party k ∈ [n] \ {i, j}: If a message (m,σ), where σ is party i’s valid signature on
m was received for the first time from some of its neighbours in Gρ−1 in the previous round,
then party k sends (m,σ) to all its neighbors in graph Gρ, erases all information about its
Gρ-neighborhood, and halts. (If multiple validly signed pairs were received in that round for
the first time, then take the first one in a lexicographic order.)

For receiver j: If a message (m,σ), where σ is party i’s valid signature on m is received for
the first time from some of party j’s neighbours in Gρ, then output m and halt. (If more than
one validly signed pair is received in that round for the first time, then take the first one in a
lexicographic order.)

Theorem 9. Let T ⊂ [n] be the set of adaptively corrupted parties, |T | = t ≤ qn, for any constant
0 < q < 1. Assuming a PKI and an SKI, protocol AdRMTi,j(m) is a secure RMT protocol between
any two honest nodes i, j ∈ [n] \ T , satisfying the following tow properties with overwhelming
probability:

1. Every party communicates with at most O(log1+ε n) other parties.

2. The protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof idea. As in the static case, we show that there exists a path of length at most O(logε
′
(n))

between any two honest nodes i, j ∈ [n] when we consider the collection of communication graphs
G that selects graph Gi as the communication graph in hop i. We prove this in three steps:

First, we prove that at every step of the protocol, even if an adversary corrupts a constant
fraction of the nodes in the random graph, the honest neighbors of any set S of size ≤ n

d that are
not in S, will be at least of size kd|S|, for some appropriate constant k (except with negligible
probability). More concretely, in Appendix B we prove the following lemma, where we let ε >

0, 0 < q < 1 be constants, d = log1+ε n, p = d
n = log1+ε n

n , and D = O(log n).

Lemma 10. Let G = G(n, p) be graph on V = [n], and U ⊆ V , |U | ≤ qn, chosen adaptively while
only learning edges connecting to U . Let G′ be the induced subgraph on V ′ = V \U . Then, for any
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constant 0 < k < 1−q
2 , there exists a constant c > 0 such that, for sufficiently large n and for any

S ⊆ V ′ with |S| = r ≤ n
d = 1

p , the set of all neighbors of S that are not in S, Γ(S), has size at least

kd|S| except with negligible probability Pr =
(

1
nc logε n

)r
.

Next, via an application of Hoeffding’s inequality (see Lemma 16 in Appendix B,) we prove that
as long as the adversarial parties are chosen independently of the random neighbors chosen by any
party, a constant fraction of the party’s neighbors will be honest, except with negligible probability
(as long as the adversarial set is of size at most qn for some constant 0 < q < 1). Thus we get the
following.

Lemma 11. Let V = [n] and C ⊆ V , |C| = m, be a subset chosen uniformly at random. Let
0 < q < 1 be a constant and U ⊆ V , |U | = qn, be a subset chosen independently of C. Then,
for all 0 < δ < 1 − q, |C \ U | > (1 − q − δ)m except with probability e−2mδ

2
. In particular, for

m = log1+ε
′
n, |C \ U | >

(
1−q
2

)
m except with negligible probability. Furthermore, for q = 1

2 − ε,
|C \ U | > 1

2m except with negligible probability.

Finally, using Lemmas 10 and 11, we show that even when an adversary adaptively corrupts
parties in every round of the protocol, as long as the parties select a random graph at each round
of the protocol, there exists a path of length at most D = O(log n) between any two honest nodes
in [n]. Formally:

Lemma 12. Let G1, . . . , GD be graphs on V = [n] constructed independently as G(n, p). Let
U1, U2, . . . , UD ⊆ V be disjoint subsets with U = ∪Di=jUj such that |U | = qn where Uj is chosen
independently from Gj+1, . . . , GD, but adaptively, after learning the neighbors of Ui in Gi for i ≤ j.
Let G′i be the induced subgraph on Vi = V \ (∪ij=1Uj). Then, except with negligible probability, any
pair of vertices v, v′ ∈ V ′ = V \ U are reachable with respect to G′ = (G′1, . . . , G

′
D) by a path of

length at most D.

Combining these gives us our main theorem (Theorem 9).

Parallel composition of adaptively secure RMT. Once again, we will require all nodes i, j ∈
[n] to execute their respective RMT protocols in parallel simultaneously. Let AdRMTall(m) denote
the protocol executed by all parties when AdRMTi,j(mi,j) for all i, j ∈ [n] are executed in parallel.
That is, in round k of AdRMTall(m), all parties execute the kth round of protocol AdRMTi,j(mi,j)
(for all i, j ∈ [n]). Importantly, all the messages that a party has to send in this round are sent as
a single atomic multi-send and the corresponding neighbors’ identities are erased. Note that the
graph Gk used in the kth round of the protocol depends only on the round k and not on i and j;
hence, we use the same graph Gk to send all the messages of protocol AdRMTall(m). We have the
following corollary:

Corollary 13. For all honest i, j ∈ [n], AdRMTall(m) is a reliable message transmission protocol
for sending mi,j from i to j, satisfying the following properties:

1. Every party communicates with at most O(log1+ε n) other parties in the protocol.

2. The protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

The proof of this corollary is similar to Corollary 8’s.
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4 Secure Multiparty Computation with Low Communication

We are now ready to describe our MPC protocol for securely evaluating any given (even reactive) n-
party function in the comunication-locality model. Our protocol is secure against t < n/2 adaptive
corruptions. The idea behind our MPC protocol is to use a constant-round adaptively secure MPC
protocol for t < n/2 working over point-to-point secure channels and broadcast (e.g., [2]), where
those resources are emulated via our RMT protocol of Section 3.2.

We let ΠBC denote the authenticated broadcast protocol guaranteed by Theorem 4 (Section 2).
The protocol achieves broadcast with overwhelming probability against t < n/2 adaptive corrup-
tions, running for log1+c n rounds on a complete network, for some constant c > 0. As pointed
out in [33], assuming unique process and message ID’s as in [39], ΠBC remains secure under parallel
composition.

Let Π∗BC denote the protocol which results by having the parties execute ΠBC where in each
round instead of using the point-to-point channels for exchanging their messages, the parties in-
voke AdRMTall from Section 3.2. Then it follows immediately from the security of AdRMTall

(Corollary 13) and the fact that each message transmission requires polylog(n) rounds that protocol
Π∗BC is also a secure broadcast protocol with polylogarithmic round complexity and communication
locality.

Lemma 14. Protocol Π∗BC described above achieves broadcast against t < n/2 adaptive corruptions
and satisfies the following conditions with overwhelming probability:

1. Every party communicaties with at most O(log1+ε n) parties for any constant ε > 0.

2. The protocol terminates after O(logε
′
n) rounds for some constant ε′ > 0.

Proof (sketch). The security of Π∗BC follows directly from the security of protocols ΠBC and
AdRMTall. The (asymptotic) round complexity is computed as follows: for each round ` of ΠBC,
protocol Π∗BC executes AdRMTall to have the parties exchange their round ` messages; thus, for
each round in ΠBC we need O(logε

′′
n) rounds in Π∗BC. Because ΠBC runs in O(logε

′
n) rounds, the

total round complexity of Π∗BC is O(logε
′+ε′′ n) rounds. We next argue the communication locality:

With overwhelming probability, in each round of Π∗BC, every party might communicate with at
most to O(log1+ε n) (potentially different) parties (for executing AdRMTall). Thus, since the total
number of rounds is O(logε

′+ε′′ n), then with overwhelming probability (by the union bound) the
total number of parties that each i ∈ [n] exchanges messages with using the point-to-point channels
is O(log1+ε+ε

′+ε′′ n).

The next step is to construct a secure message transmission protocol (SMT) which will allow a
sender i to securely (i.e., authentically and privately) send a message mi,j to a receiver j. Since we
have a PKI and an adaptively secure broadcast protocol, we can use the standard reduction of secure
channels to broadcast: The sender i encrypts mi,j under the receiver’s public key and broadcasts
the corresponding ciphertext ci,j . Upon receiving ci,j , party j decrypts it using his secret key and
recovers mi,j . However, in order for the above reduction to be secure (in a simulation-based manner)
against an adaptive adversary, we need to ensure that a simulator can “open” a ciphertext to any
message of its choice. This can be achieved by the use of adaptively secure encryption schemes
with erasures, which are known to exist under standard intractability assumptions [1]. Consistently
with the notation introduced in the previous section, we use AdSMTi,j to denote the above SMT
protocol, and AdSMTall to denote the protocol composed of n2 individual AdSMTi,j(mi,j) protocols
(for all i, j ∈ [n]), run in parallel, where m = (m1,1,m1,2, . . . ,mnn).

With the above tools, we have:
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Theorem 1. Assuming a PKI, an SKI, and trapdoor permutations with a reversed domain sam-
pler, there exists a protocol for securely evaluating any given n-party function against an adaptive
adversary who corrupts t < n/2 parties, satisfying the following two conditions with overwhelming
probability:

1. Every party communicates with at most O(log1+ε n) other parties, for some constant ε > 0.

2. The protocol terminates after O(logε
′
n) rounds, for some constant ε′ > 0.

Proof (sketch). Let ΠMPC denote a constant-round MPC protocol which is secure against adaptive
corruptions of up to t < n/2 parties, where parties communicate over a complete network of point-
to-point channels and broadcast. (Such protocols are known to exist under the assumption in the
theorem, e.g., [2].) Furthermore, let Π∗MPC denote the protocol that results by instantiating in ΠMPC

the calls to the secure channels and broadcast by invocations of protocols Π∗BC and AdSMT, respec-
tively. We argue that Π∗MPC satisfies all the properties claimed in the theorem. The security of Π∗MPC
follows immediately from the security of the underlying protocol ΠMPC and the security of protocols
Π∗BC and AdSMTall. For the round complexity: For each round in ΠMPC, all message exchanges (i.e.,
point-to-point transmissions or broadcast calls) are exchanged in Π∗MPC by appropriate (parallel)
executions of protocols Π∗BC and AdSMTall, where the executions have unique round, protocol, and
message IDs.13 Thus, for every round in ΠMPC we need O(logε

′
n) rounds in Π∗MPC, for some given

constant ε′ > 0. Because ΠMPC terminates in a constant number of rounds, the round complexity
of Π∗MPC is also O(logε

′
n). In each of these rounds, every party might communicate with at most

O(log1+ε n) (potentially different) parties, (Recall that all parallel executions of Π∗BC and AdSMTall

use the same sequence of graph setups.) Thus, the total number of parties that each i ∈ [n] talks
directly to (i.e., via its point-to-point channels) is O(log1+ε+ε

′
n).

5 Getting Rid of the SKI

In this section we show how to get rid of the symmetric-key setup assumption, at the cost, however,
of increasing the communication-locality (but not the round complexity) by a factor of

√
n.

The idea for getting rid of the SKI is to have the parties compute some kind of an alternative
random graph setup. This is done as follows: each party i ∈ [n] locally decides which of his n
point-to-point channels he will use; a channel between two (honest) parties i, j ∈ [n] is then used
only if both parties choose it. (This is similar in spirit to the way the work of Chandran et al. [14]
handles “edge corruptions” in sparse networks.) By having each party decide to use each of his
channels with probability p = logε n√

n
for some given constant ε > 1 (and ignore all other channels)

we ensure that, with overwhelming probability, each (honest) party uses at most O(
√
n logδ n) of

its point-to-point channels for some constant δ > 0. Furthermore, each edge between two honest

parties i and j is chosen with probability p′ = p2 = log2ε n
n , thus the resulting communication graph

will include Erdős-Rényi graph G(n, p′) which will allow us to use our ideas from the previous
sections. Note however, that as the adversarial nodes might choose to communicate with all their
neighbors, the communication locality is no longer guaranteed to be O(logε n); notwithstanding, it
is guaranteed to be O(

√
n logδ n) with overwhelming probability.

RMT protocol. We now describe a reliable message transmission protocol which tolerates up to
t < qn adaptive corruptions, for any given constant q < 1. Our protocol (and proof) are similar to
the corresponding protocol from Section 3.2, with the only difference being that the parties choose

13Recall that the ID’s are needed to ensure security of Π∗BC under parallel composition [39].

14



their neighbors in a setup procedure as above instead of sampling them by use of a PRF keyed
with their SKI-keys.

Protocol AdRMTnoSKI
i,j (m)

1. Round 1 (Computing the setup): The parties execute the following code for every (i, j, ρ) ∈
[n]× [n]× [logε

′
n] in parallel (where ε′ > 1 is a given constant):

Party i samples a bit bρi,j where bρi,j = 1 with probability p = logε n√
n

for some given constant

ε > 1; and bρi,j = 0 otherwise.

If bρi,j = 0 for all ρ ∈ [logε
′
n], then party i ignores all messages on the point-to-point channel

between i and j.

If bρi,j = 1 then party i sends (bρi,j , ρ) to party j.

2. Round 2a: For each (i, j, ρ) ∈ [n] × [n] × [logε
′
n] : If bρi,j = 1 but party i received no message

(b, ρ) from party j in the previous round then i sets bρi,j := 0. For ρ = 1, . . . , logε
′
n : Party i sets

Γ(i)ρ := {j | bρi,j = 1} to be the set of parties/neighbors pi will communicate with in round ρ.

3. Round 3: Party i sends (m, sigski(m)) to parties in Γ(i)ρ.

4. For each round ρ = 3, . . . , logε
′
n:

For every party k ∈ [n] \ {i, j}: If a message (m,σ), where σ is party i’s valid signature on m
was received for the first time in the previous round ρ− 1 from some party in Γ(k)ρ−1, then
party k sends (m,σ) to all parties in Γ(k)ρ, erases all information about Γ(k)ρ, and halts. (If
multiple validly signed pairs were received in that round for the first time, then take the first
one in a lexicographic order.)

For the receiver j: If a message (m,σ), where σ is party i’s valid signature on m is received
for the first time from some party in Γ(j)ρ, then output m and halt. (If more than one validly
signed pair is received in that round for the first time, then take the first one in a lexicographic
order.)

aThis round is redundant and could be executed at the beginning of the following round. Nonetheless, we
include it here because it simplifies the description and it does not affect the (asymptotic) round complexity
argument.

Theorem 15. Let T ⊂ [n] be the set of adaptively corrupted parties, |T | = t ≤ qn, for any constant
0 < q < 1. Assuming a PKI, protocol AdRMTnoSKI

i,j (m) is a secure RMT protocol between any two
honest nodes i, j ∈ [n] \ T , satisfying the following tow properties with overwhelming probability:

1. Every party communicates with at most O(
√
n log1+δ n) other parties, for some constant δ > 0.

2. The protocol terminates after O(logε
′′
n) rounds, for some constant ε′′ > 0.

Proof (sketch). The proof that the round complexity is O(logε
′′
n) follows along the lines of The-

orem 9, because for each pair of honest i, j ∈ [n] and each ρ = 1, . . . , logε
′
n the set Γ(i)ρ−1 is

distributed as in an Erdős-Rényi graph, G = G(n, p′) with p′ = log2ε n
n . The communication locality

is argued as follows: It follows from a Chernoff bound that in each round ρ ∈ {1, . . . , logε
′
n} each

party talks to at most L = O(
√
n log1+c n) neighbors, for some constant c > 0, except with negligi-

ble probability. Thus with overwhelming probability the total number of neighbors that i chooses
in all logε

′
n + 2 rounds is O(

√
n log1+c+ε

′
n). Because honest parties ignore all parties that they

do not choose as neighbors the total number of parties that party i communicates with is at most
O(
√
n log1+c+ε

′
n).
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Given Theorem 15, an MPC protocol with the desired communication-locality and round com-
plexity can be obtained by replacing in protocol Π∗MPC all invokations of AdRMTi,j with invocations
of AdRMTnoSKI

i,j . The proof is similar to the proof of Theorem 1.

Theorem 2. Assuming a PKI and the existence of trapdoor permutations with a reversed domain
sampler, there exists a protocol for securely evaluating any given n-party function against an adap-
tive adversary who corrupts t < n/2 parties. The protocol satisfies the following properties with
overwhelming probability:

1. Every party communicates with at most O(
√
n log1+ε n) other parties, for some constant ε > 0.

2. The protocol terminates after O(logε
′
n) rounds, for some constant ε′ > 0.
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A Almost-Everywhere Protocols

Prior to [7], two lines of works have studied the problem of constructing protocols for BA/MPC in
which every party communicates with only a few other parties in the protocol:
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Protocols on incomplete networks. The vast majority of results for BA and MPC protocols
work in a model in which, every party involved in the protocol, shares a reliable and secure channel
with every other party. In large scale networks, such as the internet, such an assumption is infeasible
and this leads us to the question of whether one can construct BA and MPC protocols in which every
party communicates only with a few other parties. For the case of BA, the first work to consider
this problem was that of Dwork, Peleg, Pippenger, and Upfal [22], who constructed various graphs
of specific degrees on which one could run BA protocols. For example, they construct a graph G
of degree d = O(nε), for any constant 0 < ε < 1, along with a BA protocol in which every party
in the protocol communicates only with its neighbors in G. Such a protocol could tolerate t = αn
corrupt parties (for some constant α < 1

3). As another example, they also construct a graph of
constant degree, along with a BA protocol, that could tolerate t = O( n

logn) corrupt parties.
Now, since in their model, the communication graph is fixed and chosen prior to the adversary

corrupting parties, one cannot hope to achieve BA among all honest parties (as an adversary could
always corrupt just the neighbors of some honest party, thereby isolating it). Hence Dwork et al.
introduce and achieve the notion of almost-everywhere (a.e.) BA that unavoidably “gives up” x
honest nodes (and provides no guarantees for these honest nodes). In their protocols, x = O(t).
Somewhat surprisingly, Upfal [44], constructed graphs of constant degree, along with a BA protocol,
that could tolerate t = αn corrupt parties (for some constant α < 1

3); unfortunately, the running
time of Upfal’s algorithm is exponential (in n). To date, the best bounds known in this model are
due to Chandran, Garay, and Ostrovsky [13], who achieve a polynomial time BA protocol with
parameters d = O(logcn) (for some constant c > 1), t = αn and x = O( n

logn).
For the case of secure computation, Garay and Ostrovsky [25], introduced the notion of almost-

everywhere MPC (similar in spirit to a.e. BA) and showed how to take any a.e. BA protocol and
convert it into an a.e. MPC with the same (asymptotic) parameters. We remark that all the above
protocols provide information-theoretic security against an adaptive, computationally-unbounded,
adversary that can corrupt parties at any time during (or after) the protocol.

Protocols on complete networks. One could also consider a model in which parties are con-
nected by a complete network, but only talk to a few other parties during the protocol. Once again
this gives rise to protocols with low communication locality. Indeed, the works of King, Saia, San-
walani, and Vee [36, 37] consider this model and construct protocols for the task of leader election
as well as a.e. Byzantine agreement in which every party has a communication locality of O(logc n)
(for some constant c > 1). In fact, King et al. show a stronger result and construct protocols in
which every party only sends O(logc n) bits in the entire protocol. However, unlike the works on in-
complete networks, the works of King et al. [36, 37] only consider the case of static adversaries (i.e.,
they are secure only against an adversary that corrupts t = αn of the parties, for some constant
α < 1

3 , before the start of the protocol). These works also provide information-theoretic security.

B Proof of Theorem 9 (Adaptively secure RMT)

Hoeffding’s Lemma

Lemma 16. (Hoeffding’s Inequality [31]) Let S = {x1, . . . , xN} be a finite set of real numbers with
a = min

i
xi and b = max

i
xi. Let X1, . . . , Xn be a random sample drawn from S without replacement.

Let X =

n∑
i=1

Xi

n and µ =

N∑
i=1

xi

N = E[Xj ]. Then for all δ > 0, Pr[X − µ ≥ δ] ≤ e−
2nδ2

(b−a)2 .

20



Theorem 9. Let T ⊂ [n] be the set of adaptively corrupted parties, |T | = t ≤ qn, for any constant
0 < q < 1. Assuming a PKI and an SKI, protocol AdRMTi,j(m) is a secure RMT protocol between
any two honest nodes i, j ∈ [n] \ T , satisfying the following tow properties with overwhelming
probability:

1. Every party communicates with at most O(log1+ε n) other parties.

2. The protocol terminates after O(logε
′
n) rounds, for some ε′ > 0.

Proof. In the following, we provide details on the proof sketched in Section 3.2. In particular
we show that there exists a path of length at most O(logε

′
(n)) between any two honest nodes

i, j ∈ [n] when we consider the collection of communication graphs G that selects graph Gi as the
communication graph in hop i. The proof follows then easily similarly to the proof of Theorem 7.

As sketched in Section 3.2, to prove the above statement we proceed in three steps:

1. First, we shall prove in Lemma 10 that at every step of the protocol, even if an adversary
corrupts a constant fraction of the nodes in the random graph, the honest neighbors of any set
S of size ≤ n

d that are not in S, will be at least of size kd|S|, for some appropriate constant k
(except with negligible probability).

2. Next, via an application of Hoeffding’s inequality, we will prove in Lemma 11 that as long as
the adversarial parties are chosen independently of the random neighbors chosen by any party,
a constant fraction of the party’s neighbors will be honest, except with negligible probability
(as long as the adversarial set is of size at most qn for some constant 0 < q < 1).

3. Finally, using Lemmas 10 and 11, we will show in Lemma 12 that even when an adversary
adaptively corrupts parties in every round of the protocol, as long as the parties select a random
graph at each round of the protocol, there exists a path of length at most D = O(log n) between
any two honest nodes in [n].

Combining these will give us our main theorem (Theorem 9).

Step 1. To begin, let ε > 0, 0 < q < 1 be constants. Let d = log1+ε n, p = d
n = log1+ε n

n and
D = O(log n).

Lemma 10. Let G = G(n, p) be graph on V = [n], and U ⊆ V , |U | ≤ qn, chosen adaptively while
only learning edges connecting to U . Let G′ be the induced subgraph on V ′ = V \U . Then, for any
constant 0 < k < 1−q

2 , there exists a constant c > 0 such that, for sufficiently large n and for any
S ⊆ V ′ with |S| = r ≤ n

d = 1
p , the set of all neighbors of S that are not in S, Γ(S), has size at least

kd|S| except with negligible probability Pr =
(

1
nc logε n

)r
.

Proof. Let 0 < k < 1−q
2 and S ⊆ V ′ with |S| = r ≤ n

d = 1
p . Denote n′ = |V ′| ≥ (1 − q)n. Since

each pair of vertices in G′ is connected with probability p independently of U and other edges, G′

is a random graph G(n′, p).
For each v ∈ V ′ \ S, let Xv be the indicator of whether v ∈ Γ(S) = ΓG′(S). Then

Pr[Xv = 0] = Pr[no edge between v and any vertex in S] = (1− p)r.

Since rp < 1,

E[Xv] = Pr[Xv = 1] = 1− (1− p)r = rp−
(
r

2

)
p2 + . . . >

rp

2
.

Then

E[|Γ(S)|] = E[
∑
v/∈S

Xv] >
(n′ − r)rp

2
.
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Since the Xv’s are independent, by the Chernoff Bound,

Pr[|Γ(S)| ≤ (1− δ)(n′ − r)rp
2

] ≤ Pr[|Γ(S)| ≤ (1− δ)E[|Γ(S)|]] ≤ e−
δ2E[|Γ(S)|]

2 ≤ e−
δ2(n′−r)rp

4 .

Now let δ = 1− 2kn
n′−r . Since r ≤ n

d , we have

(1− q)− 1

d
≤ n′ − r

n
≤ n′

n
< 1.

Let n be large enough such that d = log1+ε n > 2
1−q−2k . Then

c0 =
1

16
· ((1− q)− 2k)2 ≤ 1

4
·
(

(1− q)− 1

d
− 2k

)2

≤

(
n′−r
n − 2k

)2
4 · n′−rn

.

Thus,

Pr[|Γ(S)| ≤ kdr] ≤ e−
(

1− 2kn
n′−r

)2
(n′−r)rp

4 =

e−
(
n′−r
n −2k

)2

4·n
′−r
n


dr

≤
(

1

ec0

)dr
=

(
1

nc log
ε n

)r
.

where c = c0 log e.

We now proceed to show that as long as parties pick a fresh random graph in every round of
the protocol, there exists at least one path of length at most D between any two honest parties
i, j ∈ [n] that does not include any corrupted party. We formally define this through the notion of
reachability with respect to G.

Definition 17. Let G = (G1, . . . , GD) be an ordered collection of graphs on subsets (V1, . . . , VD)
of V . A pair of vertices v ∈ V1, v′ ∈ Vl are reachable with respect to G by a path of length l if there
exist v1, . . . , vl−1 ∈ V , such that (vi−1, vi) ∈ E(Gi), for i = 1, . . . , l, where v0 = v and vl = v′. We
denote Nl(v) = NGl (v) ⊆ Vl the subset of all vertices that are reachable from v with respect to G
with a path of length l.

Step 2. We first make use of Hoeffding’s lemma (stated in Appendix B) in order to prove a lemma
that we will use. We show:

Lemma 11. Let V = [n] and C ⊆ V , |C| = m, be a subset chosen uniformly at random. Let
0 < q < 1 be a constant and U ⊆ V , |U | = qn, be a subset chosen independently of C. Then,
for all 0 < δ < 1 − q, |C \ U | > (1 − q − δ)m except with probability e−2mδ

2
. In particular, for

m = log1+ε
′
n, |C \ U | >

(
1−q
2

)
m except with negligible probability. Furthermore, for q = 1

2 − ε,
|C \ U | > 1

2m except with negligible probability.

Proof. Let S = {x1, . . . , xn} where xi = 1 if i ∈ U , 0 otherwise. Then a = min
i
xi = 0, b = max

i
xi =

1 and µ =

n∑
i=1

xi

n = q. For each i = 1, . . . ,m, let Xi be the indicator of whether each element of C is

in U . Then Xi is a random sample drawn from S without replacement, and |C∩U | =
m∑
i=1

Xi = mX.

By Hoeffding’s Inequality,

Pr[|C ∩ U | ≥ (q + ε)m] = Pr[X − µ ≥ δ] ≤ e−2mδ2
.
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Therefore, except with probability e−2mδ
2
, |C \ U | = m− |C ∩ U | > (1− q − δ)m.

Now let m = log1+ε
′
n and δ = 1−q

2 . We have that |C \ U | >
(
1−q
2

)
m except with probability

e−2(
1−q

2 )
2
log1+ε′ n =

1

nc log
ε′ n

,

where c = 1
2(1− q)2 log e.

Finally, let q = 1
2 − ε and δ = ε. We have that |C \U | >

(
1−

(
1
2 − ε

)
− ε
)
m = 1

2m except with
probability 1

nc′ logε
′
n

, where c′ = 2ε2 log e.

Remark 2. Note that this proof allows U to be chosen according to any distribution. The result
holds as long as C is chosen uniformly. In particular, we may allow U to be chosen adaptively.

Step 3. We now show:

Lemma 12. Let G1, . . . , GD be graphs on V = [n] constructed independently as G(n, p). Let
U1, U2, . . . , UD ⊆ V be disjoint subsets with U = ∪Di=jUj such that |U | = qn where Uj is chosen
independently from Gj+1, . . . , GD, but adaptively, after learning the neighbors of Ui in Gi for i ≤ j.
Let G′i be the induced subgraph on Vi = V \ (∪ij=1Uj). Then, except with negligible probability, any
pair of vertices v, v′ ∈ V ′ = V \ U are reachable with respect to G′ = (G′1, . . . , G

′
D) by a path of

length at most D.

Proof. For each v ∈ V ′, we will show that, except with negligible probability, there exists l = l(v) ≤
D such that V ′ ⊆ Nl(v) ∪ Nl+1(v). Hence, by the union bound over |V ′| = (1 − q)n vertices, the
proposition holds except with negligible probability.

Fix v ∈ V ′ and choose a constant k as in Lemma 10. For each i, denote ri = |Ni(v) \ Ui+1|.
Note that ΓG′i+1

(Ni(v) \ Ui+1) ⊆ Ni+1(v). For i such that ri ≤ n
d , we have

|Ni+1(v)| ≥ |ΓG′i+1
(Ni(v) \ Ui+1)| > kd|Ni(v) \ Ui+1|

except with probability Pri by Lemma 10.
Since Ui+1 is chosen from Vi independently of Ni(v), and Ni(v) is uniform on Vi, by Lemma 11,

except with negligible probability (call it P ′i ),

|Ni(v) \ Ui+1| >
(

1− q
2

)
|Ni(v)|.

Inductively, ri = |Ni(v)\Ui+1| >
((

1−q
2

)
kd
)i

and eventually greater than n
d except with probability

l0∑
i=1

(Pri +P ′i ), where l0 is the largest integer such that rl0 ≤ n
d . Since l0 � D = O(log n) as dD � n,

this probability is negligible.
Let n′ = |V ′| = (1 − q)n. There are two possibilities for rl0+1 = |Nl0+1(v) \ Ul0+2|: either 1)

n
d < rl0+1 ≤ n′

2 or 2) rl0+1 >
n′

2 .

Case 1: Assume that n
d < rl0+1 ≤ n′

2 . Denote r = rl0+1 and n0 = |Vr| ≥ n′. Then
n
d = 1

p < r ≤ n′

2 ≤ n0
2 . For sufficiently large n, we have (1 − p)

1
p ≈ e−1. Thus,
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E[|Γ(Nl0+1(v))|] ≈ (n0 − r)(1 − e−rp). As in the proof of Lemma 10, by the Chernoff
bound, we have

Pr[|Γ(Nl0+1(v) \ Ul0+2)| ≤
n0
4

] ≤ e−
(

1− n0
4(n0−r)(1−e−rp)

)2
(n0−r)(1−e

−rp)

2

≤

e
−

(
(n0−r)(1−e

−rp)
n0

− 1
4

)2

2· (n0−r)(1−e−rp)
n0


n0

≤ 1

c′n0
≤ 1

c′n′
,

where c′ = e
1
2 (1−e−1)− 1

4
2 > 1 as 1 − e−1 < 1 − e−rp < 1 and 1

2 ≤
n0−r
n0

< 1. Thus, except with
negligible probability,

rl0+2 = |Nl0+2(v) \ Ul0+3| ≥
(

1− q
2

)
|Γ(Nl0+1(v) \ Ul0+2)| >

(
1− q

8

)
n0 ≥

(
1− q

8

)
n′

by Lemma 11. In this case, let l = l0 + 2.

Case 2: rl0+1 >
n′

2 . In this case, let l = l0 + 1.

In both cases, we have |Nl(v)\Ul+1| = rl > c2n
′ for some constant 0 < c2 < 1 except with negligible

probability. Then, for each v ∈ V ′ \Nl(v), the probability that v does not connect to any vertex in
Nl(v)\Ul+1 is (1−p)rl ≈ e−rlp ≤ 1

nc3 logε n , where c3 = c2(1−q) log e. By the union bound, the prob-

ability that any node in V ′ \Nl(v) is not in Γ(Nl(v) \Ul+1) ⊆ Nl+1(v) is at most 1
nc3 logε n−1 , which

is negligible. Hence, except with negligible probability, V ′ = Nl(v) ∪ Γ(Nl(v)) ⊆ Nl(v) ∪Nl+1(v).
Therefore, any v′ ∈ V ′ is reachable from v by a path of length at most D.

This completes the proof of Theorem 9.
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