
Nearly Practical and Privacy-Preserving
Proofs on Authenticated Data

Michael Backes1,2, Dario Fiore3, and Raphael M. Reischuk2

1 Max Planck Institute for Software Systems (MPI-SWS)
Saarbrücken, Germany
backes@mpi-sws.org
2 Saarland University
Saarbrücken, Germany

reischuk@cs.uni-saarland.de
3 IMDEA Software Institute

Madrid, Spain
dario.fiore@imdea.org

Abstract. We study the problem of privacy-preserving proofs on authenticated data in which a party
receives data from a trusted source and is requested to prove statements over the data to third parties in
a correct and private way, i.e., the third party learns no information on the data but is still assured that
the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third
party should be able to verify the validity with respect to the specific data authenticated by the source
— even without having access to that source. This problem is motivated by various scenarios emerging
from several application areas such as wearable computing, smart metering, or general business-to-
business interactions. Furthermore, these applications also demand any meaningful solution to satisfy
additional properties related to usability and scalability. First, third parties should be able to check
proofs very efficiently. Second, the trusted source should be independent of the data processor: it simply
(and possibly continuously) provides data, e.g., without knowing which statements will be proven.
This paper formalizes the above three-party model, discusses concrete application scenarios, and in-
troduces a new cryptographic primitive for proving NP relations where statements are authenticated
by trusted sources. After discussing a generic approach to construct this primitive, we present a more
direct and efficient realization that supports general-purpose NP relations. Our realization significantly
improves over state-of-the-art solutions for this model, such as those based on Pinocchio (Oakland’13),
by at least three orders of magnitude.

Table of Contents

Nearly Practical and Privacy-Preserving Proofs on Authenticated Data (full version) 1
Michael Backes, Dario Fiore, and Raphael M. Reischuk

1 Introduction . 3
1.1 Contributions . 4
1.2 Further Related Work . 6
1.3 An Intuitive Description of Our Techniques . 6

2 Background . 7
3 Zero-Knowledge SNARGs over Authenticated Data . 8

3.1 SNARGs over Authenticated Data . 9
3.2 A Generic Construction of AD-SNARGs . 12

4 Our Construction of Zero-Knowledge AD-SNARGs . 13
4.1 Completeness . 18
4.2 Proof of Security . 21
4.3 Proof of the Zero-Knowledge Property . 28

5 Our Construction of Secretly-Verifiable Zero-Knowledge AD-SNARGs. 28
5.1 Correctness . 32
5.2 Proof of Security . 33
5.3 Proof of the Zero-Knowledge Property . 37

A SNARGs . 39
B The Pinocchio SNARG Scheme . 40

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on confidential
data for various purposes such as billing, legal compliance, etc. For instance, in the emerging area of
wearable computing [36,3], smart devices collect measurable human conditions, and subsequently
aggregate them for doctors or health insurances. Likewise, in the area of smart metering [35],
energy companies intend to collect energy consumption measurements in order to compute the
user bills. Or, in the realm of B2B, a company would like to perform efficient computations on
business-sensitive data. In these scenarios, the result of the computation is typically used further in
interaction with other third parties, be it other humans or companies (doctors, health insurances,
energy companies, business collaborators).

This consideration of disseminating the results of a computation to third parties imposes security
requirements for both the data owner and the data recipient: On the one hand, the computation
inputs might contain sensitive data (such as patient data, energy consumptions, business plans)
that the data owner would like to keep confidential. On the other hand, the data recipient would
like to be able to verify the correctness of the computation results – even though it is not granted
access to the computation input!

To illustrate the problem more formally, we consider a scenario in which a prover P is requested
to prove certain statements R(D) about data D to third parties V, which we call the verifiers.
Since the two parties P and V may not trust each other, we are interested in the simultaneous
achievement of two main security properties: (1) integrity, in the sense that V should be convinced
about the validity of R(D). In particular, in order to verify that this statement holds for some
specific D, the data is assumed to be generated and authenticated by some trusted source S; and
(2) privacy, in the sense that V should not learn any information about D beyond what is trivially
revealed by R(D).

In addition to the security requirements above, any meaningful solution has to meet the fol-
lowing properties that have been identified as key for practical scalability in previous work: (3)
efficiency, meaning that V’s verification cost should be much less than the cost of computing the
proven statement R(D); and (4) data independence, in the sense that the data source S should be
independent of P, i.e., it should be able to provide D without knowing in advance what statements
will be proven about D (e.g., the billing function may change over time). In particular, also D’s
size should not be fixed in advance, i.e., S can continuously provide data to P, even after some
proofs have been generated.

The simultaneous achievement of integrity and privacy is a fundamental goal that has a long
research history starting with the seminal work on zero-knowledge proofs [23]. The main goal of
this work is to study solutions aiming to achieve all of the four properties above, with a particular
focus on the setting in which the data is authenticated by some trusted source. We believe that
such a setting is relevant to many practical scenarios (such as the ones sketched above) and observe
that no much prior work addressed the problem of proofs on authenticated data in a systematic
and general way. Most work focused on specific computations (e.g., credentials or electronic cash
[13,16,29,30]), but very little work addressed the case of proving the integrity of arbitrary compu-
tations involving authenticated data. An exception is the recent work ZQL [17], which provides
an expression language for (privacy-preserving) processing of data that can also be originated by
trusted data sources. Inspired by the goals of ZQL, our work is rather focused on the study and
realization of efficient cryptographic primitives that can yield suitable solutions for this setting.

3

data processor
use and verify data, compute
aggregation over x =(ci,...,cl, xun) and
obtain witness w, compute
π = Prove(x,w,{σk}k=i..l)

trusted source
measure data {ck }k

and sign it:
σk = Auth(sk,Lk,ck)

{(ck, σk)}k π

verifier
verify proof π
Ver(vk,{Lk}k=i..l,xun,π)

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on privacy-
sensitive personal data for various purposes such as billing, legal compliance, etc. For instance, in
the emerging area of wearable computing, smart devices collect measurable human conditions, and
aggregation of such measures can then be given to doctors or health insurances for various compli-
ance checks. Likewise, in the area of smart metering, energy companies rely on energy consumption
measurements in order to compute the user bills. Or, consider the workflow of general business-
to-business applications where a company receives authenticated data and computes aggregations
which can be verified and embedded into larger protocols. The results of such computations should
later reliably be used by several, mutually untrusted parties.

While these scenarios introduce new and exciting services, they also raise challenges related to
the handling of sensitive data and the correctness of its processing. If services are often interested in
accessing only the aggregations of private or business-sensitive data (not the data itself, e.g., rather
the compliance of medical conditions over a relatively long period, or the bill from the month’s
consumptions is relevant), one may think to shift the performance of this aggregation to users (or
companies) so that the individual privacy-sensitive data (or sensitive business plans) do not get
exposed. However, since users and companies may be selfish, how to be sure that the transmitted
aggregations are correct? Moreover, what is the guarantee that the service learns nothing beyond
the desired aggregation?

The simultaneous achievement of integrity of computations and privacy of sensitive data has
been the goal of several works, especially in the context of zero-knowledge proofs [?]. In this work,
we consider important additional properties for a variety of scenarios (partially sketched above),
and we refine zero-knowledge proofs to fit this setting.

More precisely, we consider the problem in which a trustworthy data source S continuously
provides authenticated data D to some (unreliable) party P. P stores D, and at certain points in
time, it is requested to prove certain statements R(D) about (a portion of) D to third parties V,
which we call the verifiers. We stress that the data D and its size shall not be fixed in advance.
Analogously, the data source shall be independent of P, in particular the source might not know in
advance which statements will be proven about D (e.g., the billing function may change over time).
Since the two parties P and V may not trust each other, we are interested in two main security
properties: (1) integrity, in the sense that V should be convinced about the validity of R(D) and
in particular about the fact that this statement holds for data D that has been generated by the
trusted source S; and (2) privacy, in the sense that V should neither learn nor should it need to
store any information about D beyond what is trivially revealed by R(D). Furthermore, we aim to
achieve the following additional properties: (3) e�ciency, meaning that V’s verification cost should
be much less than the cost of computing the proven statement R(D); (4) unbounded data, in the
sense that the size of the data provided by the source S should not be fixed in advance; (5) data-
independence, in the sense that the data source should be able to provide D to P without knowing
in advance what statements will be proven about D.

1.1 Our Contribution

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD0SNARG, for short). Roughly speaking, the notion of AD0SNARGs extends the one of

3

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on privacy-
sensitive personal data for various purposes such as billing, legal compliance, etc. For instance, in
the emerging area of wearable computing, smart devices collect measurable human conditions, and
aggregation of such measures can then be given to doctors or health insurances for various compli-
ance checks. Likewise, in the area of smart metering, energy companies rely on energy consumption
measurements in order to compute the user bills. Or, consider the workflow of general business-
to-business applications where a company receives authenticated data and computes aggregations
which can be verified and embedded into larger protocols. The results of such computations should
later reliably be used by several, mutually untrusted parties.

While these scenarios introduce new and exciting services, they also raise challenges related to
the handling of sensitive data and the correctness of its processing. If services are often interested in
accessing only the aggregations of private or business-sensitive data (not the data itself, e.g., rather
the compliance of medical conditions over a relatively long period, or the bill from the month’s
consumptions is relevant), one may think to shift the performance of this aggregation to users (or
companies) so that the individual privacy-sensitive data (or sensitive business plans) do not get
exposed. However, since users and companies may be selfish, how to be sure that the transmitted
aggregations are correct? Moreover, what is the guarantee that the service learns nothing beyond
the desired aggregation?

The simultaneous achievement of integrity of computations and privacy of sensitive data has
been the goal of several works, especially in the context of zero-knowledge proofs [?]. In this work,
we consider important additional properties for a variety of scenarios (partially sketched above),
and we refine zero-knowledge proofs to fit this setting.

More precisely, we consider the problem in which a trustworthy data source S continuously
provides authenticated data D to some (unreliable) party P. P stores D, and at certain points in
time, it is requested to prove certain statements R(D) about (a portion of) D to third parties V,
which we call the verifiers. We stress that the data D and its size shall not be fixed in advance.
Analogously, the data source shall be independent of P, in particular the source might not know in
advance which statements will be proven about D (e.g., the billing function may change over time).
Since the two parties P and V may not trust each other, we are interested in two main security
properties: (1) integrity, in the sense that V should be convinced about the validity of R(D) and
in particular about the fact that this statement holds for data D that has been generated by the
trusted source S; and (2) privacy, in the sense that V should neither learn nor should it need to
store any information about D beyond what is trivially revealed by R(D). Furthermore, we aim to
achieve the following additional properties: (3) e�ciency, meaning that V’s verification cost should
be much less than the cost of computing the proven statement R(D); (4) unbounded data, in the
sense that the size of the data provided by the source S should not be fixed in advance; (5) data-
independence, in the sense that the data source should be able to provide D to P without knowing
in advance what statements will be proven about D.

1.1 Our Contribution

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD0SNARG, for short). Roughly speaking, the notion of AD0SNARGs extends the one of

3

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on privacy-
sensitive personal data for various purposes such as billing, legal compliance, etc. For instance, in
the emerging area of wearable computing, smart devices collect measurable human conditions, and
aggregation of such measures can then be given to doctors or health insurances for various compli-
ance checks. Likewise, in the area of smart metering, energy companies rely on energy consumption
measurements in order to compute the user bills. Or, consider the workflow of general business-
to-business applications where a company receives authenticated data and computes aggregations
which can be verified and embedded into larger protocols. The results of such computations should
later reliably be used by several, mutually untrusted parties.

While these scenarios introduce new and exciting services, they also raise challenges related to
the handling of sensitive data and the correctness of its processing. If services are often interested in
accessing only the aggregations of private or business-sensitive data (not the data itself, e.g., rather
the compliance of medical conditions over a relatively long period, or the bill from the month’s
consumptions is relevant), one may think to shift the performance of this aggregation to users (or
companies) so that the individual privacy-sensitive data (or sensitive business plans) do not get
exposed. However, since users and companies may be selfish, how to be sure that the transmitted
aggregations are correct? Moreover, what is the guarantee that the service learns nothing beyond
the desired aggregation?

The simultaneous achievement of integrity of computations and privacy of sensitive data has
been the goal of several works, especially in the context of zero-knowledge proofs [?]. In this work,
we consider important additional properties for a variety of scenarios (partially sketched above),
and we refine zero-knowledge proofs to fit this setting.

More precisely, we consider the problem in which a trustworthy data source S continuously
provides authenticated data D to some (unreliable) party P. P stores D, and at certain points in
time, it is requested to prove certain statements R(D) about (a portion of) D to third parties V,
which we call the verifiers. We stress that the data D and its size shall not be fixed in advance.
Analogously, the data source shall be independent of P, in particular the source might not know in
advance which statements will be proven about D (e.g., the billing function may change over time).
Since the two parties P and V may not trust each other, we are interested in two main security
properties: (1) integrity, in the sense that V should be convinced about the validity of R(D) and
in particular about the fact that this statement holds for data D that has been generated by the
trusted source S; and (2) privacy, in the sense that V should neither learn nor should it need to
store any information about D beyond what is trivially revealed by R(D). Furthermore, we aim to
achieve the following additional properties: (3) e�ciency, meaning that V’s verification cost should
be much less than the cost of computing the proven statement R(D); (4) unbounded data, in the
sense that the size of the data provided by the source S should not be fixed in advance; (5) data-
independence, in the sense that the data source should be able to provide D to P without knowing
in advance what statements will be proven about D.

1.1 Our Contribution

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD0SNARG, for short). Roughly speaking, the notion of AD0SNARGs extends the one of

3

Fig. 1. Scenario of authenticating data D and proving properties R over D.

1.1 Contributions

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD-SNARG, for short). SNARGs, first introduced by Micali under the name of “CS
proofs” [31], are proof systems that provide succinct verification, i.e., the verifier is able to check
a long poly-time computation in much less time than that required to run the computation, given
the witness. Our new notion of AD-SNARGs extends SNARGs so as to explicitly capture proofs
of NP relations R(x,w) in which the statement (or part of it) is authenticated. More precisely,
the main difference between SNARGs and AD-SNARGs is that in the former the verifier always
knows the statement, whereas in the latter, the authenticated statements are not disclosed to the
verifier, yet the verifier can be assured about the existence of w such that R(x,w) holds for the
specific x authenticated by the trusted source. Moreover, to model privacy (and looking ahead to
our applications) we define the zero-knowledge property so as to hold not only for the witnesses of
the relation, but also for the authenticated statements. In particular, our zero-knowledge definition
holds also against adversaries who generate the authentication keys.

Turning our attention to concrete realizations, we show that AD-SNARGs can be constructed
in a generic fashion by embedding digital signatures into SNARKs (i.e., SNARGs of Knowledge
[5]). However, motivated by the fact that this “generic construction” is not very efficient in practice,
our second contribution is a direct and more efficient realization of AD-SNARGs, that from now
on we refer to as the “direct construction”. Interestingly, compared to instantiating the generic
construction with state-of-the-art SNARKs schemes, our direct construction performs roughly three
orders of magnitude better on the prover side. In what follows we give more details on this efficiency
aspect: We first discuss the efficiency of instantiating the generic construction, and then we describe
our solution.

On the (in)efficiency of the generic construction. The idea of the generic (not very
practical) construction of AD-SNARGs for an NP relation R(x,w) is to let the prover P prove an
extended NP relation R′ which contains the set of tuples (x′, w′) with x′ = (|x|, pk), w′ = (w, x, σ),

4

and σ = (σ1, . . . , σ|x|), such that there is a valid signature σi for every statement value xi at position
i under public key pk. The problem with this generic construction is that, in practice, a proof for
such extended relation R′ is much more expensive than a proof for R. The issue is that R′ needs
to “embed” the verification algorithm of a signature scheme. If we consider very efficient SNARKs,
such as the recent Pinocchio system [33], embedding the verification algorithm means encoding the
verification algorithm of the signature with an arithmetic circuit over a specific finite field Fp (where
p is a large prime, the order of some bilinear groups), and then creating a Quadratic Arithmetic
Program [19], a QAP for short, out of this circuit. Without going into the details of QAPs (we will
review them later in Section 2), we note that the efficiency of the prover in Pinocchio depends on
the size of the QAP, which in turn depends on the number of multiplication gates in the relation
satisfiability circuit.

Our main observation is that the circuit resulting from expressing the verification algorithm of
a digital signature scheme is very likely to be quite inefficient (from a QAP perspective), especially
for the prover. Such inefficiency stems from the fact that the circuit would contain a huge number
of multiplication gates. In what follows, we discuss why this is the case for various examples of
signatures in both the random oracle and the standard model, and based on different algebraic
problems. If one considers signature schemes in the random oracle model (which include virtually
all the schemes used in practice), any such scheme uses a collision-resistant hash function (e.g.,
SHA-1) which is thus part of the verification algorithm computation. Unfortunately, as shown
also in [33], a QAP (just) for a SHA-1 computation is terribly inefficient due to the high number
of multiplication gates (roughly 24 000, for inputs of 416 bits). On the other hand, if we focus
on standard model signature schemes, it does not get any better: These schemes involve specific
algebraic computations, and encoding these computations into an arithmetic circuit over a field Fp
is costly. For instance, signatures based on pairings [7,37] require pairing computations that amount
to, roughly, 10 000 multiplications. RSA-based standard-model signatures (e.g., Cramer-Shoup [15])
require exponentiations over rings of large order (e.g., 3 000 bits), and simulating such computations
over Fp ends up with thousands of multiplication gates as well. Lattice-based signatures (in the
standard model), e.g., [10] can be cheaper in terms of the number of multiplications. However, such
multiplications typically work over Zq for a q much smaller than our p. An option would be to
implement mod-q-reductions in Fp circuits, which is costly. Another option would be to let these
schemes work over Zp, but then one has to work with higher dimensional lattices or (polynomial
rings) for security reasons, again incurring a large number of multiplications.

This state of affairs essentially suggests that a QAP encoding a signature verification circuit
is likely to have at least one thousand multiplications for every signature that must be checked.
If, for instance, we consider smart metering, in which the prover wants to certify about 1 000
(signed) meter readings (amounting to approximately 3 weeks of electricity measurements – almost
a monthly bill), the costs can become prohibitive!

Our Solution. In contrast, we propose a new, direct, AD-SNARG construction that achieves
the same efficiency as state-of-the-art SNARGs (e.g., Pinocchio [33]), yet it additionally allows for
proofs on authenticated statements. Our scheme builds upon a corrected version of Pinocchio4,
and our key technical contribution is a technique (that we illustrate in Section 1.3) for embedding
the authentication verification mechanism directly in the proof system, without having to resort
to extended relations that would incur the efficiency loss discussed earlier. As a result, the per-

4 The corrected version of Pinocchio – we emphasize – is available via ePrint and differs from the initially published
version [33].

5

formance of our scheme is almost the same as that of running Pinocchio without any proof about
authenticated values.

When comparing our direct construction with the instantiation of the generic scheme in Pinoc-
chio, it is interesting to note that the improvement of our solution lies in the generation of setup
keys (for the relation) and proofs, which is currently the main bottleneck of Pinocchio (and other
QAP-based schemes [4]). Namely, while these schemes perform excellently in terms of verification
time and proof size, the performances get much worse when it comes to generating keys and proofs,
especially for relations that have “unfriendly” arithmetic circuit representations, such as signature
verification algorithms, as discussed earlier. This is why our technique for avoiding the encoding
of signature verification in QAPs allows us to use much smaller QAPs, thus saving at least one
thousand multiplication gates per signature involved in the proof.

1.2 Further Related Work

As we mentioned earlier, our work extends the notion of succinct non-interactive arguments (SNARGs)
[31,5], which in turn builds on (succinct) interactive proofs [23] and interactive arguments [26,27].
In particular, we focus on the so-called preprocessing model where the verifier is required to run an
expensive but re-usable key generation phase. In this preprocessing model, several works [24,28,19,6]
proposed efficient realizations of SNARGs, and two notable recent works [33,4] have shown efficient,
highly-optimized, implementations that support general-purpose computations. These schemes can
also support zero-knowledge proofs. It is worth mentioning that all known SNARGs are either in
the random oracle model or rely on non-standard non-falsifiable assumptions [32]. Assumptions
from this class have been shown [21] likely to be inherent for SNARGs for NP.

The notion of SNARGs is also related to verifiable computation [18], in which a (computationally
weak) client delegates the computation of a function to a powerful server and wants to verify the
result efficiently. As noted in previous work, by using SNARGs for NP, it is possible to construct
a verifiable computation scheme, and several works [19,33,4] indeed follow this approach. However,
alternative approaches to realizing verifiable computation have been proposed, notably based on
fully homomorphic encryption [18,14,1] or attribute-based encryption [34].

Another line of work which is closely related to ours is the one on homomorphic authentication
(comprising both homomorphic signatures [25,9] and MACs [20,12,2]). The main idea of this prim-
itive is that, given a set of messages (σ1, . . . , σn) authenticated using a secret key sk, anyone can
evaluate a program P on such authenticated messages in a way that the result σ ← P ({σi}) is again
authenticated with respect to the same key sk (or some public key vk in the case of signatures).
Compared to AD-SNARGs, homomorphic MACs/signatures satisfy a similar notion of soundness,
and they have an additional nice property of composability, i.e., one can run a program on results
authenticated by other programs. On the other hand, they do not provide efficient verification
(with the only exception of [2]) and do not satisfy the zero-knowledge notion of AD-SNARGs that
is important for the applications of our interest. It is worth noting that a notion of privacy, called
context-hiding, has been considered for homomorphic signatures [9]. However, this notion is weaker
than our zero-knowledge as, for instance, it does not allow to hide additional, non-authenticated,
witnesses of a computation.

1.3 An Intuitive Description of Our Techniques

The key idea for the construction of our AD-SNARG scheme is to build upon Pinocchio (in partic-
ular, its SNARG version) [33] and to modify it by embedding a linearly-homomorphic MAC that

6

enforces the prover to run Pinocchio’s Prove algorithm on correctly authenticated statements. At a
more technical level, in Pinocchio the verifier, given a statement x = (x1, . . . , xa), has to compute
the linear combination vin =

∑a
k=1xk · vk(x) (where the vk(x) are the QAP polynomials)5. Since in

AD-SNARGs the verifier does not know the statement, our idea is to let the prover compute this
linear combination vin on the verifier’s behalf. Then, to enforce a cheating prover to provide the
correct vin , we ask the prover to additionally show that vin was obtained by using authenticated
values xk. To this end, we employ a linearly-homomorphic MAC.

However, a further complication to applying this technique arises from the fact that vin may be
randomized (by adding a random multiple of the target polynomial t(x)) in the case the proof is
zero-knowledge, while homomorphic MACs typically authenticate only deterministic computations.
We solve this issue using the following ideas. First, we provide a way to publicly re-randomize the
homomorphic MACs: roughly speaking, by publicly revealing a MAC of t(x). Second, we enforce
the prover to use the same random coefficient for t(x) in both vin and its MAC. Very intuitively,
this is achieved by asking the prover to provide this linear combination in two different subspaces.

2 Background

In this section, we review the notation and some basic definitions that we will use in our work.

Notation. We will denote with λ ∈ N a security parameter. We say that a function ε is negligible if
it vanishes faster than the inverse of any polynomial. If not explicitly specified otherwise, negligible
functions are negligible with respect to λ. If S is a set, x ←R S denotes the process of selecting
x uniformly at random in S. If A is a probabilistic algorithm, x ←R A(·) denotes the process of
running A on some appropriate input and assigning its output to x. Moreover, for a positive integer
n, we denote by [n] the set {1, . . . , n}.
Algebraic Tools. Let G(1λ) be an algorithm that upon input of the security parameter 1λ, outputs
the description of bilinear groups bgpp = (p,G,GT , e, g) where G and GT are groups of the same
prime order p > 2λ, g ∈ G is a generator and e : G×G→ GT is an efficiently computable bilinear
map. We call such an algorithm G a bilinear group generator. In this work we make use of bilinear
groups and in particular we rely on the q-DHE [11], q-BDHE [8] and q-PKE [24] assumptions over
these groups.

Arithmetic Circuits and Quadratic Arithmetic Programs. An arithmetic circuit C over a
finite field F consists of addition and multiplication gates and of a set of wires between the gates.
The wires carry values over F. A Quadratic Arithmetic Program (QAP) [19] encodes the wires
of an arithmetic circuit C into three sets of polynomials V,W,Y in such a way that for every
multiplication gate g× of C, any valid assignment of the circuit wires yields that the left input
wires V of g× multiplied by the right input wires W of g× equals the values of the output wires Y
of g×. More precisely, each polynomial set contains m+ 1 polynomials of the form

V = {vk(x)}k=0...m, W = {wk(x)}k=0...m, Y = {yk(x)}k=0...m

such that vk(rg×) = 1 iff the k-th wire of C is a left input to multiplication gate g×. Each mul-
tiplication gate g× is thereby represented as an arbitrary number rg× ∈ F, its “root”. Dually,

5 Precisely, the verifier also computes win =
∑a
k=1xk ·wk(x) and yin =

∑a
k=1xk · yk(x). In this intuitive description,

we simplify and describe our technique only for vin .

7

x

x

c1 c2 c3 c4

c5

c6

v5 (r6)=1
w3(r6)=1
w4(r6)=1
y6(r6)=1

r6

+r5

v1 (r5)=1
w2(r5)=1
y5(r5)=1

c5

Fig. 2. Two multiplication gates g5 and g6 with roots r5 and r6.

the polynomials wk and yk represent right inputs and outputs, respectively.6 Figure 2 shows two
multiplication gates with corresponding polynomials. The arithmetic constraints for all multipli-
cation gates of C are enforced by virtue of a divisibility check with a specific target polynomial
t(x) =

∏
g×

(x − rg×). More precisely, Q is said to compute C if, whenever (c1, . . . , cN) ∈ FN is a
valid assignment of C’s input and output wires, then there exists coefficients (cN+1, . . . , cm) such
that t(x) divides p(x) where

p(x) =
(
v0(x) +

m∑
k=1

ck vk(x)
)
·
(
w0(x) +

m∑
k=1

ck wk(x)
)
−
(
y0(x) +

m∑
k=1

ck yk(x)
)

The divisibility hence implies that all wire assignments are consistent, in particular the output
wires of C carry the correct evaluation result of C for the given input wires.

3 Zero-Knowledge SNARGs over Authenticated Data

We define the notion of SNARGs [31,5] on authenticated data (AD-SNARGs, for short). Let R =
{(x,w)i} be a relation over Fa+b where F is a finite field, x ∈ Fa is called the statement, and w ∈ Fb
is the witness. Proof systems typically consider the problem in which a prover P proves to a verifier
V the existence of a witness w such that (x,w) ∈ R. In this scenario, the statement x is supposed
to be public, i.e., it is known to both the prover and the verifier. For example, V could be convinced
by P that 3 colors are sufficient to color a public graph x such that no two adjacent vertices are
assigned the same color. The coloring serves as witness w.

In this work, we consider a variation of the above problem in which (1) the statement x (or part
of it) is provided to the prover by a trusted source S, and (2) the portion of x provided by S is
not known to V (see Figure 1 for illustration). Yet, V wants to be convinced by P that (x,w) ∈ R
holds for the specific x provided by S, and not for some other x′ (which can still satisfy R) of P’s
choice. For example, S might have provided a graph x – not known to V – for which P proves to
V that x is 3-colorable. A proof for any other graph x′ is meaningless.

To formalize the idea that V checks that some values unknown to V have been authenticated
by S, we adopt the concept of labeling used for homomorphic authentication [20]. Namely, we
assume that the source S authenticates a set of values Xauth = {ci, . . . , c`} against a set of (public)
labels L = {Li, . . . , L`} by using a secret authentication key (e.g., a signing key). S then sends the

6 The precise construction is slightly more complex, since it also handles addition and multiplication by constants.

8

authenticated Xauth to P. Later, P’s goal is to prove to V that (x,w) ∈ R for a statement x in
which some positions have been correctly authenticated by S, i.e., xi ∈ Xauth for some i ∈ [a].

For such a proof system we define the usual properties of completeness and soundness, and in
addition, to model privacy, zero-knowledge. Moreover, since we are interested in efficient, scalable,
protocols, we define succinctness to model that the size of the proofs should be independent of the
witness |w|.

Finally, we consider AD-SNARGs that can have either public or secret verifiability, the differ-
ence being in whether the adversary knows or not the verification key for the authentication tags
produced by the data source S.

3.1 SNARGs over Authenticated Data

Here we provide the formal definition for SNARGs over authenticated data.

Definition 1 (AD′SNARG). A scheme for Succinct Non-interactive Arguments over Authenticated
Data with respect to a family of relations R consists of a tuple of algorithms (Setup,AuthKeyGen,
Auth,AuthVer,Gen,Prove,Ver) satisfying authentication correctness, completeness, adaptive sound-
ness, and succinctness (as defined below):

Setup(1λ): On input the security parameter λ, output some common public parameters pp.

AuthKeyGen(pp): given the public parameters pp, the key generation algorithm outputs a secret
authentication key sk, a verification key vk, and public authentication parameters pap.

Auth(sk, L, c): the authentication algorithm takes as input the secret authentication key sk, a label
L ∈ L, and a message c ∈ F, and it outputs an authentication tag σ.

AuthVer(vk, σ, L, c): the authentication verification algorithm takes as input a verification key vk, a
tag σ, a label L ∈ L, and a message c ∈ F. It outputs ⊥ (reject) or > (accept).

Gen(pap, R): given the public authentication parameters pap and a relation R ⊆ Fa × Fb ∈ R, the
algorithm outputs an evaluation key EKR and a verification key VKR for R. Gen can hence be
seen as a relation encoding algorithm.

Prove(EKR, x, w, σ): on input a relation evaluation key EKR, a statement x = (x1, . . . , xa), a witness
w = (w1, . . . , wb), and authentication tags for the statement σ = (σ1, . . . , σa), the proof algorithm
outputs a proof of membership π for (x,w) ∈ R. We stress that σ does not need to contain
authentication tags for all positions: in case a value at position i is not authenticated, the empty
tag σi = ? is used instead.

Ver(vk,VKR, L, {xi}Li=?, π): given the verification key vk, a relation verification key VKR, labels for
the statement L = (L1, . . . , La), unauthenticated statement components xi, and a proof π, the
verification algorithm outputs ⊥ (reject) or > (accept).

Example (Graph Coloring using AD′SNARG). To prove that x is a particular graph with
valid 3-coloring, the prover P uses the Prove algorithm of an AD′SNARG to produce a proof
π ← Prove(EKR, x, w, σ), where EKR ←R Gen(pap, R), and σ = (σ1, . . . , σa) are the signatures
to authenticate the particular graph x under the labels L. The verifier runs Ver(vk,VKR, L, (), π)
to decide whether the coloring is valid.

9

Example (Example: Verifiable Computation using AD′SNARG). Let F : Fr → Fs
be a function to be executed over authenticated data x ∈ Fr with authentication tags σ
and corresponding labels L. The worker computes y = f(x) and obtains w as witness of the
computation. The relation to be proven using AD′SNARG isR : Fr+s×Fb such that (x||y, w) ∈ R
whenever y = f(x). The worker adaptively “extends” the statement by appending the result y
of the computation to the input x.
More precisely, in the case of delegated computations over authenticated data, the worker first
receives labels L = (L1, . . . , Lr), and then fetches the corresponding input x = (x1, . . . , xr)
authenticated through σ = (σ1, . . . , σr). The worker computes y = f(x), obtains witness w
and uses Prove(EKR, x||y, w, σ) to obtain a proof π. The authentication information in this
case is σ = (σ1, . . . , σr, ?1, . . . , ?s), since there is no authentication for y.
The verifier runs Ver(vk,VKR, (L1, . . . , Lr, ?1, . . . , ?s), y, π) to convince himself that y = f(x)
and that x is indeed the right input, hence the one authenticated via L.

Authentication Correctness. Intuitively, an AD′SNARG scheme has authentication correct-
ness if any tag σ generated by Auth(sk, L, c) authenticates c with respect to L. More formally, we
say that an AD′SNARG scheme satisfies authentication correctness if for any message c ∈ F, all keys
(sk, vk, pap)←R AuthKeyGen(1λ), any label L ∈ L, and any authentication tag σ ←R Auth(sk, L, c),
we have that AuthVer(vk, σ, L, c) = > with probability 1. Moreover, we assume Auth(sk, ?, c) = ?.

Completeness. This property aims at capturing that if the Prove algorithm produces π when
run on (x,w, σ) for some (x,w) ∈ R, then verification Ver(vk,VKR, L, {xi}Li=?, π) must output >
with probability 1 whenever AuthVer(vk, σi, Li, xi) = >. More formally, let us fix (sk, vk, pap) ←R
AuthKeyGen(pp), and a relation R : Fa×Fb with keys (EKR,VKR)←R Gen(pap, R). Let (x,w) ∈ R
be given with x = (x1, . . . , xa), w = (w1, . . . , wb). Let L = (L1, . . . , La) ∈ (L ∪ {?})a, be a set of
labels, and let σ = (σ1, . . . , σa) be tags for the statement such that AuthVer(vk, σi, Li, xi) = >.
Then if π ←R Prove(EKR, x, w, σ), we have that Ver(vk,VKR, L, {xi}Li=?, π) = > with probability
1.

Adaptive Soundness. Intuitively, the soundness property captures that no malicious party can
produce proofs that verify correctly for tuples not contained in the relation. More formally, we
formalize our definition via an experiment, called ExpAD′Soundness

A , which is described in Figure 3,
using the notation of code-based games. The game is defined by a number of procedures that can
be run by an adversary A as follows. As usual, the game starts by once executing Initialize and
terminates with once executing Finalize. In between, A can (concurrently) run the procedures
Gen, Auth, and Ver. We define the output of the game to be the output of the Finalize procedure.
The three procedures Gen, Auth, and Ver essentially give to the adversary oracle access to the
algorithms Gen, Auth, and Ver, respectively, with some additional bookkeeping information. In
particular, it is worth noting that Ver returns the output of Ver, and additionally, checks whether
a proof accepted by Ver (i.e., v = >) proves a false statement according to R. In this case, Ver sets
GameOutput← 1.

We say that an adversary A wins the game if it manages to make the experiment ExpAD′Soundness
A

output 1, i.e., if it ever asks a verification query that sets GameOutput ← 1. More formally, let R
be a class of relations. Then for any λ ∈ N, we define the advantage of an adversary A in the
experiment ExpAD′Soundness

A (R, λ) against AD′Soundness for R as

AdvAD′Soundness
A (R, λ) = Pr[ExpAD′Soundness

A (R, λ) = 1].

10

procedure Initialize

()←R Setup(1λ)

(sk, vk, pap)←R AuthKeyGen(1λ)
GameOutput← 0
S← ∅
T← {(?, ?)}
Return pap

procedure Gen(R)

(EKR,VKR)←R Gen(pap, R)
S← S ∪ {(R,VKR)}
Return (EKR,VKR)

procedure Auth(L,c)

σ ←R Auth(sk, L, c)
T← T ∪ {(L, c)}
Return σ

procedure Ver(R, L, {xi}Li=?, π)

if (R, ·) /∈ S then Return ⊥
fetch VKR with (R,VKR) ∈ S
v ← Ver(vk,VKR, L, {xi}Li=?, π)
if v = > then

if ∃ Li ∈ L : (Li, ·) /∈ T then

GameOutput← 1 // Type 1
else

fetch x = (x1, . . . , xn) with {(L1, x1), . . . , (Ln, xn)} ⊆ T
for all Li 6= ?

if there exists no w such that (x,w) ∈ R then

GameOutput← 1 // Type 2
Return v

procedure Finalize

Return GameOutput

Fig. 3. Game AD′Soundness.

An AD′SNARG over authenticated data with respect to a class of relations R is computationally
sound if for any PPT A, it holds that AdvAD′Soundness

A (R, λ) is negligible in λ.

Our soundness definition is inspired by the security definition for homomorphic MACs [20,12,2].
The catch here is that there are essentially two ways to create a “cheating proof”, and thus to break
the soundness of an AD′SNARG. The first way, Type 1, is to produce an accepting proof without
having ever queried an authentication tag for a label Li. This basically captures that, in order to
create a valid proof, one needs to have all authenticated parts of the statement, each with a valid
authentication tag. The second way to break the security, Type 2, is the more “classical” one, i.e.,
generating a proof that accepts for a tuple (x,w) which is not the correct one, i.e., (x, ·) 6∈ R.

Second, we note that the above game definition captures the setting in which the verification
key vk is kept secret. The definition for the publicly verifiable setting is easily obtained by having
Initialize return vk to the adversary.

Succinctness. Given a relation R : Fa×Fb, the length of π is bound by |π| = poly(λ)polylog(a, b).

Zero-Knowledge. Loosely speaking, an AD′SNARG is zero-knowledge if the Prove algorithm
generates proofs π that reveal no information: neither about the witness of the relation, nor about
the authenticated statements. In other words, the proofs do not reveal anything beyond what is
known by the verifiers when checking a proof. A formal definition follows:

Definition 2 (Zero-Knowledge AD′SNARG). A scheme AD′SNARG is a zero-knowledge SNARG
over authenticated data if the following additional property “Zero-Knowledge” holds. Let R ∈ R
be any relation. Then there exists a simulator Sim = (Sim1, Sim2), such that for all PPT distin-
guishers D, the following difference is negligible

|Pr[ExpD,RReal (λ) = 1]− Pr[ExpD,RSim (λ) = 1]|

where the experiments Real and Sim are defined as as follows:

11

ExpD,RReal (λ) :
pp←R Setup(1λ)
(sk, vk, pap)←R D(1λ, pp)
(EKR,VKR)←R Gen(pap, R)
(x, L, σ)= {(xi, Li, σi)}ai=1 ←R D(EKR,VKR)
w ←R D(EKR,VKR)
π ←R Prove(EKR, x, w, σ)
if D(π) = 1 ∧ {AuthVer(vk, σi, Li, xi) = >}ai=1

∧ (x,w) ∈ R
output 1

ExpD,RSim (λ) :
pp←R Setup(1λ)
(sk, vk, pap)←R D(1λ, pp)
(EKR,VKR, td)←R Sim1(sk, vk, pp, pap, R)
(x, L, σ)= {(xi, Li, σi)}ai=1 ←R D(EKR,VKR)

π ←R Sim2(td, L, {xi}Li=?)
if D(π) = 1 ∧ {AuthVer(vk, σi, Li, xi) = >}ai=1

∧ (x, ·) ∈ R
output 1

Note that the distinguisher D in the above game has a shared state that is persistent over all invo-
cations of D during an experiment.

We stress that the above zero-knowledge notion aims at capturing, in the strongest possible
sense, that the verifier cannot learn any useful information on the inputs, even if it knows (or
chooses) the secret authentication key. Indeed, as one can see, our definition allows the distinguisher
to choose the authentication key pair as well as the authentication tags.

Interestingly, we note that the notion of AD-SNARGs immediately implies a corresponding
notion of verifiable computation on authenticated data (similar to [2]). In [5] it is discussed how to
construct a verifiable computation scheme from SNARGs for NP with adaptive soundness. This
is simply based on the fact that the correctness of a computation can be described with an NP
statement. It is not hard to see that, in a very similar way, one can construct verifiable computation
on authenticated data from AD-SNARGs.

3.2 A Generic Construction of AD-SNARGs

We show how to construct an AD-SNARG scheme from SNARKs and digital signatures. A similar
construction was informally sketched in [5][Appendix 10.1.2 of the full version]. Here we make it
more formal with the main purpose of offering a comparison with our direct AD-SNARG construc-
tions proposed in the next sections.

Let Π ′ = (Gen′,Prove′,Ver′) be a SNARK scheme, and Σ = (Σ.KG,Σ.Sign,Σ.Ver) be a signature
scheme. We will use the signature scheme to sign pairs consisting of a label L and an actual message
m. Although, labels and messages can be arbitrary binary strings, for ease of description we assume
that labels can take a special value ?. Also, we modify the signature scheme in such a way that
Σ.Sign(sk, ?|m) = ? and Σ.Ver(vk, ?|m′, ?) = 1. Basically, we let everyone (trivially) generate a valid
signature on a message with label ?.

We define an AD′SNARG Π = (Setup,AuthKeyGen,Auth,AuthVer,Prove,Ver) as follows.

Setup(1λ): Output pp = 1λ.

AuthKeyGen(pp): run (sk′, vk′)←R Σ.KG(1λ) to generate the key pair of the signature scheme and
return sk = sk′ and vk = pap = vk′.

Auth(sk, L, c): compute a signature on the concatenation of the label L and the value c, i.e., σ′ ←R
Σ.Sign(sk′, L|c). Finally, output σ = (σ′, L).

AuthVer(vk, σ, L, c): let σ = (σ′, L′), output the result of the signature verification algorithm
Ver′(vk′, L|c, σ′).

12

Gen(pap, R): informally, we define R′ as the relation that contains all the (x,w) ∈ R such that
x is correctly signed with respect to a set of labels and a public key. More formally, define
R′ as the relation that contains all the tuples (x′, w′) with x′ = (y1, L1, . . . , ya, La, vk) and
w′ = (w, z1, σ1, . . . , za, σa) such that, by setting xi = yi if Li = ? and xi = zi otherwise, for all
i ∈ [a], it holds: (i) ((x1, . . . , xa), w) ∈ R, and (ii) Σ.Ver(vk, Li|xi, σi) = 1.
Then, run Gen′(1λ, R′) to generate (EK′R′ ,VK′R′) and output EKR = EK′R′ , VKR = VK′R′ .

Prove(EKR, x, w, σ): Let EKR the be evaluation key as defined above, (x,w) be a statement-witness
pair for R, and σ = (σ1, . . . , σa) be a tuple of authentication tags for x = (x1, . . . , xa).
If all the tags verify correctly, define x′ = (y1, L1, . . . , ya, La, vk), w′ = (w, z1, σ1, . . . , za, σa)
so that for all i ∈ [a]: zi = xi, yi = xi if σi = ? and yi = 0 otherwise. Next, run π ←R
Prove(EK′R′ , x

′, w′) to generate a proof for (x′, w′) ∈ R′ and return π.
Ver(vk,VKR, L, {xi}Li=?, π): given the verification key vk, a relation verification key VKR, labels

for the statement L = (L1, . . . , La), unauthenticated statement components xi, and a proof π,
the verification algorithm defines x′ = (y1, L1, . . . , ya, La, vk) with yi = xi if Li = ? and yi = 0
otherwise. Finally, it returns the output of Ver′(VK′R′ , x

′, π).

Theorem 1. If Π ′ is a zero-knowledge SNARK and Σ is a secure digital signature, then the scheme
described above is a zero-knowledge AD′SNARG.

Proof (Sketch). We provide a proof sketch to show that the above construction satisfies all the
properties. First, it is easy to see that if the SNARK is succinct, then the AD′SNARG proofs are
succinct as well. Moreover, authentication correctness and completeness immediately follows from
the correctness of the signature scheme and the completeness of the SNARK respectively.

Second, to see adaptive soundness note that for every accepting proof produced by the ad-
versary we can extract the corresponding witness (since Π ′ is an argument of knowledge). Such
proof, by definition, will contain a set of valid signatures. Then, if any of these signatures was not
obtained from a query to the Auth oracle, then it is easy that it can be used as a forgery to break
the unforgeability of the signature scheme. In the case all the signatures are valid, then one can
extract the full statement (x1, . . . , xa) from the witness w′. Hence, any adversary who outputs an
invalid proof for the AD′SNARG can be immediately turned into an adversary against the adaptive
soundness of Π ′.

Third, the zero-knowledge of the AD′SNARG follows from the one of the SNARK in a straight-
forward way.

4 Our Construction of Zero-Knowledge AD-SNARGs

In this section we describe our construction of an AD-SNARG scheme for arbitrary NP relations.
The presented scheme can be used with either secret or public verifiability. The main difference
between the two verification modes is that the size of the proof in the secretly verifiable case is
a fixed constant, whereas in the publicly verifiable case the proof grows linearly with the number
of authenticated statement values. Although we loose constant-size proofs for public verifiability,
we stress that proofs become linear only in the number N of authenticated values, and that the
verification algorithm runs linearly in N in any case (even in the generic construction). Furthermore,
for verifiers that know the secret authentication key (as it may be the case for smart metering
where companies install the keys in the meters) the proofs can be maintained of constant size, and –
importantly – revealing such secret key does not compromise privacy. We prove our scheme adaptive

13

sound under two computational assumptions in bilinear groups, the q-Diffie-Hellman Exponent
assumption (q-DHE) [11] and the q-Power Knowledge of Exponent assumption (q-PKE) [24]. We
note that the latter one is a non-falsifiable assumption. As discussed in the Introduction this kind
of assumptions is likely to be inherent for SNARGs for NP. For privacy, we show that the scheme
has statistical zero-knowledge and we stress that this property holds even against adversaries who
know (and even generate) the authentication keys.

A detailed description of our scheme follows.

Setup(1λ): On input the security parameter 1λ, run pp = (p,G,GT , e, g) ←R G(1λ) to generate a
bilinear group description, where G and GT are groups of the same prime order p > 2λ, g ∈ G
is a generator and e : G×G→ GT is an efficiently computable bilinear map.

AuthKeyGen(pp): Generate a key pair (sk′, vk′)←R Σ.KG(1λ) for a regular signature scheme. Run
(S, prfpp)←R F.KG(1λ) to obtain the seed S and the public parameters prfpp of a pseudorandom
function FS : {0, 1}∗ → F. Choose a random value z ←R F. Compute Z = gz ∈ G. Return the
secret key sk = (sk′, S, z), the public verification key vk = (vk′, Z) and the public authentication
parameters pap = (pp, prfpp, Z).

Auth(sk, L, c): To authenticate a value c ∈ F with label L, generate λ ← FS(L) using the PRF,
compute µ = λ + z · c and Λ = gλ. Then compute a signature σ′ ←R Σ.Sign(sk′, Λ|L), and
output the tag σ = (µ,Λ, σ′).

AuthVer(vk, σ, L, c): Let vk = (vk′, Z) be the verification key. To verify that σ = (µ,Λ, σ′) is a
valid authentication tag for a value c ∈ F with respect to label L, output > if gµ = Λ · Zc and
Σ.Ver(vk′, Λ|L, σ′) = 1. Output ⊥ otherwise. In the secret key setting (i.e., if vk is replaced by
sk), the tag can be verified by checking whether µ = FS(L) + zc.

Gen(pap, R): Let R : Fa × Fb be an NP relation with statements of length a and witnesses of
length b. Let CR be R’s characteristic circuit, i.e., CR(x,w) = 1 iff (x,w) ∈ R. Build a QAP
QR = (t(x),V,W,Y) of size m and degree d for CR. We denote by Ist , Imid , Iout the following
partitions of {1, . . . ,m}: Ist = {1, . . . , a}, Imid = {a+ 1, . . . ,m− 1} and Iout = {m}.7 In other
words, we partition all the circuit wires into: statement wires Ist , internal wires Imid (including
the witness wires), and the output wire Iout .
Next, pick rv, rw ←R F uniformly at random and set ry = rv rw. Then pick s, αv, αw, αy, β, γ ←R
F uniformly at random and compute the following values:

T = gryt(s)

∀k ∈ [m] ∪ {0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gryyk(s),

∀k ∈ [m] : V ′k = (Vk)
αv , W ′k = (Wk)

αw , Y ′k = (Yk)
αy , Bk = (Vk Wk Yk)

β.

Additionally, compute the following values:

ρv = Z rv t(s), ρw = Z rw t(s), ρy = Z ry t(s),

Vt = grv t(s), Wt = grw t(s), Yt = gry t(s),

V ′t = (Vt)
αv , W ′t = (Wt)

αw , Y ′t = (Yt)
αy ,

Bv = (Vt)
β, Bw = (Wt)

β, By = (Yt)
β.

7 For a reader familiar with Pinocchio, we point out our change of notation: we will use vst instead of vin to refer to
the statement-related inputs.

14

Output the evaluation key EKR and the verification key VKR defined as follows:

EKR =
(
{Vk, V ′k,Wk,W

′
k, Yk, Y

′
k, Bk}k∈Ist ∪Imid

, {gsi}i∈[d]

Vt, V
′
t , Wt,W

′
t , Yt, Y

′
t , Bv, Bw, By, ρv, ρw, ρy, QR

)
VKR =

(
g, gαv , gαw , gαy , gγ , gβγ , T, {Vk,Wk, Yk}k∈Ist∪{0,m}

)
Prove(EKR, x, w, σ): Let EKR the be evaluation key as defined above, (x,w) ∈ Fa × Fb be a

statement-witness pair, and σ = (σ1, . . . , σa) be a tuple of authentication tags for x = (x1, . . . , xa)
such that for any i ∈ [a] either σi = (µi, Λi, σ

′
i) or σi = ?. We define Iat = {i ∈ Ist : σi 6= ?} ⊆ Ist

as the set of indices for which there is an authenticated statement value, and let Iun = Ist \ Iat
be its complement.
To produce a proof for (x,w) ∈ R proceed as follows. First, evaluate the circuit CR(x,w) and
learn the values of all internal wires: {ck}k∈Imid

. For ease of description, we assume ci = xi for
i ∈ [a], and ca+i = wi for i ∈ [b]. The first b indices of Imid hence represent the witness values
w.
Next, proceed as follows to compute the proof:

Vat =
∏
k∈Iat

(Vk)
ck , Wat =

∏
k∈Iat

(Wk)
ck , Yat =

∏
k∈Iat

(Yk)
ck ,

V ′at =
∏
k∈Iat

(V ′k)ck , W ′at =
∏
k∈Iat

(W ′k)
ck , Y ′at =

∏
k∈Iat

(Y ′k)ck ,

Vmid =
∏

k∈Imid

(Vk)
ck , Wmid =

∏
k∈Imid

(Wk)
ck , Ymid =

∏
k∈Imid

(Yk)
ck ,

V ′mid =
∏

k∈Imid

(V ′k)ck , W ′mid =
∏

k∈Imid

(W ′k)
ck , Y ′mid =

∏
k∈Imid

(Y ′k)ck ,

Bmid =
∏

k∈Imid

(Bk)
ck .

Authenticate the values Vat ,Wat , and Yat by computing µ̂v =
∏
k∈Iat (Vk)

µk , µ̂w =
∏
k∈Iat (Wk)

µk ,
and µ̂y =

∏
k∈Iat (Yk)

µk , respectively.

To make the proof zero-knowledge, pick random values δ
(v)
at , δ

(v)
mid , δ

(w)
at , δ

(w)
mid , δ

(y)
at , δ

(y)
mid ←R F,

and compute:

Ṽat = Vat · (Vt)
δ
(v)
at , W̃at = Wat · (Wt)

δ
(w)
at , Ỹat = Yat · (Yt)

δ
(y)
at ,

Ṽ ′at = V ′at · (V ′t)δ
(v)
at , W̃ ′at = W ′at · (W ′t)

δ
(w)
at , Ỹ ′at = Y ′at · (Y ′t)δ

(y)
at ,

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)

δ
(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ ′mid = V ′mid · (V ′t)δ
(v)
mid , W̃ ′mid = W ′mid · (W ′t)δ

(w)
mid , Ỹ ′mid = Y ′mid · (Y ′t)δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

To authenticate the new values Ṽat , W̃at , and Ỹat , compute µ̃v= µ̂v · (ρv)δ
(v)
at , µ̃w= µ̂w · (ρw)δ

(w)
at ,

and µ̃y = µ̂y · (ρy)δ
(y)
at , respectively. Note that our technique preserves the re-randomization

property of Pinocchio.

15

Next, solve the QAP QR by finding a polynomial h̃(x) such that p̃(x) = h̃(x) · t(x) where the
polynomial p̃(x) includes the “perturbed versions” of the polynomials v(x), w(x), and y(x) with

δ(v) = δ
(v)
at + δ

(v)
mid , δ(w) = δ

(w)
at + δ

(w)
mid , and δ(y) = δ

(y)
at + δ

(y)
mid , respectively:

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ(v)t(x)
)(
w0(x) +

∑
k∈[m]

ckwk(x) + δ(w)t(x)
)

−
(
y0(x) +

∑
k∈[m]

ckyk(x) + δ(y)t(x)
)

Finally, compute H̃ = gh̃(s) using the values gs
i

contained in the evaluation key EKR. Output
π̃ = (µ̃v, µ̃w, µ̃y, Ṽat , Ṽ

′
at , Ṽmid , Ṽ

′
mid , W̃at , W̃

′
at , W̃mid , W̃

′
mid , Ỹat , Ỹ

′
at , Ỹmid , Ỹ

′
mid , B̃mid , H̃).

To make the proof publicly verifiable, include also {Λk, σ′k}Lk 6=? in π̃.

Ver(vk,VKR, L, {xi}Li=?, π̃): Let VKR be the verification key for relation R, L = (L1, . . . , La) be a
vector of labels, and let π̃ be a proof as defined above. In a similar way as in Prove, we define
Iat = {i ∈ Ist : Li 6= ?} ⊆ Ist and Iun = Ist \ Iat . The verification algorithm proceeds as follows:
(A.1secret) If verification is done using the secret key sk = (S, z), check the authenticity of

Ṽat , W̃at and Ỹat against the labels L:

µ̃v =
[∏
k∈Iat

(Vk)
FS(Lk)

]
· (Ṽat)z

∧ µ̃w =
[∏
k∈Iat

(Wk)
FS(Lk)

]
· (W̃at)z

∧ µ̃y =
[∏
k∈Iat

(Yk)
FS(Lk)

]
· (Ỹat)z

(A.1pub) If the verification is performed using the public verification key vk = (Z, vk′), first
check the validity of all Λk by checking that Σ.Ver(vk′, Λk |Lk, σ′k) = 1 for all k ∈ Iat . Then

check the authenticity of Ṽat , W̃at , and Ỹat :

e(µ̃v , g) =
[∏
k∈Iat

e(Vk, Λk)
]
· e(Ṽat , Z)

∧ e(µ̃w , g) =
[∏
k∈Iat

e(Wk, Λk)
]
· e(W̃at , Z)

∧ e(µ̃y , g) =
[∏
k∈Iat

e(Yk, Λk)
]
· e(Ỹat , Z)

(A.2) Check that Ṽat , Ṽ
′
at , W̃at , W̃

′
at , and Ỹat , Ỹ

′
at were computed using the same linear

combination:

e(Ṽ ′at , g) = e(Ṽat , g
αv) ∧ e(W̃ ′at , g) = e(W̃at , g

αw) ∧ e(Ỹ ′at , g) = e(Ỹat , g
αy)

(P.1) Check the satisfiability of the QAP by setting Vout = (Vm)
cm = Vm (similarly Wout =

Wm and Yout = Ym), where we assume that cm = 1 = CR(x,w) since (x,w) ∈ R, then

computing Vun =
∏
k∈Iun (Vk)

xk (and similarly Wun , Yun), and finally checking:

e(V0 Ṽat Vun Ṽmid Vout , W0 W̃at Wun W̃mid Wout) = e(T, H̃)·e(Y0 Ỹat Yun Ỹmid Yout , g)

16

(P.2) Check that all linear combinations are in the appropriate spans:

e(Ṽ ′mid , g) = e(Ṽmid , g
αv) ∧ e(W̃ ′mid , g) = e(W̃mid , g

αw) ∧ e(Ỹ ′mid , g) = e(Ỹmid , g
αy)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e(B̃mid , g
γ) = e(Ṽmid W̃mid Ỹmid , g

βγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.

Performance and Comparison. Before proving correctness, soundness, and zero-knowledge, we
compare the performance of our construction to Pinocchio [33] (more precisely, to its SNARG
version, which for convenience is recalled in Appendix B). First, we note that the generation of the
keys is essentially the same except for the three exponentiations for creating ρv, ρw, ρy. Second, in
Prove our scheme additionally computes the proof values Ṽat , Ṽ

′
at , and µ̃v (and the similar ones for

W and Y), whose generation cost amounts to 9 multi-exponentiations with N = |Iat | terms. Third,
in Ver, the difference lies in the realm of authenticated statements: equation (P1) in Pinocchio
computes

∏
k∈Ist (Vk)

ck ,
∏
k∈Ist (Wk)

ck and
∏
k∈Ist (Yk)

ck for all the a = |Ist | statement values,
whereas in our scheme we only compute those multi-exponentiations over Iun (of size a −N) and
– in the secretly verifiable case – move the checks for the authenticated statements, three multi-
exponentiations (of size N), to equation (A.1)secret . Hence, the total cost of running (P.1) and
(A.1)secret in our scheme is essentially the same as (P.1) in Pinocchio. In the publicly verifiable case
of equation (A.1)public, the verifier in our scheme has to perform one signature check for {σ′k} per
authenticated statement, and the computation of

∏
k∈Iat e(Vk, Λk) (and similarly for Wk, Yk). If we

assume to use, for instance Schnorr’s signatures for σ′k, all the signatures can be verified in batch
with a work roughly the same as that of computing a single multi-exponentiation like

∏
k∈Iat (Vk)

ck .
Also, by considering the micro-benchmarks in [33], the cost of 3N pairings is about the cost of 30
multi-exponentiations with N terms.8 Finally, in our scheme we additionally compute six pairings
for equation (A.2).

Given such cost evaluation for our scheme against Pinocchio, for a fair comparison, we compare
our scheme against the best possible instantiation of the generic construction of Section 3.2, i.e.,
Pinocchio with the extended relation R′. If we assume that each signature verification costs c
multiplication gates in the arithmetic circuits, and if we assume that this is the only additional
cost for the design of R′, then this means that: if R yields a QAP of size m and degree d, then
R′ yields a QAP of, at least, size m′ = m + cN and degree d′ = d + cN . When running on
R′, Pinocchio’s performance in verification remains the same as the one discussed above, whereas
Pinocchio’s performance in proof generation depends on the larger m′ and d′. Precisely, it performs
multi-exponentiations with m′ and d′ terms, and a polynomial division operation whose cost is
O(d′ log2 d′). In other words, if we compare the two schemes we obtain:

For secret verification both schemes perform almost the same, the only difference being that we
need to perform six more pairings; for public verification our scheme has an additional (concrete)
cost of about 30 multi-exponentiations with N terms over Pinocchio. For proof generation Pinocchio
(with R′) has to perform additional operations that involve a factor at least linear in c · N . We
recall from the discussion in the Introduction that such c is likely to be as large as 1 000.

8 Overall, if we take e.g., N = 100, the cost of such 30 multi-exponentiations is not that terrible: about 0.5ms,
considering costs in [33].

17

Therefore, one can see that while our solution charges a little more to the verifier (only in the
public verification case), the costs of our scheme on the prover side can be much cheaper, at least
by a factor cN .

Our scheme for relation R Generic scheme for R with Pinocchio

QAP (size, degree) (m, d) (m′, d′) = (m+ cN, d+ cN)

Proof generation

QAP evaluation Q(m, d) Q(m′, d′)

Vmid , V
′
mid ,Wmid ,W

′
mid etc. 7ME(m− a− 1) 7ME(m′ − a− 1)

Vat , V
′
at , µ̂v etc 9ME(N) terms —

h(x) Div(d) Div(d′)

H̃ 1ME(d) 1ME(d′)

Verification

(A.1) secret 3ME(N) —

(A.1) pub 1ME(N) + 3N · P —

(A.2) 6 P —

(P.1) 3P + 3ME(a−N) 3P + 3ME(a)

(P.2) 6P 6P

(P.3) 2P 2P
Table 1. Cost of generating and verifying a proof. N = number of authenticated values. c =number of multiplications
for one signature verification. P is the cost of a pairing, and ME(n) is the cost of a multi-exponentiation with n
terms. Div(d) is the cost of performing a polynomial division for computing h(x) with polynomials of degree d.

4.1 Completeness

Theorem 2. The above scheme satisfies authentication correctness and completeness.

Proof. It is straightforward to see that the scheme has authentication correctness by the correct-
ness of the regular signature scheme and by construction. To show the completeness, we prove all
verification equations in the order they appear in the verification procedure.

18

(A.1secret) We only show the case for µ̃v. The cases for µ̃w and µ̃y are analogous.

µ̃v
Prove
= µ̂v · (ρv)δ

(v)
at

Prove
=

∏
k∈Iat

(Vk)
µk ·

(
gz rv t(s)

)δ(v)at

Auth
=

∏
k∈Iat

(Vk)
FS(Lk)+z ck · grv t(s) z δ

(v)
at

Gen
=

[∏
k∈Iat

(Vk)
FS(Lk) · (Vk)z ck

]
· (Vt)z δ

(v)
at

=
[∏
k∈Iat

(Vk)
FS(Lk)

]
·
∏
k∈Iat

(Vk)
z ck · (Vt)z δ

(v)
at

=
[∏
k∈Iat

(Vk)
FS(Lk)

]
·
(∏
k∈Iat

(Vk)
ck · (Vt)δ

(v)
at

)z
Prove
=

[∏
k∈Iat

(Vk)
FS(Lk)

]
·
(
Vat · (Vt)δ

(v)
at
)z

Prove
=

[∏
k∈Iat

(Vk)
FS(Lk)

]
·
(
Ṽat
)z

(A.1pub) We only show the case for µ̃v. The cases for µ̃w and µ̃y are analogous.

e(µ̃v, g)
Prove
= e

(
µ̂v · (ρv)δ

(v)
at , g

) Prove
= e

(∏
k∈Iat

(Vk)
µk ·

(
gz rv t(s)

)δ(v)at , g
)

Auth
= e

(∏
k∈Iat

(Vk)
FS(Lk) + z ck · grv t(s) z δ

(v)
at , g

)
= e

(∏
k∈Iat

(Vk), g
FS(Lk)

)
· e
(∏
k∈Iat

(Vk)
ck , gz

)
· e
(
grv t(s) δ

(v)
at , gz

)
Auth,Gen

= e
(∏
k∈Iat

Vk, Λk
)
· e
(∏
k∈Iat

(Vk)
ck , Z

)
· e
(
(Vt)

δ
(v)
at , Z

)
Prove
= e

(∏
k∈Iat

Vk, Λk
)
· e
(
Vat · (Vt)δ

(v)
at , Z

)
Prove
= e

(∏
k∈Iat

Vk, Λk
)
· e
(
Ṽat , Z

)

19

(A.2) We only show the case for Ṽat . The cases for W̃at and Ỹat are analogous.

e(Ṽ ′at , g) = e
(
V ′at · (V ′t)δ

(v)
at , g

)
= e
(∏
k∈Iat

(V ′k)ck · (V ′t)δ
(v)
at , g

)
= e
(∏
k∈Iat

(Vk)
αvck · (Vt)αvδ

(v)
at , g

)
= e
(∏
k∈Iat

(Vk)
ck · (Vt)δ

(v)
at , gαv

)
= e
(
Vat · (Vt)δ

(v)
at , gαv

)
= e(Ṽat , g

αv)

(P.1)

e
(
V0 ṼatVun ṼmidVout ,W0 W̃atWunW̃midWout

)
= e

(
grvv0(s) Vat(Vt)

δ
(v)
at VunVmid (Vt)

δ
(v)
mid Vm, g

rww0(s)Wat(Wt)
δ
(w)
at WunWmid (Wt)

δ
(w)
mid Wm

)
= e

(
grvv0(s) VatVunVmidVm (Vt)

δ
(v)
at +δ

(v)
mid , grww0(s)WatWunWmidWm (Wt)

δ
(w)
at +δ

(w)
mid

)
c0←1
= e

([∏
i∈[0..m]

grv vi(s) ci
]

(Vt)
δ(v) ,

[∏
j∈[0..m]

grw wj(s) cj
]

(Wt)
δ(w)
)

= e
(
g
∑
i∈[0..m] rv vi(s) ci grv t(s) δ

(v)
, g

∑
j∈[0..m] rw wj(s) cj grw t(s) δ

(w)
)

= e
(
g

[∑
i∈[0..m] rv vi(s) ci

]
+ rv t(s) δ(v) , g

[∑
j∈[0..m] rw wj(s) cj

]
+ rw t(s) δ(w)

)
= e

(
grv
([∑

i∈[0..m] vi(s) ci

]
+ t(s) δ(v)

)
, grw

([∑
j∈[0..m] wj(s) cj

]
+ t(s) δ(w)

))
= e

(
g

([∑
i∈[0..m] vi(s) ci

]
+ t(s) δ(v)

)
·
([∑

j∈[0..m] wj(s) cj

]
+ t(s) δ(w)

)
, g
)rv rw

Prove
= e

(
g

(
p̃(s)+

∑
k∈[0..m] yk(s) ck

]
+ t(s) δ(y)

)
, g
)ry

= e
(
gp̃(s) ·

[∏
k∈[0..m]

gyk(s) ck
]
· gt(s) δ(y) , g

)ry
= e

(
gry t(s) h̃(s) ·

[∏
k∈[0..m]

gry yk(s) ck
]
· gry t(s) δ(y) , g

)
= e

(
gry t(s) h̃(s), g

)
· e
([∏
k∈[0..m]

gry yk(s) ck
]
· (Yt)

δ(y) , g
)

c0=1
= e

(
gry t(s), gh̃(s)

)
· e
(
Y0 YatYunYmidYm · (Yt)δ

(y)
at (Yt)

δ
(y)
mid , g

)
= e

(
T, H̃

)
· e
(
Y0 ỸatYun ỸmidYout , g

)
(P.2) We refer to the proof of (A.2), which is very similar to the cases of Ṽmid , W̃mid , and Ỹmid .

20

(P.3)

e(B̃mid , g
γ)

Prove
= e(Bmid (Bv)

δ
(v)
mid (Bw)δ

(w)
mid (By)

δ
(y)
mid , gγ)

= e
([∏

k∈Imid

(Bk)
ck
]
· (Vt)

βδ
(v)
mid (Wt)

βδ
(w)
mid (Yt)

βδ
(y)
mid , gγ

)
= e

([∏
k∈Imid

(
(VkWk Yk)

β
)ck] · (Vt)

βδ
(v)
mid (Wt)

βδ
(w)
mid (Yt)

βδ
(y)
mid , gγ

)
= e

([∏
k∈Imid

(VkWk Yk)
ck
]
· (Vt)

δ
(v)
mid (Wt)

δ
(w)
mid (Yt)

δ
(y)
mid , gβγ

)
= e

(∏
k∈Imid

(Vk)
ck
∏

k∈Imid

(Wk)
ck
∏

k∈Imid

(Yk)
ck · (Vt)

δ
(v)
mid (Wt)

δ
(w)
mid (Yt)

δ
(y)
mid , gβγ

)
= e

(
Vmid (Vt)

δ
(v)
mid Wmid (Wt)

δ
(w)
mid Ymid (Yt)

δ
(y)
mid , gβγ

)
= e

(
Ṽmid W̃mid Ỹmid , g

βγ
)

ut

4.2 Proof of Security

In the following theorem we prove the adaptive soundness of our AD-SNARG construction. Note
that we can base (part of) its security directly on the soundness of Pinocchio, which is also based
on the q-PKE and the q-DHE assumptions.

Theorem 3. If Pinocchio is a sound SNARG, F is a pseudorandom function, the q-PKE [24] and
the q-DHE [11] assumptions hold, then the scheme described above is a secretly-verifiable AD′SNARG
with adaptive soundness.

Before giving the proof, we first recall the q-DHE and the q-PKE assumptions.

Definition 3 (q-Diffie-Hellman Exponent assumption [11]). The q-DHE problem in a group
G of prime order p is defined as follows. Let G be a bilinear group generator, and let bgpp = (p,G,
GT , e, g) ←R G(1λ). Let a ←R Zp be chosen uniformly at random. We define the advantage of an
adversary A in solving the q-DHE problem as

Advq−DHE
A (λ) = Pr[A(bgpp, ga, . . . , ga

q
, ga

q+2
, . . . , ga

2q
) = ga

q+1
].

We say that the q-DHE assumption holds for G if for every PPT algorithm A and any polynomially-
bounded q = poly(λ) we have that Advq−DHE

A (λ) is negligible in λ.

Definition 4 (q-Power Knowledge of Exponent assumption [24]). Let G be a bilinear group
generator, λ be a security parameter and q = poly(λ). The q-PKE assumption holds for G if for
every non-uniform PPT adversary A there exists a non-uniform PPT extractor EA such that:

Pr[hα = ĥ ∧ h 6= g
∑q
i=0 ṽia

i
:

(h, ĥ; ṽ0, . . . , ṽq)← (A|EA)(bgpp, ga, . . . , ga
q
, gα, gαa, . . . , gαa

q
, aux)] = negl(λ)

where bgpp = (p,G,GT , e, g) ←R G(1λ), a, α ←R Zp are chosen uniformly at random, and

aux is any auxiliary information that is generated independently of α. The notation (h, ĥ; ṽi) ←
(A|EA)(inp) means that A upon input of inp returns (h, ĥ) and EA on the same input returns ṽi.
In this case, EA has access to A’s random tape.

21

In order to prove Theorem 3, we describe a series of hybrid experiments G0 − G4, where ex-
periment G0 is identical to the real adaptive soundness experiment and the remaining experiments
G1 − G4 are progressively modified in such a way that each consecutive pair is proven to be (com-
putationally) indistinguishable. Some of the games use some flag values badi that are initially set
to false. If at the end of a game any of these values is set to true, the Finalize procedure always
overwrites the outcome of the game to 0. For notation, we denote with Gi the event that a run of
Gi with the adversary outputs 1, and we call Badi the event that badi is set to true during a run of
Gi. Essentially, whenever an event Badi occurs, the corresponding game may deviate its outcome.

Game G0: This is the adaptive soundness experiment described in Section 3.1 and Figure 3.

Game G1: This is the same as G0 except that the PRF FS(·) is replaced by a truly random function
R : {0, 1}∗ → F. By the security of the PRF, G1 is computationally indistinguishable from G0,
i.e.,

|Pr[G0]− Pr[G1]| ≤ AdvPRFD,F (λ)

Game G2: This is the same as G1 except that the procedure Ver sets bad2 ← true if the adversary
makes verification queries that (a) verify correctly with respect to the equations (A.1)secret , and
in which (b) there is a label L /∈ T (i.e., A never asked to authenticate a value under label L).
Clearly, G1 and G2 are identical until Bad2, i.e.,

|Pr[G1]− Pr[G2]| ≤ Pr[Bad2]

We show that G2 is statistically close to G1, by proving in Lemma 1 that Pr[Bad2] is (uncondi-
tionally) negligible. Intuitively, this follows from the fact that when L /∈ T the first verification
check is an equation with an almost-freshly sampled element λL = R(L) ∈ F, i.e., the equation
will be satisfied only with negligible probability, which is at most 1/(p−Q).

Game G3: This is the same as G2 except for the following change when answering Type 2 verifi-
cation queries, i.e., we assume every label L was previously used to authenticate a value. Let
µ̃v, Ṽat , µ̃w, W̃at , and µ̃y, Ỹat be the elements in the proof π̃ queried by the adversary. In G3

we compute V ∗at =
∏
k∈Iat (Vk)

ck (and W ∗at , Y
∗
at in the similar way), as well as their correspond-

ing authentication tag µ∗v =
∏
k∈Iat (Vk)

µk (and µ∗w, µ
∗
y), where each µk is the tag previously

generated for (Lk, ck) upon the respective authentication query. Next, we replace the check of
equations (A.1)secret with checking whether

e(µ̃v/µ
∗
v, g) = e(Ṽat/V

∗
at , g

z)

∧ e(µ̃w/µ
∗
w, g) = e(W̃at/W

∗
at , g

z) (1)

∧ e(µ̃y/µ
∗
y, g) = e(Ỹat/Y

∗
at , g

z)

is satisfied. Then, if the equations in (A.2) are satisfied, (hence Ṽ ′at = (Ṽat)
αv , W̃ ′at = (W̃at)

αw ,
Ỹ ′at = (Ỹat)

αy), we can run an extractor EA to obtain polynomials ṽat(x), w̃at(x), and ỹat(x)
of degree at most d. If Ṽat 6= (grv)ṽat (s) or W̃at 6= (grw)w̃at (s) or Ỹat 6= (gry)ỹat (s), then we set
bad3 ← true.

First, we observe that by correctness, checking equation (1) is equivalent to checking the veri-
fication equation (A.1)secret .

Second, to see that we can run the extractor EA, we observe that the input received by the
adversary A can indeed be expressed as a pair (S, aux), where S = {gsi , gαsi}i∈[0,d] and aux

22

is some auxiliary information independent of α – exactly as in the definition of the d-PKE
assumption.
Hence, G2 and G3 are identical up to Bad3, i.e.,

|Pr[G2]− Pr[G3]| ≤ Pr[Bad3]

and it is easy to see that the d-PKE assumption immediately implies that the probability of
Bad3 (i.e., that the extractor outputs a polynomial which is not a correct one) is negligible.

Game G4: This game proceeds as G3 except for the following change in the Ver procedure. Assume
that the equations (1) are satisfied and that bad3 ← true is not set (i.e., Ṽat = (grv)ṽat (s) holds,
and similar the corresponding cases of W̃at and Ỹat).
Then, compute the polynomials v∗at(x) =

∑
k∈Iat ckvk(x) and δv(x) = ṽat(x) − v∗at(x), where

ṽat(x) is the polynomial obtained from the extractor. Similarly, compute w∗at(x), δw(x), y∗at(x), δy(x).
If any among δv(x), δw(x), δy(x) is not divisible by t(x) then set bad4 ← true.
Clearly, G3 and G4 are identical up to Bad4, i.e.,

|Pr[G3]− Pr[G4]| ≤ Pr[Bad4]

To show that the two games are negligibly close, we prove in Lemma 2 that Pr[Bad4] is negligible
under the q-DHE assumption, for some q = 2d+ 1.

Finally, we observe that at this point, if Bad4 does not occur, we have verified that Ṽat , W̃at , and
Ỹat were computed by using the correct (i.e., authenticated) statement values. Namely, except
for having randomized elements Ṽat (resp. W̃at , Ỹat), we are almost in the same conditions as in
proof of security of Pinocchio. In fact, in Lemma 3 we show that if any adversary has advantage
at most ε in breaking the security of Pinocchio (in the zero-knowledge SNARG version of the
scheme), then Pr[G4] ≤ Q · ε, where Q is the number of Gen queries made by the adversary.

Lemma 1. Pr[Bad2] ≤ 3Q
p−3Q .

Proof. Let Q be the number of verification queries made by the adversary in G2, and let Bi be the
event that bad2 was set from false to true in the i-th verification query. Clearly, we have:

Pr[Bad2] = Pr
[Q∨
i=1

Bi
]
≤

Q∑
i=1

Pr[Bi]

To prove the lemma we will bound the probability Pr[Bi] for any 1 ≤ i ≤ Q, where the
probability is taken over the random choices of the function R(·).

By definition of Bi we have Pr[Bi] = Pr[Bi|B1∧ · · · ∧Bi−1]. Also, observe that bad2 is set to true
if ∃k ∈ Iat such that (Lk, ·) /∈ T and at least one of the equations

µ̃v =
[∏
k∈Iat

(Vk)
R(Lk)

]
·(Ṽat)z, µ̃w =

[∏
k∈Iat

(Wk)
R(Lk)

]
·(W̃at)

z, µ̃y =
[∏
k∈Iat

(Yk)
R(Lk)

]
·(Ỹat)z (2)

is satisfied.
Let us fix one such index k̄ ∈ Iat such that (Lk̄, ·) /∈ T. If λk̄ = R(Lk̄) is sampled uniformly

at random in the i-th query, then an equation as the ones above will be satisfied with probability

23

1/p, which by union bound sums up to 3/p. However, the adversary might have asked Lk̄ in some
previous verification query, and this might have leaked some information about λk̄ = R(Lk̄). Yet,
since it holds B1 ∧ · · · ∧ Bi−1, the only information leaked to the adversary is that a bunch of
equations involving λk̄ were not satisfied. For every such equation, one can exclude at most three
possible values of λk̄. In conclusion, we have that in the i-th query, one of the equations (2) is
satisfied with probability at most 3

p−3(i−1) . Hence,

Pr[Bad2] ≤
Q∑
i=1

3

p− 3(i− 1)
≤ 3Q

p− 3Q
.

ut

Lemma 2. If the q-DHE assumption [11] holds for G, then for any PPT adversary A we have that
Pr[Bad4] is negligible.

Proof. Assume that there is an adversary A such that Pr[Bad4] ≥ ε is non-negligible. We show how
to build an adversary B that breaks the q-DHE assumption with probability ε/DQ − 1/|F| such
that: (a) D = poly(λ) is an upper bound on the number of multiplication gates (and thus the degree
of the corresponding QAP) in the Q relations R1, . . . , RQ queried by A to Gen, and (b) q = 2d∗+ 1
for some d∗ ≤ D, which is the degree of the QAP in the relation R∗ for which Bad4 occurs.

B takes as input an instance of the q-DHE assumption (bgpp, ga, ga
2
, . . . , ga

q
, ga

q+2
, . . . , ga

2q
)

and its goal is to compute the missing element ga
q+1

. To do so, B simulates G4 to A as described
in the following. Assume that Bad4 occurs for the relation R∗ which is the j-th relation queried to
Gen.

Initialize()

– B runs Initialize as in G4 with the following modifications.
– It picks random j∗ ←R {1, . . . , Q}, d∗ ←R {1, . . . , D} to guess the query’s index of R∗ and its

QAP’s degree respectively.
– It picks a random ν ←R {0, 1} as a guess on whether Bad4 will occur for either δv(x) or δy(x)

(ν = 0), or δw(x) or δy(x) (ν = 1).

– B sets q ← 2d∗ + 1, and takes as input an instance (bgpp, ga, ga
2
, . . . , ga

q
, ga

q+2
, . . . , ga

2q
) of the

q-DHE assumption.
– It defines the degree-d∗ polynomial t∗(x) =

∏d∗

k=1(x− rk) where {rk} is a set of canonical roots
used to build the QAP.9

– B chooses z∗(x) as a random polynomial in F[x] of degree d∗+ 1 such that the polynomial
z∗(x) t∗(x) of degree 2d∗+1 has a zero coefficient in front of xd

∗+1.
– B simulates the secret z with z∗(a) by computing Z = gz

∗(a). Observe that gz
∗(a) can be computed

efficiently using {gai}d∗+1
i=1 from the q-DHE instance.

– B generates a key pair (sk′, vk′) ←R Σ.KG(1λ) for the regular signature scheme and outputs
pap = (pp, prfpp, Z) and vk = (vk′, Z).

Gen(R)
B proceeds as follows to simulate the i-th query.

– [Case i 6= j∗] B runs the real Gen(pap, R) algorithm and returns its output.

9 The roots of Pinocchio’s QAP target polynomial can be chosen arbitrarily.

24

– [Case i = j∗] Let us call R∗ the queried relation. B simulates the answer to this query as follows.
First, it builds the QAP for R∗ and if its degree d is not d∗, then B aborts the simulation.
Otherwise, we have d = d∗ and hence t(x) = t∗(x) and B proceeds as follows.
For the value s, instead of randomly choosing it, B implicitly uses the value a from the q-DHE
assumption as follows.
If ν = 0, B implicitly sets rv = r′v a

d+1 and ry = r′v rw a
d+1, where rw, r

′
v ←R F, by computing

Vk = gr
′
v a

d+1 vk(a) Yk = gr
′
v rw a

d+1 vk(a) Vt = gr
′
v a

d+1 t(a) Yt = gr
′
v rw a

d+1 t(a).

Notice that these values can be computed efficiently since all the polynomials ad+1 vk(a) and
ad+1 t(a) have degree at most 2d∗+ 1 = q. Similarly, all the remaining values {Wk, Yk}k∈[m] can
be simulated as the degree of the polynomials encoded in the exponent is at most d∗ < q.
If ν = 1, B proceeds in the dual way by setting rw = r′w a

d+1 and ry = rv r
′
w a

d+1 for randomly
chosen rv, r

′
w ←R F. From now on, we describe the simulation for the case ν = 0 only. The

other case can easily be adapted.
Finally, ρv = (Vt)

z is simulated by computing (ga
d+1 z∗(a) t(a))r

′
v . Notice that ga

d+1 z∗(a)t(a) can be
computed since ad+1 z∗(a) t(a) has degree 3d + 2 and has a zero coefficient in front of a2d+2 =
aq+1. The same holds for the computation of ρy, whereas computing ρw = grw z

∗(a) t(a) can be
simulated as z∗(a) t(a) has degree 2d+ 1 = q.

Auth(L, c)

To simulate authentication queries, B samples a random µ←R F, computes Λ = gµZ−c, generates
σ′ ←R Σ.Sign(sk′, Λ|L), updates T← T ∪ {(L, c)}, and returns σ = (µ,Λ, σ′). Observe that such σ
is identically distributed as an authentication tag returned by Auth in G4. Also, although B is not
explicitly generating λ ← R(L), as one can notice, these values are no longer used to answer the
verification queries.

Ver(R, L, {xi}Li 6=?, π̃)
Finally, we describe how B handles verification queries. First, note that for those queries that fall
in the Type 1 branch, B can directly answer ⊥ (reject), and it does not have to use the values R(L).
Clearly, due to definition of game G4 and since Bad2 does not occur, answers to these queries are
correctly distributed. Second, for queries in the Type 2 branch, we distinguish two cases according
to whether the queried relation R is R∗ or not.
– If R 6= R∗, then B can answer as in game G4. In particular, note that equation (A.1)secret has

been replaced by equation (1) that requires only public values to be checked.
– If R = R∗, then B proceeds as in G4. Set δv(x) ← ṽat(x) − v∗at(x), δw(x) ← w̃at(x) − w∗at(x),

and δy(x)← ỹat(x)− y∗at(x).
• If both δv(x) and δy(x) are divisible by t∗(x), i.e., δv(x) ∈ Span(t∗(x)) and δy(x) ∈ Span(t∗(x)),

i.e., Bad4 did not occur for them, but instead for δw(x) and δy(x), then B aborts (since here,
we detail the case of ν = 0 only).
• Otherwise, assume that either δv(x) or δy(x) is not in Span(t∗(x)), and without loss of

generality assume this holds for δv(x) (the other case is analogous). Then B checks whether
ω(x) = δv(x)z∗(x) is such that its coefficient ωd+1 is zero. If so, B aborts the simulation
(however, by Lemma 10 [19], this happens with probability at most 1/|F|). Otherwise, if
ωd+1 6= 0, B returns

Ω =

[
µ̃v

µ∗v
∏2d+1
k=0,k 6=d+1(gak+d+1)r′vωk

]1/(ωd+1 r
′
v)

25

Notice that B’s simulation to A is perfect except if B aborts. However, B can abort only in four
cases: if its guess on j∗ is wrong, i.e., if j 6= j∗ (which happens with probability 1−1/Q); if its guess
on d∗ is wrong, i.e., if d 6= d∗ (which happens with probability 1− 1/D); if its guess on ν is wrong
(which happens with probability 1/2); if ωd+1 = 0 (which holds unconditionally with probability

at most 1/|F|). Also, it is not hard to see that if Bad4 occurs, then B returns Ω = ga
2d+2

= ga
q+1

and breaks the q-DHE assumption, as desired.

Therefore, by putting together the probability that B does not abort, with our assumption that
Pr[Bad4] ≥ ε, then we obtain that B breaks the q-DHE assumption with probability ≥ ε/2DQ −
1/|F|. ut

Lemma 3. If Pinocchio is a sound SNARG scheme, and the q-PKE assumption holds, then for
any PPT adversary A we have that Pr[G4] is negligible.

Proof. We make our reduction by considering a slightly modified version of the Pinocchio scheme in
which the evaluation key also includes the values V ′k = {grvαvvk(s)}k∈Ist (as well as the corresponding
W ′k, Y

′
k, and Bk). It is trivial to check that the same proof of security in [33] carries through when

these additional values are included in the evaluation key.

Assume by contradiction that there exists an adversary A such that Pr[G4] ≥ ε is non-negligible.
We show how to build an adversary B that breaks the security of Pinocchio with probability at
least ε/Q1Q2, where Q1 is the number of relations R1, . . . , RQ1 queried by A to Gen during game
G4, and Q2 is the number of verification queries. Without loss of generality, assume that B receives
the parameters bgpp of the bilinear groups before choosing the relation R∗ to attack.10

Initialize()

– B picks a random j∗ ←R {1, . . . , Q1} to guess the query’s index of R∗, the relation for which A
will break the security of our AD′SNARG scheme.

– B generates a key pair (sk′, vk′)←R Σ.KG(1λ) for the regular signature scheme, and then samples
a random z ←R F. It outputs pap = (bgpp, prfpp, Z = gz) and vk = (vk′, Z).

Gen(R)
B proceeds as follows to simulate the i-th generation query.

– [Case i 6= j∗] B runs the real Gen(pap, R) algorithm and returns its output.
– [Case i = j∗] Let us call R∗ the queried relation. B forwards R∗ to its challenger and receives

a pair of keys (VK∗P ,EK∗P) of the Pinocchio scheme. B then uses z to compute ρv = (Vt)
z,

ρw = (Wt)
z, and ρy = (Yt)

z, sets the key pair of the AD′SNARG scheme to (VK∗,EK∗), where
VK∗ = VK∗P and EK∗ consists of EK∗P and the additional values ρv, ρw, ρy, and the elements
{Vk,Wk, Yk}k∈Ist of VK∗P .

Auth(L, c)

B runs Auth as in G4, i.e., B outputs σ = (µ = R(L) + zc, Λ = gR(L), σ′ = Σ.Sign(sk′, Λ|L)).

Ver(R, L, {xi}Li 6=?, π̃)
Finally, we describe how B simulates verification queries to A. Notice that all the equation checks
require only public values. Also, observe that in G4 the adversary A can win only by returning a
Type 2 forgery, and by returning a proof π̃ containing values Ṽat , Ṽ

′
at of the “correct form”, i.e.,

10 We note that this reduction to the security of Pinocchio is done for ease of exposition. Indeed, we could have
included in our simulator B the same code of the simulator in the security proof of the Pinocchio scheme, where
the parameters of the bilinear groups are received at the very beginning.

26

Ṽat = (grv)v
∗
at (s)+δ

(v)
at t(s) and Ṽ ′at = (grvαv)v

∗
at (s)+δ

(v)
at t(s) respectively, for some δ

(v)
at ∈ F. Similarly it

holds the correctness of W̃at , W̃
′
at , Ỹat and Ỹ ′at for some coefficients δ

(w)
at , δ

(y)
at ∈ F.

So, for every verification query that passes the verification checks and that involves the relation
R∗, B translates the given proof π̃ into a proof πP as described below.

Translation of π̃ to πP . Let π̃ = (µ̃v, µ̃w, , µ̃y, Ṽat , Ṽ
′
at , W̃at , W̃

′
at , Ỹat , Ỹ

′
at , Ṽmid , Ṽ

′
mid , W̃mid , W̃

′
mid ,

Ỹmid , Ỹ
′
mid , B̃mid , H̃). First, B computes Vmid = Ṽmid · Ṽat/V ∗at and V ′mid = Ṽ ′mid · Ṽ ′at/V ′∗at , where

V ∗at =
∏
k∈Iat (Vk)

ck and V ′∗at =
∏
k∈Iat (V

′
k)ck . Similarly, B computes Wmid , W ′mid , Ymid and Y ′mid .

Then, B computes Bmid = B̃mid · (Bv)δ
(at)
v · (Bw)δ

(at)
w · (By)δ

(at)
y , where δ

(at)
v = (ṽat(x)− v∗at(x))/t(x).

The values δ
(at)
w and δ

(at)
y are computed accordingly. Next, B changes the (accepting) proof π̃

produced by A by replacing Ṽmid (resp. Ṽ ′mid , W̃mid , W̃ ′mid , Ỹmid , Ỹ ′mid , B̃mid) with the value Vmid

(resp. V ′mid , Wmid , W ′mid , Ymid , Y ′mid , Bmid) computed above, and by removing Ṽat , Ṽ
′
at , W̃at , W̃

′
at ,

Ỹat , Ỹ
′
at , µ̃v, µ̃w and µ̃y. Let πP be such modified proof. B stores the tuple ({ck}k∈Ist , πP) into a

list Ω.

First, observe that the proof πP is identical to a proof in the Pinocchio scheme, and in particular
it has the same distribution. Second, we claim that if π̃ is accepted in G4 for relation R∗ and labels
{Lk}k∈Iat (used to authenticate {ck}k∈Iat), then πP is accepted for statement {ck}k∈Ist in the given
instance of the Pinocchio scheme for relation R∗.

The first claim follows by inspection and by observing that since Bad4 does not occur, the value
(Ṽat/V

∗
at) contains a multiple of t(s) in the exponent, i.e., the honest form of Vmid is preserved. In

particular, the value δ
(at)
v is a scalar value since (ṽat(x)−v∗at(x)) is divisible by t(x) and deg(ṽat(x)) =

deg(v∗at(x)).

The second claim follows from the fact that the value Ṽ = Ṽat · Vun · Ṽmid · Vout computed to
verify the proof in the AD′SNARG scheme, and the value V = (

∏
k∈Ist (Vk)

ck) ·Vmid ·Vout computed

to verify the proof in Pinocchio are identical (because of Vmid = Ṽmid · Ṽat/V ∗at). Also, note that
similar arguments apply for the corresponding W and Y values. Since Bad4 does not occur, the

value δ
(at)
v is exactly the value used by A for the randomization of Ṽat .

After A stops running, B picks a random tuple ({ck}k∈Ist , πP) from the list Ω (which contains
at most Q2 elements) and returns this tuple to its challenger.

To complete the proof we analyze B’s success probability. We claim that if A breaks the security
of the AD′SNARG scheme in game G4, then B breaks the security of Pinocchio with probability at
least 1/Q1Q2. It is not hard to see that B’s simulation has a distribution which is statistically close
to the distribution of game G4. Also, if A breaks the scheme it means that for at least one of its
verification queries that accepts, say the `-th query, we have that x /∈ R. Assume that R was the
j-th relation queried to Gen, and that B returns the `∗-th tuple in the list Ω. Since the simulation
does not leak any information on j∗ and `∗, we have that Pr[j∗ = j ∧ `∗ = `] ≥ 1/Q1Q2. Therefore,
if A breaks the security of the AD′SNARG scheme in game G4 with probability at least ε, then B
breaks the security of Pinocchio with probability ≥ ε/Q1Q2. ut

Security with public verifiability It is easy to adapt the proof of Theorem 3 in order to show
that our scheme is sound also in the case where the proof is made publicly verifiable. Hence, it is
possible to prove the following theorem:

27

Theorem 4. If Pinocchio is a sound SNARG, F is a pseudorandom function, Σ is a secure sig-
nature scheme, the d-PKE [24] and the q-DHE [11] assumptions hold, then the scheme described
above is a publicly-verifiable AD′SNARG with adaptive soundness.

In the publicly verifiable case, since the adversary can verify the proofs on its own, we can assume
that it makes a single verification query to Ver. To obtain the proof of Theorem 4, we use the same
games as those for Theorem 3. The only difference is that the probability Pr[Bad2] is now shown
to be negligible under the assumption that the regular signature scheme is secure. Such is rather
straightforward: an adversary which returns a proof involving a statement value with label Lk that
had not been queried to the Auth oracle, has to show at least one signature σ′k for some non-queried
label L.

4.3 Proof of the Zero-Knowledge Property

Theorem 5. The AD′SNARG scheme described in Section 4 is statistically zero-knowledge in the
sense of Definition 2.

Proof. To see that our scheme satisfies zero-knowledge, our first observation is that the group
elements Ṽat , Ṽmid , W̃at , W̃mid , Ỹat , and Ỹmid are statistically uniform over G. Indeed, as long as
t(s) 6= 0, each of these elements is uniformly randomized.

Second, we notice that once the elements Ṽat , Ṽmid , W̃at , W̃mid , Ỹat , and Ỹmid are fixed, the
values of all the remaining elements in π̃, i.e., µ̃v, Ṽ

′
at , Ṽ

′
mid , µ̃w, W̃ ′at , W̃

′
mid , µ̃y, Ỹ

′
at , Ỹ

′
mid , B̃mid ,

and H̃ get determined according to the constraints of the verification equations (A.1), (A.2), (P.1),
(P.2), (P.3).

Finally, we show that there is a simulator (Sim1, Sim2), formally described in Figure 4, that satis-
fies Definition 2. It is trivial to see that the simulated keys generated by Sim1 are distributed as in the
real experiment. Regarding Sim2, it is not hard to see that the simulated values Ṽat , Ṽmid , W̃at , W̃mid , Ỹat
and Ỹmid are statistically uniform. Also, given the trapdoor, Sim2 can generate (without knowing
the inputs {ck}k∈Iat) all the remaining elements of π̃ with the correct distribution, i.e., such that
verification equations (A.1), (A.2), (P.1), (P.2), (P.3) are satisfied. ut

5 Our Construction of Secretly-Verifiable Zero-Knowledge AD-SNARGs

In this section, we show a variant of the scheme proposed in Section 4 which allows for a verification
algorithm whose efficiency does not depend on the number of authenticated values. In order to
achieve this appealing property, we trade efficiency for usability in making the previous scheme
only secretly verifiable.

Setup(1λ): On input the security parameter 1λ, run pp = (p,G,GT , e, g) ←R G(1λ) to generate a
bilinear group description, where G and GT are groups of the same prime order p > 2λ, g ∈ G
is a generator and e : G×G→ GT is an efficiently computable bilinear map.

AuthKeyGen(pp): Run (S, prfpp) ←R F.KG(1λ) to obtain the seed S and the public parameters
prfpp of a pseudorandom function FS : {0, 1}∗ → G. Choose a random value z ←R F. Compute
Z = e(g, g)z ∈ GT . Return the secret key sk = vk = (S, z), and the public authentication
parameters pap = (pp, prfpp, Z).

28

Sim1(pp, R, sk, vk, pap)
Run Gen(pap, R) to obtain
(EKR,VKR) and also store
sk, s, β, αv, αw, αy, rv, rw, ry in td
Return (EKR,VKR, td)

Sim2(td, L, {xi}Li=?)
let cm = 1, vout(x) = cmvm(x), vun(x) =

∑
k∈Iun ckvk(x)

wout(x) = cmwm(x), wun(x) =
∑
k∈Iun ckwk(x)

yout(x) = cmym(x), yun(x) =
∑
k∈Iun ckyk(x)

{λk ← FS(Lk)}k∈Iat
ṽat(x), ṽmid(x)←R F[x]
ṽ(x)← v0(x) + ṽat(x) + vun(x) + ṽmid(x) + vout(x)
Choose random w̃mid(x), w̃at(x), ỹmid(x), ỹat(x), such that t(x)|p̃(x)

where p̃(x) ← ṽ(x) w̃(x)− ỹ(x) and
w̃(x)← w0(x) + w̃at(x) + wun(x) + w̃mid(x) + wout(x)
ỹ(x)← y0(x) + ỹat(x) + yun(x) + ỹmid(x) + yout(x)

h̃(x) ← p̃(x) / t(x)
µ̃v ←

∏
k∈Iat(Vk)λk · Zrv ṽat (s)

µ̃w ←
∏
k∈Iat(Wk)λk · Zrww̃at (s), µ̃y ←

∏
k∈Iat(Yk)λk · Zry ỹat (s)

Ṽat ← grv ṽat (s), Ṽ ′at ← (Ṽat)
αv , Ṽmid ← grv ṽmid (s), Ṽ ′mid ← (Ṽmid)αv

W̃at ← grww̃at (s), W̃ ′at ← (W̃at)
αw , W̃mid ← grww̃mid (s), W̃ ′mid ← (W̃mid)αw

Ỹat ← gry ỹat (s), Ỹ ′at ← (Ỹat)
αy , Ỹmid ← gry ỹmid (s), Ỹ ′mid ← (Ỹmid)αy

B̃mid ← (Ṽmid · W̃mid · Ỹmid)β

H̃ ← gh̃(s)

Return π̃ = (µ̃v, µ̃w, µ̃y, Ṽat , Ṽ
′
at , Ṽmid , Ṽ

′
mid , W̃at , W̃

′
at , W̃mid ,

W̃ ′mid , Ỹat , Ỹ
′
at , Ỹmid , Ỹ

′
mid , B̃mid , H̃)

Fig. 4. Simulator Sim.

Auth(sk, L, c): Let sk = (S, z). To authenticate a value c ∈ F with label L, use the PRF to compute
R̂← FS(L), then compute σ = R̂ · (gz)c and output σ.

AuthVer(vk, σ, L, c): Let vk = (S, z) be the (secret) verification key. To verify that σ is a valid
authentication tag for a value c ∈ F with respect to label L, output > if σ = FS(L) · (gz)c and
⊥ otherwise.

Gen(pap, R): Let R : Fa × Fb be an NP relation with statements of length a and witnesses of
length b. Let CR be R’s characteristic circuit, i.e., CR(x,w) = 1 iff (x,w) ∈ R. Build a QAP
QR = (t(x),V,W,Y) of size m and degree d for CR. We denote by Ist , Imid , Iout the following
partitions of {1, . . . ,m}: Ist = {1, . . . , a}, Imid = {a+ 1, . . . ,m− 1} and Iout = {m}.11 In other
words, we partition all the circuit wires into: statement wires Ist , internal wires Imid (including
the witness wires), and the output wire Iout .

Next, pick rv, rw ←R F uniformly at random and set ry = rv rw. Then pick s, αv, αw, αy, β, γ ←R
F uniformly at random and compute the following values:

T = gryt(s)

∀k ∈ [m] ∪ {0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gryyk(s),

∀k ∈ [m] : V ′k = (Vk)
αv , W ′k = (Wk)

αw , Y ′k = (Yk)
αy , Bk = (Vk Wk Yk)

β.

11 For a reader familiar with Pinocchio, we point out our change of notation: we will use vst instead of vin to refer to
the statement-related inputs.

29

Additionally, compute the following values:

ρv = Z rv t(s), ρw = Z rw t(s), ρy = Z ry t(s),

Vt = grv t(s), Wt = grw t(s), Yt = gry t(s),

V ′t = (Vt)
αv , W ′t = (Wt)

αw , Y ′t = (Yt)
αy ,

Bv = (Vt)
β, Bw = (Wt)

β, By = (Yt)
β.

Output the evaluation key EKR and the verification key VKR defined as follows:

EKR =
(
{Vk, V ′k,Wk,W

′
k, Yk, Y

′
k, Bk}k∈Ist ∪Imid

, {gsi}i∈[d]

Vt, V
′
t , Wt,W

′
t , Yt, Y

′
t , Bv, Bw, By, ρv, ρw, ρy, QR

)
VKR =

(
g, gαv , gαw , gαy , gγ , gβγ , T, {Vk,Wk, Yk}k∈Ist∪{0,m}

)

Prove(EKR, x, w, σ): Let EKR the be evaluation key as defined above, (x,w) ∈ Fa × Fb be a
statement-witness pair, and σ = (σ1, . . . , σa) be a tuple of authentication tags for x = (x1, . . . , xa)
such that for any i ∈ [a] either σi = R̂i · (gz)xi or σi = ?. We define Iat = {i ∈ Ist : σi 6= ?} ⊆ Ist
as the set of indices for which there is an authenticated statement value, and let Iun = Ist \ Iat
be its complement.

To produce a proof for (x,w) ∈ R proceed as follows. First, evaluate the circuit CR(x,w) and
learn the values of all internal wires: {ck}k∈Imid

. For ease of description, we assume ci = xi for
i ∈ [a], and ca+i = wi for i ∈ [b]. The first b indices of Imid hence represent the witness values
w.

Next, proceed as follows to compute the proof:

Vat =
∏
k∈Iat

(Vk)
ck , Wat =

∏
k∈Iat

(Wk)
ck , Yat =

∏
k∈Iat

(Yk)
ck ,

V ′at =
∏
k∈Iat

(V ′k)ck , W ′at =
∏
k∈Iat

(W ′k)
ck , Y ′at =

∏
k∈Iat

(Y ′k)ck ,

Vmid =
∏

k∈Imid

(Vk)
ck , Wmid =

∏
k∈Imid

(Wk)
ck , Ymid =

∏
k∈Imid

(Yk)
ck ,

V ′mid =
∏

k∈Imid

(V ′k)ck , W ′mid =
∏

k∈Imid

(W ′k)
ck , Y ′mid =

∏
k∈Imid

(Y ′k)ck ,

Bmid =
∏

k∈Imid

(Bk)
ck .

Authenticate the values Vat ,Wat , and Yat by computing σ̂v=
∏
k∈Iat e(Vk, σk), σ̂w=

∏
k∈Iat e(Wk, σk),

and σ̂y=
∏
k∈Iat e(Yk, σk), respectively.

30

To make the proof zero-knowledge, pick random values δ
(v)
at , δ

(v)
mid , δ

(w)
at , δ

(w)
mid , δ

(y)
at , δ

(y)
mid ←R F,

and compute:

Ṽat = Vat · (Vt)
δ
(v)
at , W̃at = Wat · (Wt)

δ
(w)
at , Ỹat = Yat · (Yt)

δ
(y)
at ,

Ṽ ′at = V ′at · (V ′t)δ
(v)
at , W̃ ′at = W ′at · (W ′t)

δ
(w)
at , Ỹ ′at = Y ′at · (Y ′t)δ

(y)
at ,

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)

δ
(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ ′mid = V ′mid · (V ′t)δ
(v)
mid , W̃ ′mid = W ′mid · (W ′t)δ

(w)
mid , Ỹ ′mid = Y ′mid · (Y ′t)δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

To authenticate the new values Ṽat , W̃at , and Ỹat , compute σ̃v = σ̂v · (ρv)δ
(v)
at , σ̃w = σ̂w · (ρw)δ

(w)
at ,

and σ̃y = σ̂y · (ρy)δ
(y)
at , respectively. Note that our technique preserves the re-randomization

property of Pinocchio.

Next, solve the QAP QR by finding a polynomial h̃(x) such that p̃(x) = h̃(x) · t(x) where the
polynomial p̃(x) includes the “perturbed versions” of the polynomials v(x), w(x), and y(x) with

δ(v) = δ
(v)
at + δ

(v)
mid , δ(w) = δ

(w)
at + δ

(w)
mid , and δ(y) = δ

(y)
at + δ

(y)
mid , respectively:

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ(v)t(x)
)(
w0(x) +

∑
k∈[m]

ckwk(x) + δ(w)t(x)
)

−
(
y0(x) +

∑
k∈[m]

ckyk(x) + δ(y)t(x)
)

Finally, compute H̃ = gh̃(s) using the values gs
i

contained in the evaluation key EKR. Output
π̃ = (σ̃v, σ̃w, σ̃y, Ṽat , Ṽ

′
at , Ṽmid , Ṽ

′
mid , W̃at , W̃

′
at , W̃mid , W̃

′
mid , Ỹat , Ỹ

′
at , Ỹmid , Ỹ

′
mid , B̃mid , H̃).

Ver(vk,VKR, L, {xi}Li=?, π̃): Let vk = (S, z) be the authentication verification key, VKR be the
verification key for relation R, L = (L1, . . . , La) be a vector of labels, and let π̃ be a proof
as defined above. In a similar way as in Prove, we define Iat = {i ∈ Ist : Li 6= ?} ⊆ Ist and
Iun = Ist \ Iat . The verification algorithm proceeds as follows:

(A.1) Check the authenticity of Ṽat , W̃at , and Ỹat against the labels L:

σ̃v =
[∏
k∈Iat

e(Vk,FS(Lk))
]
· e(Ṽat , gz)

∧ σ̃w =
[∏
k∈Iat

e(Wk,FS(Lk))
]
· e(W̃at , g

z)

∧ σ̃y =
[∏
k∈Iat

e(Yk,FS(Lk))
]
· e(Ỹat , gz)

(A.2) Check that Ṽat , Ṽ
′
at , W̃at , W̃

′
at , and Ỹat , Ỹ

′
at were computed using the same linear

combination:

e(Ṽ ′at , g) = e(Ṽat , g
αv) ∧ e(W̃ ′at , g) = e(W̃at , g

αw) ∧ e(Ỹ ′at , g) = e(Ỹat , g
αy)

31

(P.1) Check the satisfiability of the QAP by setting Vout = (Vm)
cm = Vm (similarly Wout =

Wm and Yout = Ym), where we assume that cm = 1 = CR(x,w) since (x,w) ∈ R, then

computing Vun =
∏
k∈Iun (Vk)

xk (and similarly Wun , Yun), and finally checking:

e(V0 Ṽat Vun Ṽmid Vout , W0 W̃at Wun W̃mid Wout) = e(T, H̃)·e(Y0 Ỹat Yun Ỹmid Yout , g)

(P.2) Check that all linear combinations are in the appropriate spans:

e(Ṽ ′mid , g) = e(Ṽmid , g
αv) ∧ e(W̃ ′mid , g) = e(W̃mid , g

αw) ∧ e(Ỹ ′mid , g) = e(Ỹmid , g
αy)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e(B̃mid , g
γ) = e(Ṽmid W̃mid Ỹmid , g

βγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.

Efficient Verification. By assuming a proper labeling of the data and a suitable pseudorandom
function F, the scheme described above is adapted to allow for an improved verification algorithm
whose running time does not depend on the number |Iat | of authenticated values. Following the
ideas in [2], we assume that every input c is labeled by using a multi-label L = (∆, τ), where ∆
is a data set identifier, and τ is an input identifier. As an example, the input identifiers τ1, . . . τn
can be specific canonical information like date and time (e.g., day 05, 11:12:42), and the data set
identifier ∆ can be more general information describing the category (e.g., energy consumption for
March 2014).

As for the pseudorandom function, we can instantiate FS by using the specific ACF-efficient PRF
of [2] FS : {0, 1}∗ × {0, 1}∗ → G such that: FS(∆, τ) = ga∆λτ+b∆µτ , where the values (a∆, b∆) and
(λτ , µτ) are derived by applying two standard PRFs (mapping into F) to ∆ and τ , respectively. This
function is pseudorandom under the Decision Linear assumption [2]. To achieve efficient verification
one proceeds as follows (we describe only the case for V , i.e., ωv and Ωv, the computations for W
and Y are similar):

– Offline phase: precompute ω
(λ)
v = e(

∏
k∈Iat (Vk)

λk , g) and ω
(µ)
v = e(

∏
k∈Iat (Vk)

µk , g) where

(λk, µk) are derived from τk for all k ∈ Iat . Store (ω
(λ)
v , ω

(µ)
v).

– Online phase: given ∆, derive (a∆, b∆) from ∆, and compute Ωv = (ω
(λ)
v)a∆ · (ω(µ)

v)b∆ . Finally,

use Ωv to check the verification equation (A.1), i.e., check that σ̃v = Ωv · e(Ṽat , gz).
The correctness of this efficient verification follows from Ωv =

[∏
k∈Iat e(Vk,FS(∆, τk))

]
.

5.1 Correctness

Theorem 6. The above scheme satisfies authentication correctness and completeness.

Proof. It is straightforward to see that the scheme has authentication correctness by construction:
σ = FS(L) · (gz)c. In order to show the completeness, we prove the correctness of equation (A.1).
The remaining equations are the same as those of the scheme in Section 4.

32

(A.1) We only prove the case for σv, the cases for σw and σy are equal.

σ̃v
Prove
= σ̂v · (ρv)δ

(v)
at

Prove
=

∏
k∈Iat

e(Vk, σk) · (Z rvt(s))δ
(v)
at

Auth
=

∏
k∈Iat

e(Vk, FS(Lk) g
z ck) · (e(g, g)z rv t(s))δ

(v)
at

=
[∏
k∈Iat

e(Vk, FS(Lk)) · e(Vk, gz ck)
]
· e(g, g)z rv t(s) δ

(v)
at

=
[∏
k∈Iat

e(Vk, FS(Lk))
]
·
[∏
k∈Iat

e(Vk, g
z ck)

]
· e(grv t(s) δ

(v)
at , gz)

Gen
=

[∏
k∈Iat

e(Vk, FS(Lk))
]
· e
(∏
k∈Iat

(Vk)
ck , gz

)
· e((Vt)δ

(v)
at , gz)

Prove
=

[∏
k∈Iat

e(Vk, FS(Lk))
]
· e
(
Vat , g

z
)
· e((Vt)δ

(v)
at , gz)

=
[∏
k∈Iat

e(Vk, FS(Lk))
]
· e(Vat (Vt)

δ
(v)
at , gz)

Prove
=

[∏
k∈Iat

e(Vk, FS(Lk))
]
· e(Ṽat , gz)

ut

5.2 Proof of Security

Theorem 7. If Pinocchio is a sound SNARG scheme, F is a pseudorandom function, and the d-
PKE [24] and q-BDHE [8] assumptions hold, then the scheme described above is an AD′SNARG
with adaptive soundness.

Before giving the proof, we first recall the q-BDHE assumption, which is an easy extension of
the q-DHE assumption (Definition 3).

Definition 5 (q-Bilinear Diffie-Hellman assumption ([8])). Let G be a bilinear group gener-
ator, and let bgpp = (p,G,GT , e, g)←R G(1λ). Let η, a←R Zp be chosen uniformly at random. We
define the advantage of an adversary A in solving the q-BDHE problem as

Advq−BDHE
A (λ) = Pr[A(bgpp, gη, ga, . . . , ga

q
, ga

q+2
, . . . , ga

2q
) = e(g, g)ηa

q+1
]

We say that the q-BDHE assumption holds for G if for every PPT algorithm A and any polynomially-
bounded q = poly(λ) we have that Advq−BDHE

A (λ) is negligible in λ.

In order to prove the theorem, we describe a series of hybrid experiments G0 − G4 defined as
follows.

Game G0 This is the adaptive soundness experiment described in Section 3.1 and Figure 3.

33

Game G1 This is the same as G0 except that the PRF FS(·, ·) is replaced by a truly random
function R : {0, 1}∗ → G. By the security of the PRF, G1 is computationally indistinguishable
from G0, i.e.,

|Pr[G0]− Pr[G1]| ≤ AdvPRFD,F (λ)

Game G2: This is the same as G1 except that the procedure Ver sets bad2 ← true if the adversary
makes verification queries that (a) verify correctly with respect to equation (A.1), and in which
(b) there is a label (L, ·) /∈ T (i.e., A never asked to authenticate a value under label L). Clearly,
G1 and G2 are identical until Bad2, i.e.,

|Pr[G1]− Pr[G2]| ≤ Pr[Bad2]

As in the proof of Theorem 3, it is possible to show that for every PPT adversary the probability
Pr[Bad2] is (unconditionally) negligible. In particular, we can use essentially the same argument
of Lemma 1 to show that Pr[Bad2] ≤ Q

p−Q .

Game G3: This is the same as G2 except for the following change when answering Type 2 verifi-
cation queries, i.e., we assume every label L was previously used to authenticate a value. Let
σ̃v, Ṽat , σ̃w, W̃at , and σ̃y, Ỹat be the elements in the proof π̃ queried by the adversary. In G3

we compute V ∗at =
∏
k∈Iat (Vk)

ck (and W ∗at , Y
∗
at in the similar way), as well as its correspond-

ing authentication tag σ∗v =
∏
k∈Iat e(Vk, σk) (and σ∗w, σ

∗
y), where each σk is the tag previously

generated for (Lk, ck) upon the respective authentication query. Next, we replace the check of
equation (A.1) with checking whether

σ̃v/σ
∗
v = e(Ṽat/V

∗
at , g

z)

∧ σ̃w/σ
∗
w = e(W̃at/W

∗
at , g

z) (3)

∧ σ̃y/σ
∗
y = e(Ỹat/Y

∗
at , g

z)

is satisfied. Then, if the equations in (A.2) are satisfied, (hence Ṽ ′at = (Ṽat)
αv , W̃ ′at = (W̃at)

αw ,
Ỹ ′at = (Ỹat)

αy), we can run an extractor EA to obtain polynomials ṽat(x), w̃at(x), ỹat(x) of degree
at most d. If Ṽat 6= (grv)ṽat (s) or W̃at 6= (grw)w̃at (s) or Ỹat 6= (gry)ỹat (s), then we set bad3 ← true.

First, we observe that by correctness, checking equation (3) is equivalent to checking verification
equation (A.1). Indeed, if we let R∗v =

[∏
k∈Iat e(Vk, R (Lk))

]
, then correctness implies that σ∗v =

R∗v · e(V ∗at , gz), and thus we can rewrite the first part of equation (A.1), i.e., σ̃v = R∗v · e(Ṽat , gz),
as

σ̃v =
σ∗v

e(V ∗at , g
z)
e(Ṽat , g

z)

(and similar for σ̃w and σ̃y) from which we obtain equation (3).

Second, to see that we can run the extractor EA, we observe that the input received by the
adversary A can indeed be expressed as a pair (S, aux), where S = {gsi , gαsi}i∈[0,d] and aux
is some auxiliary information independent of α – exactly as in the definition of the d-PKE
assumption.
Hence, G2 and G3 are identical up to Bad3, i.e.,

|Pr[G2]− Pr[G3]| ≤ Pr[Bad3]

and it is easy to see that the d-PKE assumption immediately implies that the probability of
Bad3 (i.e., that the extractor outputs a polynomial which is not a correct one) is negligible.

34

Game G4: This game proceeds as G3 except for the following change in the Ver procedure. Assume
that the equations (3) are satisfied and that bad3 ← true is not set (i.e., Ṽat = (grv)ṽat (s) holds,
and similar the corresponding cases of W̃at and Ỹat).

Then, compute the polynomials v∗at(x) =
∑

k∈Iat ckvk(x) and δv(x) = ṽat(x) − v∗at(x), where
ṽat(x) is the polynomial obtained from the extractor. Similarly, compute w∗at(x), δw(x), y∗at(x), δy(x).
If any among δv(x), δw(x), δy(x) is not divisible by t(x) then set bad4 ← true.

Clearly, G3 and G4 are identical up to Bad4, i.e.,

|Pr[G3]− Pr[G4]| ≤ Pr[Bad4]

To show that the two games are negligibly close, we prove in Lemma 4 that Pr[Bad4] is negligible
under the q-BDHE assumption, for some q = 2d+ 1.

Finally, we observe that at this point, if Bad4 does not occur, we have verified that Ṽat , W̃at , and
Ỹat were computed by using the correct (i.e., authenticated) statement values. Namely, except
for having randomized elements Ṽat (resp. W̃at , Ỹat), we are almost in the same conditions as in
proof of security of Pinocchio. In fact, in Lemma 5 we show that if any adversary has advantage
at most ε in breaking the security of Pinocchio (in the zero-knowledge SNARG version of the
scheme), then Pr[G4] ≤ Q · ε, where Q is the number of Gen queries made by the adversary.

To conclude the proof, we prove our lemmas bounding, respectively, the probabilities Pr[Bad4] and
Pr[G4].

Lemma 4. If the q-BDHE assumption holds for G, then for any PPT adversary A we have that
Pr[Bad4] is negligible.

Proof. Assume that there is an adversary A such that Pr[Bad4] ≥ ε is non-negligible. We show how
to build an adversary B that breaks the q-BDHE assumption with probability ε/2DQ2−1/|F| such
that: (a) D = poly(λ) is an upper bound on the number of multiplication gates (and thus the degree
of the corresponding QAP) in the Q relations R1, . . . , RQ queried by A to Gen, and (b) q = 2d∗+ 1
for some d∗ ≤ D, which is the degree of the QAP in the relation R∗ for which Bad4 occurs.

B takes as input an instance of the q-BDHE assumption (bgpp, gη, ga, ga
2
, . . . , ga

q
, ga

q+2
, . . . , ga

2q
)

and its goal is to compute the missing element e(gη, ga
q+1

). To do so, it simulates G4 to A as de-
scribed in the following. Assume that Bad4 occurs for the relation R∗ which is the j-th relation
queried to Gen.

Initialize()

– B runs Initialize as in G4 with the following modifications.
– It picks random j∗ ←R {1, . . . , Q}, d∗ ←R {1, . . . , D} to guess the query’s index of R∗ and its

QAP’s degree respectively.
– It picks a random ν ←R {0, 1} as a guess on whether Bad4 will occur for either δv(x) or δy(x)

(ν = 0), or δw(x) or δy(x) (ν = 1).

– B sets q ← 2d∗ + 1, and takes as input an instance (bgpp, gη, ga, ga
2
, . . . , ga

q
, ga

q+2
, . . . , ga

2q
) of

the q-BDHE assumption.
– It defines the degree-d∗ polynomial t∗(x) =

∏d∗

k=1(x− rk) where {rk} is a set of canonical roots
used to build the QAP.12

12 The roots of Pinocchio’s QAP target polynomial can be chosen arbitrarily.

35

– B chooses z∗(x) as a random polynomial in F[x] of degree d∗+ 1 such that the polynomial
z∗(x) t∗(x) of degree 2d∗+1 has a zero coefficient in front of xd

∗+1.
– B simulates the secret z with η z∗(a) by computing Z = e(gη, gz

∗(a)). Observe that gz
∗(a) can be

computed efficiently using {gai}qi=1 from the q-BDHE instance.

Gen(R)
B proceeds as follows to simulate the i-th query.
– [Case i 6= j∗] B runs the real Gen(pap, R) algorithm and returns its output.
– [Case i = j∗] Let us call R∗ the queried relation. B simulates the answer to this query as follows.

First, it builds the QAP for R∗ and if its degree d is not d∗, then B aborts the simulation.
Otherwise, we have d = d∗ and hence t(x) = t∗(x) and B proceeds as follows.
For the value s, instead of randomly choosing it, B implicitly uses the value a from the q-DHE
assumption as follows.
If ν = 0, B implicitly sets rv = r′v a

d+1 and ry = r′v rw a
d+1, where rw, r

′
v ←R F, by computing

Vk = gr
′
v a

d+1 vk(a) Yk = gr
′
v rw a

d+1 vk(a) Vt = gr
′
v a

d+1 t(a) Yt = gr
′
v rw a

d+1 t(a).

Notice that these values can be computed efficiently since all the polynomials ad+1 vk(a) and
ad+1 t(a) have degree at most 2d∗+ 1 = q. Similarly, all the remaining values {Wk, Yk}k∈[m] can
be simulated as the degree of the polynomials encoded in the exponent is at most d∗ < q.
If ν = 1, B proceeds in the dual way by setting rw = r′w a

d+1 and ry = rv r
′
w a

d+1 for randomly
chosen rv, r

′
w ←R F. From now on, we describe the simulation for the case ν = 0 only. The

other case can easily be adapted.
Finally, ρv = Zrv t(s) is simulated by computing e(gη, ga

d+1 z∗(a) t(a))r
′
v . Notice that ga

d+1 z∗(a)t(a)

can be computed since ad+1 z∗(a) t(a) has degree 3d + 2 and has a zero coefficient in front of
a2d+2 = aq+1. The same holds for the computation of ρy, whereas computing ρw = e(gη, gz

∗(a) t(a))rw

can be simulated since z∗(a) t(a) has degree 2d+ 1 = q.

Auth(L, c)
To simulate authentication queries, B samples a random R←R G, updates T← T ∪ {(L, c)}, and
returns σ = R. Observe that such σ is identically distributed as an authentication tag returned by
Auth in G4. Also, although B is not explicitly generating R← R(L), as one can notice, these values
are no longer used to answer the verification queries.

Ver(R, L, {xi}Li 6=?, π̃)
Finally, we describe how B handles verification queries. First, note that for those queries that fall
in the Type 1 branch, B can directly answer ⊥ (reject), and it does not have to use the values R(L).
Clearly, due to definition of game G4 and since Bad2 does not occur, answers to these queries are
correctly distributed. Second, for queries in the Type 2 branch, we distinguish two cases according
to whether the queried relation R is R∗ or not.
– If R 6= R∗, then we only show how B simulates the check of equations (3), i.e., σ̃v/σ

∗
v =

e(Ṽat/V
∗
at , g

z), and similar for W and Y . Note that B does not know gz = gηz
∗(a).

First, let s, rv ∈ F be the values chosen in Gen, which B knows because of R 6= R∗. Then B
proceeds as in G4 except that it replaces equations (3) with

σ̃v = σ∗v e(g
η, gz

∗(a))rv(ṽat (s)−v∗at (s))

(and similar for W and Y). The polynomial ṽat(x) is obtained by the extractor. It is not hard
to see that such replacement generates an equivalent check.

36

– If R = R∗, then B proceeds as in G4. Set δv(x) ← ṽat(x) − v∗at(x), δw(x) ← w̃at(x) − w∗at(x),
and δy(x)← ỹat(x)− y∗at(x).
• If δv(x) and δy(x) are divisible by t∗(x), i.e., δv(x) ∈ Span(t∗(x)) and δy(x) ∈ Span(t∗(x)),

then B replaces equation (3) with

σ̃v = σ∗v e(g
η, ga

d+1δv(a)z∗(a))r
′
v , σ̃w = σ∗w e(g

η, gδw(a)z∗(a))rw , σ̃y = σ∗y e(g
η, ga

d+1δy(a)z∗(a))r
′
y

Recall that we assume ν = 0 and observe that ga
d+1δv(a)z∗(a) can indeed be computed as it

has a zero coefficient in front of a2d+2 = aq+1.
• Otherwise, we assume that δv(x) /∈ Span(t∗(x)). The case for δy(x) is analogous.
B checks whether ω(x) = δv(x)z∗(x) is such that its coefficient ωd+1 is zero. If so, B aborts
the simulation (however, by Lemma 10 [19], this happens with probability at most 1/|F|).
Otherwise, if ωd+1 6= 0, B computes

Ω =

[
σ̃

σ∗
∏2d+1
k=0,k 6=d+1 e(g

η, gad+k+1)r′vωk

]1/(ωd+1 r
′
v)

and inserts Ω in a list List and outputs ⊥ (reject).
At the end of the simulation, B picks a random value Ω in List and returns Ω as its solution

for the q-BDHE assumption. Notice that B’s simulation is perfect except if B aborts. However, B
can abort only in three cases: (a) if its guess on j∗ is wrong, i.e., if j 6= j∗ (which happens with
probability 1− 1/Q); (b) if its guess on d∗ is wrong, i.e., if d 6= d∗ (which happens with probability
1−1/D); and (c) if ωd+1 = 0 (which holds unconditionally with probability at most 1/|F|). Also, it
is not hard to see that if Bad4 occurs and if the guess of ν is correct (which happens with probability
1/2), then B must insert Ω∗ = e(gη, ga

q+1
) in List . Since List contains at most Q values, B will

pick the correct Ω∗ with probability at least 1/Q.
Therefore, by putting together the probability that B does not abort, and that the correct

Ω∗ is picked, with our assumption that Pr[Bad4] ≥ ε, then we obtain that B breaks the q-BDHE
assumption with probability ≥ ε/2DQ2 − 1/|F|. ut

Lemma 5. If Pinocchio is a secure verifiable computation scheme, then for any PPT adversary A
we have that Pr[G4] is negligible.

The proof is essentially the same as that of Lemma 3.

5.3 Proof of the Zero-Knowledge Property

Theorem 8. The AD′SNARG scheme described in Section 5 is statistically zero-knowledge.

Proof. The proof of this theorem is essentially the same as that for the scheme of Section 4. The
only difference is the pseudorandom function.

37

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification via secure computa-
tion. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis, editors, ICALP 2010,
Part I, volume 6198 of LNCS, pages 152–163, Bordeaux, France, July 6–10, 2010. Springer, Berlin, Germany.

2. M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced data. In 2013
ACM Conference on Computer and Communication Security. ACM Press, November 2013.

3. BBC. Google unveils ’smart contact lens’ to measure glucose levels. http://www.bbc.com/news/

technology-25771907, 2014.

4. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs for C: Verifying program executions
succinctly and in zero knowledge. In CRYPTO 2013, LNCS, pages 90–108, Santa Barbara, CA, USA, Aug. 2013.
Springer, Berlin, Germany.

5. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision resistance to succinct non-
interactive arguments of knowledge, and back again. In ITCS ’12: Proceedings of the 3rd Symposium on Innova-
tions in Theoretical Computer Science, 2012.

6. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-interactive arguments via linear
interactive proofs. In TCC 2013, LNCS, pages 315–333. Springer, Berlin, Germany, 2013.

7. D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 56–73, Interlaken, Switzerland, May 2–6, 2004. Springer,
Berlin, Germany.

8. D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical identity based encryption with constant size ciphertext. In
R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 440–456, Aarhus, Denmark, May 22–26,
2005. Springer, Berlin, Germany.

9. D. Boneh and D. M. Freeman. Homomorphic signatures for polynomial functions. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin,
Germany.

10. X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more.
In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 499–517, Paris, France,
May 26–28, 2010. Springer, Berlin, Germany.

11. J. Camenisch, M. Kohlweiss, and C. Soriente. An accumulator based on bilinear maps and efficient revocation for
anonymous credentials. In S. Jarecki and G. Tsudik, editors, PKC 2009, volume 5443 of LNCS, pages 481–500,
Irvine, CA, USA, Mar. 18–20, 2009. Springer, Berlin, Germany.

12. D. Catalano and D. Fiore. Practical homomorphic MACs for arithmetic circuits. In Eurocrypt ’13: Proceedings
of the 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2013.

13. D. Chaum. Security without identification: Transaction systems to make big brother obsolete. Commun. ACM,
28(10):1030–1044, Oct. 1985.

14. K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation using fully homomorphic en-
cryption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 483–501, Santa Barbara, CA, USA,
Aug. 15–19, 2010. Springer, Berlin, Germany.

15. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. In ACM CCS 99, pages
46–51, Kent Ridge Digital Labs, Singapore, Nov. 1–4, 1999. ACM Press.

16. I. Damg̊ard. Payment systems and credential mechanisms with provable security against abuse by individuals. In
S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 328–335, Santa Barbara, CA, USA, Aug. 21–25,
1990. Springer, Berlin, Germany.

17. C. Fournet, M. Kohlweiss, G. Danezis, and Z. Luo. Zql: A compiler for privacy-preserving data processing. In
Proceedings of the 22Nd USENIX Conference on Security, SEC’13, pages 163–178, Berkeley, CA, USA, 2013.
USENIX Association.

18. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing computation to un-
trusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 465–482, Santa Barbara, CA,
USA, Aug. 15–19, 2010. Springer, Berlin, Germany.

19. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs without PCPs.
In Eurocrypt ’13: Proceedings of the 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2013. Also in Cryptology ePrint Archive, Report 2012/215, http://eprint.iacr.
org/2012/215.

20. R. Gennaro and D. Wichs. Fully homomorphic message authenticators. In ASIACRYPT 2013, 2013.

38

http://www.bbc.com/news/technology-25771907
http://www.bbc.com/news/technology-25771907
http://eprint.iacr.org/2012/215
http://eprint.iacr.org/2012/215

21. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
L. Fortnow and S. P. Vadhan, editors, 43rd ACM STOC, pages 99–108, San Jose, California, USA, June 6–8,
2011. ACM Press.

22. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions. In
STOC ’11: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing. ACM, 2011.

23. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal
on Computing, 18(1):186–208, 1989.

24. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 321–340, Singapore, Dec. 5–9, 2010. Springer, Berlin, Germany.

25. R. Johnson, D. Molnar, D. X. Song, and D. Wagner. Homomorphic signature schemes. In B. Preneel, editor,
CT-RSA 2002, volume 2271 of LNCS, pages 244–262, San Jose, CA, USA, Feb. 18–22, 2002. Springer, Berlin,
Germany.

26. J. Kilian. A note on efficient zero-knowledge proofs and arguments. In 24th ACM STOC, pages 723–732, Victoria,
British Columbia, Canada, May 4–6, 1992. ACM Press.

27. J. Kilian. Improved efficient arguments (preliminary version). In D. Coppersmith, editor, CRYPTO’95, volume
963 of LNCS, pages 311–324, Santa Barbara, CA, USA, Aug. 27–31, 1995. Springer, Berlin, Germany.

28. H. Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In
R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 169–189, Taormina, Sicily, Italy, Mar. 19–21, 2012.
Springer, Berlin, Germany.

29. A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. M. Heys and C. M. Adams,
editors, SAC 1999, volume 1758 of LNCS, pages 184–199, Kingston, Ontario, Canada, Aug. 9–10, 2000. Springer,
Berlin, Germany.

30. S. Meiklejohn, C. C. Erway, A. Küpçü, T. Hinkle, and A. Lysyanskaya. Zkpdl: A language-based system for
efficient zero-knowledge proofs and electronic cash. In Proceedings of the 19th USENIX Conference on Security,
USENIX Security’10, pages 13–13, Berkeley, CA, USA, 2010. USENIX Association.

31. S. Micali. CS proofs. In 35th FOCS, Santa Fe, New Mexico, Nov. 20–22, 1994.

32. M. Naor. On cryptographic assumptions and challenges (invited talk). In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 96–109, Santa Barbara, CA, USA, Aug. 17–21, 2003. Springer, Berlin, Germany.

33. B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In IEEE
Symposium on Security and Privacy, Oakland, 2013. Corrected version (13 May 2013): http://eprint.iacr.
org/2013/279.

34. B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable computation from
attribute-based encryption. In R. Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 422–439, Taormina,
Sicily, Italy, Mar. 19–21, 2012. Springer, Berlin, Germany.

35. A. Rial and G. Danezis. Privacy-preserving smart metering. In Proceedings of the 10th Annual ACM Workshop
on Privacy in the Electronic Society, WPES ’11, pages 49–60, New York, NY, USA, 2011. ACM.

36. Vitalconnect. Healthpatch. http://www.vitalconnect.com, 2014.

37. B. R. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 114–127, Aarhus, Denmark, May 22–26, 2005. Springer, Berlin,
Germany.

A SNARGs

We recall the definition of SNARGs [31,22]. Π = (Gen,Prove,Ver) is a succinct non-interactive
argument for an NP language L with a corresponding NP relation R as follows:

– Given a relation R, the generation algorithm Gen(1λ, R) generates a (public) reference string
EKR and the corresponding (private) verification information VKR for R.

– Given statement x and witness w withR(x,w), the prover produces a proof π ← Prove(EKR, x, w).
– The verifier runs {⊥,>} ← Ver(VKR, x, π) to verify the validity of π.

A SNARG is called adaptive if the prover may choose the statement x after seeing the reference
string EKR. The following three properties need to be satisfied.

39

http://eprint.iacr.org/2013/279
http://eprint.iacr.org/2013/279
http://www.vitalconnect.com

– Completeness. For all (x,w) ∈ R, we have that

Pr[Ver(VKR, x, π) = 0 : (EKR,VKR)← Gen(1λ, R), π ← Prove(EKR, x, w)] = negl(λ)

– Soundness. (Adaptive case) For all efficient Prove′, we have

Pr[Ver(VKR, x, π) = > ∧ x 6∈ L : (EKR,VKR)← Gen(1λ, R), (x, π)← Prove′(EKR)] = negl(λ)

(Non-adaptive case) For all efficient Prove′, and x 6∈ L, we have

Pr[Ver(VKR, x, π) = > : (EKR,VKR)← Gen(1λ, R), π ← Prove′(EKR, x)] = negl(λ)

– Succinctness. The length of a proof π is given by |π| = poly(λ)polylog(|x|, |w|).

Verifiable non-interactive computation on authenticated data via SNARGs. Verifiable
computation over authenticated data [2] describes a setting in which a lightweight (possibly mobile)
client outsources the evaluation of a function F over authenticated, possibly outsourced, data D
to a more powerful (but untrusted) worker. Verification of the result y = F (D) should require
less work than the evaluation of F (D) itself. Verification can be performed by the client who
outsources the computation (designated verifiability), or by anyone using only public information
(public verifiability).

Using SNARGs to implement a verifiable computation scheme, the idea is to encode possible
values of F : {0, 1}n → {0, 1}m as an NP-relation R as follows: for all x and y with F (x) = y, set
(x||y, w) ∈ R. The client sends input x for the evaluation under F to the worker, who computes
y = F (x) and produces a corresponding witness w. The worker runs the Prove algorithm of the
SNARG with the completed statement x||y and witness w to obtain a succinct proof π. Finally,
the worker returns y and π to the client, who in turn runs the SNARG verification algorithm.

In the case of authenticated data, the client does not send the input x itself to the worker,
but instead, the client sends labels L1, . . . , Ln that uniquely identify the authenticated input. The
verification includes checks for the validity of the signatures to refer to the right computation input.

B The Pinocchio SNARG Scheme

We review the corrected SNARG version of the Pinocchio VC scheme, as published on the ePrint
archive [33]. Pinocchio basically consists of the algorithms KeyGen, Compute, and Verify, which
are used in the context of verifiable computation. This section describes a small variation, where
arbitrary NP relations R ∈ R are considered (instead of arithmetic functions), and where proofs
are generated for statements x and witnesses w with (x,w) ∈ R (instead of computation results for
input u). The Compute algorithm is hence replaced by a Prove algorithm.

– (EKR,VKR)← KeyGen(R, 1λ): Let R be an NP relation with statements x = (x1, . . . , xa) ∈ Fa
and witnesses w = (w1, . . . , wb) ∈ Fb. Let N = a + b. Let C be R’s characteristic circuit, i.e.,
C(x,w) = 1 whenever (x,w) ∈ R. Build the corresponding QAP QR = (t(x),V,W,Y) for C
with size m and degree d. Let Imid = {a+ 1, . . . , a+ b} ∪ {N + 1, . . . ,m} be the indices of the
internal wires including the indices of the witness values. Let Iout = {m} be the index of the

40

output wire. Let e : G × G → GT be a non-trivial bilinear map and let g be a generator of G.
Choose rv, rw, s, αv, αw, αy, β, γ ←R F, set ry = rvrw, and compute the following values:

T = gryt(s)

∀k ∈ [m]∪{0} : Vk = grvvk(s), Wk = grwwk(s), Yk = gryyk(s),

∀k ∈ Imid : V ′k = (Vk)
αv , W ′k = (Wk)

αw , Y ′k = (Yk)
αy , Bk = (Vk Wk Yk)

β.

Additionally, compute the following values:

Vt = grvt(s), Wt = grwt(s), Yt = gryt(s),

V ′t = (Vt)
αv , W ′t = (Wt)

αw , Y ′t = (Yt)
αy ,

Bv = (Vt)
β, Bw = (Wt)

β, By = (Yt)
β.

Construct the public evaluation key and the public verification key

EKR =
(
{Vk, V ′k,Wk,W

′
k, Yk, Y

′
k, Bk}k∈Imid

, {gsi}i∈[d]

Vt, V
′
t , Wt,W

′
t , Yt, Y

′
t , Bv, Bw, By, QR

)
VKR =

(
g, gαv , gαw , gαy , gγ , gβγ , T, {Vk, Wk, Yk, }k∈[N]∪{0,m}

)
– (π) ← Prove(EKR, x, w): on input statement x and witness w, the prover evaluates the circuit
C(x,w) to obtain the internal circuit values {ci}i ∈ Imid . For ease of description, we assume
ci = xi for i ∈ [a], and ca+i = wi for i ∈ [b]. The first b indices of Imid hence represent the
witness values w. Next, the prover computes the values

Vmid =
∏

k∈Imid

(Vk)
ck , Wmid =

∏
k∈Imid

(Wk)
ck , Ymid =

∏
k∈Imid

(Yk)
ck ,

V ′mid =
∏

k∈Imid

(V ′k)ck , W ′mid =
∏

k∈Imid

(W ′k)
ck , Y ′mid =

∏
k∈Imid

(Y ′k)ck , Bmid =
∏

k∈Imid

(Bk)
ck

To make the proof zero-knowledge, pick random values δ
(v)
mid , δ

(w)
mid , δ

(y)
mid ←R F, and compute:

Ṽmid = Vmid · (Vt)δ
(v)
mid , W̃mid = Wmid · (Wt)

δ
(w)
mid , Ỹmid = Ymid · (Yt)δ

(y)
mid ,

Ṽ ′mid = V ′mid · (V ′t)δ
(v)
mid , W̃ ′mid = W ′mid · (W ′t)δ

(w)
mid , Ỹ ′mid = Y ′mid · (Y ′t)δ

(y)
mid ,

B̃mid = Bmid · (Bv)δ
(v)
mid · (Bw)δ

(w)
mid · (By)δ

(y)
mid

Next, the prover solves the QAP QR by finding a polynomial h̃(x) such that p̃(x) = h̃(x) · t(x)
where the polynomial p̃(x) includes the “perturbed versions” of the polynomials v(x), w(x),
and y(x):

p̃(x) =
(
v0(x) +

∑
k∈[m]

ckvk(x) + δ
(v)
mid t(x)

)(
w0(x) +

∑
k∈[m]

ckwk(x) + δ
(w)
mid t(x)

)
−
(
y0(x) +

∑
k∈[m]

ckyk(x) + δ
(y)
mid t(x)

)
Finally, the prover computes H̃ = gh̃(s) using the values gs

i
contained in the evaluation key

EKR, and outputs π̃y = (Ṽmid , Ṽ
′
mid , W̃mid , W̃

′
mid , Ỹmid , Ỹ

′
mid , B̃mid , H̃).

41

– {0, 1} ← Verify(VKR, x, π̃): in order to verify a proof π̃ (as defined above) for statement x,
perform the following steps.

(P.1) Check the satisfiability of the QAP by first computing Ṽ = Ṽmid ·
∏
k∈[a](Vk)

ck · Vm,

W̃ = W̃mid ·
∏
k∈[a](Wk)

ck ·Wm, Ỹ = Ỹmid ·
∏
k∈[a](Yk)

ck · Ym, where the ck with k ∈ [a]
are the statement wires of x. Second, perform the divisibility check:

e(V0 Ṽ , W0 W̃) = e(T, H̃) · e(Y0 Ỹ , g)

(P.2) Check that all linear combinations are in the appropriate spans:

e(Ṽ ′mid , g) = e(Ṽmid , g
αv) ∧ e(W̃ ′mid , g) = e(W̃mid , g

αw) ∧ e(Ỹ ′mid , g) = e(Ỹmid , g
αy)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e(B̃mid , g
γ) = e(Ṽmid W̃mid Ỹmid , g

βγ)

If all the checks above are satisfied, then return >; otherwise return ⊥.

42

	Nearly Practical and Privacy-Preserving Proofs on Authenticated Data (full version)
	Introduction
	Contributions
	Further Related Work
	An Intuitive Description of Our Techniques

	Background
	Zero-Knowledge SNARGs over Authenticated Data
	SNARGs over Authenticated Data
	A Generic Construction of AD-SNARGs

	Our Construction of Zero-Knowledge AD-SNARGs
	Completeness
	Proof of Security
	Proof of the Zero-Knowledge Property

	Our Construction of Secretly-Verifiable Zero-Knowledge AD-SNARGs
	Correctness
	Proof of Security
	Proof of the Zero-Knowledge Property

	SNARGs
	The Pinocchio SNARG Scheme

