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Abstract. In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a user’s decryption key is
associated with attributes which in general are not related to the user’s identity, and the same set
of attributes could be shared between multiple users. From the decryption key, if the user created
a decryption blackbox for sale, this malicious user could be difficult to identify from the blackbox.
Hence in practice, a useful CP-ABE scheme should have some tracing mechanism to identify this
‘traitor’ from the blackbox. In addition, being able to revoke compromised keys is also an important
step towards practicality, and for scalability, the scheme should support an exponentially large number
of attributes. However, none of the existing traceable CP-ABE schemes supports revocation or large
attribute universe. In this paper, we construct the first practical CP-ABE which possesses these three
important properties: (1) blackbox traceability, (2) revocation, and (3) supporting large universe. When
compared with the latest traceable CP-ABE schemes, this new scheme achieves the same efficiency
level, enjoying the sub-linear overhead of O(\/]v ), where N is the number of users in the system, and
attains the same security level, namely, the fully collusion-resistant traceability against policy-specific
decryption blackbox, which is proven against selective adversaries in the standard model. The scheme
also supports large attribute universe, and attributes do not need to be pre-specified during the system
setup. It is highly expressive and can take any monotonic access structures as ciphertext policies.

We also present the analogous results in the Key-Policy Attribute-Based Encryption (KP-ABE) set-
ting, where users’ description keys are described by access policies and ciphertexts are associated with
attributes. We construct the first practical KP-ABE which possesses the three important properties:
(1) blackbox traceability, (2) revocation, and (3) supporting large universe. The scheme is highly ex-
pressive and can take any monotonic access structures as key policies, and is efficient, namely, enjoys
the sub-linear overhead of O(v/N) while supporting fully collusion-resistant blackbox traceability and
revocation, and does not need to pre-specify the attributes during the system setup. The scheme is
proven selectively secure in the standard model.
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1 Introduction

In some emerging applications such as user-side encrypted cloud storage, users may store encrypted
data on a public untrusted cloud and let other users who have eligible credentials decrypt and
access the data. The decryption credentials could be based on the users’ roles and do not have
to be their identities. For example, a user Alice wants to encrypt some documents, upload to the
cloud, and let all PhD students and alumni in the Department of Mathematics download and
decrypt, while she does not have the identities of all the eligible receivers, and the set of eligible
receivers could also be dynamic. Intuitively, Alice is to encrypt the documents under “(Mathematics
AND (PhD Student OR Alumni))”, which is an access policy defined over descriptive attributes,
so that only those receivers whose attributes satisfy this policy can decrypt. Traditional public
key encryption, identity-based encryption (e.g. [5]) and broadcast encryption (e.g. [23]) are user-
specific, where Alice has to know the exact identities of all the desired receivers so that she can use



the corresponding public key/identity/index to encrypt the documents, and thus are not suitable.
Attribute-Based Encryption (ABE), introduced by Sahai and Waters [28], provides a solution to this
type of applications. In a Ciphertext-Policy ABE (CP-ABE) [11/2] schemﬂ each user possesses a
set of attributes/credentials and a secret key, which corresponds to these credentials, the encrypting
party can encrypt the data using an access policy (e.g. a Boolean formula) on attributes, and a
user can decrypt if and only if the user’s attributes satisfy the policy.

CP-ABE has attracted much attention in recent years, and among the recently proposed schemes
[2IRTO30IT6l24UT2/18], one of the state-of-the-art works is due to Lewko and Waters [I8/19]. Their
scheme achieves high expressivity (i.e. can take any monotonic access structures as ciphertext
policies), and is provably secure against adaptive adversaries in the standard model. The scheme
is also efficient and removes the one-use restriction that other comparable schemes have [16/24].
As of the current Public Key Infrastructure which mandates the capabilities of key generation,
revocation, and certified binding between identities and public keys, before the CP-ABE being
able to deploy in practice, we should provision a practical CP-ABE scheme with three important
features: (1) traceability, (2) revocation, and (3) large universe. Very recently, a handful of research
works have been done on each one of these while the fundamental open problem remains is the
existence of an efficient scheme which supports these three features at once.

Traceability / Traitor Tracing. Access policies in CP-ABE do not have to contain any
receivers’ identities, and more commonly, a CP-ABE policy is role-based and attributes are shared
between multiple users. In practice, a malicious user, with attributes shared with multiple other
users, might leak a decryption blackbox/device, which is made of the user’s decryption key, for the
purpose of financial gain or some other forms of incentives, as the malicious user has little risk of
being identified out of all the users who can build a decryption blackbox with identical decryption
capability. Being able to identify this malicious user is crucial towards the practicality of a CP-ABE
system.

Given a well-formed decryption key, if the tracing algorithm of a CP-ABE scheme can find out
the malicious user who created the key from his/her original key, the scheme is called Whitebox
Traceable CP-ABE [21]. Given a decryption blackbox, while the decryption key and even the de-
cryption algorithm could be hidden inside the blackbox, if the tracing algorithm can still find out
the traitor whose key has been used in constructing the blackbox, the scheme is called Blackbox
Traceable CP-ABE [20]. In this stronger blackbox traceability notion, there are two types of black-
boxes: key-like decryption blackbox and policy-specific decryption blackbox. A key-like decryption
blackbox has an attribute set associated and can decrypt encrypted messages with policies being
satisfied by the attribute set. A policy-specific decryption blackbox has a policy associated and can
decrypt encrypted messages with the same policy. According to [20], it is believed that traceability
against a policy-specific decryption blackbox is no easier to achieve than that against a key-like
decryption blackbox. In fact, the CP-ABE scheme proposed by Liu et al. in [20] is conjectured to
be traceable against policy-specific decryption blackbox in the standard model with selective ad-
versaries. On the other side, the scheme is highly expressive and achieves the most efficient level to
date, i.e. the overhead for traceability is in O(v/N), where N is the number of users in the system.

Revocation. For any encryption systems that involve many users, private keys might get
compromised, users might leave or be removed from the systems. When any of these happens, the
corresponding user keys should be revoked. In the literature, several revocation mechanisms have
been proposed in the context of CP-ABE. In [31], Yu et al. proposed a mechanism which requires

! Here we focus on CP-ABE, while skipping the corresponding discussions about Key-Policy ABE.



a semi-trusted proxy server to be online. In [27]E|, Sahai et al. proposed an indirect revocation
mechanism, which requires an authority to periodically broadcast a key update information so
that only the non-revoked users can update their keys and continue to decrypt messages. In [I],
Attrapadung and Imai proposed a direct revocation mechanism, which allows a revocation list to
be specified directly during encryption so that the resulting ciphertext cannot be decrypted by
any decryption key which is in the revocation list even though the associated attribute set of the
key satisfies the ciphertext policy. The direct revocation mechanism does not need any periodic
key updates that an indirect revocation mechanism requires. It does not affect any non-revoked
users either. While for indirect revocation mechanism, defining an appropriate time period for key
updates could be a difficult task in practice: if the time period is too long, the revocation cannot
take effect in time, on the other side, if the time slot is too short, the frequent key updates could
become an expensive overhead for the system. In direct revocation, a system-wide revocation list
could be made public and revocation could be taken into effect promptly as the revocation list
could be updated immediately once a key is revoked. In this paper, we focus on achieving direct
revocation in CP-ABE.

Large Attribute Universe. In most CP-ABE schemes, the size of the attribute universe is
polynomially bounded in the security parameter, and the attributes have to be fixed during the
system setup. In a large universe CP-ABE, the attribute universe can be exponentially large, any
string can be used as an attribute, and attributes do not need to be pre-specified during setup.
Although “somewhat” large universe CP-ABE schemes have been proposed or discussed previously
[BOUT6ITI25], as explained by Rouselakis and Waters [26], limitations exist. The first “truly” large
universe CP-ABE construction, in which there is no restriction on ciphertext policies or attributes
associated with the decryption keys, was proposed in [26].

1.1 Owur Results

We propose the first practical CP-ABE scheme that simultaneously supports (1) traceability against
policy-specific decryption blackbox, (2) (direct) revocation and (3) “truly” large attribute universe.
We show that the scheme’s traceability is fully collusion-resistant, that is, the number of colluding
users in constructing a decryption blackbox is not limited and can be arbitrary. Furthermore, the
traceability is public, that is, anyone can run the tracing algorithm. The scheme is also highly
expressive that allows any monotonic access structures to be the ciphertext policies.

The scheme is proven selectively secure and traceable in the standard model. This is comparable
to the traceable CP-ABE against policy-specific decryption blackbox with traceability conjectured
to be selective [20] and also to the security of the “truly” large universe CP-ABE [26]. The selective
security is indeed a weakness when compared with the full security of [18/20], but as discussed in
[26], selective security is still a meaningful notion and can be a reasonable trade off for performance
in some circumstances. Furthermore, in light of the proof method of [18] that achieves full security
through selective techniques, we can see that developing selectively secure schemes could be an
important stepping stone towards building fully secure ones.

Table |1 compares this new scheme with the representative results in conventional CP-ABE [I§],
blackbox traceable CP-ABE [20], revocable CP-ABE [I], and “truly” large universe CP-ABE [26],
in terms of features (i.e. blackbox traceability, revocation and large universe) and performance.

2 Note that in this paper we focus on the the conventional revocation, which is to prevent a compromised or revoked
user from decrypting newly encrypted messages. In [27], revoking access on previously encrypted data is also
considered.
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L All the five schemes are highly expressive, i.e. supporting any monotonic access structures.

2 Let N be the number of users in the system, || the size of the attribute universe, I the number of rows of
the LSSS matrix for an access policy, |S| the size of the attribute set of a decryption key, and |I| the number
of attributes for a decryption key to satisfy a ciphertext policy.

3 [19], as the full version of [I8], provides a prime order construction, and the efficiency evaluation here is based
on it.

* The CP-ABE schemes in [I] are not “truly” large universe, as some limitations are imposed and some
corresponding parameters have to be fixed during the setup. Let m be the maximum size of an attribute set
associated with a key, I, the maximum number of rows in the LSSS matrix of a policy, and |R| the number
of revoked users in a revocation list R.

5 The construction in [20] is on composite order groups, and the order is the product of three large primes,
and the efficiency evaluation is based on the composite order groups. As a result, the actual sizes of public
key and ciphertext in [20] is larger than that of this work, and the encryption and decryption in [20] are
slower than that of this work.

Table 1. Features and Efficiency Comparison

The scheme’s overhead is in O(v/N), where N is the number of users in a system. This might
be a concern, but we stress that for fully collusion-resistant blackbox traceable CP-ABE, such
a sub-linear overhead is the most efficient one to date. Furthermore, when compared with the
existing fully collusion-resistant blackbox traceable CP-ABE scheme in [20], at the cost of VN
additional elements in private key, our construction achieves revocation and “truly” large universe.
For achieving better performance, this new scheme is constructed on prime order groups, rather
than composite order groups, as it has been showed (e.g. in [9/15]) that constructions on composite
order groups will result in significant loss of efficiency.

Paper Outline. In Sec. |2, by following the definitions in [I820)26], we propose a definition for CP-
ABE supporting traceability against policy-specific decryption blackbox, direct revocation and large
attribute universe. As of [20], the definition is ‘functional’, namely each decryption key is uniquely
indexed by k € {1,...,N} (N is the number of users in the system) and given a policy-specific
decryption blackbox, the tracing algorithm Trace can return the index k of a decryption key which
has been used for building the decryption blackbox. On direct revocation, in our definition, the
Encrypt algorithm takes a revocation list R C {1,..., N} as an additional input so that a message
is encrypted under the (revocation list, access policy) pair (R, A) would only allow users whose
(index, attribute set) pair (k, S) satisfies (k ¢ R) A (S satisfies A) to decrypt.

On the construction, we refer to the ‘functional’ CP-ABE in Sec. [2| as Revocable CP-ABE
(or R-CP-ABE for short), then as analogous to the approach in [20], we extend the R-CP-ABE
to a primitive called Augmented R-CP-ABE (or AugR-CP-ABE for short), which will lastly be
transformed to a policy-specific blackbox traceable R-CP-ABE. More specifically, in Sec. [3| we
define the encryption algorithm of AugR-CP-ABE as Encrypt,(PP, M, R, A, k) which takes one
more parameter k € {1,..., N+1} than the original one in R-CP-ABE. This also changes the
decryption criteria in AugR-CP-ABE in such a way that an encrypted message can be recovered



using a decryption key SKj g, which is identified by index k € {1,..., N} and associated with an
attribute set S, only if (k ¢ R) A (S satisfies A) A (k > k). Also, we formalize a message-hiding
game and an index-hiding game, and show that an AugR-CP-ABE scheme satisfying the message-
hiding and the (selective) index-hiding can be transformed to a (selectively) secure R-CP-ABE with
(selective) policy-specific blackbox traceability.

In Sec. we propose a large universe AugR-CP-ABE, and show that it is message-hiding
and selective index-hiding in the standard model. Combining it with the results in Sec. |3, we
obtain a large universe R-CP-ABE construction, which is efficient (with overhead size in O(vV/N)),
highly expressive (supporting any monotonic access structures as policies), selectively secure and
selectively policy-specific blackbox traceable in the standard model.

To construct the AugR-CP-ABE, we borrow ideas from some existing works, such as the CP-
ABE constructions in [20l26] and Trace&Revoke schemes in [9]. However, the combination is not
trivial and may result in inefficient or insecure systems. In particular, besides achieving the impor-
tant features for practicality, such as traitor tracing, revocation, large universe, high expressivity
and efficiency, we achieve provable security and traceability in the standard model. As we will dis-
cuss later in Sec. 4] proving the blackbox traceability while supporting the large attribute universe
is one of the most challenging tasks in this work. As we can see, the proof techniques for blackbox
traceability in [20] are no longer applicable for large universe, while that for large universe in [26]
are only for confidentiality rather than for blackbox traceability.

Following a similar route, we also present the analogous results in Key-Policy ABE setting, as
shown in Sec. [l

2 Revocable CP-ABE and Blackbox Traceability

In this section, we define Revocable CP-ABE (or R-CP-ABE for short) and its security, which are
based on conventional (non-traceable, non-revocable) CP-ABE (e.g. [18]). Similar to the traceable
CP-ABE in [20], in our ‘functional’ definition, we explicitly assign and identify users using unique
indices. Then we formalize traceability against policy-specific decryption blackbox on R-CP-ABE.

2.1 Revocable CP-ABE

Given a positive integer n, let [n] be the set {1,2,...,n}. A Revocable Ciphertext-Policy Attribute-
Based Encryption (R-CP-ABE) scheme consists of four algorithms:

Setup(A\, N) — (PP, MSK). The algorithm takes as input a security parameter A\ and the number
of users in the system N, runs in polynomial time in A, and outputs a public parameter PP and
a master secret key MSK. We assume that PP contains the description of the attribute universe

KeyGen(PP,MSK, S) — SKj, 5. The algorithm takes as input the public parameter PP, the master
secret key MSK, and an attribute set S, and outputs a private decryption key SKj g, which is

assigned and identified by a unique index k € [N].
Encrypt(PP, M, R, A) — CTg a. The algorithm takes as input PP, a message M, a revocation list

R C [N], and an access policy A over U, and outputs a ciphertext CTg s such that only users
whose indices are not revoked by R and attributes satisfy A can recover M. (R, A) is included
in CTg 4.

3 For large universe and also in our work, the attribute universe depends only on the size of the underlying group
G, which depends on A\ and the group generation algorithm.



Decrypt(PP,CTg a,SKg,s) — M or L. The algorithm takes as input PP, a ciphertext CTp 4, and
a decryption key SKy, ¢. If (k € [N]\ R) AND (S satisfies A), the algorithm outputs a message
M, otherwise it outputs L indicating the failure of decryption.

The security of the R-CP-ABE is defined as follows.
Gamepy. This message-hiding game is defined between a challenger and an adversary A.

Setup. The challenger runs Setup(\, N) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, attribute set) pair (k;, Sk, ). The challenger

responds with SKy, g, .

Challenge. A submits’ two equal-length messages My, M7 and a (revocation list, access pol-
icy) pair (R*,A*). The challenger flips a random coin b € {0,1}, and sends CTpg-p+
Encrypt(PP, M;, R*, A*) to A.

Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, attribute set) pair (k;, Sk;). The

challenger responds with SKy, g, .
Guess. A outputs a guess b € {0,1} for b.

A wins the game if b’ = b under the restriction that none of the queried {(k;, Sk’i)}?zl can satisfy
(k; € [IN]\R*) AND (S, satisfies A*). The advantage of A is defined as MHAdv 4 = | Pr[b/ = b]—1|.

Definition 1. An N-user R-CP-ABE scheme is secure if for all probabilistic polynomial time
(PPT) adversaries A, MHAdv 4 is negligible in \.

We say that an N-user R-CP-ABE scheme is selectively secure if we add an Init stage before
Setup where the adversary commits to the access policy A*.

It is worth noticing that: (1) although the KeyGen algorithm is responsible for determining/assigning
the index of each user's decryption key, to capture the security that an adversary can adaptively choose
decryption keys to corrupt, we allow A to specify the index when querying for a key, i.e., for i = 1
to @, A submits pairs of (k;, Sk,) for decryption keys with attribute sets corresponding to Sj,, where
Q < N, k; € [N],and k; # k; V1 <i# j < Q (this is to guarantee that each user/key can be uniquely
identified by an index); and (2) for k; # k; we do not require Sy, # Sk, i.e., different users/keys may
have the same attribute set.

Remark: (1) The R-CP-ABE defined above extends the conventional definition for non-revocable
CP-ABE [I8], where the revocation list R is always empty. (2) For traceability, we explicitly assign
a unique index to each user’s decryption key. Predefining the number of users IV in the system is
indeed a weakness but is also a necessary price to pay for achieving blackbox traceability, but we
stress that in practice, this should not incur any noticeable concern, and in fact, all the existing
blackbox traceable systems (e.g. [6J7J9I4)20]) have the same setting. (3) When the revocation list
R needs an update due to, for example, some decryption keys being compromised or some users
leaving the system, the updated R needs to be disseminated to encrypting parties. In practice, this
can be done in a similar way to the certificate revocation list distribution in the existing Public Key
Infrastructure, namely an authority may update R, and publish it together with the authority’s
signature generated on it. There are many ways for the encrypting parties to obtain a copy of the
updated R, for example, via RSS feeds. (4) From the view of the public, R is just a set of numbers
(in [N]). These numbers (or indices) do not have to provide any information on the corresponding
users, in fact, besides the authority who runs KeyGen, each user only knows his/her own index. Also,
encrypting parties do not need to know the indices of any users in order to encrypt but only the



access policies. Although associating a revocation list with a ciphertext might make the resulting
CP-ABE look less purely attribute-based, it does not undermine the capability of CP-ABE, that
is, enabling fine-grained access control on encrypted messages.

2.2 Blackbox Traceability

A policy-specific decryption blackbox D in the setting of R-CP-ABE is viewed as a probabilistic
circuit that can decrypt ciphertexts generated under some specific pair of revocation list and access
policy. In particular, a policy-specific decryption blackbox D is described by a (revocation list, access
policy) pair (Rp, Ap) and a non-negligible probability value € (i.e. 0 < € < 1 is polynomial in \),
and this blackbox D can decrypt ciphertexts generated under (Rp,Ap) with probability at least €.
Such a blackbox can reflect most practical scenarios, which include the key-like decryption blackbox
for sale and decryption blackbox “found in the wild”, which are discussed in [20]. In particular, once
a blackbox is found being able to decrypt ciphertexts (regardless of how this is found, for example,
an explicit description of the blackbox’s decryption ability is given, or the law enforcement agency
finds some clue), we can regard it as a policy-specific decryption blackbox with the corresponding
(revocation list, access policy) pair (which is associated to the ciphertext). And for a decryption
blackbox, if multiple (revocation list, access policy) pairs are found that corresponding ciphertexts
can be decrypted by it with non-negligible probability, we can regard the blackbox as multiple
policy-specific decryption blackboxes, each with a different (revocation list, access policy) pair.

We now define the tracing algorithm and traceability against policy-specific decryption blackbox.

Trace? (PP, Rp, Ap, €) — K¢ C [N]. Trace is an oracle algorithm that interacts with a policy-specific
decryption blackboxr D. By given the public parameter PP, a revocation list Rp, an access policy
Ap, and a probability value €, the algorithm runs in time polynomial in X\ and 1/e, and outputs an
index set Ky C [N] which identifies the set of malicious users. Note that € has to be polynomially
related to X, i.e. ¢ =1/ f(X\) for some polynomial f.

The following tracing game captures the notion of fully collusion-resistant traceability against
policy-specific decryption blackbox. In the game, the adversary targets to build a decryption black-
box D that can decrypt ciphertexts under some (revocation list, access policy) pair (Rp, Ap). The
tracing algorithm, on the other side, is designed to extract the index of at least one of the malicious
users whose decryption keys have been used for constructing D.

GameTr. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, N) and gives the public parameter PP to A.
Key Query. For i = 1 to @, A adaptively submits (index, attribute set) pair (k;, Sk,). The

challenger responds with SKy, g, .
Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a

(revocation list, access policy) pair (Rp, Ap) and a non-negligible probability value e.
Tracing. The challenger runs Trace? (PP, Rp, Ap, €) to obtain an index set Ky C [N].

Let Kp = {ki|]1 < i < Q} be the index set of decryption keys corrupted. We say that .4 wins the
game if:

1. Pr[D(Encrypt(PP, M, Rp,Ap)) = M] > ¢, where the probability is taken over the random
choices of message M and the random coins of D. A decryption blackbox satisfying this condition
is said to be a useful policy-specific decryption blackbox.



2. Kp =0, or Ky € Kp, or ((k € Rp) OR (S, does not satisfy Ap) Vk; € Kp).

We denote by TRAdv 4 the probability that A wins.

For a useful policy-specific decryption blackbox D, the traced Ky must satisfy (Kp # 0) A (Kp C
Kp) A 3kt € Kp s.t. (ke € [N]\ Rp) AND (Sk, satisfies Ap)). (1) (Ky # 0) A (Kp C Kp) captures
the preliminary traceability that the tracing algorithm can extract at least one malicious user
and the coalition of malicious users cannot frame any innocent user. (2) (Jk; € Kp s.t. (ks €
[N]\ Rp) AND (Sk, satisfies Ap)) captures the strong traceability that the tracing algorithm
can extract at least one malicious user whose decryption key enables D to have the decryption
ability corresponding to (Rp,Ap), i.e. whose index is not in Rp and whose attribute set satisfies
Ap. Strong traceability is desirable in practice, since it can defend against attacks where colluding
traitors may build D in a smart manner so that D will be traced to only a user whose index is in Rp
or whose attributes do not satisfy Ap, which should not happen for a secure R-CP-ABE. We refer
to [1420] on why strong traceability is desirable. Note that, as of [6J7J9IT4J20], we are modeling
a stateless (resettable) decryption blackbox — such a blackbox is just an oracle and maintains no
state between activations. Also note that we are modeling public traceability, namely, the Trace
algorithm does not need any secrets and anyone can perform the tracing from the public parameter
only.

Definition 2. An N-user R-CP-ABE scheme is traceable against policy-specific decryption black-
bozx if for all PPT adversaries A, TRAdv 4 is negligible in A.

We say that an N-user R-CP-ABE is selectively traceable against policy-specific decryption black-
box if we add an Init stage before Setup where the adversary commits to the access policy Ap.
In the traceable CP-ABE of [20], given a decryption blackbox, it is guaranteed that at least one
decryption key in the blackbox will be traced. But in the traceable R-CP-ABE above, it is possible
to trace all the active decryption keys in the blackbox. In particular, given a decryption blackbox
D described by (Rp, Ap) and non-negligible probability €, we can run Trace to obtain an index set
Ky so that (Ky # 0) A (Kp € Kp) A (Fk € Ky s.t. (ke € [N]\ Rp) AND (Sk, satisfies Ap)). Then,
we can set a new revocation list R}, = Rp U {k; € Kz | (ks € [N]\ Rp) AND (Sk, satisfies Ap)}
and test whether D can decrypt ciphertexts under (R, Ap). If D can still decrypt the ciphertexts
with non-negligible probability €', we can run Trace on (R}, Ap,€’) and obtain a new index set
K/, where (K. # 0) A (K}, C Kp) A (3kt € K s.t. (k € [N]\ R)) AND (Sk, satisfies Ap)). By
repeating this process, iteratively expanding the revocation list, until D can no longer decrypt the
corresponding ciphertexts, we have finished finding out all the active malicious users of D.

3 Augmented R-CP-ABE

As outlined in Sec. we now define Augmented R-CP-ABE (or AugR-CP-ABE for short) from
the R-CP-ABE above, formalize its security notions, then show that a secure AugR-CP-ABE can
be transformed to a R-CP-ABE with blackbox traceability. In Sec. 4], we propose a concrete con-
struction of AugR-CP-ABE.

3.1 Definitions

An AugR-CP-ABE scheme has four algorithms: Setup,, KeyGenyp, Encrypts, and Decrypty. The
setup and key generation algorithms are the same as that of R-CP-ABE. For the encryption algo-
rithm, it takes one more parameter k € [N + 1] as input, and is defined as follows.



EncryptAgPP,M, R,A,k) — CTga. The algorithm takes as input PP, M, R C [N], A, and an

index k € [N + 1], and outputs a ciphertext CTga. (R, A) is included in CTg 4, but the
value of k is not.

The decryption algorithm is also defined in the same way as that of R-CP-ABE. However, the
correctness definition is changed to the following.

Correctness. Forany S C U, k € [N], R C [N], A over U, encryption index k € [N+1], and M, sup-
pose (PP, MSK) < Setupa (A, N), SK s < KeyGenp (PP, MSK, S), CTg s < Encrypta (PP, M, R, A, k).
If (k € [N]\ R) A (S satisfies A) A (k > k) then Decrypta (PP, CTga, SKi s) = M.

Note that during decryption, as long as (k € [N]\ R) A (S satisfies A), the decryption algorithm
outputs a message, but only when k > k, the output message is equal to the correct message, that
is, if and only if (k € [N]\ R) A (S satisfies A) A (k > k), can SKj, g correctly decrypt a ciphertext
under (R, A, k). If we always set k = 1, the functions of AugR-CP-ABE are identical to that of
R-CP-ABE. In fact, the idea behind transforming an AugR-CP-ABE to a blackbox traceable R-
CP-ABE, that we will show shortly, is to construct an AugR-CP-ABE with index-hiding property,
and then always sets k = 1 in normal encryption, while using k € [N + 1] to generate ciphertexts
for tracing.

Security. We define the security of AugR-CP-ABE in two games. The first game is a message-
hiding game and says that a ciphertext created using index N + 1 is unreadable by anyone. The
second game is an index-hiding game and captures the intuition that a ciphertext created using
index k reveals no non-trivial information about k.

GameﬁAH. The message-hiding game Game’,?‘/lH is similar to Gamepyy except that during the Chal-
lenge phase, the challenge ciphertext is computed as CTg« g+ < Encrypta (PP, My, R*, A*, N + 1),
and the original restriction in Gamepyy no longer applies in Ga me’ﬁ‘AH. In particular, The message-
hiding game Gamely,, proceeds as follows:

Setup. The challenger runs Setupa (A, V) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, attribute set) pair (k;, Sk, ). The challenger

responds with SKy, g, .

Challenge. A submits’ two equal-length messages My, M7 and a (revocation list, access pol-
icy) pair (R*,A*). The challenger flips a random coin b € {0,1}, and sends CTpg-p+
Encryptp (PP, My, R*, A*, N + 1) to A.

Phase 2. For i = @1 + 1 to @, A adaptively submits (index, attribute set) pair (k;, Sk,). The

challenger responds with SKg, g, .
Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if b’ = b. The advantage of the adversary A in Game/,\)‘AH is defined as MHAAdv 4 =
|Pr[b’:b]—%.

Definition 3. An N-user Augmented R-CP-ABE scheme is message-hiding in GameﬁAH if for all
PPT adversaries A the advantage MHAAdv 4 is negligible in \.

Gameﬁ_r In the index-hiding game, we require that, for any (revocation list, access policy) pair
(R*, A*), an adversary cannot distinguish between a ciphertext under (R*, A*, k) and (R*, A* k+1)
without a decryption key SKj g, where (k € [N]\ R*) A (Sg satisfies A*). The game takes as
input a parameter & € [N] which is given to both the challenger and the adversary A. The game
proceeds as follows:



Setup. The challenger runs Setupa (A, V) and gives the public parameter PP to A.
Phase 1. For i = 1 to )1, A adaptively submits (index, attribute set) pair (k;, Sk,). The challenger

responds with SK, S
Challenge. A submits'a message M and a (revocation list, access policy) pair (R*, A*). The

challenger flips a random coin b € {0, 1}, and sends CTg+ o+ <+ Encrypta(PP, M, R*, A* k + b)

to A.
Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, attribute set) pair (k;, Sk,). The

challenger responds with SKj, g,
Guess. A outputs a guess b € {0 71} for b.

A wins the game if ¥ = b under the restriction that none of the queried pairs {(k;, Sk, )}1 1
can satisfy (k; = k:) (ki € [N]\ R*) A (Sk, satisfies A*). The advantage of A is defined as
IHAAdv 4[k] = | Pr[b' = b] — 4]

Definition 4. An N-user Augmented R-CP-ABE scheme is index-hiding if for all PPT adversaries
A the advantages IHAAdvA[k] fork=1,...,N are negligible in \.

We say that an Augmented R-CP-ABE scheme is selectively index-hiding if we add an Init
stage before Setup where the adversary commits to the challenge access policy A*.

3.2 The Reduction of Traceable R-CP-ABE to Augmented R-CP-ABE

Let Xa = (Setupp, KeyGena, Encrypty, Decrypty ) be an AugR-CP-ABE, define Encrypt(PP, M, R, A)
Encrypta (PP, M, R, A, 1), then X' = (Setupa, KeyGeny,, Encrypt, Decrypt,) is a R-CP-ABE derived
from Y. In the following, we show that if X is message-hiding and index-hiding, then Y is secure
(w.r.t. Def. . Furthermore, we propose a tracing algorithm Trace for X' and show that if Xy is
message-hiding and index-hiding, then ¥ (equipped with Trace) is traceable (w.r.t. Def. .

[3.2l11 R-CP-ABE Security

Theorem 1. If Xp is message-hiding and index-hiding (resp. selectively indez-hiding), then X is
secure (resp. selectively secure).

Proof. First we need a slightly more elaborate message-hiding game for X'a. In addition to N, A,
this extended game, denoted as GameEMH, takes as input a parameter k € [N + 1] which is only
given to the challenger. Gamegyy proceeds as follows:

Setup. The challenger runs Setupa (A, V) and gives the public parameter PP to A.
Phase 1. For i =1 to Q1, A adaptively submits (index, attribute set) pair (k;, Sy, ), and obtains

SK,
Challenge A submits two equal-length messages My, M; and a (revocation list, access pol-

icy) pair (R*,A*). The challenger flips a random coin b € {0,1}, and sends CTpg=p+

Encrypta (PP, My, R*, A* k) to A. This is the only place where k is used in the game.
Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, attribute set) pair (k;, Sk,), and

obtains SKy, S -
Guess. A outputs a guess b’ € {0,1} for b.

The adversary A wins the game if & = b under the restriction that none of the queried pairs
{(ki, Sk )} can satisfy (k; E [ 1\ R*) A (Sk, satisfies A*). The advantage of A is defined as
EMHA AdvA[ | =|Pr[t) =b] —
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When k = 1, the game above, including the restriction, is exactly identical to the message-
hiding game Gameyy for ¥, we have EMHAAdv4[1] = MHAdv4. When k = N + 1, we have that
EMHAAdVA[N + 1] < MH*Adv4, since Gamehyy is identical to Gamefyy for k = N + 1, but there
is no restriction in Gamejyy. In the following proof sketch, we will make use of the facts that X
is message-hiding and index-hiding to show that EMH”Adv A[1] is negligible, which implies that
MHAdv 4 is negligible (i.e. X' is secure w.r.t. Def. .

Suppose that X' is not secure, i.e. MHAdv 4 > € for some adversary A4 and non-negligible e.
MHAdv4 > € implies that EMHAAdv4[1] > e. As X is message-hiding, MHAAdv 4 is negligible
(for simplicity, say MH*Adv4 = 0), thus EMH*Adv 4[N + 1] = 0. Then, by the standard hybrid
argument there exists a k € [N] such that

|EMH”Adv 4[k] — EMHAAdv 4[k + 1]] > €/N.

In other words, with non-negligible probability, A is able to distinguish Encrypta (PP, M, R*, A", k)
from Encryptp (PP, M, R*, A* k+ 1) for some M and (R*, A*). But then A can directly be used to
win the index-hiding game Gamem.

More specifically, in Appendix [A] we show that for any adversary A, there exists an adversary
B such that for all k =1,..., N, we have

|IEMH”Adv 4[k] — EMHAAdv 4[k + 1] < 2 - IHAAdv[k]. (1)
Then we have

|EMHAAdv 4[1] — EMHAAdV 4[N + 1]

N N
<Y " |[EMHAAdv 4 [k] — EMHAAdv [k + 1]] <2 IHAAdvis[k].
k=1 k=1

But since Xa is message-hiding and index-hiding, we have that EMH*Adv 4[N + 1] and IH*Advl[k]
for k =1,..., N are negligible for any PPT adversary. Therefore, EMH”Adv A[1] is negligible. The
selective case is similar.

[3.22 R-CP-ABE Traceability
We now propose a tracing algorithm, which uses a general tracing method previously used in
[422]6719120], and show that equipped with Trace, X is traceable (w.r.t. Def. [2).

Trace? (PP, Rp, Ap, €) — K¢ C [N]: Given a policy-specific decryption blackbox D associated with
a (revocation list, access policy) pair (Rp, Ap) and probability € > 0, the tracing algorithm works
as follows:

1. For k =1 to N + 1, do the following;:
(a) Repeat the following 8\(N/e)? times:
i. Sample M from the message space at random.
ii. Let CTry ap < Encrypta(PP, M, Rp,Ap, k).
iii. Query oracle D on input CTg, 4., and compare the output of D with M.

(b) Let pg be the fraction of times that D decrypted the ciphertexts correctly.
2. Let K7 be the set of all k € [N] for which px — pry1 > €/(4N). Output Kyp.

The running time is cubic in N. It can be made (almost) quadratic using binary search instead of
a linear scan.

11



Theorem 2. If Xp is message-hiding and index-hiding (resp. selectively indez-hiding), then X is
traceable (resp. selectively traceable).

Proof. We show that if the blackbox output by the adversary is a useful one then K will satisfy
(Kp # 0) A(Kp € Kp) A (ke € Ky s.t. (ke € [N]\ Rp) A (Sk, satisfies Ap)) with overwhelm-
ing probability, which implies that the adversary cannot win Gametg, i.e., TRAdv 4 is negligible.
The selective case will be similar. Let D be the policy-specific decryption blackbox output by the
adversary, and (Rp, Ap) be the (revocation list, access policy) pair describing D. Define

pi, = Pr[D(Encrypta (PP, M, Rp, Ap, k)) = M],

where the probability is taken over the random choice of message M and the random coins of D.
We have that p; > € and py41 is negligible (for simplicity let pyy1 = 0). The former follows from
the fact that D is useful, and the latter is because Y is message-hiding in Gameyy. Then there
must exist some k € [N] such that py — pr+1 > €¢/(2N). By the Chernoff bound it follows that with
overwhelming probability, px, — pr+1 > €/(4N). Hence, we have Ky # 0.

For any k € Kz (i.e., pr—Pr+1 > g5 ), we know, by Chernoff, that with overwhelming probability
Pk — Pet1 > €/(8N). Clearly (k € Kp) A (k € [N]\ Rp) A (Sk satisfies Ap) since otherwise, D
can directly be used to win the index-hiding game for Y. Hence, we have (Kr C Kp) A ((k €
[N]\ Rp) A (Sk satisfies Ap) Yk € Kr).

4 An Efficient Augmented R-CP-ABE

We propose an AugR-CP-ABE scheme which is highly expressive and efficient with sub-linear
overhead in the number of users in the system. It is also large universe, where attributes do not
need to be enumerated during setup, and the public parameter size is independent of the attribute
universe size. We show that this AugR-CP-ABE is message-hiding and selectively index-hiding in
the standard model.

Combining this AugR-CP-ABE with the results in Sec. we obtain a large universe R-CP-
ABE which is selectively secure and traceable, and for a fully collusion-resistant blackbox traceable
system, the resulting R-CP-ABE is the most efficient one to date, with sub-linear overhead.

To obtain this practical CP-ABE scheme supporting traitor tracing, revocation and large uni-
verse, we borrow ideas from the Blackbox Traceable CP-ABE of [20], the Trace and Revoke scheme
of [9] and the Large Universe CP-ABE of [26], but the work is not trivial as a straightforward com-
bination of the ideas would result in a scheme which is inefficient, insecure, or is not able to achieve
strong traceability, as also discussed in [20)]. Specifically, by incorporating the ideas from [9] and
[26] into the Augmented CP-ABE of [20], we can obtain a large universe AugR-CP-ABE which is
message-hiding, but proving the index-hiding property is a challenging task. The proof techniques
for index-hiding in [20] only work if the attribute universe size is polynomial in the security param-
eter and the parameters of attributes have to be enumerated during setup. They are not applicable
to large universe. The proof techniques in [26] are applicable to large universe, but work only for
proving security (i.e. message-hiding), while not applicable to index-hiding. To prove index-hiding
in the large universe setting, we introduce a new assumption that the index-hiding of our large
universe AugR-CP-ABE can be based on. In particular, in the underlying ¢-1 assumption of [26]
on bilinear groups (p, G, Gr, e), the challenge term T' € G is e(g, g)caq+1 or a random element, and
such a term in the target group could be used to prove the message-hiding as the message space is

12



Gr. To prove the index-hiding, which is based on the ciphertext components in the source group
G, we need the challenge term to be in the source group G. Inspired by the Source Group ¢-Parallel
BDHE Assumption in [I9], which is a close relative to the (target group) Decisional Parallel BDHE
Assumption in [30], we modify the ¢g-1 assumption to its source group version where the challenge
term is gc‘qurl or a random element in G. Based on this new assumption and with a new crucial
proof idea, we prove the index-hiding property for our large universe AugR-CP-ABE. We prove
that this new assumption holds in the generic group model.

4.1 Preliminaries

Linear Secret-Sharing Schemes (LSSS). An LSSS is a share-generating matrix A whose rows
labeled by attributes via a function p. An attribute set S satisfies the LSSS access matrix A if the
rows labeled by the attributes in S have the linear reconstruction property, namely, there exist
constants {w;} such that, for any valid shares {\;} of a secret s, we have ), w;\; = s. The formal
definitions of access structures and LSSS can be found in [I8/26].

Bilinear Groups. Let G be a group generator, which takes a security parameter A and outputs
(p,G,Gr,e) where p is a prime, G and G are cyclic groups of order p, and e : G x G — Gr
is a map such that: (1) (Bilinear) Vg, h € G, a,b € Zy,e(g9% h®) = e(g,h)®, (2) (Non-Degenerate)
Jg € G such that e(g, g) has order p in Gy. We refer to G as the source group and Gr as the target
group. We assume that group operations in G and Gr as well as the bilinear map e are efficiently
computable, and the description of G and Gr includes a generator of G and Gr respectively.

Complexity Assumptions. Besides the Decision 3-Party Diffie-Hellman Assumption (D3DH)
and the Decisional Linear Assumption (DLIN) that are used in [9] to achieve traceability in broad-
cast encryption, the index-hiding property of our AugR-CP-ABE construction will rely on a new
assumption, which is similar to the Source Group g¢-Parallel BDHE Assumption [19]. We refer
to it as the Modified Source Group ¢-Parallel BDHE Assumption. Here we only review this new
assumption, and refer to [9] for the details of the other assumptions.

The Modified Source Group ¢-Parallel BDHE Assumption Given a group generator G and
a positive integer q, define the following distribution:

(7,G,Gr,e) =G, g<& G, a,c,dby,... by & 7,

D = ((p,G,Gr,e), g,9% g°, g,

cdb;

g%, g%, g%, g% /%, g% Vi j e [q),

g b Vi € [2¢]\ {g+1},j € [q],

gt Vi€ [2q),5.5' € lq] s.t. § # 4.
geeta It getett /0 Vi€ ldl,j.j' €lal st j#5),
TO — gca‘ﬁl’Tl (i G

The advantage of an algorithm A in breaking the Modified Source Group q-Parallel BDHE Assump-
tion is: Adv} 4(N) := | Pr[A(D, Ty) = 1] — Pr[A(D, T1) = 1]].

Definition 5. G satisfies the Modified Source Group q-Parallel BDHE Assumption if AdvgvA()\) 18
a negligible function of A for any PPT algorithm A.
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This new assumption is closely related to the ¢-1 assumption in [26], except that the challenge
term gcaq+1 remains in the source group, all the input terms replace ¢ with cd, and additional input
terms ¢% and g9’ are given to the adversary. The relation between this assumption and the ¢-1
assumption [26] is analogous to that between the Source Group g-Parallel BDHE Assumption [19]
and the Decisional Parallel BDHE Assumption [30], i.e. the challenge term changes from a term
in the target group (i.e. e(g,g)C“qH) to a term in the source group (i.e. gcaqﬂ), and the input
terms are modified accordingly (i.e. replacing ¢ with cd, and adding g%). The main difference is
that in this new assumption, there is an additional input term ¢%‘. Note that giving the term
g% does not pose any problem in the generic group model. Intuitively, there are two ways that
the adversary may make use of the term ¢%“: (1) pairing g% with the challenge term: since the
pairing result of any two input terms would not be e(g, g)"’d“QQH, the adversary cannot break this
new assumption in this way; (2) pairing the challenge term with another input term whose exponent
contains d: however, the result could be a random element or one of { e(g, g)Cd“qH, e(g, g)CQdaqH,
e(g, g)<dia® e(g,g)CQdaqHHbﬂ"/bf, e(g,g)CQdaqHHbf//bJQ‘}, and as there is no input term which can
be paired with g% to obtain any of these terms, the adversary cannot break this new assumption
by this way either. In Appendix [D] we prove that this assumption holds in the generic group model.

Notations. Suppose that the number of users N in the system equals to m? for some m. In practice,
if V is not a square, we can add some “dummy” users until it pads to the next square. We arrange
the users in an m x m matrix and uniquely assign a tuple (7, j), where i, j € [m], to each user. A user
at position (i, 7) of the matrix has index k = (i — 1) * m + j. For simplicity, we directly use (7, ) as
the index where (i,7) > (i, j) means that ((i > i)V (i = iAj > j)). Let [m, m] be the set {(i,5)|i,j €
[m]}. The use of pairwise notation (i, 7) is purely a notational convenience, as k = (i — 1) x m + j

defines a bijection between {(¢,j)|i,j € [m]} and [N]. For a given vector v = (vy,...,vq), by g*
we mean the vector (¢”1,...,g"4). Furthermore, for g = (¢**,...,g¢"%) and g* = (¢"*,...,g"?),
by g¥ - g% we mean the vector (¢g"1T%¥1, ... gUitWd) je. g¥ - g¥ = ¢g"t™ and by eq(gY,g%*) we

mean szl e(g¥, g ), i.e. eq(g¥, g%) = e(g, 9) V™), where (v-w) is the inner product of v and w.
Given a bilinear group order p, one can randomly choose 7,1y, 7, € Zy, and set x1 = (74,0,r2),
x2 = (0,7y,72), X3 = X1 X X2 = (=7yrs, =127z, 727y). Let span{x1, x2} be the subspace spanned
by x1 and xo, i.e. span{x1, x2} = {vix1 + vaxz|vi,v2 € Z,}. We can see that x3 is orthogonal to
the subspace span{x1, X2} and Z3 = span{x1, x2, x3} = {v1x1+vax2 +vsxs|vi, 12, v3 € Zp}. For
any v € span{xi, X2}, (x3-v) = 0, and for random v € Zg, (x3-v) # 0 happens with overwhelming
probability.

4.2 Augmented R-CP-ABE Construction

Now we propose a large universe Augmented R-CP-ABE, where the attribute universe is U = Z,,
and we do not need to enumerate all the attributes or their corresponding public parameters during
system setup.

Setupp (A, N = m?) — (PP, MSK). The algorithm calls the group generator G(1*) to get (p, G, Gr,e),
where p is the prime order of G and G and e is the bilinear map, and sets the attribute universe
to U = Zj,. It then randomly picks:

g, h, f7 fl?"'afmv G7 H EG? {Oéi, Tis Zi GZp}ie[m]v {C] ezP}jE[W]’

and outputs the public parameter PP and master secret key MSK as

PP = ( (p7G>GT’€)’ 9, h7 f7 flu"’vfm7 G7 Ha
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{Ei=e(9,9)",Gi=9", Zi=9" Yiemm)y {Hj =9 }jeim) )

MSK:<a1,...,am, Tlyeey T, cl,...,cm>.

A counter ctr = 0 is implicitly included in MSK.

KeyGenp (PP,MSK, S C Z,) — SK(; ;),5- The algorithm first sets ctr = ctr + 1 and computes the
corresponding index in the form of (i,j) where 1 < 4,7 < m and (i — 1) * m + j = ctr. Then
it picks random exponents o;; € Zyp, {0ijz € Zp}vzes, and outputs a secret key SKij),s =

((iaj),& Kij, Ki j, Ki'5, {Kijjr}iemp gy {Kz',j,:mK{,j,x}xes) where

Kij=g%g o (ff)7, Ki; =97, Ki; =2, {Kijy=[;"Yrempiys
{Kijo = g"%, K, = (H"h)5+G i} pes.

2,J,%

Encrypta (PP, M, R,A = (A, p), (i,7)) = CTg a,). R C [m,m] is arevocation list. A = (A, p) is an
LSSS matrix where A is an [ x n matrix and p maps each row Ay of A to an attribute p(k) € U =
Zy. This algorithm allows the encrypting party to encrypt a message to the recipients whose
(index, attribute set) pairs ((, §), S ;) satisfy ((i,5) € [m,m]\ R) A (S ;) satisfies (A, p)) A
((i,5) > (i,4)). Let R = [m,m]\ R and for i € [m], R; = {j'|(i,5’) € R}, that is, R is the
non-revoked index list, and R; is the set of non-revoked column index on the i-th row. The
algorithm randomly chooses

Ky Ty S1y-+y8m, t1,...,tm € Zyp,

Ve, Wi,..., Wy € Z;’,,

51,...,&62]), u:(Tr,uQ,...,un)EZZ.
In addition, it randomly chooses 74, ry,7, € Z,, and sets x1 = (r3,0,72), x2 = (0,7y,72),

X3 = X1 X X2 = (=ryrs, —ryr;,741y). Then it randomly chooses
v; € Z3 Vi€ {l,...,i},

v; € span{x1,x2} Vi € {i +1,...,m},
and computes the ciphertext (R, (4, p), (R, R}, Q;, Q}, Q, Ti)i%y, (Cj, CY)JLy, (Pr, Py, PIHL_))
as follows:

1. For each row i € [m]:
— if 4 < 2: randomly chooses §; € Z,, and sets

Ri:gviv R;:gnviv QiZQSiv Q;:(f H fj/)sizfifﬂ, Q/:gti, T‘Z:Efl
J'ER;
— if i > i: sets
R, = G2V, R, =Grm,
@ =g, Q= (¢ T £zl Q=g = M,

J'E€R;
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2. For each column j € [m]:
— if j < j: randomly chooses p; € Z,, and sets C, H T(vetusX3) g, Ol = gWi
— if j > j: sets C HT”C-””“’J C’ = g%
3. For each k € [I]: = fA “Gfk P’ (Hﬂ<k>h)—fk, P! = gt.
Decrypta (PP, CTRg (4, SK(M)’S) — M or J_. For ciphertext CTg (4., = (R, (4, p), (R;, R}, Q;, Q;,
T, (Cy, C)™ .y, (Py, Py PY)L_y) and secret key SK(i )5 = (( ), 8, Kij, K. K"

0,50 T r,50
{Kijjtiempgy {(Kija K,Z,jg:}wES), if (i,7) € R or S does not satisfy (A4, p), the algorithm
outputs L, otherwise:

1. Since S satisfies (A, p), the algorithm can efficiently compute constants {wy € Zy} such that
Zp(k)es wrAr = (1,0,...,0), then compute

DP = H ( (Kzljv Pk) ' e(Ki,j,p(k‘)? Plg) (Kz/] p(k)> PI:;))WIC

Jj=D

p(k)esS

_ H (e(go'i,j’ fAk~ugfk) . 6(95i¢j,p(k’)’ (Hﬂ(k)h)—fk) . 6((Hp(k)h)5i,j,p(k)G_Ui,]',gfk))wk
p(k)es

=TT (etg7 £2m) ™ = elgs, )™
p(k)eS

Note that if S does not satisfy (4, p), no such constants {wy € Z,} would exist.
2. Since (4,7) € R(= [m,m] \ R) implies j € R;, the algorithm can compute

f(i,j =K;j-( H Km,j/) =g%g"I(ff)7 - H f(f” =g%g"9 - (f H fi)7H.
7'€R:\{} 3'€R\{5} J'€R;
Note that if (i,j) € R (implying j ¢ R;), the algorithm cannot produce such a K; ;. The
algorithm then computes

e(Kij, Qi) - e(K{;, Q) _ e3(R;, CY)
e(K; ;, Q) e3(Ri, Cj)

3. Computes M = T;/(Dp- Dy). Suppose that the ciphertext is generated from message M’ and
encryption index (,7), it can be verified that only when (i > i) or (i =i Aj > j), M = M.
This is because for i > i, we have (v;-x3) = 0 (since v; € span{x1,X2}), and for i = i, we have
that (v; - x3) # 0 happens with overwhelming probability (since v; is randomly chosen from
Zf’,). The correctness is given in Appendix

Dr =

4.3 Augmented R-CP-ABE Security

The following theorem states that the AugR-CP-ABE proposed above is message-hiding. Then in
Theorem [4] we state that the AugR-CP-ABE is also selectively index-hiding.

Theorem 3. No PPT adversary can win Game’,?‘,lH with non-negligible advantage.

Proof. The argument for message-hiding in Ga me',f‘AH is straightforward since an encryption to index
N—+1 (i.e. (m+1,1)) contains no information about the message. The simulator simply runs Setupp
and KeyGen, and encrypts M, under the challenge (revocation list, access policy) pair (R*, A*) and
index (m+1,1). Since for all i =1 to m, T; = Ef * contains no information about the message, the
bit b is perfectly hidden and MHAAdv 4 = 0.
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Theorem 4. Suppose that the D3DH, the DLIN and the Modified Source Group q-Parallel BDHE
Assumption hold. Then no PPT adversary can selectively win GameiAH with non-negligible advantage,
provided that the challenge LSSS matriz’s size | X n satisfies [,n < q.

Proof. Tt follows Lemma [I] and Lemma [2] below.

Lemma 1. If the DSDH and the Modified Source Group q-Parallel BDHE Assumption hold, then
for j < m, no PPT adversary can selectively distinguish between an encryption to (i, ) and (i,j+1)
in GameiAH with non-negligible advantage, provided that the challenge LSSS matriz’s size [xn satisfies
I,n<gq.

Proof. In Gamefy, with index (i, j), let (R*, (A*, p*)) be the challenge (revocation list, access policy)
pair, the restriction is that the adversary A does not query a decryption key for (index, attribute
set) pair ((i,7), S(,;)) such that ((i,7) = (4,7)) A ((4,5) € [m,m]\ R*) A (S ) satisfies (A*, p*)).
Under this restriction, there are two ways for A to take:

Case I: In Phase 1 and Phase 2, A does not query a decryption key with index (z, 7).
Case II: In Phase 1 or Phase 2, A queries a decryption key with index (i,7). Let S ;) be the

corresponding attribute set. Case II has the following sub-cases:

L. (i,7) ¢ [m,m] \ R*, S 3 satisfies (A*, p*).

2. (4,7) & [m,m] \ R*, S(; ;) does not satisfy (A*, p*).

3. (4,7) € [mym] \ R*, S ;) does not satisfy (A%, p*).
If A is in Case I, Case II.1 or Case II.2, it follows the restrictions in the index-hiding game
for Augmented Broadcast Encryption (AugBE) in [9], where the adversary does not query the key
with index (4,7) or (4,7) is not in the receiver list [m,m] \ R*. Case IL.3 captures the index-
hiding requirement of Augmented R-CP-ABE in that even if a user has a key with index (i, j)
and (i,j) ¢ R*, the user cannot distinguish between an encryption to (R*,(A*,p*),(i,7)) and
(R*,(A*,p*), (1,5 + 1)) if the corresponding attribute set S(; 5 does not satisfy (A*, p*). This is
the most challenging part of proving the index-hiding when we attempt to securely intertwine the
tracing techniques of broadcast encryption (e.g. [9]) into the large universe CP-ABE (e.g. [26]).
Compared to the proof of [20], the challenge here is to prove the index-hiding in the large universe
setting, as discussed previously.

To prove this lemma, we flip a random coin ¢ € {0,1} as our guess on which case that A is in.
If A is in Case I, Case II.1 or Case II.2, we make a reduction that uses A to solve a D3DH
problem instance, using a proof technique similar to that of [9]. Actually, in this proof, we reduce
from our AugR-CP-ABE to the AugBE in [9]. If A is in Case I, Case II.2 or Case IL.3, we use
A to solve a Modified Source Group ¢-Parallel BDHE problem instance, which is where the main
novelty resides among all the proofs in this work. Please refer to Appendix [C| for details.

Lemma 2. If the D3DH, the DLIN and the Modified Source Group q-Parallel BDHE Assumption
hold, then for 1 < i < m, no PPT adversary can selectively distinguish between an encryption
to (i,m) and (i 4+ 1,1) in Gamely with non-negligible advantage, provided that the challenge LSSS
matriz’s size | X n satisfies [,n < q.

Proof. Similar to the proof of Lemma 6.3 in [9], to prove this lemma we define the following hybrid

experiment: Hi: encrypt to (i,7 = m); Ha: encrypt to (i, = m +1); and Hs: encrypt to (i + 1, 1).
This lemma follows Claim [Il and Claim 2l below.
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Claim 1. If the D3DH and the Modified Source Group q-Parallel BDHE Assumption hold, then
no PPT adversary can selectively distinguish between experiment Hy and Ho with non-negligible
advantage, provided that the challenge LSSS matriz’s size | X n satisfies [,n < q.

Proof. The proof is identical to that for Lemma [T}

Claim 2. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between exper-
mment Hy and Hs with non-negligible advantage.

Proof. Note that (i,m + 1) ¢ [m,m] implies that for any revocation list R* C [m,m], we have
(i,m+1) ¢ R*(= [m,m]\ R*), i.e, the adversaries for distinguishing Hy and H3 will not be in Case
I1.3. Thus, we can prove this claim in a similar way to that of [9]. Actually, in this proof, we reduce
from our AugR-CP-ABE to the AugBE in [9]. In the proof of index-hiding for an AugBE scheme
YaugBE in [9, Lemma 6.3], two hybrid experiments were defined and proven indistinguishable via a
sequence of hybrid sub-experiments.

- H;‘ugBE: Encrypt to (i,m 4 1), (i.e. Hy in [9])
— H?')A‘“gBE: Encrypt to (i + 1,1), (i.e. H5 in [9])

By following [9, Lemma 6.3], if the D3DH and the DLIN hold, no PPT adversary can distinguish
between HQAugBE and H?”gBE with non-negligible advantage for Yawgge. Suppose there is a PPT
adversary A that can distinguish between Hy and Hj3 for YXa with non-negligible advantage. We
can build a reduction, which is similar to that of Case A in Appendix[C] to use A to distinguish

between HzAugBE and H?'?‘ugBE for Yaugge with non-negligible advantage.

5 KP-ABE Analog

We have obtained the first practical CP-ABE scheme that simultaneously supports (1) public and
fully collusion-resistant traceability against policy-specific decryption blackbox, (2) (direct) revo-
cation and (3) “truly” large attribute universe, and is also highly expressive (i.e. supporting any
monotonic access structures) and efficient (i.e. enjoying the sub-linear overhead of O(v/N) while
supporting fully collusion-resistant blackbox traceability). The scheme’s security and traceability
are proven against selectively adversaries in the standard model. Our techniques also yield an
analogous Key-Policy ABE (KP-ABE) scheme, i.e. the first practical KP-ABE scheme that simul-
taneously supports (1) public and fully collusion-resistant traceability against attributes-specific
decryption blackbox, (2) (direct) revocation and (3) “truly” large attribute universe, and is also
highly expressive (i.e. supporting any monotonic access structures) and efficient (i.e. enjoying the
sub-linear overhead of O(v/N) while supporting fully collusion-resistant blackbox traceability). Es-
sentially, KP-ABE is like CP-ABE with the roles of keys and ciphertexts reversed: in KP-ABE,
keys are associated with access policies and ciphertexts are associated with sets of attributes. In the
setting of KP-ABE, attributes-specific decryption blackbox, which can decrypt ciphertxets gener-
ated under some specific attribute set, reflects more general and practical applications than key-like
decryption blackbox which functions like a private key with certain access policy. Our techniques
readily adapt to KP-ABE and attributes-specific decryption blackbox, and the definitions, construc-
tions and proofs are very similar to the CP-ABE case. The details can be found in Appendix
Appendix [F} and Appendix [Gl In Appendix [E| we present the definition for KP-ABE supporting
traceability against attributes-specific decryption blackbox, direct revocation and large attribute
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I Blackbox [Revocation| Large | Public Key Ciphertext Private Key| Pairings
2 Traceability Universe Size Size Size in Decryption
[T, Sec. 4.1] x v 2% 2N+2+m? 3+19] 21 2+ 2|
[T Sec. 4.2] x v 97 6+m° [2+[S[+2[R[°] 2+2I 2[I1 +2|R| ®
[26] X X v 5 2+2|5| 3l 31|
this work v v v 5+5VN [1+16VN +2|S|[2+ VN +3i] 9+3|]

L All the four schemes are highly expressive, i.e. supporting any monotonic access structures.

2 Let N be the number of users in the system, I the number of rows of the LSSS matrix for an access
policy, |S| the size of the attribute set of a ciphertext, and |I| the number of attributes for a ciphertext
to satisfy a key policy.

3 The KP-ABE schemes in [I] are not “truly” large universe, as some limitations are imposed and some
corresponding parameters have to be fixed during the setup. Let m be the maximum size of an attribute
set associated with a ciphertext, and |R| the number of revoked users in a revocation list R.

Table 2. KP-ABE: Features and Efficiency Comparison

universe, and call it Revocable KP-ABE (R-KP-ABE). In Appendixwe extend the R-KP-ABE to
a primitive called Augmented R-KP-ABE (or AugR-KP-ABE for short), then formalize a message-
hiding game and an index-hiding game, and show that an AugR-KP-ABE scheme satisfying the
message-hiding and the (selective) index-hiding can be transformed to a (selectively) secure R-KP-
ABE scheme with (selective) attributes-specific blackbox traceability. In Appendix we propose a
large universe AugR-KP-ABE, and prove that it is message-hiding and selective index-hiding in the
standard model. Combining it with the results in Appendix [F] we obtain a large universe R-KP-
ABE construction, which is efficient (with overhead size in O(v/N)), highly expressive (supporting
any monotonic access structures as policies), selectively secure and selectively attributes-specific
blackbox traceable in the standard model.

Table |2 compares this new KP-ABE scheme with the representative results in revocable KP-
ABE [I] and “truly” large universe KP-ABE [26], in terms of features (i.e. blackbox traceability,
revocation and large universe) and performance. The scheme’s overhead is in O(v/N), where N is
the number of users in a system. This might be a concern, but we stress that for fully collusion-
resistant blackbox traceable KP-ABE, such a sub-linear overhead is the most efficient one to date.
It is worth mentioning that the traceable Predicate Encryption (PE) scheme by Katz and Schréder
[14] implies an expressive KP-ABE scheme with fully collusion-resistant blackbox traceability, but
the scheme’s overhead is linear in IV, and it does not support revocation or “truly” large universe.

6 Conclusion

In this paper, we proposed the first practical CP-ABE and KP-ABE that simultaneously support
(1) traitor tracing, (2) revocation and (3) large universe. Both schemes are highly expressive in
supporting any monotonic access structures. Besides achieving fully collusion-resistant blackbox
traceability, and direct revocation, they are also efficient with the overhead in O(\/]v ) only. Fur-
thermore, they support large attribute universe and do not need to fix the values of attributes
during the system setup. The CP-ABE (resp. KP-ABE) scheme was proven selectively secure and
selectively traceable against policy-specific (resp. attributes-specific) decryption blackbox in the
standard model.
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A  AugR-CP-ABE Implies Secure R-CP-ABE

To prove that the R-CP-ABE scheme X' in Sec._ is secure it remains to prove that Equation
holds for all k= 1,..., N. Consider a specific k € [N]. Adversary B plays the index-hiding game
Gamef}, with input & and works as follows:

Setup. B receives PP from its challenger in the index-hiding game Gamef,. B runs adversary A

in the extend message-hiding game Ga meéMH and gives PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, attribute set) pair (k;, Si,) to B. B

submits (k;, Sk,) to the challenger and receives secret key SKy, g, . Then B gives SKy, s, to A.
Challenge. A submits two equal-length messages My, M7 and a (revocation list, access policy)

(R*,A*) to B, under the restriction that none of the queried pairs {(k‘l,Skl)}ZQzll can satisfy
(ki € [N]\ R*) A (Sy, satisfies A*). B flips a coin v € {0,1}, then gives M, and (R*,A*)
to its challenger. Note that (R*, A*) satisfies the restriction on B in Gameﬁ:, that none of the
queried pairs {(k;, Ski)}?:ll can satisfy (k; = k) A (k; € [N]\ R*) A (Sk, satisfies A*). B receives
CTp+ a+ < Encrypta(PP, M,, R*, A* k + b) for some random b € {0,1}. Then B gives CTg« p~

to A.
Phase 2. Fori = Q1 +1 to @, A adaptively submits (index, attribute set) pair (k;, Sk,) to B, under

the restriction that (k;, Sy,) does not satisfy (k; € [N]\ R*) A (S, satisfies A*). B submits
(ki, Sk,) to the challenger. Note that (k;, Sk,) satisfies the the restriction on B in GameﬁH that
(ki, Sk;) does not satisfy (k; = k) A (k; € [N]\ R*) A (Sk, satisfies A*). B receives secret key
SK4,,s,. from the challenger. Then B gives SKy, 5, to A.

Guess. A outputs a guess 7' € {0,1} for 7. If ¥/ = 'then B returns 0 to its challenger. Otherwise

B returns 1 to its challenger.

Now, observe that when b = 0 then B is emulating perfectly an EM HAAdv 4[k] challenger. When
b = 1 then B is emulating perfectly an EMH”Adv Alk + 1] challenger. A standard argument now
shows that |EMHAAdv 4[k] — EMHAAdv 4[k + 1]| < 2 - IH*Advg|k] as required.

B Correctness

Correctness. Suppose that the message is M’ and the encryption index is (4, j). For i > i we have

e(Kij, Qi) - e(K];,Q))  e(9%g" % (f[jer, f71)757, 97 )e(Z], g")
e(Ki;, @7) e(97, (f Tjren, fy) s @ve) Z]1 )
€(gai,gTSi(vi'vC))e(gncj,gTSi('Ui"UC))

e(gai’j7 f7r)

Ifi >iAj > j: we have
e3(R;, CF) e3(G77 %) 1 1

63(Ri, Cj) 63(Gfivi, H;”Uc . gnwj) eg(gnsiv,"gcjﬂ-’uc) = e(g,g)TiSiCjT(vi‘Uc) ’
If i > i A j < j: note that for i > i, we have (v; - x3) = 0 (since v; € span{x1,Xx2}), then we have

e3(R;, CF) e3(G7*™, ") 1 1

63(Ri, C]) €3(Gfivi, H}'(chrquS) X g/gwj) eg(grisl"l}i’ngT('Uc+M]‘X3)) - e(g,g)’r’iSiC]’T(vi.vc) .
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If i = iAj < j: note that for i = i, we have that (v;-x3) # 0 happens with overwhelming probability
(since v; is randomly chosen from Zg), then we have

e3(R;, C;) B e3(G7Y, g™i) B 1 B 1

eg(Ri, C’j) 63(Gfivi, H}'(UchﬂjXS) .gﬁwj) es(grisivi’ngT(Uc+/‘LjX3)) - 6(97g)risiCjT((vi-vc)Jruj(ui.x3))'

Thus from the values of T}, Dp and Dy, for M = T;/(Dp - Dy) we have that: (1) if (i > i) V (i =
iNj>7), then M =M'; (2)ifi=iAj <], then M = M -e(g,g)T*"i%Hi(vix3): (3) if 4 < 7, then
M has no relation with M’.

C Proof of Lemma 1

Proof. Suppose there exists a PPT adversary A that selectively breaks the index-hiding game with
non-negligible advantage Adv4. We construct a PPT algorithm B, which is given a D3DH problem
instance and a Modified Source Group g¢-parallel BDHE problem instance, and solves at least one
of the two problems with non-negligible advantage. B flips a random coin ¢ € {0,1}, if ¢ = 0, B
interacts with 4 in Case A as guessing “A is not in Case I1.3”, otherwise B interacts with A in
Case B as guessing “A is not in Case I1.17.

Case A: B uses A to solve the D3DH problem. Garg et al. [9, Sec. 5.1] proposed an AugBE
scheme Yaugge = (Setupa,gge, Encrypta, ge, Decrypta,gge) and proved that it is index-hiding. The
Lemma 6.2 of [9] states that if the DSDH assumption holds, then for j < m no PPT adversary can
distinguish between an encryption to (i,7) and (i, + 1) in the index-hiding game for Xaugse with
non-negligible probability. Note that if A is in Case I, Case II.1 or Case I1.2, it also follows the
restrictions of the index-hiding game for Xa gge, here we do not build a direct reduction that uses
A to solve the D3DH problem, instead, we build a reduction to break the index-hiding property of

YaugBe- We first give the reduction sketch below.

KAugBE AugBE

First we review the structures of public key P , private key SK(i]) and ciphertext

CT}%UgBE Of EAugBE [9]

PKABSE = (g, {E; =e(9,9), Gi=g"}iep), {H; =97, fi}jemm] )

AugBE % a;  rici £9i,5 04 Oij
SKs™ = (K, Kijo AKijjtjemngy ) = (97979 f, 979, Afi" Ypemniy )s
CTHY% = (Ri, R}, Qi, Q. Ty, (C,C)™y, R),

where CT I’%‘”gBE is for receiver list R and index (i*, j*) with

1. For each i € [m]: )
- 1fZ<Z* R/L':g’vi’ R;:gﬁvi7 Qi:gsi’ Q;: (H]/GRZ fj/)si7 T/L:Efl
—if > i Ri —_ Gfi'vi’ R; —_ G?Sivi’ Qz — gTSi(Ui"Uc)’ Q; — (Hj/eﬁi fj,)Tsi(vi'UC)’ Tz =
M . ETSi('Ui"UC)
; .
2. For each j € [m]:
Cifj <t Oy = H] O grws ol = s,
—ifj>j* Cj=H[" g™, C=g"i.

4 Note that we slightly changed the variable names in the underlying AugBE scheme Yaugse to better suit our proof.
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Setup. From the received PKAU6BE 3 generates PP for A by randomly choosing 3,6, z; (i € [m]) €

Zy, and h, H € G, and setting f = ¢%,.G =g {Z; = 9% Yiem)

Phase 1 and 2. As B can compute fi = (g%, Z7" = (g%43)%, and G~ %4 = (g%4)~? without
i, B can produce SK(i,j),S(i,j) for A, using SK(A;f)BE and random {5z‘,j,x}xes<¢,j)-

Challenge. As B can compute f% = (g%)% and f75:(vive) = (¢75:(vve))B without s; or 7s4(v; - ve),
by using its challenge ciphertext CTAEE (for R* = [m,m] \ R*) and random t;(i € [m]),&(k €
(l]) € Zp,u = (T, ug,...,un) € Zy, B can produce the challenge ciphertext CTg« (4« ) for A.
Guess. B sends A’s guess b’ € {0, 1} to its challenger.

During the interaction, if A is in Case IL.3, B will abort and return a random b € {0,1} to its
challenger.
Now we give the reduction details.

Init. The adversary A gives B the challenge LSSS matrix (4*, p*), where A* is an | X n matrix.

Setup. The challenger gives BB the public key PKAveBE

PKAESE = (g, {E; =e(9,9), Gi=g"}iepm), {Hj =97, fitjcim )

and private keys {SKA“gBE}(m)e[mvm}\{(;?;)} as

AugBE o = rlc i,
SKas =(Kijs K AKijjbpemngy ) = (99797, 979, {7 ey )

where g, f1,..., fm € G and {a;,7i € Zplicpm)s 165 € Zpljeim), 10ij € Zp} (i,5)€[m,m]\{(i,j)} ar€
randomly chosen. B sets ¢ = 0 to denote that B does not obtain the private SKA“gBE

B randomly chooses 3,0, z1,...,2m € Z, and h, H € G, then gives A the following public
parameter PP:

PP = (ga h7 f:gﬁa f17'-'7fm7 G:ge7 H7 {E’Lv Giv Z’L:gZZ}ZE[m]a {HJ}]G[m])

Phase 1. A adaptively submits ((4, j), S(; j)) to B. If (i,7) = (4, ), then B sets ¢ = 1 and submits

¢ to its challenger, and receives the private key SKA“]%BE B randomly chooses 0; ;. € Z, Vx €

S(i,j), then creates the private key SK; ; g = ( (4,7), S,5)> K”,KZ’],K{'], {I_Q,j,j/}j/e[m}\{j},

/ AugBE
{Ki7j7$7Ki,j,:r}xeS(i,j) ) from SK( 5 as

Ki,j = Kl,j (Kzlj)ﬁa K’Z = KZ’]? Kz”] (K/ ) ) {Ki,j,j’ = Kz,j,]’}]’E[m]\{]}a

{Kijoe=9"", Kijo=(H"h)’= (K] ) }acs, -

Challenge. A submits a message M and a revocation list R*. B sets R* = [m,m] \ R*.

o if (i,j) € R* ANé = 1: Ais in Case I1.3. B returns a random 33 € {0,1} to its challenger,
then aborts.

e if (i,7) € R* A &= 0: B continues the following interaction.
e if (i,j) ¢ R* A¢ = 1: B continues the following interaction.
o if (4,7) ¢ R* AN¢ =0: B sets ¢ = 1 and submits ¢ to its challenger, and receives the private

key SK%”%BE. Then B continues the following interaction.
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Now B ends the Query Phase for the AugBE index-hiding game with its challenger, and submits
(M, R*) to the challenger. Note that from the view of the challenger, B’s behaviors satisfy the restric-

tions in the AugBE index-hiding game, i.e., if B sends ¢ = 1 to the challenger and obtains SK'(A“g)BE

then (i,) ¢ R*. The challenger gives B the challenge ciphertext CTA"°F = ((R;, R}, Qi, Q}, T))™,,
(CJ,C/ )7y, R*), which is encrypted to (i*,j*) € {(4,7), (i,j + 1)} and in the form of

1. For each i € [m]: _ _ . - .
Sifi<it Ry=g%, Ri=g"", Qi=g" Qi=ljc 7)), Ti=E"
—ifi > it Ry = G, R; = G, Qi = greivive), Q; = (Hj’eR;.“ fj’)Tsi(vi'vc), T, =
M - B[S,
2. For each j € [m|:
—if 5 < j*: é’j = HjT(vCﬂ”Xg) cgiwi, Cl = g

—ifj > Cy=H[% - g"i, C=g".

where r,7,5i(i € [m]),8;(1 < i <), p;(1 < j < j*) € Zp, ve,w;(j € [m]),vi(1 <i <i*) € Z,
and v;(i > i*) € span{xi,x2} are randomly chosen (where x1 = (r3,0,7;), x2 = (0,7y,72),
X3 = (—ryrs, —rars, r47y) are for randomly chosen 74,7y, 7, € Zp), and R;“ ={4'|(i,5") € R*}.

B randomly chooses tq,..., m,gl,...,gl € Zp, w = (m,uz,...,un) € Zy, then creates the

ciphertext (R*, (A%, p*), (R;, R}, Qi, Q}, Q},Ti)i%y, (Cj,C})Ly, (Py, P, P! _,) as follows:

1. Foreachie [m]: Ri=R;, Ri=R,, Qi=Q;, Q'=Q) Q.- ZI'f™, Q! = ¢, T, =T
2. For each j € [m]: C;=C;, C; =C.
3. For each k € [I]: P, = fAxvGS, P, = (HP" R p) =8k Pl = gok.

Phase 2. A adaptively submits ((i, j), S(; ;)) to B.

— if (4,7) # (i,7): B creates the private key SKy; ). 5., from SK'(A“]g)BE as in Phase 1.

— if (4,4) = (4,7) A € = 1: this implies B has obtained SK ABE f1.om its challenger. B creates the

(5.3)
K AugBE

private key SK from S ip s in Phase 1.

6:1):5(1.7)
— if (4,5) = (i,5) A¢é = 0: observing B’s behaviors in Challenge phase, we have that ¢ = 0 implies
(i,7) € R*. In other words, A is querying a key with index (7,7) and (i,j) € R*, i.e., A is in

Case I1.3. B return a random (3 € {0,1} to its challenger, then aborts.

Guess. A outputs a guess V' € {0,1} to B, then B sets 83 = b’ ands returns 3 to its challenger.

When B does not abort, B’s advantage in the index-hiding game for Xa,zge will be exactly
equal to A’s advantage in the index-hiding game for our AugR-CP-ABE scheme X'a. Thus, B’s final
advantage in the index-hiding game for Y'a.gge is Advg s = Adv4 - Pr[Ais not in Case IL.3 A (¢ =
0)].

Case B: B uses A to solve the Modified Source Group ¢-parallel BDHE problem. B is
given
D = ((p,G,Gr,e),g.9% g°, g™,

gaf, g%, gaib] gaZ/bQ’ g°%i Vi j € [ql,
g vi € 20\ g+ 1}, € [g]
g bt /b5 Vi € [2q],5,5" € lq] st §' # ],

cdaibj/ /bj , gcdaib]-/ /b?

g Vielq,j,j €l st.j#5")
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and T, where (p, G, Gr,e) £ G, g £ G, a,c,d,by,...,bg £ Zp, and T is either equal to g*

or is a random element of G. B’s goal is to determine T' = gcaqul or T is a random element from G.

Init. The adversary A gives B the challenge LSSS matrix (A*, p*), where A* is an [ X n matrix
with I,n < gq.

Setup. B randomly chooses {a; € Zp}icim), {7is 2 € Zplicimpgiys 5 %6 €5 € Zp}jeim), and
B,60,n,01,...,0n € Z,. B gives A the public parameter PP:

(g’ f=g" {fi=90"Yem h=0"T] I] (¢"/%)" Ak

kell] te[n]
a t i
=¢"- 11 H St H= g T T (0 e (B = e(9.9)" iem:
kell] te[n kell] t€[n]

{Gi=g", Zi_( )7 }ze NG g:(gaq) i, Zi=g7,
{H; = (99 ey Hj = (9 >

Note that B implicitly chooses 1; € Zy, {2i € Zp}ticpm)\(i}» 1¢j € Zp}jem) such that

alri =r;mod p, az; =z mod p Vi € [m]\ {i},
dc; = c; mod p Vj € [m]\ {j}, ac} = c; mod p.

Phase 1. To respond to A’s query for ((4,7), S ;)),
oif (i,7) # (5 j): B chooses 0 j € Zp, {ijx € Zp}ues,, ;, at random, then creates the decryption
key SK(Z ,S ”)
g g I I) s i A
Kij =< g (gh" )i (f )70, i=1ij#]
g° ( VG, A =]
Kj; =g, K = 27, {Kijjo =I5 jremp ()
{Kija = 9 e Kzlj » = (H"h) Pise G0 }IES(i,j)'
o if (i,5) = (i,5): if S(; ;) satisfies (A*,p*), then A is in Case IL1, B returns a random
By € {0,1} to the challenger. Otherwise (i.e. S(; ;) does not satisfy (A*,p*)), B first computes a
vector @ = (u1,...,U,) € Z, that has first entry equal to —r%c% (ie. up = —r%cé) and is orthogonal
to all of the rows A} of A* such that p*(k) € S ;) (i.e. A} -4 =0Vk € []] s.t. p*(k) € S, ;). Note
that such a vector must exist since S(; ;) fails to satisfy (A%, p*), and it is efficiently computable.
Then B randomly chooses U— = € Zp, {0 - G € Zp}zes,; ; and sets the values of 05 5 and {6;; , }wes, ;)

by implicitly setting
J"—a——+2uaq+1 -t (2)

ten]
0% Utbk/aqH !
IR RS ITED DI D DD YL L
1,0,% 1,3, ] — o*(k'
k' ell] rer (k) E'ell] te[n] (3)
p* (K" )¢S5 5 P* (K¢S ,5)
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Note that for z € S; ;) and p*(k') ¢ S
SKa.j), Sag 3 follows:

ij) we have x — p*(k’) # 0. B creates the private key

n n n
- pol - q—t+2 ol - q—t+1 ol - q— t+1 -
KZJ = ga’fgl’](H(ga ut 9 70 g” ut f; = g7 H “ 4 5”5 = (K;{,j)zla
t=2 t:l t=1
Kee ) — e - qd—t+1 01
{Kij5 = (¢ [T6™ )™ Yyermn iy
t=1

K5, = ¢oide = 95%,5,z( H (gbk/)off/(w P (k’))) ( H H <gbk/aq+17t)ﬂt/(x—p*(k’)))7

kel k' €ll] te(n]
p* (K¢S ) p*(K")¢S(,5)

and after some algebraic manipulations (the details are given in Appendix [C.1]), we have
(H:Ch>5i,;,m — Wl . ( H H H (gaq+17t/+t/bk)Az,tﬂt’),
kell] te[n] t’'€[n]

P (R)ES 5

H H H adtt= t+t/bk ktut’)

kell] ten] t'en]
where ¥; and ¥, can be calculated using the suitable terms of the assumption. Thus, we have

U — (Hl‘h)(SgJ,mG—O';J

7jx

=0 Uy - ( H H H aat1=t +t/bk —A} tut/)

kel te[n] t'€[n]

P ( )eS<7,j)
qat1—t'+ —AF adtl —Ar @
:!pl-wg-( H H H (g ati=t t/bk> Ak,t t)( H H(g a /bk) Ak,z t)
kell] te[n] t'e[n]\{t} kell]  teln]
p*(K)ES(i.5) p*(k)ES(i.5)
U3 (for t'#t) fort’:t
=0 Wy W H (gaq“/bk)—b‘l;tﬂ))
kel

p*(k)ES (.5
=0y - Wy - W3, (since A} -u =0Vk € [l] s.t. p*(k) € S(i,j))

Note that ¥, ¥, and W3 can be calculated using the suitable terms of the assumption, B can
calculate K13 o

2Jy

Challenge. A submits a message M and a revocation list R*. B randomly chooses

/ /

Ty Slye-+38i-1557 Si41r--15m € Ly,
/ / /
Byttt sty € L,

. i ! 3
Wi, WG, WS, Wy € Zy,,
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&, 8, el u=(0,u,...,u,) € Zy.
B randomly chooses 1,7y, 7. € Zp, and sets x1 = (72,0,72), x2 = (0,7ry,72), X3 = X1 X X2, then
randomly chooses
v €ZIVie{l,...i—1},
v? € span{x1, X2}, v} € span{xs},
v; € span{x1,x2} Vi € {i +1,...,m},
vP € span{x1, x2}, vl =rv.xs3 € span{xs}.

=Rl

B sets the values of &, 7, s, t;(i € [m]\{i}) € Zy, v;, ve, w;(j € {j,...,m}) € L3, 7 € Ly, u € Ly,

and {&, € Zyp}pep) by implicitly setting

a? =k mod p, cal? =7 modp, s;/a?=s; mod p,
Vie{l,...,i—1}: i+ cdr'si(v? - vl)/z = t; mod p,
Vie{i+1,...,m}: t;—a'7'si(vi-vP)/z + cdr'si(v - vl) /2 = t; mod p,
v; =0 +dv!, v = ¢ toP + v,

L — actvP = w-
w; — ac;T UL = Wj mod p,
Vie{j+1,....,m}: wj—cdd;T'vi=w;modp,
7' — cdr'si(v? - vl) = 7 mod p, u =7(1,aq, a?,...,a" )+,
Ve c[l]: & + cdbpr'si(v? - vl) = & mod p.

It is worth noticing that v; and v, are random vectors in Z; as required, and (v;-v.) = %(vg o)+

d(v? - vl), since x3 is orthogonal to span{x1,x2} and Zf:’, = span{x1, X2, X3}
Let R* = [m,m]\R* and R} = {j'|(i,j') € R*} Vi € [m]. B creates the ciphertext (R*, (4*, p*), (R;,
R}, Qi,Q;, Q] T2y, (Cj, C)TLy, (Pu, Py, BYl)jzy) as follows:

1. For each row i € [m]:

— if ¢ <i: it randomly chooses 3; € Z,, then sets

Ri — g'vi, R; — (gaq)’vi’
. P A / Il (vd.vd) /2 5
Qi=g" Qi =(f [[ £z, Q =gli(ge)y swiv/=, 1T, = B

J'€R;
— if i =14 it sets
R = grés%vg . (gd)rés%vg Rl o (gaq)résévg) . (gdaq)résgvg
7 T ) (A ’
'sh(vPoB) (cdyT' st (v vl st (vP oh 00\ ti o’ 3
Q; = g7 ST (gety ) @ = T (T Q)2 Q) =gt
j/eR*

,'Ti =M - e(gai7Qi)‘
—if i >4 it sets
R = gTiSiUi R/~ _ (gaq)TiSiUi
C ’ i )
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Qi = (g™)" @D QL= ([ Q)20 s, Q) = gt (g"") 7 @it /A (gedy il vt 2],

j'eR?

T; = M - e(g™, Qi)
2. For each j € [m]:
— if j < j: it randomly chooses {t; € Zp and implicitly sets the value of u; such that (u}/(cda?) —
1)ve = p; mod p, then sets: C; = (g day; TIVE L geT Ve (g )wi, C) = g™i
Cif = O =TT (g, O = g™ (g7) T
> 3 Oy = (ST () O = g% (g

3. For each k € [I]: we have

Pk _ fAZﬂu,Gfk _ (fAZ-(l,a,...,anfl))ﬂ' . fA:"u/G{k 0 H H a /bk/ k’ CdkaS (U vd)

q
Cd) C7T Uc

&, k'e [l] teln

_ ( H (gat)A;;,t)w’—cdr’sg(v%vg) LBy - ( cdbk 07’ s (vivd) H H cdatbk/bk/ ) 'st(vd-vd)

te[n] By k' e[l] ten)]
_ ( H (gat)Az,t)ﬂ'/ . ( H (ng“t)Az,t>_ (’Uq vd) @1 @2

te(n] te(n]

H H cdatbk/bk/ k’ )7' 87 ('U vd) ( H (gcdat)AZJ)T/S%('U%"Ug)
k' ell]\{k} t€[n] te(n]
Dy (for k'#£k) A=l (for k'=k)

= P3Py - Py - Py,

Pl = (HP*(k‘)h)—Sk
— (HP" Wp) =& . (gnp*(k)+ﬂ)—cdbws 0e) (TI II (¢ @10 (0T R) =T (R AGy ) —edbr's; (v-v2)
k'ell] te[n]
_ (Hp*(k:)h)fgé ) (gcdbk)*(flp*(k)Jrﬁ)TS (viwd) H H cdatbk/b (k’)fp*(k))Az,,t)T’sg(v%vg)
kK ell] teln

(I TG cdatbk/eﬂ ()*p*(k))A’,;,’t)Ts(vaZ)

k'ell]\{k} te[n]

D6 (for k'#k)
] ( H (gcdatbk/bi)(p*(k)*p*(k))Az,t)T’sg(vg-vg)

ten]
1 (for k'=k)
= &5 - g,
P]g _ ggk _ ggc (gcdbk)ﬂ-’s%(v%vg)
Note that &1, ...,Pg can be calculated using the suitable terms of the assumption, B can calculate

Py, P, and P If T = g°@"" | the ciphertext is a well-formed encryption to the index (i,7). T
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is randomly chosen, say T = gcaﬁhﬂ for some random r € Zj,, the ciphertext is a well-formed
encryption to the index (¢,7 + 1) with implicit setting p; such that (rv.)/ (ca?tl) = w5 mod p.

Phase 2. Same as Phase 1.
Guess. A outputs a guess ' € {0,1} to B, then B outputs this & to the challenger.

When B does not abort, the distributions of the public parameter, private keys and challenge
ciphertext are the same as in the real scheme, B’s advantage in the Modified Source Group g-parallel
BDHE game will be exactly equal to A’s advantage in the selective index-hiding game. Thus, B’s
final advantage is Advgy = Adv - Pr[A is not in Case IL.1 A (¢ = 1)].

Note that in both Case A and Case B, the distributions of the public parameter, private keys
and challenge ciphertext that B gives A are the same as in the real scheme and independent of the
value of ¢. This implies that the value of ¢ and the case that A is in are independent of each other.
Let AT, AII.1, AIL.2, and A.IL.3 be the events that A is in Case I, Case II.1, Case I1.2 and
Case I1.3, respectively, and A.I1.1 and A.I1.3 be the events that “A is not in Case I1.1” and “A
is not in Case I1.3”, respectively. We have

Advps + Advgg = Advg - PrAIL3 A (¢ =0)] + Advyg - PrlAILL A (¢ = 1)]

= Advy - Pr[AIL3] - Pric = 0] + Advy - Pr[AIL1] - Prlc = 1]

N = I

= AdvA (1 —Pr[AIL3])- % + Advg - (1 — Pr[AIL1]) -

—-Advy - (2 — (Pr[AIL3] + Pr[A.IL1)))

— N

5 Ad'U_A,

since Pr[A.IL.3] + Pr[A.IL1] < Pr[AI] + Pr[AIL.1] + Pr[A.IL2] + Pr[AIL3] = 1. This implies
that either Advg 3 > % - Advy or Advpq > % - Advg.

C.1 The Algebraic Manipulation for KZ{E . in Case B of Proof of Lemma

For (i,j) = (i,7), with the values of 073 in Equation and the values of ;5 (Vo € S(;;)) in
Equation , for x € S(; ), we have

’

bk/ a /bk/aq+1_t

(HZh)Diida = (HOh) i -(HTR) w7 2 €lor GDES () T 07 . ((Fo )b elth® (8 s 5y 2velnl ~ ooprey
—_———
Uy 1
. o'f —bk/
- ( 1T (7 I T (/) iy = W))
k' €ll] kell] ten]
p* (K¢S 5

( T TI (% I I (o /%)@ i )W)

ke[l t'e[n] ke[l] t€n]
P (k )¢S<L 7)
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x T (k)
= (] (g )7iq (1 HB)/ (@ (T II 1)t Am,fm)

! kell] te[n] E'ell]
e . o* () 2S 0
¥y o
( H H(gbk/aq“*f’)atmnzw)/(m—p*(k')))
el ten]
P*(k/)\fs(i,j)
¥ 3

(k)
a1ttty 1[0 Af T o (k’))
H I I ILe ™™

kelllte[n]  K'ell] t¢€n]
P (k )gs(z 7)

s (1T TT (g R ha AL )
=W¥i1-Y12-

kell]  ten] k'ell
p(k)es(l 7) 14 (k )%S(z 7)

Y14 (for p(k)ES(, )

( H H H (gatbk//bi) o; Azt%).( H H f/b,C ‘s kt 5—”13

1] teln]
kell]  teln] Ke[l\{k} kel .
p(k)§é~[5'(z » 0 (k: )%S(z 0 p(k)¢s(z,J)
Wi (for p(k)ES( )k #k) W (for p(k)ES (i 5k =k)
( H H H H adt+1—t' o/ b2 )Ak Uy ﬁ((kk’)))
kell]  te[n] ve
p(K)ES(; 5 P (k )%S(z )

V1,7 (for p(k)ES(, )

( H H H H adt1-— t/ +tb //b2) ktut’r P (:/)))

kell]  ten] Ke[l]\{k} t'€[n
p(k)%S(l 7) P (k )%S(z 7)

Yis  (for p(k)ES( 5),k'#k)

( H H H (ga‘l“*f'“/bk)AZ,tﬂt')

kell]  te[n]t’e[n]
P(k)¢5(i,j)

(for p(k)gs(i,j)’k/:k)

_ % ) ( H H H (ga4+1—t/+t/bk)Azytﬂt/)7

kell]  ten]t’eln]
P(k)¢s(¢,j)

G5 = (g T] T (g /ety ~ e st

kell] teln]
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:G—"ﬁ,;( H (¢ g 0y ) H H H attl= t+t/bk) ARt
t'€[n] ke(l] t€[n] t'€[n]

v

H H H adti= t+t/bk) ktut/)

ke(l] ten] t'e[n]

where U1 =Wy - W1 9----- U g and ¥, can be calculated using the suitable terms of the assumption.

D Proof of Our Modified Source Group Parallel BDHE Assumption

In this section, we give a lower bound to the complexity of our modified source group parallel BDHE
assumption. The proof is similar to that of the Source Group ¢-Parallel BDHE Assumption [19],
which is given in [19, Appendix B] in the generic group model. In the generic group model [29], an
adversary does not have direct access to the group. It must interact with an oracle to perform the
group operation and obtain “handles” for new elements. Also, it can only use handles previously
received from the oracle. We consider an experiment where an adversary is given handles for the
group elements given out in the assumption as well as a handle for the challenge term T (here, 3 is
a uniformly random bit). The adversary may interact with the oracle to perform group operations
and pairings, and gets handles in return as the results from these operations. Finally, the adversary
guesses the bit 8. The difference between the adversary’s success probability and one half is defined
as its advantage. We refer readers to [3I3] for other examples of using the generic group model
for justifying assumptions in bilinear groups. We denote a,c,d, b1, ..., b, as variables over Z,, and
define M as the following set of rational functions over these variables:

M :={1,d,cd,da,

al, b, zbj, Z/bj, cdb; Vi,j € [q),

a'/b; Vze[q]\{qH}JGH
a'bjr /b3 Vi € [2q],4,5' € [q] s:t. §' # 7,
cda'bjr /by, cda’by /b Vielq,jj €ld st j#7}

These are the exponents of the group elements given in our modified source group ¢-parallel BDHE
assumption. Let F(M) be the set of all pairwise products of functions in M. It represents the
exponents of elements in Gp that can be obtained by pairing elements with exponents in M.
We say a function T is dependent on a set of functions & = {Sj,..., Sk} if there exist constants
T1,...,7% € Zyp such that T' = r1 51 4 - - - + 7.5k This is an equality of functions over Z,, and hence
hold for all settings of the variables. If no such constants exist, we say that 7' is independent of S.

Lemma 3. For each function M € MU {ca?*'}, the product M - ca?*! is independent of E(M)U
ca?™Y (M \ M). (Here, ca?™ (M \ M) denotes the set formed by removing M from M and then
multiplying all remaining elements by cadt!.)

Proof. As every element in M U {ca?™'} and E(M) U ca?™ (M \ M) is a ratio of monomials,
the only way that M - ca?™! can be dependent on E(M) U ca?™ (M \ M) is if it is contained in
E(M) U ca? (M \ M). First, c?a??*2 is not in E(M) U ca9"* M, and for any M € M, cad™' M ¢
ca?™(M\ M). Thus it suffices to show that for any M, ca?*' M ¢ E(M). In other words, we show
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that E(M) does not intersect with the set ca?t! M, which is formed by multiplying each element
of M by ca?t!. To see this, we examine the set ca?™' M. By definition, we have that

caq+1M _ {caQ+1,cdaq+1,chanrl,cdaqurl,
ca® M ca® Ny, ca® b B2 Pdatt by Vi, € g,
cat 1 [p, Vi€ [2q]\ {g+1},7 € [d,
catt i, /12 Vi € [2],4,5" € lq] s.t. §' # 5,
CQdanrlej’/bj,CQdanrHibj//b? Vielqj i €ld st j#i}.

We now check if any of these are in E(M), which is the set of pairwise products of things in M.
In M, every occurrence of ¢ is accompanied by d, and d~! never appears. Hence E(M) does not
contain any element which has a higher powers of ¢ than d. This rules out all the elements in ca?t' M
above but cda?t! and cda??t!. To rule out cda?t!, we consider all the possible ways it might be
formed as a product of two elements of M. As d is in the term, one of the two factors in M must
be a term containing d. Note that d, cd, or da? cannot be one of the factors as ca?t!,a9%!, ca ¢ M.
Also, an element of the form cdb; cannot be one of the two factors as a?t1/b; ¢ M, an element
of the form cda'b;/ /bj (s.t. j # j') cannot be one of the two factors as a?™~%b; /by ¢ M, and an
element of the form cda%y/b? (s.t. j # j') cannot be one of the two factors as aqH_ib?/bj/ ¢ M.
Hence we can dismiss all the possible ways, and conclude that cda?*! ¢ E(M). To rule out cda?*!,
we consider all the possible ways it might be formed as a product of two elements of M. Since d
is in the term, one of the two factors in M must be a term containing d. Similarly, d, cd, or da?
cannot be one of the factors as ca??™t a?4t1 ca?™! ¢ M. An element of the form cdb; cannot be
one of the two factors as a??™!/b; ¢ M. An element of the form cda’b; /b; (s.t. j # j') cannot be
one of the two factors as a1, /b;; ¢ M. An element of the form cdaibj//bjz (s.t. j # j') cannot
be one of the two factors as a2q+1*ib? /by ¢ M. Hence we can dismiss all ways, and conclude that
cda?itt ¢ E(M).

We now proceed similarly to the proof strategy in [3[13J19] to establish the following theorem:

Theorem 5. For any adversary A that makes Q queries to the oracles computing the group oper-

ations in G, Gr and the bilinear map e : G x G — Grp, the advantages of A against the modified

source group q-parallel BDHE assumption in the generic group model is at most O(QTQq).

Proof. The proof of this theorem is identical to that of Theorem 22 in [19].

E Revocable KP-ABE and Blackbox Traceability

In this section, we define Revocable KP-ABE (or R-KP-ABE for short) and its security, which
are based on conventional (non-traceable, non-revocable) KP-ABE (e.g. [L1U17/26]). Similar to the
traceable CP-ABE in [20], in our ‘functional’ definition, we explicitly assign and identify users using

unique indices. Then we formalize traceability against attributes-specific decryption blackbox on
R-KP-ABE.

E.1 Revocable KP-ABE

A Revocable Key-Policy Attribute-Based Encryption (R-KP-ABE) scheme consists of four algo-
rithms:
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Setup(A, N) — (PP, MSK). The algorithm takes as input a security parameter A and the number
of users in the system NN, runs in polynomial time in A, and outputs a public parameter PP and
a master secret key MSK. We assume that PP contains the description of the attribute universe

KeyGen(PP,MSK, A) — SKj, o. The algorithm takes as input the public parameter PP, the master
secret key MSK, and an access policy A over U, and outputs a private decryption key SKj 4,

which is assigned and identified by a unique index k € [N].
Encrypt(PP, M, R, S) — CTg s. The algorithm takes as input PP, a message M, a revocation list

R C [N], and an attribute set S C U, and outputs a ciphertext CTgrs. (R, S) is included in

CTR,S.
Decrypt(PP,CTg,s,SKg a) — M or L. The algorithm takes as input PP, a ciphertext CTg g, and

a decryption key SKj, 4. If (k € [N]\ R) AND (S satisfies A), the algorithm outputs a message
M, otherwise it outputs L indicating the failure of decryption.

Correctness. The scheme must satisfy the following correctness property: For any access policy
A over U, k € [N], revocation list R C [N], attribute set S C U, and message M, suppose
(PP, MSK) < Setup(\, N), SK 4 < KeyGen(PP,MSK,A), CTg g < Encrypt(PP, M, R, S). If (k €
[N]\ R) A (S satisfies A) then Decrypt(PP,CTr,s,SKia) = M.

Security. The security of the R-KP-ABE is defined by the following game.
Gamepy. This message-hiding game is defined between a challenger and an adversary A.

Setup. The challenger runs Setup(\, N) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, access policy) pair (k;, A, ). The challenger

responds with SKy, A, .
Challenge. A submits two equal-length messages My, M7 and a (revocation list, attribute set) pair

(R*, S*). The challenger flips a random coin b € {0, 1}, and sends CTg+ g« < Encrypt(PP, M;, R*, S*)

to A.
Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, access policy) pair (k;, Ag,;). The

challenger responds with SKy, 4, -

Guess. A outputs a guess b’ € {0,1} for b.
A wins the game if b’ = b under the restriction that none of the queried {(k;, Aki)}iQ:l can satisfy
(k; € [N]\R*) AND (S* satisfies Ay,). The advantage of A is defined as MHAdv 4 = | Pr[b/ = b]—3|.

Definition 6. An N-user R-KP-ABFE scheme is secure if for all probabilistic polynomial time
(PPT) adversaries A, MHAdv 4 is negligible in \.

We say that an N-user R-KP-ABE scheme is selectively secure if we add an Init stage before
Setup where the adversary commits to the challenge attribute set S*.

It is worth noticing that: (1) although the KeyGen algorithm is responsible for determining/assigning
the index of each user's decryption key, to capture the security that an adversary can adaptively choose
decryption keys to corrupt, the above model allows A to specify the index when querying for a key, i.e.,
for i =1 to @, A submits pairs of (k;, Ay,) for decryption keys with access policies corresponding to
Ay, where Q@ < N, k; € [N], and k; # k; V1 < i # j < Q (this is to guarantee that each user/key
can be uniquely identified by an index); and (2) for k; # k; we do not require Ay, # Ay, i.e., different
users/keys may have the same access policy.

5 For large universe and also in our work, the attribute universe depends only on the size of the underlying group
G, which depends on A\ and the group generation algorithm.

33



Remark: (1) The R-KP-ABE defined above extends the conventional definition for non-revocable
KP-ABE [11/I726], where the revocation list R is always empty. (2) For traceability, we explicitly
assign a unique index to each user’s decryption key. Predefining the number of users IV in the system
is indeed a weakness but is also a necessary price to pay for achieving blackbox traceability, but
we stress that in practice, this should not incur any noticeable concern, and in fact, all the existing
blackbox traceable systems (e.g. [6J7J914)20]) have the same setting. (3) When the revocation list
R needs an update due to, for example, some decryption keys being compromised or some users
leaving the system, the updated R needs to be disseminated to encrypting parties. In practice, this
can be done in a similar way to the certificate revocation list distribution in the existing Public Key
Infrastructure, namely an authority may update R, and publish it together with the authority’s
signature generated on it. There are many ways for the encrypting parties to obtain a copy of the
updated R, for example, via RSS feeds. (4) From the view of the public, R is just a set of numbers
(in [N]). These numbers (or indices) do not have to provide any information on the corresponding
users, in fact, besides the authority who runs KeyGen, each user only knows his/her own index.
Also, encrypting parties do not need to know the indices of any users in order to encrypt but only
the attribute sets. Although associating a revocation list with a ciphertext might make the resulting
KP-ABE look less purely attribute-based, it does not undermine the capability of KP-ABE, that
is, enabling fine-grained access control on encrypted messages.

E.2 Blackbox Traceability

An attributes-specific decryption blackbox D in the setting of R-KP-ABE is viewed as a probabilis-
tic circuit that can decrypt ciphertexts generated under some specific pair of revocation list and
attribute set. In particular, an attributes-specific decryption blackbox D is described by a (revocation
list, attribute set) pair (Rp,Sp) and a non-negligible probability value € (i.e. € = 1/f(X\) for some
polynomial f), and this blackbox D can decrypt ciphertexts generated under (Rp,Sp) with proba-
bility at least €. Such a blackbox can reflect most practical scenarios, which include the key-like
decryption blackbox for sale where an explicit description of the blackbox’s decryption ability is
given and decryption blackbox “found in the wild” where only some clue on the attribute set of
the ciphertext that the blackbox can decrypt may be found, similar to that discussed in [20]. In
particular, once a blackbox is found being able to decrypt ciphertexts (regardless of how this is
found, for example, an explicit description of the blackbox’s decryption ability is given, or the law
enforcement agency finds some clue), we can regard it as an attributes-specific decryption blackbox
with the corresponding (revocation list, attribute set) pair (which is associated to the ciphertext).
And for a decryption blackbox, if multiple (revocation list, attribute set) pairs are found that cor-
responding ciphertexts can be decrypted by it with non-negligible probability, we can regard the
blackbox as multiple attributes-specific decryption blackboxes, each with a different (revocation
list, attribute set) pair.

We now define the tracing algorithm and traceability against attributes-specific decryption black-
box.

TraceP (PP, Rp, Sp,€) — K C [N]. Trace is an oracle algorithm that interacts with an attributes-
specific decryption blackbox D. By given the public parameter PP, a revocation list Rp, an attribute
set Sp, and a probability value €, the algorithm runs in time polynomial in A and 1/¢, and outputs
an index set Ky C [N] which identifies the set of malicious users. Note that € has to be polynomially
related to X, i.e. €¢ =1/ f(X\) for some polynomial f.
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The following tracing game captures the notion of fully collusion-resistant traceability against
attributes-specific decryption blackbox. In the game, the adversary targets to build a decryption
blackbox D that can decrypt ciphertexts under some (revocation list, attribute set) pair (Rp, Sp).
The tracing algorithm, on the other side, is designed to extract the index of at least one of the
malicious users whose decryption keys have been used for constructing D.

GameTr. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, N) and gives the public parameter PP to A.

Key Query. For i = 1 to @), A adaptively submits (index, access policy) pair (k;, Ag,). The
challenger responds with SKj, A, .

Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a

(revocation list, attribute set) pair (Rp, Sp) and a non-negligible probability value e.
Tracing. The challenger runs TraceD(PP, Rp, Sp,€) to obtain an index set Ky C [N].

Let Kp = {ki|]1 < i < Q} be the index set of decryption keys corrupted. We say that .4 wins the
game if:

1. Pr[D(Encrypt(PP, M, Rp, Sp)) = M] > €, where the probability is taken over the random
choices of message M and the random coins of D. A decryption blackbox satisfying this condition

is said to be a useful attributes-specific decryption blackbox.
2. Kr =0, or Ky £ Kp, or ((kt € Rp) OR (Sp does not satisfy Ay,) Vk: € Kr).

We denote by TRAdv 4 the probability that A wins.

For a useful attributes-specific decryption blackbox D, the traced Kr must satisfy (Kp #
@)/\(KT - KD)A(E”{:,: € Kr s.t. (k}t € [N]\RD) AND (SD satis fies Akt)) (1) (KT #* @)/\(KT - KD)
captures the preliminary traceability that the tracing algorithm can extract at least one malicious
user and the coalition of malicious users cannot frame any innocent user. (2) (3k; € Kr s.t. (k: €
[N]\ Rp) AND (Sp satisfies Ag,)) captures the strong traceability that the tracing algorithm can
extract at least one malicious user whose decryption key enables D to have the decryption ability
corresponding to (Rp, Sp), i.e. whose index is not in Rp and whose access policy is satisfied by
Sp. Strong traceability is desirable in practice, since it can defend against attacks where colluding
traitors may build D in a smart manner so that D will be traced to only a user whose index is
in Rp or whose access policy is not satisfied by Sp, which should not happen for a secure R-KP-
ABE. We refer to [14/20] on why strong traceability is desirable. Note that, as of [6[7J9[14120], we
are modeling a stateless (resettable) decryption blackbox — such a blackbox is just an oracle and
maintains no state between activations. Also note that we are modeling public traceability, namely,
the Trace algorithm does not need any secrets and anyone can perform the tracing from the public
parameter only.

Definition 7. An N-user R-KP-ABE scheme is traceable against attributes-specific decryption
blackboz if for all PPT adversaries A, TRAdv 4 is negligible in \.

We say that an N-user R-KP-ABE is selectively traceable against attributes-specific decryption
blackbox if we add an Init stage before Setup where the adversary commits to the access policy
Ap.

In the traceable R-KP-ABE above, it is possible to trace all the active decryption keys in the
blackbox. In particular, given a decryption blackbox D described by (Rp, Sp) and non-negligible
probability €, we can run Trace to obtain an index set Kp so that (Ky # 0) A (Kp € Kp) A
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(3k: € K s.t. (kt € [N]\ Rp) AND (Sp satisfies Ay,)). Then, we can set a new revocation list
R = Rp U{ki € Ky | (ks € [N]\ Rp) AND (Sp satisfies Ay,)} and test whether D can decrypt
ciphertexts under (R),, Sp). If D can still decrypt the ciphertexts with non-negligible probability
¢/, we can run Trace on (R}, Sp,€') and obtain a new index set K., where (K. # 0) A (K}, C
Kp)A (ke € K/ s.t. (ke € [N]\ R,) AND (Sp satisfies Ay,)). By repeating this process, iteratively
expanding the revocation list, until D can no longer decrypt the corresponding ciphertexts, we have
finished finding out all the active malicious users of D.

F Augmented R-KP-ABE

We now define Augmented R-KP-ABE (or AugR-KP-ABE for short) from the R-KP-ABE above,
formalize its security notions, then show that a secure AugR-KP-ABE can be transformed to a

R-KP-ABE with blackbox traceability. In Appendix [G| we propose a concrete construction of
AugR-KP-ABE.

F.1 Definitions

An AugR-KP-ABE scheme has four algorithms: Setup,, KeyGenyp, Encrypts, and Decrypty. The
setup and key generation algorithms are the same as that of R-KP-ABE. For the encryption algo-
rithm, it takes one more parameter k € [N + 1] as input, and is defined as follows.

Encrypta (PP, M, R, S, /%) — CTg,s. The algorithm takes as input PP, a message M, a revocation
list R C [N], an attribute set S, and an index k € [N + 1], and outputs a ciphertext CTg,s.
(R,S) is included in CTg s, but the value of £ is not.

The decryption algorithm is also defined in the same way as that of R-KP-ABE. However, the
correctness definition is changed to the following.

Correctness. For any access policy A over U, k € [N], revocation list R C [N], attribute set
S C U, encryption index k € [N+1], and message M, suppose (PP, MSK) < Setupa(A, N), SKg 4 <
KeyGenp (PP,MSK, A), CTg s <+ Encrypta (PP, M, R, S, k). If (k € [N]\ R)A(S satisfies A)A(k > k)
then Decrypta(PP,CTR,s,SKy 4) = M.

Note that during decryption, as long as (k € [IN]\ R) A (S satisfies A), the decryption algorithm
outputs a message, but only when k > k, the output message is equal to the correct message, that
is, if and only if (k € [N]\ R) A (S satisfies A) A (k > k), can SKj 4 correctly decrypt a ciphertext
under (R, S, k). If we always set k = 1, the functions of AugR-KP-ABE are identical to that of
R-KP-ABE. In fact, the idea behind transforming an AugR-KP-ABE to a blackbox traceable R-
KP-ABE, that we will show shortly, is to construct an AugR-KP-ABE with index-hiding property,
and then always sets k = 1 in normal encryption, while using & € [N + 1] to generate ciphertexts
for tracing.

Security. We define the security of AugR-KP-ABE in two games. The first game is a message-
hiding game and says that a ciphertext created using index N + 1 is unreadable by anyone. The
second game is an index-hiding game and captures the intuition that a ciphertext created using
index k reveals no non-trivial information about k.

Gamepyy. The message-hiding game Gamely,, is similar to Gamepy except that during the Chal-
lenge phase, the challenge ciphertext is computed as CTr+ g+ <= Encrypty (PP, M, R*,S*, N + 1),
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and the original restriction in Gameyy no longer applies in Gameﬁ‘,“_,. In particular, the message-
hiding game Ga meﬁAH proceeds as follows:

Setup. The challenger runs Setups (A, N) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, access policy) pair (k;, Ay, ). The challenger

responds with SKy, 4,
Challenge. A submits tivo equal-length messages My, M; and a (revocation list, attribute set) pair

(R*,S*). The challenger flips a random coin b € {0, 1}, and sends CTg= g+ < Encrypta (PP, M, R,

S*,N +1) to A.
Phase 2. For i = @1 + 1 to @, A adaptively submits (index, access policy) pair (k;, Ag,). The

challenger responds with SKj,
Guess. A outputs a guess b/ € {() 1} for b.

A wins the game if ¥’ = b. The advantage of the adversary A in Gamefyy, is defined as MHAAdv 4 =
| Pr[t) = b] — 3.

Definition 8. An N-user Augmented R-KP-ABE scheme is message-hiding in GameﬁAH if for all
PPT adversaries A the advantage MHAAdv 4 is negligible in .

Gameﬁ_'. In the index-hiding game, we require that, for any (revocation list, attribute set) pair
(R*,S*), an adversary cannot distinguish between a ciphertext under (R*, S*, k) and (R*, S*, k+1)
without a decryption key SKj , ., where (k € [N]\ R*) A (S* satisfies Ag). The game takes as
input a parameter & € [N] which is given to both the challenger and the adversary A. The game
proceeds as follows:

Setup. The challenger runs Setupa (A, V) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, access policy) pair (k;, A, ). The challenger

responds with SKy, A,
Challenge. A submits ‘a message M and a (revocation list, attribute set) pair (R*,S*). The

challenger flips a random coin b € {0,1}, and sends CTg« g+ < Encrypta (PP, M, R*, S*, k + b)

to A.
Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, access policy) pair (k;, Ag,;). The

challenger responds with SKy,
Guess. A outputs a guess b € {O 1} for b.

A wins the game if ¥’ = b under the restriction that none of the queried pairs {(k;, A, )}lQ:1
can satisfy (k; = k:) A (ki [ ]\ R*) A (S* satisfies Ay,). The advantage of A is defined as
IHAAdv 4[k] = | Pr[t/ = b] —

Definition 9. An N-user A_ugme@ted R-KP-ABFE scheme is index-hiding if for all PPT adversaries
A the advantages IHAAdv 4[k] for k =1,..., N are negligible in .

We say that an Augmented R-KP-ABE scheme is selectively index-hiding if we add an Init
stage before Setup where the adversary commits to the challenge attribute set S*.

F.2 The Reduction of Traceable R-KP-ABE to Augmented R-KP-ABE

Let Xa = (Setupp, KeyGenp, Encrypty, Decrypt, ) be an AugR-KP-ABE, define Encrypt(PP, M, R, S) =
Encrypta (PP, M, R, S, 1), then X = (Setupp, KeyGena, Encrypt, Decrypt,) is a R-KP-ABE derived
from Y. In the following, we show that if Xa is message-hiding and index-hiding, then Y is secure
(w.r.t. Def. @ Furthermore, we propose a tracing algorithm Trace for X' and show that if Xy is
message-hiding and index-hiding, then ' (equipped with Trace) is traceable (w.r.t. Def. @
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1 R-KP-ABE Security

Theorem 6. If X is message-hiding and index-hiding (resp. selectively index-hiding), then X is
secure (resp. selectively secure).

Proof. First we need a slightly more elaborate message-hiding game for Y'a. In addition to N, A,
this extended game, denoted as GameéMH, takes as input a parameter k € [N + 1] which is only
given to the challenger. Gamegyy proceeds as follows:

Setup. The challenger runs Setupa (A, V) and gives the public parameter PP to A.
Phase 1. For i =1 to @1, A adaptively submits (index, access policy) pair (k;, A, ), and obtains

ki Ay -
Challen’%e. A submits two equal-length messages My, M7 and a (revocation list, attribute set) pair
(R*,8*). The challenger flips a random coin b € {0, 1}, and sends CTg= g+ < Encrypts (PP, M, R*,

S*, k) to A. This is the only place where k is used in the game.
Phase 2. For i = @1 + 1 to @), A adaptively submits (index, access policy) pair (k;, Ay, ), and

obtains SKy, 4, -
Guess. A outputs a guess b’ € {0,1} for b.
The adversary A wins the game if i = b under the restriction that none of the queried pairs
{(k‘i,Aki)}?:l can satisfy (k; € [N]\ R*) A (S* satisfies Ag,). The advantage of A is defined as
EMH”Adv 4[k] = | Pr[b' = b] — &|.

When k = 1, the game above, including the restriction, is exactly identical to the message-
hiding game Gameyy for X, we have EMHAAdv4[1] = MHAdv 4. When k& = N + 1, we have that
EMHAAdV 4[N + 1] < MHAAdv 4, since Gamelyy is identical to Gamegyy for k = N + 1, but there
is no restriction in Gamefyy. In the following proof sketch, we will make use of the facts that X
is message-hiding and index-hiding to show that EMH*Adv 4[1] is negligible, which implies that
MHAdv 4 is negligible (i.e. X' is secure w.r.t. Def. [f]).

Suppose that X is not secure, i.e. MHAdv 4 > ¢ for some adversary A and non-negligible e.
MHAdv4 > € implies that EMHAAdv4[1] > e. As X is message-hiding, MHAAdv 4 is negligible
(for simplicity, say MH*Adv4 = 0), thus EMH*Adv 4[N + 1] = 0. Then, by the standard hybrid
argument there exists a k € [N] such that

|EMHAAdv 4[k] — EMHAAdv 4[k + 1]] > €/N.

In other words, with non-negligible probability, A is able to distinguish Encrypta (PP, M, R*, S* k)
from Encrypta (PP, M, R*,S* k -+ 1) for some M and (R*,S*). But then A can directly be used to
win the index-hiding game Gamem.

More specifically, in Appendix [H we show that for any adversary A, there exists an adversary
B such that for all k =1,..., N, we have

IEMHAAdV 4[k] — EMHAAdV 4 [k + 1] < 2 - IHAAdvs[k]. (4)

Then we have

N
[EMHAAdv 4[1] — EMHAAdV 4[N + 1] < > [EMHAAdv 4[k] — EMHAAdv 4[k + 1]| < 2) " IHAAdvjslk].

1 k=1
But since X5 is message-hiding and index-hiding, we have that EMH*Adv 4[N + 1] and IH*Advg[k]

for k =1,..., N are negligible for any PPT adversary. Therefore, EM HAAdvA[l] is negligible. The
selective case is similar.

WE

|
I
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[F.212 R-KP-ABE Traceability
We now propose a tracing algorithm, which uses a general tracing method previously used in
[42206/7J9l20], and show that equipped with Trace, X is traceable (w.r.t. Def. .

TraceD(PP, Rp,Sp,e) — Ky C [N]: Given an attributes-specific decryption blackbox D associated
with a (revocation list, attribute set) pair (Rp, Sp) and probability e > 0, the tracing algorithm
works as follows:

1. For k =1 to N + 1, do the following:
(a) Repeat the following 8A(N/e)? times:
i. Sample M from the message space at random.
ii. Let CTry s, < Encrypta(PP, M, Rp, Sp, k).
iii. Query oracle D on input CTg,, s,,, and compare the output of D with M.

(b) Let pr be the fraction of times that D decrypted the ciphertexts correctly.
2. Let K7 be the set of all k € [N] for which px — pry1 > €/(4N). Output Ky.

The running time is cubic in N. It can be made (almost) quadratic using binary search instead of
a linear scan.

Theorem 7. If Ya is message-hiding and index-hiding (resp. selectively index-hiding), then X is
traceable (resp. selectively traceable).

Proof. We show that if the blackbox output by the adversary is a useful one then Ky will satisfy
(Kp #0) A (Kp CKp) A (Fk € Ky s.t. (ke € [N]\ Rp) A (Sp satisfies Ag,)) with overwhelming
probability, which implies that the adversary cannot win Gamerg, i.e., TRAdv 4 is negligible. The
selective case will be similar. Let D be the attributes-specific decryption blackbox output by the
adversary, and (Rp, Sp) be the (revocation list, attribute set) pair describing D. Define

py, = Pr[D(Encrypta (PP, M, Rp, Sp, k)) = M]|,

where the probability is taken over the random choice of message M and the random coins of D.
We have that p; > € and py1 is negligible (for simplicity let pyy1 = 0). The former follows from
the fact that D is useful, and the latter is because X is message-hiding in Gameyy,. Then there
must exist some k € [N] such that py — pr+1 > €¢/(2N). By the Chernoff bound it follows that with
overwhelming probability, py — prr1 > €/(4N). Hence, we have Kp # ().

For any k € Ky (i.e., pr — prr1 > €/(4N)), we know, by Chernoff, that with overwhelming
probability py — pr+1 > €/(8N). Clearly (k € Kp) A (k € [N]\ Rp) A (Sp satisfies Ay) since
otherwise, D can directly be used to win the index-hiding game for Xa. Hence, we have (Kp C
Kp) A ((k € [N]\ Rp) A (Sp satisfies Ay) Yk € Kp).

G An Efficient Augmented R-KP-ABE

We propose an AugR-KP-ABE scheme which is highly expressive and efficient with sub-linear
overhead in the number of users in the system. It is also large universe, where attributes do not
need to be enumerated during setup, and the public parameter size is independent of the attribute
universe size. We show that this AugR-KP-ABE is message-hiding and selectively index-hiding in
the standard model.

Combining this AugR-KP-ABE with the results in Sec. we obtain a large universe R-KP-
ABE which is selectively secure and traceable, and for a fully collusion-resistant blackbox traceable
system, the resulting R-KP-ABE is the most efficient one to date, with sub-linear overhead.
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To obtain this practical KP-ABE scheme supporting traitor tracing, revocation and large uni-
verse, we borrow ideas from the Blackbox Traceable CP-ABE of [20], the Trace and Revoke scheme
of [9] and the Large Universe KP-ABE of [26], but the work is not trivial as a straightforward
combination of the ideas would result in a scheme which is inefficient, insecure, or is not able to
achieve strong traceability, as also discussed in [20]. Specifically, by incorporating the ideas from
[9] and [26] into the Augmented CP-ABE of [20], we can obtain a large universe AugR-KP-ABE
which is message-hiding, but proving the index-hiding property is a challenging task. The proof
techniques for index-hiding in [20] only work if the attribute universe size is polynomial in the
security parameter and the parameters of attributes have to be enumerated during setup. They are
not applicable to large universe. The proof techniques in [26] are applicable to large universe, but
work only for proving security (i.e. message-hiding), while not applicable to index-hiding. To prove
index-hiding in the large universe setting, we introduce a new assumption that the index-hiding of
our large universe AugR-KP-ABE can be based on. In particular, in the underlying ¢-2 assumption
of [26] on bilinear groups (p, G, Gr, e), the challenge term T € Gr is e(g, g)° or a random element,
and such a term in the target group could be used to prove the message-hiding as the message space
is Gp. To prove the index-hiding, which is based on the ciphertext components in the source group
G, we need the challenge term to be in the source group G. Inspired by the Source Group g-Parallel
BDHE Assumption in [I9], which is a close relative to the (target group) Decisional Parallel BDHE
Assumption in [30], we modify the ¢g-2 assumption to its source group version where the challenge
term is g®° or a random element in G. Based on this new assumption and with a new crucial proof
idea, we prove the index-hiding property for our large universe AugR-KP-ABE. We prove that this
new assumption holds in the generic group model.

G.1 Preliminaries

Complexity Assumptions. Besides the Decision 3-Party Diffie-Hellman Assumption (D3DH)
and the Decisional Linear Assumption (DLIN) that are used in [9] to achieve traceability in broad-
cast encryption, the index-hiding property of our AugR-KP-ABE construction will rely on a new
assumption, which we refer to as Source Group ¢-Parallel DBDH Assumption. Here we only review
this new assumption, and refer to [9] for the details of the other assumptions.

The Source Group ¢-Parallel DBDH Assumption Given a group generator G and a positive
integer q, define the following distribution:

(panGTve) (i ga
g G, abedd,... d <7,

D= ((p7G7 GT7 6)7g>zgaagbang>gd79adaég(a0d);7 )
gdi, gacdd¢7 q* cddi, gacd/di, gb/dz’, gb /dz Vi e [Q],

gocddilds, - glacd®difd; - hi/ 05 qubedi/ Ty e [q] siti ),

T() = gabchI (i G

The advantage of an algorithm A in breaking the Source Group q-Parallel DBDH Assumption is:
Advg,A(/\) = ‘PI‘[A(D,T()) = 1] - PI‘[A(D,Tl) = 1”

Definition 10. G satisfies the Source Group q-Parallel DBDH Assumption if AdvéA()\) s a neg-
ligible function of A for any PPT algorithm A.
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Note that the ¢-2 assumption in [26] is a variant of DBDH assumption, where 4¢ + 2¢q + 1
additional input terms are given to the adversary, we refer to it as g-parallel DBDH assumption.
The above new assumption is closely related to g-parallel DBDH assumption (i.e. the ¢-2 assumption
in [26]) except that the challenge term g?*° remains in the source group, all the input terms replace ¢
with cd, and additional input terms g¢ and g9 are given to the adversary. The relation between this
assumption and the ¢-2 assumption [26] is analogous to that between the Source Group g-Parallel
BDHE Assumption [19] and the Decisional Parallel BDHE Assumption [30], i.e. the challenge term
changes from a term in the target group (i.e. e(g, g)* and e(g, g)c‘lq+1 respectively) to a term in the
source group (i.e. g% and g“‘q+1 respectively), and the input terms are modified accordingly (i.e.
replacing ¢ with cd, and adding ¢?). The main difference is that in this new assumption, there is an
additional input term ¢g%. Note that giving the term g% does not pose any problem in the generic
group model. Intuitively, there are two ways that the adversary may make use of the term g9: (1)
pairing ¢g¢¢ with the challenge term: since the pairing result of any two input terms would not be
e(g, g)“Qde, the adversary cannot break this new assumption in this way; (2) pairing the challenge
term with another input term whose exponent contains d: however, the result could be a random
element or one of { e(g7g)ab02d7 6(g,g)“b0d, e(gjg)zngccl7 e(g,g)tﬁbcgddi7 e(g,g)a?’bcgddi’ €<g7g)a2b(:2d/di,
e(g,g)“zbczddi/dj, e(g,g)a3b03d2di/df, e(g,g)azbzczddi/d? }, and as there is no input term which can be
paired with ¢% to obtain any of these terms, the adversary cannot break this new assumption by
this way either. In Appendix [J| we prove that this assumption holds in the generic group model.

G.2 Augmented R-KP-ABE Construction

Now we propose a large universe Augmented R-KP-ABE, where the attribute universe is U = 7Z,,
and we do not need to enumerate all the attributes or their corresponding public parameters
during system setup. Note that the notations here are same to that of the Augmented R-CP-ABE
construction in Sec.

Setupp (A, N = m?) — (PP, MSK). The algorithm calls the group generator G(1*) to get (p, G, Gr, ),
where p is the prime order of G and G and e is the bilinear map, and sets the attribute universe
to U = Zj,. 1t then randomly picks:

g, h, fa fl?"'ﬂfm7 G, H €G, {Cki, Ty Zi 6Zp}i€[m]7 {C] GZp}je[m]a

and outputs the public parameter PP and master secret key MSK as

PP = ( (p>G7GT7€)7 9, h, f> fla'--afma G, H,
{Ei=e(9,9)",Gi=9", Zi = 9" }ietm}» {Hj =9 }jem) )

MSK:<a, QlyeeeysQuy T1yeees T, cl,...,cm).

A counter ctr = 0 is implicitly included in MSK.

KeyGena (PP, MSK, (A, p)) — SK(; j),(a,p)- (A, p) is an LSSS matrix where p maps each row Ay of A
to an attribute p(k) € U = Z,. Let [ xn be the size of A. The algorithm first sets ctr = ctr+1 and
computes the corresponding index in the form of (4, j) where 1 <i,j < mand (i—1)*m+j = ctr.
Then the algorithm randomly chooses u = (035, u2,...,un) € Zy and {§ € Zyp}rep), and out-

!

puts a private key SK(i,j),(A,p) = ((Z, j), (A, p), Kiyj, Ké,j? Ké,j? {Ki,j,j’}j/e[m]\{j}v {Ki,j,k,h Ki,j,k,27
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K;j3}kep) where

Kij=g%g i (ff;)7, Ki; =97, Ki; =27, {Kijj =" }pempiy
{Kijgea = fU G, Kijro = (H W)™, Kijra = 6% hiep.

Encrypta (PP, M, R, S, (i,7)) = CTrs. R C [m,m] is a revocation list. S C U = Z, is an attribute
set. This algorithm allows the encrypting party to encrypt a message to the recipients whose
(index, access policy) pairs ((i,7), (A, p)) satisfy ((i,7) € [m,m]\ R) A (S satisfies (A,p)) A
((i,5) > (i,4)). Let R = [m,m]\ R and for i € [m], R; = {j'|(i,5') € R}, that is, R is the
non-revoked index list, and R; is the set of non-revoked column index on the i-th row. The
algorithm randomly chooses

Ky Ty Sly-vy8m, t1,...,tm € Zp,
3

Ve, Wi,y-.., Wi € Ly,

0p €ZpVNx €S, T € Lp.

In addition, it randomly chooses r;,ry,r. € Z,, and sets x1 = (re,0,7,), X2 = (0,7,72),
X3 = X1 X X2 = (—ryrz, =272, 727y). Then it randomly chooses

v; € Z3Vie{l,... i},
v; € span{x1,x2} Vi € {i +1,...,m},

and creates the ciphertext (R, S, (R;, R}, Q;, Q}, QY. T;)™,,(C}, C;);”:l, P, {P,, P.},cs) as fol-
lows:
1. For each row i € [m]:

— if ¢ < i: randomly chooses §; € Z,,, and sets

R =g" Ri=g™, Q=g Qi=( [[ £)"2if Ql=g" T=E"

J'ER;
— if i > i: sets
Ri — Gfi’ui, R; — G?sivi’
Qi =g Q= (7 T fy Iz g™, QU =gt To= M- BT,
J'€R;

2. For each column j € [m]:
—ifj < i randomly chooses p; € Zj, and sets C; = H].T(chr“jm) g™, Cl = g"i.
—if j > jrsets C; = HI" - g™, C' = g*.
3. P=g", {Py=¢%, P,=(H"h)"G "}ypes.
Decrypta (PP, CTR,s5,SK(; j),(4,0)) — M or L. For ciphertext CTg s = (R, S, (R;, R, Q;, Q}, Q7

T‘i)?lla (Cja C;);nzlv P: {Pra P;;};t65> a‘nd private key SK(i,j)y(Ap) = ((7’7.7)) (Aa p)v Ki,ja Kz{,ja Kz/:y

{Ki,j,j’}j’e[m]\{j}a {Ki,j,k,h Ki,j,k,2aKi,j,k,B}ke[l]): if (Z,j) € R or S does not satisfy (A, p), the
algorithm outputs L, otherwise:
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1. Since S satisfies (A, p), the algorithm can efficiently compute constants {wy € Zy} such that
Zp(k)es wrpAr = (1,0,...,0), then compute

Dp = H (e(Kijk1, P) - e(Kijk2, Pory) - €(Kijik3, P,;(k)))wk

p(k)€S

— H (e(f(Ak‘u)ng’gﬂ) ) 6((Hp(k)h)_fk,g5p(k)) . e(gik, (Hp(k)h)5p<k) G—W))“’k
p(k)es

=TT (@) = e(f.9).
p(k)es

Note that if .S does not satisfy (A, p), no such constants {wy € Z,} would exist.
2. Since (i,7) € R(= [m,m] \ R) implies j € R;, the algorithm can compute

Kij=Kij-( [ Kiggp) =g ()7 -C 11 577 =g%g™ - (f [T £i7

J'€R\{5} J'eR\{5} J'€R;

Note that if (i,j) € R (implying j ¢ R;), the algorithm cannot produce such a K; ;. The
algorithm then computes
e(Kij, Qi) - e(K];, Q) es(R;,CY)

e(K; ;. Q;) e3(R;, Cj)

Dr =

3. Computes M = T;/(Dp- Dy). Suppose that the ciphertext is generated from message M’ and
encryption index (i, j), it can be verified that only when (i > i) or (i =i Aj > j), M = M'.
This is because for i > i, we have (v;-x3) = 0 (since v; € span{x1,Xx2}), and for i = i, we have
that (v; - x3) # 0 happens with overwhelming probability (since v; is randomly chosen from
Zg). The correctness is also referred to Appendix

G.3 Augmented R-KP-ABE Security

The following theorem states that the AugR-KP-ABE proposed above is message-hiding. Then in
Theorem [9] we state that the AugR-KP-ABE is also selectively index-hiding.

Theorem 8. No PPT adversary can win Game’,(“/lH with non-negligible advantage.

Proof. The argument for message-hiding in Ga me',f‘AH is straightforward since an encryption to index
N—+1 (i.e. (m+1,1)) contains no information about the message. The simulator simply runs Setupp
and KeyGen, and encrypts M, under the challenge (revocation list, attribute set) pair (R*, S*) and
index (m+1,1). Since for all i = 1 to m, T; = Ef “ contains no information about the message, the
bit b is perfectly hidden and MHAAdv 4 = 0.

Theorem 9. Suppose that the DSDH, the DLIN and the Source Group q-Parallel DBDH Assump-
tion hold. Then no PPT adversary can selectively win Gameﬁ.' with non-negligible advantage, pro-
vided that the size of the challenge attribute set is < q.

Proof. Tt follows Lemma [] and Lemma [5] below.
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Lemma 4. If the D3DH and the Source Group q-Parallel DBDH Assumption hold, then for j < m,
no PPT adversary can selectively distinguish between an encryption to (i,7) and (i, j+1) in Gamefy,
with non-negligible advantage, provided that the size of the challenge attribute set is < q.

Proof. In Ga meﬁ' with index (3, ), let (R*, S*) be the challenge (revocation list, attribute set) pair,
the restriction is that the adversary A does not query a decryption key for (index, access policy)
pair ((i,7), A ;) such that ((i,5) = (4,5)) A ((i,5) € [m,m]\ R*) A (S* satisfies A(; j)). Under
this restriction, there are two ways for A to take:

Case I: In Phase 1 and Phase 2, A does not query a decryption key with index (4, 7).
Case II: In Phase 1 or Phase 2, A queries a decryption key with index (7, 7). Let A ;) be the
corresponding access policy. Case II has the following sub-cases:
L. (i,7) & [m,m] \ R*, S* satisfies Ag 5.
2. (i,7) ¢ [m,m|\ R*, S* does not satlsfy AG )
3. (4,7) € [m m|\ R*, S* does not satisfy A ).

If A is in Case I, Case II.1 or Case II.2, it follows the restrictions in the index-hiding game
for Augmented Broadcast Encryption (AugBE) in [9], where the adversary does not query the key
with index (4, j) or (i, ) is not in the receiver list [m, m]\ R*. Case I1.3 captures the index-hiding
requirement of Augmented R-KP-ABE in that even if a user has a key with index (4, 7) and (4, j) ¢
R*, the user cannot distinguish between an encryption to (R*,S*,(4,7)) and (R*,S*, (i,j + 1)) if
the corresponding access policy A7) is not satisfied by S*. This is the most challenging part of
proving the index-hiding when we attempt to securely intertwine the tracing techniques of broadcast
encryption (e.g. [9]) into the large universe KP-ABE (e.g. [26]). Compared to the proof of [20], the
challenge here is to prove the index-hiding in the large universe setting, as discussed previously.

To prove this lemma, we flip a random coin ¢ € {0,1} as our guess on which case that A is in.
If A is in Case I, Case II.1 or Case I1.2, we make a reduction that uses A to solve a D3DH
problem instance, using a proof technique similar to that of [9]. Actually, in this proof, we reduce
from our AugR-KP-ABE to the AugBE in [9]. If A is in Case I, Case II.2 or Case IL.3, we use
A to solve a Source Group g-Parallel DBDH problem instance, which is where the main novelty
resides among all the proofs in this work. Please refer to Appendix [I| for details.

Lemma 5. Ifthe D3DH, the DLIN and the Source Group q-Parallel DBDH Assumption hold, then
for 1 < i < m, no PPT adversary can selectively distinguish between an encryption to (i,m) and
(i+1,1) in Gameﬁ' with non-negligible advantage, provided that the size of the challenge attribute
set is < q.

Proof. Similar to the proof of Lemma 6.3 in [9], to prove this lemma we define the following hybrid
experiment: Hj: encrypt to (i, = m); Ha: encrypt to (7,7 = m + 1); and Hs: encrypt to (i +1,1).
This lemma follows Claim Bl and Claim [ below.

Claim 3. If the D3DH and the Source Group q-Parallel DBDH Assumption hold, then no PPT
adversary can selectively distinguish between experiment Hi and Ho with non-negligible advantage,
provided that the size of the challenge attribute set is < q.

Proof. The proof is identical to that for Lemma
Claim 4. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between exper-

iment Hy and Hs with non-negligible advantage.
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Proof. Note that (i,m + 1) ¢ [m,m] implies that for any revocation list R* C [m,m], we have
(i,m+1) ¢ R*(= [m,m]\ R*), i.e, the adversaries for distinguishing Hy and Hj3 will not be in Case
I1.3. Thus, we can prove this claim in a similar way to that of [9]. Actually, in this proof, we reduce
from our AugR-KP-ABE to the AugBE in [9]. In the proof of index-hiding for an AugBE scheme
Yaugee in [9, Lemma 6.3], two hybrid experiments were defined and proven indistinguishable via a
sequence of hybrid sub-experiments.

- H;‘ugBE: Encrypt to (i,m + 1), (i.e. H in [9])

- H?ugBE: Encrypt to (i +1,1), (i.e. Hs in [9])
By following [9, Lemma 6.3], if the DSDH and the DLIN hold, no PPT adversary can distinguish
between HQAugBE and HgAugBE with non-negligible advantage for Yawgge. Suppose there is a PPT
adversary A that can distinguish between Hy and Hjz for Xa with non-negligible advantage. We
can build a reduction, which is similar to that of Case A in Appendix [[, to use A to distinguish

between HQ”gBE and H?”gBE for Xaugge With non-negligible advantage.

H AugR-KP-ABE Implies Secure R-KP-ABE

To prove that the R-KP-ABE scheme X in Sec._ is secure it remains to prove that Equation (4]
holds for all £ =1,..., N. Consider a specific k& € [N]. Adversary B plays the index-hiding game
Gamef}, with input & and works as follows:

Setup. B receives PP from its challenger in the index-hiding game Gameﬁ_i. B runs adversary A

in the extend message-hiding game Ga meéMH and gives PP to A.
Phase 1. For i = 1 to @i, A adaptively submits (index, access policy) pair (k;, Ag,) to B. B

submits (k;, Ag,) to the challenger and receives secret key SKy, 4, . Then B gives SKy, 4, to A.
Challenge. A submits two equal-length messages My, M; and a (revocation list, attribute set)
(R*,S*) to B, under the restriction that none of the queried pairs {(k:Z,Akl)}lQ:ll can satisfy
(ki € [N]\ R*) A (S* satisfies Ay,). B flips a coin v € {0,1}, then gives M, and (R*,S")
to its challenger. Note that (R*,S*) satisfies the restriction on B in Gamef}, that none of the
queried pairs {(k;, Ag,) ?:11 can satisfy (k; = k) A (k; € [N]\ R*) A (S* satisfies Ay,). B receives
CTr+ g+ EncryptA(PP,Mv,R*,S*,l} + b) for some random b € {0,1}. Then B gives CTg+ g

to A.
Phase 2. For i = Q1 + 1 to @, A adaptively submits (index, access policy) pair (k;, Ag,) to

B, under the restriction that (k;,Ay,) does not satisfy (k; € [N]\ R*) A (S* satisfies Ayg,).
B submits (k;, Ag;) to the challenger. Note that (k;, Ay,) satisfies the the restriction on B in
Gamel), that (k;, A,) does not satisfy (k; = k) A (ki € [N]\ R*) A (S* satisfies Ay,). B receives
secret key SKy, 4, from the challenger. Then B gives SKy, o, to A.

Guess. A outputs a'guess 7' € {0,1} for 7. If v/ = ~ then B rettrns 0 to its challenger. Otherwise
B returns 1 to its challenger.

Now, observe that when b = 0 then B is emulating perfectly an EM HAAdv 4[k] challenger. When
b =1 then B is emulating perfectly an EM HAAdv Alk + 1] challenger. A standard argument now
shows that |[EMHAAdv 4[k] — EMHAAdv 4[k + 1]| < 2 - IH*Advg[k] as required.

I Proof of Lemma [4

Proof. Suppose there exists a PPT adversary A that selectively breaks the index-hiding game with
non-negligible advantage Adv 4. We construct a PPT algorithm B, which is given a D3DH problem
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instance and a Source Group g-parallel DBDH problem instance, and solves at least one of the two
problems with non-negligible advantage. B flips a random coin ¢ € {0, 1}, if ¢ = 0, B interacts with
A in Case A as guessing “A is not in Case 11.3”, otherwise B interacts with A in Case B as
guessing “A is not in Case I1.1”.

Case A: B uses A to solve the D3DH problem. Garg et al. [9, Sec. 5.1] proposed an AugBE
scheme Yaugge = (Setupa,gge, EnCryptagge; Decrypta g ge) and proved that it is index-hiding. The
Lemma 6.2 of [9] states that if the DSDH assumption holds, then for j < m no PPT adversary can
distinguish between an encryption to (i,7) and (i,j + 1) in the indez-hiding game for Xauge with
non-negligible probability. Note that if A is in Case I, Case II.1 or Case I1.2, it also follows the
restrictions of the index-hiding game for Xa,gge, here we do not build a direct reduction that uses
A to solve the D3DH problem, instead, we build a reduction to break the index-hiding property of
YaugBe- We first give the reduction sketch below.

First we review the structures of public key PKAUBE  private key SK'(AZ.“].g)BE and ciphertext

CT}%LJgBE of ZAugBE [Q]ﬂ

PKAYEE — (g, {E; = e(9,9)™, Gi=g"Yiem)» {Hj =97, [j}jeim )

AugBE 7 a; rici £7i.j Oi,j Ti.j
SKip = (Kigy Kijo {AKijidyempgy ) = (979" 679, AF Yrempin )s
CTA"®% = ((R;, R, Qi, Q4 TV, (C;,C))My, R),

where C'T g”gBE is for receiver list R and index (i*, j*) with

1. For each i € [m]: A
—ifi < Ry=g", Ri=g¢"", Qi=g", Q= ljer i) Ti=E
—if g > i Ri — G?‘m’ R; — G;ﬂsz‘vi’ Qz — gTsi(vrvc)’ Q; — (Hj’GRZ- fj,)TSi(’Uz"vc)7 TZ —
M- ETSi(’Ui"vc)
; .
2. For each j € [m|:
S ifj < gt Oy = H] O grws ol = g,
—ifj>j* Cj=H[" g™, C)=g"i.
Setup. From the received PKAU6BE 3 generates PP for A by randomly choosing 8,6, z; (i € [m]) €
Zp and h, H € G, and setting f = ¢°,G = ¢°,{Z; = 9% Yieim)-
Phase 1 and 2. As B can compute f = (¢%44)" and Z; "’ = (g°4)* without o; j, B can produce
. A
SK(i,j),(A,p) for A, using SK(;jg)
Challenge. As B can compute f% = (¢°)% and f7%:Vive) = (¢75i(vive))8 without s; or 7s;(v; - v.),
by using its challenge ciphertext C’TgngE (for R* = [m,m]\ R*) and random 7,t1, ..., ty, 6(7 €
S*) € Zyp, B can produce the challenge ciphertext CTg+ g+ for A.
Guess. B sends A’s guess b’ € {0, 1} to its challenger.

BE and random ug, . .., u, € Zp, {&k € Zp}rep-

During the interaction, if A is in Case IL.3, B will abort and return a random b € {0,1} to its
challenger.
Now we give the reduction details.

Init. The adversary A gives B the challenge attribute set S™*.

5 Note that we slightly changed the variable names in the underlying AugBE scheme Yaugse to better suit our proof.
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Setup. The challenger gives B the public key PKAveBE

PKAYEE — (g, {B; = e(9,9)™, Gi= 9" }iepm), {Hi =97, fi}iem ),

and private keys {SK }(w)e mm\{(i.j)} &5

AugBE > = rlc i,
SKas =(Kijs K AKijjbpemngy ) = (979797, 979, {7 Y ey )

where g, fl,...,fm € G and {O[Z,T‘Z S Zp}le[m]a {C] S Zp}]e[m]7 {0'17] S Zp} (,5)€[m,m\{(%,7)} are
randomly chosen. B sets ¢ = 0 to denote that B does not obtain the private SKA—”—gB

B randomly chooses 3,0, z21,...,2m € Z, and h,H € G, then gives A the following public
parameter PP:

(97 hv f:glgv fla"'uf’nh G:gea H7 {EZ) Gi7 ZZ:gZZ}lG[m]v {H]}]G[m})

Phase 1. A adaptively submits ((7, j), (4, p)) to B, where (A, p) is an LSSS matrix. Let A be an Ixn
matrix. If (7,7) = (i,7), then B sets ¢ = 1 and submits ¢ to its challenger, and receives the private
key SK'gt'jg)BE. B randomly chooses ug, . . . , up € Zp and {&, € Zp} e, and sets the value of w € Zj by
implicitly setting w = (05, u2, ..., un). For k = 1tol, let Ay = (Ag1,..., Axn) € Zy be the kth row
of A. B creates a private key SK(; ) (4.0 = ((4,5), (4, p), Kij, K., K!'; {Kl g Hirem\Gys 1Kk

1,50 72,50
Kijk2 Kijrstren) from SK'(A‘:].g)BE as follows:

Kij=K;;-(K};), K;=K}; Kl =(K];~, {Kz‘jj’zf_f‘,jj}je N}

{K; jr1 = (K] ;)7 1f2d 2Uahd Gk I o = (HPWR) ™ K s = g% bep.

Challenge. A submits a message M and a revocation list R*. B sets R* = [m,m] \ R*.

e if (i,j) € R* Né = 1: Ais in Case II.3. B returns a random B3 € {0,1} to its challenger,
then aborts.
j) € R* A é=0: B continues the following interaction.
R* A& = 1: B continues the following interaction.
o if (i,j) ¢ R* AN¢é = 0: B sets ¢ = 1 and submits ¢ to its challenger, and receives the private

key SK%”%BE. Then B continues the following interaction.

Now B ends the Query Phase for the AugBE index-hiding game with its challenger, and submits
(M, R*) to the challenger. Note that from the view of the challenger, B’s behaviors satisfy the restric-

tions in the AugBE index-hiding game, i.e., if B sends ¢ = 1 to the challenger and obtains SK(Aug)BE

then (i,7) ¢ R*. The challenger gives B the challenge ciphertext CTAveBE — ((R;, R}, Q;, )",
(C;,C", FYLiny R*), which is encrypted to (i*,5*) € {(i,7), (4,7 + 1)} and in the form of

1. For each i € [m]: _ ) ) . )
—ifi<i*: R, =g¢%, R,=¢"", Q;,=g%, Q= (Hj/efgi* )%, Ty = Ej.
—ifd > % Rz — Gfi’vi7 ég — G;@Sivi’ Qz — gTSi(’Ui"Uc)7 Q; — (HJ e f] )TsZ v; vc)’ TZ —
M - B[S,
2. For each j € [m]:
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Cifj < gt 6y = H] O grws - Gl = s,

—if > éj:HjT”c.gﬂwy'7 C. = gwi.

where r,7,5i(i € [m]),8;(1 < i <), (1 < j < j*) € Ly, ve,w;(j € [m]),vi(1 <i <i*) € Z,
and v;(i > i*) € span{xi,x2} are randomly chosen (where x1 = (r4,0,7;), x2 = (0,7y,72),
X3 = (—Tyrs, =475, 747y) are for randomly chosen ry, 7y, 7, € Z,), and R = {j'|(i,j') € R*}.

B randomly chooses m,t1,...,tm, 0z (z € S*) € Z,, then creates the ciphertext (R*, S*, (R;, R,
Qi’ ;7 70 T)z 1 (C],C,)j 19 P, {Px7P£}xES*> as follows:

1. For each 1 € [m} R 1%’_' ; = Za Ql Q’ia Q; = QZB ' Q; : Zfifﬂ—a Q;/ = gtia T’Z = j:‘l
2. For each j € [m]: C; =0C, C;:C
3. P_gy{Px—géx P, ( ) GW}IGS*

Phase 2. A adaptively submits ((¢,7), (4, p)) to B.

— if (i,7) # (4,7): B creates the private key SK(ij),(4,p) from SK?.”]g)BE as in Phase 1.

— if (i,5) = (i,7) A ¢ = 1: this implies B has obtained SK'(A”g)BE from its challenger. B creates the

KAugBE

- (4,)

—if (4, 7) = (i,7) Aé = 0: observing B’s behaviors in Challenge phase, we have that ¢ = 0 implies
(i,j) € R*. In other words, A is querying a key with index (i,j) and (i,5) € R*, i.e., A is in
Case I1.3. B return a random (3 € {0,1} to its challenger, then aborts.

private key SK(;5) (4, from S as in Phase 1.

Guess. A outputs a guess V' € {0,1} to B, then B sets 83 = b’ ands returns 3 to its challenger.

When B does not abort, B’s advantage in the index-hiding game for Ya,zge will be exactly
equal to A’s advantage in the index-hiding game for our AugR-KP-ABE scheme Xa. Thus, B’s final
advantage in the index-hiding game for Yaygge is Advp 3 = Adv - Pr[A is not in Case IL.3 A (c =
0)].

Case B: B uses A to solve the Source Group ¢-parallel DBDH problem. B is given
D = ((p,G,Gr,e),9. 9% ¢ 9, g%, g, 9@
gdi’ gacddi7 ga2cdd¢’ gacd/d ’ b/dQ, ng/df Vi € [q],
greddilds - glacd)ds/d; - bdi/ &5 - gabeddi /&5 e [q] st i # )

and T, where (p,G,Gr,e) £ G, g £ G, a,b,c,d,dy,...,dqg £ Zy, and T is either equal to gbe
or is a random element of G. B’s goal is to determine 7' = ¢g*° or T is a random element from G.

Init. A gives B the challenge attribute set S* = {a],...,qa/.} CU = Z,, where |S*| =1* < q.

Setup. B randomly chooses {i € Zp}icim), {Ti, 2 € Zp}licim)\(iys T5 % € Lps {¢; € Lp}jcim), and
B8,1,6,0,01,...,0n € Zy,. B gives A the public parameter PP:

(ga h = g/B : ( H ngd/dt) : ( H (gb/d%)—a;‘)’ f = (ga)G’ {fj = gej}je[m]v
%] te(l*]
G = (9", (TI %), {Ei = elg,9)* Yicpm):

te(l*]
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{Gi=g", Zi= (4 }icpmpgip» 1Hj = (0D jempiiy, Gi= (997, Z; = g%, Hj = (¢")%. )

Note that B implicitly chooses 75, z;(i € [m]\ {i}), ¢;(j € [m]) € Z, such that

/
ar;

de; = ¢j mod p Vj € [m] \ {j}, bcj = ¢; mod p.

=r; mod p, az = z; mod p Vi € [m] \ {i},

Phase 1. To respond to A’s query for ((i,7), (A, p)), let I x n be the size of A,
e if (i,j) # (i,j): B randomly chooses u = (0, u, ..., un) € Z and {&, € Zy}: _;, and creates
the decryption key SK; j) (a,p)

g (g o, i A A
Kij=149%(g “d)rc ifT, =1, #]
g ()T, i =]
Kij=g", K;=2", {Kijj =" }Yempy)
{Kijwa = NG Ko = (HWR) ™ K s = g% }ep.

o if (i,5) = (i,7): if S* satisfies (4, p), then A is in Case IL1, B returns a random 3, €
{0,1} to the challenger. Otherwise (i.e. S* does not satisfy (A,p)), B first computes a vector
U = (U1,...,Un) € Z, that has first entry equal to 1 (i.e. 43 = 1) and is orthogonal to all of
the rows A of A such that p(k) € S* (ie. Ay -u = 0 Vk € [l] s.t. p(k) € S*). Note that
such a vector must exist since S* fails to satisfy (A, p), and it is efficiently computable. Then
B randomly chooses o% 5 Uy ooy tUy € Lipy {8k € Lplrep sit. ptyess 18, € Lplrep st. p(k)¢s+- Let
u' = (0,uy,...,u,) € Zy, B sets the values of 075 € Zy, w € Zy, {§k € Zplrep st pk)¢s+ by
implicitly setting

/ ! — _ !/ -
075 —bric;/0 = o;5mod p, w=u + 0y,

€+ brich (A @) /8 —rics 3 acddy( Ak - B)/0 _ o od p ik € [I] s.t. p(k) & S*.

Tl PR —af

Note that for aj € S* and p(k) ¢ S* we have p(k) — a; # 0. B creates the private key SKg 5y (4 )
as follows:

I~

/

Kij = g7 (g7 (") %), K5 = g (") T K = (Kp)
= K\ )
{Kij5 = (Ki3)" Yyemn Gy

for k € [l] s.t. p(k) € S*,

-

Kijr1= f(Ak-U)Gék _ f(Ak-U’)JrU;,;(Ak-ﬁ)Gék _ f(Ak'ul)Gfk’ Kijro = (Hp(k)h)fgk, Kijrs = g£k7
for k € [l] s.t. p(k) ¢ S*,
Kijr1 = AR GEx

_ acddy(Ap-a)/é
f (Ag-u') | f(U**—bT,C/ /0)(Ay-a) G&; . (ga(S)bT%C%(Ak'u)/(s . (gaé)*%‘% Zte[l*] pfk)fa;‘
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;0 (Ag-a)

— f(Aku/) . fo'ij(Ak’l_la) . Gé; X ( H (gazcddt)irfcj p(k)—ai‘ ),

te(l*]
Kijro = (Hp(k)h)—Ek
_ acdd, ) (Ag-a)/s
L o —brict (Ap-@)/0+m3ict 3y v W
— (HP® )6 . (gnp<k>+6 (T @) (I g ) j i P,
te(l*] tell*]

(mp(k)+B)(Ag-1) /6

_ (Hp(k)h)fﬁfc ' (gb)—(Wp(k)‘FB)T%C%(Ak'ﬂ)/‘S. ( H (gacddt,)’f% p(R)—ay, )
t'e(l*]

21
rl 7 (p(k)— af)(Ag-a)/s

] ( H (ng/df)—(p(k)—a?)r (Ay-a) /5 H H abcddt//d i W)

te(lx] tell*] t'eflx]
25}
9o rlel (Ak u)/(S
. ( H (gabcd/dt) (A /5 H H 2¢2d dt//dt) i plh)— ay )
te(l*] te(l*] ¢ €[l*]
(p(k> ap)(Ag@)/8 2 ric (p(k)— at)(Ak @)/s
H H abcddt//d ) p(k)—ay, ) . ( H (gabcddt/d ) p(k)—af )
te[l*] v e1*]\{t} te(l*]
Wy (for t'#t) A (for t'=t)
et AE u)/5 10 (Ag- u)/5
) ( H (gabcd/dt) S(Ap-a /6 H H c2d2dt//dt) i k) =a, ) . ( H (ga%?d?dt/dt)ﬁ% p(k)—ar )
tell*] te(l*] t'e[l*]\{t} te(l*]
A-1 Uy (for t'#t) for t'=t

242 rlel (Ag-w)/d
:Qxl.%.%.%.(n(g )ZJP(M&)’
te(l*]

acddy (Ag-a)/é

Ki,j,k,3 _ ggk _ gﬁfg-i-b?"%c/( a)/0— r’c’ Zte T —af ggk ) ( )r;c;(Ak.ﬁ)/é ) ( H (gaCddt)

tell*]

) (Ap-)/8
j p(k)—af )

rl
%

Note that B can calculate the values of Kj j, KZ’], Kl’/j, {f(g,j,j,}j,e[m]\{;}, {Kijn1 Kijr2s Kijrshreq
using the suitable terms of the assumption.

Challenge. A submits a message M and a revocation list R*. B randomly chooses

/ / / / / /
T Sl Sio1, 87 Siq1s -+ Smy b1oe s G Gty s oty € Ly,
- ! / 3
Wiy, WH_g, W3-, Wy € Zy,

7, 01y, 0 € ZLp.

B randomly chooses r,,7y,7, € Zy, and sets x1 = (12,0,72),x2 = (0,7,72),X3 = X1 X X2 =
(=ryrs, =TTz, rery). B randomly chooses

v €Z3Vie{l,...i—1},
v € span{x1, X2}, v] € span{xs},
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v; € span{x1,x2} Vi € {i +1,...,m},
vP € span{x1, x2}, v?=v3xs3 € span{xs}.
B sets the value of «,,s;,t:(i € [m] \ {i}) € Zp, ve,v; € Z3, {w; € Zg};”:j, T € Lp, {6t € Lplrep
by implicitly setting
a=rmodp, act’ =7 mod p, sg/a = s; mod p,
t; + cdfr'si(v? - vl) /7 =t mod p Vi € {1,...,i — 1},
t; — ab7'si(vi - v7) /2 + cdfr'si (v - vd) [z =timodp Vi€ {i +1,...,m},
ve=c ol + vl v; = v— + dv—
wh — bc "v? = w; mod p,
w’~—cdcj Tvi=w;modpVje{j+1,...,m}

7. v9) =7 mod p, I, —did7's (U— vd) =6 mod p Vt € [I*].

/ /!
7 — cdr' s (v
7 2

It is worth noticing that v; and v, are random vectors in Z3 as required, and (v;-v.) = %('vg b))+
d(vg v{), since x3 is orthogonal to span{x1, x2} and Z3 span{x1, X2, X3}

Let R* [m, m]\R* and R} = {j'|(i,j') € R*} Vi € [m ] B creates the ciphertext (R*, S*, (R;, R},
Qi, Q, Q7 T;)y, (Cj,CY)JLy, P{Py, Py}zes+) as follows:

1. For each i € [m]:
— if ¢ < : it randomly chooses §; € Z,, then sets

R; = gvia R; = (ga)'vi,
) P A / Is! (02.099) /2! 3;
Qi _ gs,’ Q; _ (f H fj/)slzisz ’ Q;, _ gti (gcd)er si(vi vc)/zl’ Tz — Efz'

j'€R;

— if i = i: it sets

R; = =g % % ?(gd)r%s%vg7 R; _ (ga)r%s%vg <gad)rés%v‘g’
PP I ol (299 .2y I ol (ayP 0P 0.1\ Stz ot -
Qi = gD ey slol g @t (T QP25 4T, QU = o,

JERY

(3

T; =M -e(g™, Qi)
—if i > 4: it sets
R; = g™, R =(
Qi _ (ga)T/Si(Ui'U€)7 Q; _ ( H Q )Z frr Q// _ gt;-(ga)*e‘r’si('vi-vg)/zé(ng)QT/s%(vg-vg)/%’
T‘i =M - e(gaiaQi)'

2. For each j € [m]:
—if j < j: it randomly chooses u; € Zp and implicitly sets the value of u; such that

(acd)*lugug — v3 = pj mod p, then sets C; = (g “d)c 7' g TG (g9)%s, C' = g™
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—if j = j: it sets Cj = — 757 (ga)’“;, C; = g“’% . (gb)_ch/vg
—if j > jrit sets C; = (g “d)c T've (ga)“’g7 C. = g“’;‘ (g~ T
/ sl (9l
3. P =g" = g™ (¢°¥) ) and for t € [IF],
Pa;* _ g5t — gé,’g (gdt)—ér’s%(v%vg),

Pl = (H )G

—d 67’55 (vi-vd)
(Hat h) g% 5 (gb/d ar—ay . gacd/dtl
PRI (I o)

. G—7r’ . (gaé)cdr’s (vf vd)

— & - (gdt)*(naﬁﬁ)&/s (v ) ( H (gbdt/d ) (af a )07 st ('vg 'vq)) . ( H (gacddt/dt/)fé‘r’s ('uf vg))

t'el*] t'ell]

)
. G—7r’ . (gacd)ér’s (vf vd)

— P, - Dy - ( H (gbdt/d ) (af —a} 1)o7 8% (U?-vg)) . ((gbdt/d?)—(a;‘—af)(ﬁ’s%(vg-vg))
Vel I\ 1
D3 (for t'#t)
H acddt/dt/ 67’5%(1}?-172)) . ((gacddt/dt)—&"s (v 'vg)) el (gacd)éT’s%('u%vZ)

~—————
e[\ {t} A (for t'=t) At

Dy (for V#t)
=@ Dy Dy Py -G

(for t'=t)

Note that the values of @1, ..., &4 can be calculated using the suitable terms of the assumption.

If T = g%¢, then the ciphertext is a well-formed encryption to the index (4,7). If T is randomly
chosen, say T = ¢g" for some random r € Z,, the ciphertext is a well-formed encryption to the index
(4,7 + 1) with implicitly setting p; such that (25— — 1)y = pz mod p.

Phase 2. Same as Phase 1.
Guess. A outputs a guess ' € {0,1} to B, then B outputs this & to the challenger.

When B does not abort, the distributions of the public parameter, private keys and challenge
ciphertext are the same as in the real scheme, B’s advantage in Source Group g-parallel DBDH
game will be exactly equal to A’s advantage in the selective index-hiding game. Thus, B’s final
advantage is Advg ; = Advy - Pr[Ais not in Case IL.1 A (¢ = 1)].

Note that in both Case A and Case B, the distributions of the public parameter, private keys
and challenge ciphertext that B gives A are the same as in the real scheme and independent of the
value of ¢. This implies that the value of ¢ and the case that A is in are independent of each other.
Let A.I, AII.1, AI1.2, and A.IL.3 be the events that A is in Case I, Case II.1, Case I1.2 and
Case I1.3, respectively, and A.IL.1 and A.IL.3 be the events that “A is not in Case I1.1” and “A
is not in Case I1.3”, respectively. We have

Advps + Advg g = Advg - Pr[AIL3 A (¢ =0)] + Advg - PrlAIL1 A (¢ = 1)]
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= Advy - Pr[AIL3] - Pric = 0] + Advy - Pr[AIL1] - Prlc = 1]
= Advy - (1 — Pr[AIL3])- % + Advg - (1 — Pr[AIL1]) - %

= — . Advy - (2 — (Pr[AIL3] + Pr[AIL1)))

N — DN

Z : Ad’U_A,
since Pr[A.IL.3] + Pr[A.IL.1] < Pr[AI] + Pr[AIL1] + Pr[AIL2] + Pr[AIL3] = 1. This implies
that either Advg 3 > % - Advy or Advpq > % - Adv 4.

J Proof of Our Source Group Parallel DBDH Assumption

In this section, we give a lower bound to the complexity of our Source Group g-Parallel DBDH
Assumption. The proof is similar to that of the Source Group ¢-Parallel BDHE Assumption [19],
which is given in [I9, Appendix B] in the generic group model. In the generic group model [29], an
adversary does not have direct access to the group. It must interact with an oracle to perform the
group operation and obtain “handles” for new elements. Also, it can only use handles previously
received from the oracle. We consider an experiment where an adversary is given handles for the
group elements given out in the assumption as well as a handle for the challenge term T (here, [ is
a uniformly random bit). The adversary may interact with the oracle to perform group operations
and pairings, and gets handles in return as the results from these operations. Finally, the adversary
guesses the bit 8. The difference between the adversary’s success probability and one half is defined
as its advantage. We refer readers to [3I3] for other examples of using the generic group model for
justifying assumptions in bilinear groups. We denote a,b,c,d, b1,...,b,; as variables over Z,, and
define M as the following set of rational functions over these variables:

M= { 1,a,b,cd,d,ad, (acd)?
di, acdd;, a’cdd;, acd/d;, b/d?, b?/d? Vi€ |q],
acdd;/d;, (acd)?d;/d;, bdi/di, abcddi/dg Vi,j € lq] st.i#]}

These are the exponents of the group elements given in our Source Group g-Parallel DBDH
Assumption. Let E(M) be the set of all pairwise products of functions in M. It represents the
exponents of elements in Gr that can be obtained by pairing elements with exponents in M.
We say a function T is dependent on a set of functions S = {Sj,..., Sk} if there exist constants
T1,...,Tk € Zp such that T' = r1.S1 + - - - + 1 Sk. This is an equality of functions over Z,, and hence
hold for all settings of the variables. If no such constants exist, we say that T is independent of S.

Lemma 6. For each function M € MU{abc}, the product M-abc is independent of E(M)Uabe(M\
M). (Here, abc(M \ M) denotes the set formed by removing M from M and then multiplying all
remaining elements by abc.)

Proof. As every element in MU{abc} and E(M)Uabc(M\ M) is a ratio of monomials, the only way
that M - abc can be dependent on E(M)Uabc(M \ M) is if it is contained in E(M)Uabe(M\ M).
First, (abc)? is not in E(M)UabeM, and for any M € M, abcM ¢ abc(M \ M). Thus it suffices to
show that for any M, abcM ¢ E(M). In other words, we show that E(M) does not intersect with
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the set abcM, which is formed by multiplying each element of M by abc. To see this, we examine
the set abcM. By definition, we have that

abeM = { abc, abe, ab’c, abc’d, abed, a’bed, b3 d?
abed;, a*bc*dd;, a®bc’dd;, a’bc?d/d;, ab’c/d?, abdc/d? Vi € [q),
a?bc?dd;/d;, a3bc3d*d;/d;, ab2cdi/dj2~, aQbZCQddi/d? Vi, j € [q] st i # }

We now check if any of these are in E(M), which is the set of pairwise products of things in M.
In M, every occurrence of ¢ is accompanied by d, and d~! never appears. Hence F(M) does not
contain any element which has a higher powers of ¢ than d. This rules out all the elements in abcM
above but abed and a?bed. To rule out abed, we consider all the possible ways it might be formed
as a product of two elements of M. As d is in the term, one of the two factors in M must be a
term containing d. At the same time, as a=*,b~%, ¢~!, d~! never appear, if any one of {a, b, c, d} has
order > 2 then the term could not be a factor. Note that d, cd or ad cannot be one of the factors as
abe, ab, be ¢ M. Also, an element of the form acdd; cannot be one of the two factors as b/d; ¢ M,
an element of the form acd/d; cannot be one of the two factors as bd; ¢ M, an element of the form
acdd;/d; (s.t. j # j') cannot be one of the two factors as bd;/d; ¢ M, and an element of the form
abedd; /d? (s.t. 7 # j') cannot be one of the two factors as d? /d; ¢ M. Hence we can dismiss all
the possible ways, and conclude that abed ¢ E(M). To rule out a’bed, we consider all the possible
ways it might be formed as a product of two elements of M. As d is in the term, one of the two
factors in M must be a term containing d. At the same time, as =, b=, ¢!, d~! never appear,
if any one of {b, c,d} has order > 2 or a has order > 3 then the term could not be a factor. Note
that d, cd or ad cannot be one of the factors as a’bc, a?b, abc ¢ M. Also, an element of the form
acdd; cannot be one of the two factors as ab/d; ¢ M, an element of the form a?cdd; cannot be one
of the two factors as b/d; ¢ M, an element of the form acd/d; cannot be one of the two factors
as abd; ¢ M, an element of the form acdd;/d; (s.t. j # j') cannot be one of the two factors as
abd;/d; ¢ M, and an element of the form abcddi/d? (s.t. j # j') cannot be one of the two factors
as ad? /d; ¢ M. Hence we can dismiss all the possible ways, and conclude that abed ¢ E(M).

We now proceed similarly to the proof strategy in [3I3] to establish the following theorem:

Theorem 10. For any adversary A that makes @ queries to the oracles computing the group

operations in G, Gy and the bilinear map e : G x G — G, the advantages of A against the Source
2

Group q-Parallel DBDH assumption in the generic group model is at most O(%).

Proof. The proof of this theorem is identical to that of Theorem 22 in [19].
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