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Abstract. We study the problem of privacy-preserving proofs on authenticated data in which a party
receives data from a trusted source and is requested to prove statements over the data to third parties in
a correct and private way, i.e., the third party learns no information on the data but is still assured that
the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third
party should be able to verify the validity with respect to the specific data authenticated by the source
— even without having access to that source. This problem is motivated by various scenarios emerging
from several application areas such as wearable computing, smart metering, or general business-to-
business interactions. Furthermore, these applications also demand any meaningful solution to satisfy
additional properties related to usability and scalability. First, third parties should be able to check
proofs very efficiently. Second, the trusted source should be independent of the data processor: it simply
(and possibly continuously) provides data, e.g., without knowing which statements will be proven.
This paper formalizes the above three-party model, discusses concrete application scenarios, and in-
troduces a new cryptographic primitive for proving NP relations where statements are authenticated
by trusted sources. After discussing a generic approach to construct this primitive, we present a more
direct and efficient realization that supports general-purpose NP relations. Our realization significantly
improves over state-of-the-art solutions for this model, such as those based on Pinocchio (Oakland’13),
by at least three orders of magnitude.
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1 Introduction

With the emergence of modern IT services, a growing number of applications relies on confidential
data for various purposes such as billing, legal compliance, etc. For instance, in the emerging area of
wearable computing [363], smart devices collect measurable human conditions, and subsequently
aggregate them for doctors or health insurances. Likewise, in the area of smart metering [35],
energy companies intend to collect energy consumption measurements in order to compute the
user bills. Or, in the realm of B2B, a company would like to perform efficient computations on
business-sensitive data. In these scenarios, the result of the computation is typically used further in
interaction with other third parties, be it other humans or companies (doctors, health insurances,
energy companies, business collaborators).

This consideration of disseminating the results of a computation to third parties imposes security
requirements for both the data owner and the data recipient: On the one hand, the computation
inputs might contain sensitive data (such as patient data, energy consumptions, business plans)
that the data owner would like to keep confidential. On the other hand, the data recipient would
like to be able to verify the correctness of the computation results — even though it is not granted
access to the computation input!

To illustrate the problem more formally, we consider a scenario in which a prover P is requested
to prove certain statements R(D) about data D to third parties V, which we call the verifiers.
Since the two parties P and V may not trust each other, we are interested in the simultaneous
achievement of two main security properties: (1) integrity, in the sense that V should be convinced
about the validity of R(D). In particular, in order to verify that this statement holds for some
specific D, the data is assumed to be generated and authenticated by some trusted source S; and
(2) privacy, in the sense that V should not learn any information about D beyond what is trivially
revealed by R(D).

In addition to the security requirements above, any meaningful solution has to meet the fol-
lowing properties that have been identified as key for practical scalability in previous work: (3)
efficiency, meaning that V’s verification cost should be much less than the cost of computing the
proven statement R(D); and (4) data independence, in the sense that the data source S should be
independent of P, i.e., it should be able to provide D without knowing in advance what statements
will be proven about D (e.g., the billing function may change over time). In particular, also D’s
size should not be fixed in advance, i.e., S can continuously provide data to P, even after some
proofs have been generated.

The simultaneous achievement of integrity and privacy is a fundamental goal that has a long
research history starting with the seminal work on zero-knowledge proofs [23]. The main goal of
this work is to study solutions aiming to achieve all of the four properties above, with a particular
focus on the setting in which the data is authenticated by some trusted source. We believe that
such a setting is relevant to many practical scenarios (such as the ones sketched above) and observe
that no much prior work addressed the problem of proofs on authenticated data in a systematic
and general way. Most work focused on specific computations (e.g., credentials or electronic cash
[13UT629030] ), but very little work addressed the case of proving the integrity of arbitrary compu-
tations involving authenticated data. An exception is the recent work ZQL [17], which provides
an expression language for (privacy-preserving) processing of data that can also be originated by
trusted data sources. Inspired by the goals of ZQL, our work is rather focused on the study and
realization of efficient cryptographic primitives that can yield suitable solutions for this setting.
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Fig. 1. Scenario of authenticating data D and proving properties R over D.

1.1 Contributions

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD-SNARG, for short). SNARGsS, first introduced by Micali under the name of “CS
proofs” [31], are proof systems that provide succinct verification, i.e., the verifier is able to check
a long poly-time computation in much less time than that required to run the computation, given
the witness. Our new notion of AD-SNARGs extends SNARGs so as to explicitly capture proofs
of NP relations R(xz,w) in which the statement (or part of it) is authenticated. More precisely,
the main difference between SNARGs and AD-SNARGs is that in the former the verifier always
knows the statement, whereas in the latter, the authenticated statements are not disclosed to the
verifier, yet the verifier can be assured about the existence of w such that R(z,w) holds for the
specific  authenticated by the trusted source. Moreover, to model privacy (and looking ahead to
our applications) we define the zero-knowledge property so as to hold not only for the witnesses of
the relation, but also for the authenticated statements. In particular, our zero-knowledge definition
holds also against adversaries who generate the authentication keys.

Turning our attention to concrete realizations, we show that AD-SNARGs can be constructed
in a generic fashion by embedding digital signatures into SNARKSs (i.e., SNARGs of Knowledge
[5]). However, motivated by the fact that this “generic construction” is not very efficient in practice,
our second contribution is a direct and more efficient realization of AD-SNARGs, that from now
on we refer to as the “direct construction”. Interestingly, compared to instantiating the generic
construction with state-of-the-art SNARKSs schemes, our direct construction performs roughly three
orders of magnitude better on the prover side. In what follows we give more details on this efficiency
aspect: We first discuss the efficiency of instantiating the generic construction, and then we describe
our solution.

ON THE (IN)EFFICIENCY OF THE GENERIC CONSTRUCTION. The idea of the generic (not very
practical) construction of AD-SNARGs for an NP relation R(z,w) is to let the prover P prove an
extended NP relation R’ which contains the set of tuples (z/, w') with 2’ = (|z|, pk), w' = (w, z, 0),



and 0 = (01, ..., 0|), such that there is a valid signature o; for every statement value x; at position
1 under public key pk. The problem with this generic construction is that, in practice, a proof for
such extended relation R’ is much more expensive than a proof for R. The issue is that R’ needs
to “embed” the verification algorithm of a signature scheme. If we consider very efficient SNARKSs,
such as the recent Pinocchio system [33], embedding the verification algorithm means encoding the
verification algorithm of the signature with an arithmetic circuit over a specific finite field F,, (where
p is a large prime, the order of some bilinear groups), and then creating a Quadratic Arithmetic
Program [19], a QAP for short, out of this circuit. Without going into the details of QAPs (we will
review them later in Section , we note that the efficiency of the prover in Pinocchio depends on
the size of the QAP, which in turn depends on the number of multiplication gates in the relation
satisfiability circuit.

Our main observation is that the circuit resulting from expressing the verification algorithm of
a digital signature scheme is very likely to be quite inefficient (from a QAP perspective), especially
for the prover. Such inefficiency stems from the fact that the circuit would contain a huge number
of multiplication gates. In what follows, we discuss why this is the case for various examples of
signatures in both the random oracle and the standard model, and based on different algebraic
problems. If one considers signature schemes in the random oracle model (which include virtually
all the schemes used in practice), any such scheme uses a collision-resistant hash function (e.g.,
SHA-1) which is thus part of the verification algorithm computation. Unfortunately, as shown
also in [33], a QAP (just) for a SHA-1 computation is terribly inefficient due to the high number
of multiplication gates (roughly 24 000, for inputs of 416 bits). On the other hand, if we focus
on standard model signature schemes, it does not get any better: These schemes involve specific
algebraic computations, and encoding these computations into an arithmetic circuit over a field F,,
is costly. For instance, signatures based on pairings [7J37] require pairing computations that amount
to, roughly, 10 000 multiplications. RSA-based standard-model signatures (e.g., Cramer-Shoup [15])
require exponentiations over rings of large order (e.g., 3 000 bits), and simulating such computations
over [F,, ends up with thousands of multiplication gates as well. Lattice-based signatures (in the
standard model), e.g., [I0] can be cheaper in terms of the number of multiplications. However, such
multiplications typically work over Z, for a ¢ much smaller than our p. An option would be to
implement mod-g-reductions in F, circuits, which is costly. Another option would be to let these
schemes work over Z,, but then one has to work with higher dimensional lattices or (polynomial
rings) for security reasons, again incurring a large number of multiplications.

This state of affairs essentially suggests that a QAP encoding a signature verification circuit
is likely to have at least one thousand multiplications for every signature that must be checked.
If, for instance, we consider smart metering, in which the prover wants to certify about 1 000
(signed) meter readings (amounting to approximately 3 weeks of electricity measurements — almost
a monthly bill), the costs can become prohibitive!

OUR SOLUTION. In contrast, we propose a new, direct, AD-SNARG construction that achieves
the same efficiency as state-of-the-art SNARGs (e.g., Pinocchio [33]), yet it additionally allows for
proofs on authenticated statements. Our scheme builds upon a corrected version of Pinocchi(ﬂ,
and our key technical contribution is a technique (that we illustrate in for embedding
the authentication verification mechanism directly in the proof system, without having to resort
to extended relations that would incur the efficiency loss discussed earlier. As a result, the per-

4 The corrected version of Pinocchio — we emphasize — is available via ePrint and differs from the initially published
version [33].



formance of our scheme is almost the same as that of running Pinocchio without any proof about
authenticated values.

When comparing our direct construction with the instantiation of the generic scheme in Pinoc-
chio, it is interesting to note that the improvement of our solution lies in the generation of setup
keys (for the relation) and proofs, which is currently the main bottleneck of Pinocchio (and other
QAP-based schemes [4]). Namely, while these schemes perform excellently in terms of verification
time and proof size, the performances get much worse when it comes to generating keys and proofs,
especially for relations that have “unfriendly” arithmetic circuit representations, such as signature
verification algorithms, as discussed earlier. This is why our technique for avoiding the encoding
of signature verification in QAPs allows us to use much smaller QAPs, thus saving at least one
thousand multiplication gates per signature involved in the proof.

1.2 Further Related Work

As we mentioned earlier, our work extends the notion of succinct non-interactive arguments (SNARGs)
[31U5], which in turn builds on (succinct) interactive proofs [23] and interactive arguments [26/27].
In particular, we focus on the so-called preprocessing model where the verifier is required to run an
expensive but re-usable key generation phase. In this preprocessing model, several works [2428/[T9]6]
proposed efficient realizations of SNARGs, and two notable recent works [33/4] have shown efficient,
highly-optimized, implementations that support general-purpose computations. These schemes can
also support zero-knowledge proofs. It is worth mentioning that all known SNARGs are either in
the random oracle model or rely on non-standard non-falsifiable assumptions [32]. Assumptions
from this class have been shown [21] likely to be inherent for SNARGs for N'P.

The notion of SNARGs is also related to verifiable computation [18], in which a (computationally
weak) client delegates the computation of a function to a powerful server and wants to verify the
result efficiently. As noted in previous work, by using SNARGs for NP, it is possible to construct
a verifiable computation scheme, and several works [19)33/4] indeed follow this approach. However,
alternative approaches to realizing verifiable computation have been proposed, notably based on
fully homomorphic encryption [I8[T4]1] or attribute-based encryption [34].

Another line of work which is closely related to ours is the one on homomorphic authentication
(comprising both homomorphic signatures [25/9] and MACs [20/12/2]). The main idea of this prim-
itive is that, given a set of messages (o1, ...,0,) authenticated using a secret key sk, anyone can
evaluate a program P on such authenticated messages in a way that the result o «— P({0;}) is again
authenticated with respect to the same key sk (or some public key vk in the case of signatures).
Compared to AD-SNARGs, homomorphic MACs/signatures satisfy a similar notion of soundness,
and they have an additional nice property of composability, i.e., one can run a program on results
authenticated by other programs. On the other hand, they do not provide efficient verification
(with the only exception of [2]) and do not satisfy the zero-knowledge notion of AD-SNARGs that
is important for the applications of our interest. It is worth noting that a notion of privacy, called
context-hiding, has been considered for homomorphic signatures [9]. However, this notion is weaker
than our zero-knowledge as, for instance, it does not allow to hide additional, non-authenticated,
witnesses of a computation.

1.3 An Intuitive Description of Our Techniques

The key idea for the construction of our AD-SNARG scheme is to build upon Pinocchio (in partic-
ular, its SNARG version) [33] and to modify it by embedding a linearly-homomorphic MAC that



enforces the prover to run Pinocchio’s Prove algorithm on correctly authenticated statements. At a
more technical level, in Pinocchio the verifier, given a statement x = (x1,...,x,), has to compute
the linear combination vy, = Y y_; 2k - vg(x) (where the vg(x) are the QAP polynomials)ﬂ Since in
AD-SNARGSs the verifier does not know the statement, our idea is to let the prover compute this
linear combination v;, on the verifier’s behalf. Then, to enforce a cheating prover to provide the
correct v;,, we ask the prover to additionally show that v;, was obtained by using authenticated
values xx. To this end, we employ a linearly-homomorphic MAC.

However, a further complication to applying this technique arises from the fact that v, may be
randomized (by adding a random multiple of the target polynomial ¢(x)) in the case the proof is
zero-knowledge, while homomorphic MACs typically authenticate only deterministic computations.
We solve this issue using the following ideas. First, we provide a way to publicly re-randomize the
homomorphic MACs: roughly speaking, by publicly revealing a MAC of ¢(z). Second, we enforce
the prover to use the same random coefficient for ¢(z) in both v, and its MAC. Very intuitively,
this is achieved by asking the prover to provide this linear combination in two different subspaces.

2 Background

In this section, we review the notation and some basic definitions that we will use in our work.

Notation. We will denote with A € N a security parameter. We say that a function € is negligible if
it vanishes faster than the inverse of any polynomial. If not explicitly specified otherwise, negligible
functions are negligible with respect to A. If S'is a set, x < S denotes the process of selecting
2 uniformly at random in S. If A is a probabilistic algorithm, = +—% A(-) denotes the process of
running A on some appropriate input and assigning its output to . Moreover, for a positive integer
n, we denote by [n] the set {1,...,n}.

Algebraic Tools. Let G(1*) be an algorithm that upon input of the security parameter 1*, outputs
the description of bilinear groups bgpp = (p, G, Gr, e, g) where G and G are groups of the same
prime order p > 2%, g € G is a generator and e : G x G — G is an efficiently computable bilinear
map. We call such an algorithm G a bilinear group generator. In this work we make use of bilinear
groups and in particular we rely on the ¢-DHE [I1], ¢-BDHE [§] and ¢-PKE [24] assumptions over
these groups.

Arithmetic Circuits and Quadratic Arithmetic Programs. An arithmetic circuit C' over a
finite field F consists of addition and multiplication gates and of a set of wires between the gates.
The wires carry values over F. A Quadratic Arithmetic Program (QAP) [19] encodes the wires
of an arithmetic circuit C' into three sets of polynomials V,W,) in such a way that for every
multiplication gate gx of C, any valid assignment of the circuit wires yields that the left input
wires V of g« multiplied by the right input wires W of g« equals the values of the output wires Y
of gx. More precisely, each polynomial set contains m -+ 1 polynomials of the form

V = {vp(2) }k=0...m: W = {wi(x) }r=0...m, Y = {yr(®) }r=0..m

such that vi(rg,) = 1 iff the k-th wire of C' is a left input to multiplication gate gx. Each mul-
tiplication gate gy is thereby represented as an arbitrary number r,, € F, its “root”. Dually,

® Precisely, the verifier also computes win = > ¢_ 2k - wi(z) and yin = > ¢_, Tk - yx(x). In this intuitive description,
we simplify and describe our technique only for v,.



Fig. 2. Two multiplication gates g5 and g¢ with roots r5 and 7¢.

the polynomials w; and y; represent right inputs and outputs, respectivelyﬁ shows two
multiplication gates with corresponding polynomials. The arithmetic constraints for all multipli-
cation gates of C' are enforced by virtue of a divisibility check with a specific target polynomial
t(z) = [1,, (x — rg,). More precisely, @ is said to compute C' if, whenever (c1,...,cn) € FV is a
valid assignment of C’s input and output wires, then there exists coefficients (cyy1,...,¢n) such
that t(x) divides p(x) where

p(z) = (volz) + Z crvp(®)) - (wo(z) + Z ek wi(z)) — (yolz) + Z ck yk(z))
k=1 k=1

The divisibility hence implies that all wire assignments are consistent, in particular the output
wires of C' carry the correct evaluation result of C' for the given input wires.

3 Zero-Knowledge SNARGs over Authenticated Data

We define the notion of SNARGs [315] on authenticated data (AD-SNARGs, for short). Let R =
{(z,w);} be a relation over F¢*+® where [ is a finite field, 2 € F is called the statement, and w € F®
is the witness. Proof systems typically consider the problem in which a prover P proves to a verifier
V the existence of a witness w such that (z,w) € R. In this scenario, the statement x is supposed
to be public, i.e., it is known to both the prover and the verifier. For example, V could be convinced
by P that 3 colors are sufficient to color a public graph = such that no two adjacent vertices are
assigned the same color. The coloring serves as witness w.

In this work, we consider a variation of the above problem in which (1) the statement = (or part
of it) is provided to the prover by a trusted source S, and (2) the portion of x provided by S is
not known to V (see for illustration). Yet, V wants to be convinced by P that (xz,w) € R
holds for the specific  provided by S, and not for some other 2’ (which can still satisfy R) of P’s
choice. For example, § might have provided a graph z — not known to V — for which P proves to
V that x is 3-colorable. A proof for any other graph z’ is meaningless.

To formalize the idea that V checks that some values unknown to V have been authenticated
by S, we adopt the concept of labeling used for homomorphic authentication [20]. Namely, we
assume that the source S authenticates a set of values X, = {c, ..., c¢} against a set of (public)
labels L = {L;,...,Ls} by using a secret authentication key (e.g., a signing key). S then sends the

5 The precise construction is slightly more complex, since it also handles addition and multiplication by constants.



authenticated X .4, to P. Later, P’s goal is to prove to V that (z,w) € R for a statement z in
which some positions have been correctly authenticated by S, i.e., z; € X gy, for some i € [al.

For such a proof system we define the usual properties of completeness and soundness, and in
addition, to model privacy, zero-knowledge. Moreover, since we are interested in efficient, scalable,
protocols, we define succinctness to model that the size of the proofs should be independent of the
witness |w|.

Finally, we consider AD-SNARGs that can have either public or secret verifiability, the differ-
ence being in whether the adversary knows or not the verification key for the authentication tags
produced by the data source S.

3.1 SNARGSs over Authenticated Data

Here we provide the formal definition for SNARGs over authenticated data.

Definition 1 (AD/SNARG). A scheme for Succinct Non-interactive Arguments over Authenticated
Data with respect to a family of relations R consists of a tuple of algorithms (Setup, AuthKeyGen,
Auth, AuthVer, Gen, Prove, Ver) satisfying authentication correctness, completeness, adaptive sound-
ness, and succinctness (as defined below):

Setup(1*): On input the security parameter \, output some common public parameters pp.

AuthKeyGen(pp): given the public parameters pp, the key generation algorithm outputs a secret
authentication key sk, a verification key vk, and public authentication parameters pap.

Auth(sk, L, c): the authentication algorithm takes as input the secret authentication key sk, a label
L € £, and a message c € F, and it outputs an authentication tag o.

AuthVer(vk, o, L, c): the authentication verification algorithm takes as input a verification key vk, a
tag o, a label L € L, and a message ¢ € F. It outputs L (reject) or T (accept).

Gen(pap, R): given the public authentication parameters pap and a relation R C F® x Fb € R, the
algorithm outputs an evaluation key EKp and a verification key VKgi for R. Gen can hence be
seen as a relation encoding algorithm.

Prove(EKR, z,w,0): on input a relation evaluation key EKR, a statement x = (x1,...,x,), a witness
w = (wi,...,wy), and authentication tags for the statement o = (o1, ...,0,), the proof algorithm
outputs a proof of membership m for (x,w) € R. We stress that o does not need to contain
authentication tags for all positions: in case a value at position i is not authenticated, the empty
tag o; = x is used instead.

Ver(vk, VKR, L, {xi}L,—, 7): given the verification key vk, a relation verification key VKg, labels for
the statement L = (Ly1,...,L,), unauthenticated statement components x;, and a proof 7, the
verification algorithm outputs L (reject) or T (accept).

Example (Graph Coloring using AD/SNARG). To prove that x is a particular graph with
valid 3-coloring, the prover P uses the Prove algorithm of an AD/SNARG to produce a proof
7 < Prove(EKR, z,w, o), where EKp <& Gen(pap, R), and 0 = (01,...,0,) are the signatures
to authenticate the particular graph x under the labels L. The verifier runs Ver(vk, VKg, L, (), 7)
to decide whether the coloring is valid.




Example (Example: Verifiable Computation using AD/SNARG). Let F : F" — T
be a function to be executed over authenticated data x € F" with authentication tags o
and corresponding labels L. The worker computes y = f(x) and obtains w as witness of the
computation. The relation to be proven using AD/SNARG is R : F™+* x[F® such that (z||y, w) € R
whenever y = f(z). The worker adaptively “extends” the statement by appending the result y
of the computation to the input x.

More precisely, in the case of delegated computations over authenticated data, the worker first

receives labels L = (Ly,...,L,), and then fetches the corresponding input = = (z1,...,2,)
authenticated through o = (o1,...,0,). The worker computes y = f(z), obtains witness w
and uses Prove(EKg, x||y,w,o) to obtain a proof m. The authentication information in this
case is 0 = (01,...,0p,%1,...,%s), since there is no authentication for y.

The verifier runs Ver(vk, VKg, (L1,...,Ly, *1,...,%s),y,7) to convince himself that y = f(z)
and that x is indeed the right input, hence the one authenticated via L.

AUTHENTICATION CORRECTNESS. Intuitively, an AD/SNARG scheme has authentication correct-
ness if any tag o generated by Auth(sk, L, c) authenticates ¢ with respect to L. More formally, we
say that an AD/SNARG scheme satisfies authentication correctness if for any message ¢ € F, all keys
(sk, vk, pap) +x AuthKeyGen(1*), any label L € £, and any authentication tag o <z Auth(sk, L, ¢),
we have that AuthVer(vk,o,L,c¢) = T with probability 1. Moreover, we assume Auth(sk, %, ¢) = *.

COMPLETENESS. This property aims at capturing that if the Prove algorithm produces = when
run on (z,w, o) for some (z,w) € R, then verification Ver(vk, VKg, L, {z;},—, 7) must output T
with probability 1 whenever AuthVer(vk,o;,L;, z;) = T. More formally, let us fix (sk, vk, pap) <%
AuthKeyGen(pp), and a relation R : F¢ x F® with keys (EKg, VKR) +r Gen(pap, R). Let (z,w) € R
be given with = (z1,...,24), w = (w1,...,wp). Let L = (Ly,...,Ls) € (LU {x})?, be a set of
labels, and let o = (01,...,0,) be tags for the statement such that AuthVer(vk,o;,L;,z;) = T.
Then if 7 <~ Prove(EKg, z,w, o), we have that Ver(vk, VKg, L, {z;}1,—«, 7) = T with probability
1.

ADAPTIVE SOUNDNESS. Intuitively, the soundness property captures that no malicious party can
produce proofs that verify correctly for tuples not contained in the relation. More formally, we
formalize our definition via an experiment, called Expfg‘D’ Soundness - hich is described in Figure
using the notation of code-based games. The game is defined by a number of procedures that can
be run by an adversary A as follows. As usual, the game starts by once executing Initialize and
terminates with once executing Finalize. In between, A can (concurrently) run the procedures
Gen, Auth, and Ver. We define the output of the game to be the output of the Finalize procedure.
The three procedures Gen, Auth, and Ver essentially give to the adversary oracle access to the
algorithms Gen, Auth, and Ver, respectively, with some additional bookkeeping information. In
particular, it is worth noting that Ver returns the output of Ver, and additionally, checks whether
a proof accepted by Ver (i.e., v = T) proves a false statement according to R. In this case, Ver sets
GameOutput « 1.

We say that an adversary A wins the game if it manages to make the experiment ExpﬁD'SO“”d"ess
output 1, i.e., if it ever asks a verification query that sets GameOutput < 1. More formally, let R
be a class of relations. Then for any A € N, we define the advantage of an adversary A in the
experiment Expfz\D’ Soundness(2 )\) against AD/Soundness for R as

AdvﬁD/SoundneSS(R’ /\) — Pr[EXpJA“D/Soundness(z}z7 )\) — 1].

10



procedure Inii):\ialize procedure Ver(R, L, {z:}L,—., )
() +-= Setup(17) N if (R,-) ¢ S then Return |
(sk, vk, pap) <—= AuthKeyGen(1") fetch VKg with (R, VKg) € S
GameQutput < 0 v + Ver(vk, VKg, L, {z: }1,—+, )
S« if v =T then
T {(x%)} if3LieLl: (L, )¢ T then
Return pap GameOutput < 1 // Type 1
procedure Gen(R) else
(EKR,VKR) R Gen(pap, R) fetch z = (mh s 7ZL‘n) with {(Lla xl)v teey (Ln7$n)} cT
S+ SU{(R,VKg)} for all L; # *
Return (EKg, VKR) if there exists no w such that (z,w) € R then
rocedure Auth(L,c) GameOutput 1 // Type 2
p ! Return v
o < Auth(sk,L,c) . .
T TUu{(Le)} procedure Finalize
Return o 7 Return GameQutput

Fig. 3. Game AD/Soundness.

An AD/SNARG over authenticated data with respect to a class of relations R is computationally
sound if for any PPT A, it holds that Adv/P>°U""es(R 1)) is negligible in \.

Our soundness definition is inspired by the security definition for homomorphic MACs [20/12]2].
The catch here is that there are essentially two ways to create a “cheating proof”, and thus to break
the soundness of an AD/SNARG. The first way, Type 1, is to produce an accepting proof without
having ever queried an authentication tag for a label L;. This basically captures that, in order to
create a valid proof, one needs to have all authenticated parts of the statement, each with a valid
authentication tag. The second way to break the security, Type 2, is the more “classical” one, i.e.,
generating a proof that accepts for a tuple (x,w) which is not the correct one, i.e., (z,-) € R.

Second, we note that the above game definition captures the setting in which the verification
key vk is kept secret. The definition for the publicly verifiable setting is easily obtained by having
Initialize return vk to the adversary.

SUCCINCTNESS. Given a relation R : F* xF®, the length of 7 is bound by |7| = poly()\)polylog(a, b).

ZERO-KNOWLEDGE. Loosely speaking, an AD/SNARG is zero-knowledge if the Prove algorithm
generates proofs m that reveal no information: neither about the witness of the relation, nor about
the authenticated statements. In other words, the proofs do not reveal anything beyond what is
known by the verifiers when checking a proof. A formal definition follows:

Definition 2 (Zero-Knowledge AD/SNARG). A scheme AD/SNARG is a zero-knowledge SNARG
over authenticated data if the following additional property “ZERO-KNOWLEDGE” holds. Let R € R
be any relation. Then there exists a simulator Sim = (Simy,Sima), such that for all PPT distin-
guishers D, the following difference is negligible

| Pr[Exph 2 (\) = 1] — Pr[ExpgH(\) = 1]|

Sim
where the experiments Real and Sim are defined as as follows:
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D,R . D,R .
Epreal()\) : EXpSim ()‘) .

pp < Setup(1?) pp <7 Setup(1*)
(Skv Vk? pap) R D(l)\? pp) (Sk7 Vk7 pap) R D(l)\v pp)
(EKR, VKR) R Gen(pap, R) (EKR, VKR,td) R Siml(sk,vk, PP, pap, R)

(x, L7 O'): {(l’z, LZ', Ui) ?:1 R D(EKR,VKR) (l‘, |_7 O’): {(xl, Li, O'i) ?:1 R D(EKR,VKR)
W <R D(EKR,VKR)

TR PI’OVG(EKR,%, w, J) T <R Simg(td, L, {sz‘}LZ:*>
if D(m) =1 A {AuthVer(vk, oy, Lj, z;) = T}%,  if D(w) =1 A {AuthVer(vk,o;, L, ;) = T}%
A (z,w) € R A (z,-) €R
output 1 output 1

Note that the distinguisher D in the above game has a shared state that is persistent over all invo-
cations of D during an experiment.

We stress that the above zero-knowledge notion aims at capturing, in the strongest possible
sense, that the verifier cannot learn any useful information on the inputs, even if it knows (or
chooses) the secret authentication key. Indeed, as one can see, our definition allows the distinguisher
to choose the authentication key pair as well as the authentication tags.

Interestingly, we note that the notion of AD-SNARGs immediately implies a corresponding
notion of verifiable computation on authenticated data (similar to [2]). In [5] it is discussed how to
construct a verifiable computation scheme from SNARGs for NP with adaptive soundness. This
is simply based on the fact that the correctness of a computation can be described with an NP
statement. It is not hard to see that, in a very similar way, one can construct verifiable computation
on authenticated data from AD-SNARGs.

3.2 A Generic Construction of AD-SNARGs

We show how to construct an AD-SNARG scheme from SNARKSs and digital signatures. A similar
construction was informally sketched in [5][Appendix 10.1.2 of the full version|. Here we make it
more formal with the main purpose of offering a comparison with our direct AD-SNARG construc-
tions proposed in the next sections.

Let IT" = (Gen’, Prove’, Ver') be a SNARK scheme, and X = (X.KG, ¥.Sign, X.Ver) be a signature
scheme. We will use the signature scheme to sign pairs consisting of a label L and an actual message
m. Although, labels and messages can be arbitrary binary strings, for ease of description we assume
that labels can take a special value x. Also, we modify the signature scheme in such a way that
Y_.Sign(sk, x|m) = x and X.Ver(vk, x|m’, x) = 1. Basically, we let everyone (trivially) generate a valid
signature on a message with label *.

We define an AD/SNARG IT = (Setup, AuthKeyGen, Auth, AuthVer, Prove, Ver) as follows.

Setup(1*): Output pp = 1.

AuthKeyGen(pp): run (sk’,vk’) <—x L.KG(1*) to generate the key pair of the signature scheme and
return sk = sk’ and vk = pap = vk'.

Auth(sk,L,c): compute a signature on the concatenation of the label L and the value ¢, i.e., o/ +x
¥ .Sign(sk’, L|c). Finally, output o = (¢’,L).

AuthVer(vk,o,L,c): let 0 = (o/,L'), output the result of the signature verification algorithm
Ver'(vK', L|c, o).

12



Gen(pap, R): informally, we define R’ as the relation that contains all the (z,w) € R such that
x is correctly signed with respect to a set of labels and a public key. More formally, define
R’ as the relation that contains all the tuples (z/,w’) with ' = (y1,L1,...,¥a, L, vk) and
w' = (w, 21,01, ...,2q,04) such that, by setting z; = y; if L; = x and x; = 2; otherwise, for all
i € [al, it holds: (i) ((x1,...,%q),w) € R, and (ii) X.Ver(vk, L;|z;, 0;) = 1.

Then, run Gen’(1*, R') to generate (EK’, VK’) and output EKr = EK, VKR = VK.

Prove(EKR, z,w,0): Let EKR the be evaluation key as defined above, (x,w) be a statement-witness
pair for R, and o = (071,...,0,) be a tuple of authentication tags for x = (z1,...,z,).

If all the tags verify correctly, define ' = (y1,L1,...,¥a,La,Vk), W' = (w,21,01,...,24,04)
so that for all ¢ € [a]: z; = x;, y; = x; if 0; = x and y; = 0 otherwise. Next, run 7 %
Prove(EK',, 2/, w') to generate a proof for (z/,w’) € R’ and return 7.

Ver(vk, VKR, L, {xi},=, 7): given the verification key vk, a relation verification key VKg, labels
for the statement L = (Li,...,L,), unauthenticated statement components x;, and a proof T,
the verification algorithm defines =’ = (y1,L1,..., Y4, Lo, vk) with y; = 2; if L, = x and y; = 0
otherwise. Finally, it returns the output of Ver (VK% 2/, 7).

Theorem 1. If IT' is a zero-knowledge SNARK and X is a secure digital signature, then the scheme
described above is a zero-knowledge ADISNARG.

Proof (Sketch). We provide a proof sketch to show that the above construction satisfies all the
properties. First, it is easy to see that if the SNARK is succinct, then the AD/SNARG proofs are
succinct as well. Moreover, authentication correctness and completeness immediately follows from
the correctness of the signature scheme and the completeness of the SNARK respectively.

Second, to see adaptive soundness note that for every accepting proof produced by the ad-
versary we can extract the corresponding witness (since I1’ is an argument of knowledge). Such
proof, by definition, will contain a set of valid signatures. Then, if any of these signatures was not
obtained from a query to the Auth oracle, then it is easy that it can be used as a forgery to break
the unforgeability of the signature scheme. In the case all the signatures are valid, then one can
extract the full statement (x1,...,x,) from the witness w’. Hence, any adversary who outputs an
invalid proof for the AD/SNARG can be immediately turned into an adversary against the adaptive
soundness of IT'.

Third, the zero-knowledge of the AD/SNARG follows from the one of the SNARK in a straight-
forward way.

4 Owur Construction of Zero-Knowledge AD-SNARGSs

In this section we describe our construction of an AD-SNARG scheme for arbitrary NP relations.
The presented scheme can be used with either secret or public verifiability. The main difference
between the two verification modes is that the size of the proof in the secretly verifiable case is
a fixed constant, whereas in the publicly verifiable case the proof grows linearly with the number
of authenticated statement values. Although we loose constant-size proofs for public verifiability,
we stress that proofs become linear only in the number N of authenticated values, and that the
verification algorithm runs linearly in N in any case (even in the generic construction). Furthermore,
for verifiers that know the secret authentication key (as it may be the case for smart metering
where companies install the keys in the meters) the proofs can be maintained of constant size, and —
importantly — revealing such secret key does not compromise privacy. We prove our scheme adaptive
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sound under two computational assumptions in bilinear groups, the g¢-Diffie-Hellman Exponent
assumption (¢-DHE) [II] and the g-Power Knowledge of Exponent assumption (¢-PKE) [24]. We
note that the latter one is a non-falsifiable assumption. As discussed in the Introduction this kind
of assumptions is likely to be inherent for SNARGs for N'P. For privacy, we show that the scheme
has statistical zero-knowledge and we stress that this property holds even against adversaries who
know (and even generate) the authentication keys.

A detailed description of our scheme follows.

Setup(1*): On input the security parameter 1, run pp = (p,G,Gr, e, g) +xr G(1") to generate a
bilinear group description, where G and G are groups of the same prime order p > 2*, g € G
is a generator and e : G X G — G is an efficiently computable bilinear map.

AuthKeyGen(pp): Generate a key pair (sk’,vk') <~z £.KG(1*) for a regular signature scheme. Run
(S, prfpp) <—r F.KG(1*) to obtain the seed S and the public parameters prfpp of a pseudorandom
function Fg : {0,1}* — F. Choose a random value z <— F. Compute Z = ¢g* € G. Return the
secret key sk = (sk/, S, z), the public verification key vk = (vk’, Z) and the public authentication
parameters pap = (pp, prfpp, Z).

Auth(sk, L, c): To authenticate a value ¢ € F with label L, generate A < Fg(L) using the PRF,
compute 4t = A+ z-c and A = ¢g*. Then compute a signature o/ +x ¥.Sign(sk’, A|L), and
output the tag o = (u, A, o’).

AuthVer(vk, o, L, c): Let vk = (vk’, Z) be the verification key. To verify that o = (u, 4,0’) is a
valid authentication tag for a value ¢ € F with respect to label L, output T if g* = A - Z¢ and
¥ .Ver(vk’, A|L, o) = 1. Output L otherwise. In the secret key setting (i.e., if vk is replaced by
sk), the tag can be verified by checking whether u = Fg(L) + zc.

Gen(pap, R): Let R : F* x F® be an NP relation with statements of length ¢ and witnesses of
length b. Let Cr be R’s characteristic circuit, i.e., Cgr(z,w) = 1 iff (z,w) € R. Build a QAP
Qr = (t(x),V, W, ) of size m and degree d for Cr. We denote by Is, [niq, Iou: the following
partitions of {1,...,m}: Iy = {1,...,a}, Iig = {a+1,...,m — 1} and I,y = {m}[|In other
words, we partition all the circuit wires into: statement wires I, internal wires I,,,;4 (including
the witness wires), and the output wire I,y;.

Next, pick 7y, 7 <R F uniformly at random and set r, = 7, 7,. Then pick s, o, oy, oy, 3,77 R
F uniformly at random and compute the following values:

T — gryt(s)
Yk € [m]U{0}: Vi = gm() Wy = grewk(s) |y = greve(s)
Vk € [m] : V=)™, Wi=Wp™, Yi= Y, B= Vi WY)".

Additionally, compute the following values:
Py = ert(s)7 Pw = Z?"wt(s)7 py = Zryt(s)7
V, = gmt(s)7 W, :gth(S)7 Y, = gryt(s)’
Vi = V)™, Wi=W)™, Y/ =),
By = (Vo)’,  Bu=Wy’ B, =)

7 For a reader familiar with Pinocchio, we point out our change of notation: we will use vy instead of vy, to refer to
the statement-related inputs.
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Output the evaluation key EKg and the verification key VKg defined as follows:
EKR = ( {Vk‘a V]éa Wk‘> W]ga Yka Y]é? Bk‘}k‘EIStU]midv {QSZ}iE[d]
V%v V;fla Wta tha Y;ﬁa Y;fla B’LM Bwa By7 Pvy Pwy Py, QR >

VKR = (g’ gav’gaw7gay7g'7, gﬁ’y’ T) {Vkvwkayk}kelstu{o,m})

Prove(EKg, z,w,0): Let EKr the be evaluation key as defined above, (z,w) € F?x F® be a

statement-witness pair, and o = (071, ..., 0,) be a tuple of authentication tags for x = (z1,...,x4)
such that for any ¢ € [a] either o; = (u;, A, 0}) or 0; = *. We define Iy = {i € I : 0; #x} C I
as the set of indices for which there is an authenticated statement value, and let I, = I \ Igt
be its complement.

To produce a proof for (z,w) € R proceed as follows. First, evaluate the circuit Cr(x,w) and
learn the values of all internal wires: {cy}rer,,,. For ease of description, we assume ¢; = x; for
i € la], and cq4; = w; for ¢ € [b]. The first b indices of I,,;4 hence represent the witness values
w.

Next, proceed as follows to compute the proof:

Va = [TOR%* Wa = [TW0*, Yu = [J()*

kelat kelat kelat
a/t = H(Vlé)cka (;t = H(Wé)cka Ya/t = H(Ykl)ck>
k‘elat kfe]at kelat
Viia = [[ Vi)™, Wiia = [ We)*, Ymia = [] (Vi)™
ke]mi(i ke]mid ke[mid
mid = H (Ve)*, Wi = H (WR)*, Yo = H (Yi)™,
k€l mia k€l mia k€l mia
Bria= [] (Bi)*
ke[mid

Authenticate the values V,;, W, and Yy, by computing /i, = erfat(Vk)“k, [l = erlat(Wk)“k,
and fiy = [[pez,, (Yi)"*, respectively.

To make the proof zero-knowledge, pick random values (52,5),5%2{1,52?),57(7”2,522,553; «—r T,
and compute:

Vo = Vao - (V). War = War - (W%, Y = Yu - (V)%
o= v, W = w7 <Y;>6“”
Vinia = Vinid - (W)‘Sf:‘)d Wonia = Wnid - (Wt)éf'?:’f)l, Yinia = Yonia - (1@)5532)‘1
erm‘d = mzd (th) (:)d i 7Imd = 7/m'd ' (Wt/ )6% Néud = mzd (Yt/) (’?)‘i
Biid= Bumid - (Bv)ﬁfm)d - (Bu )55,“31 - (B, )521:’3,1
To authenticate the new values Vyy, Wer, and Yy, compute fi, = fiy, - (pw) fjj)’ [y = [y * (pw)‘sfz?)

(v) . . . .
and fiy, = fiy - (py)é,ﬁ , respectively. Note that our technique preserves the re-randomization
property of Pinocchio.
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Next, solve the QAP Qg by finding a polynomial h(z) such that p(z) = h(z) - t(x) where the
polynomial p(z) includes the “perturbed versions” of the polynomials v(x), w(x), and y(z) with
5 = 5((;;) + 67(:3(1, sw) = 5( w) + 5(w) and 60 = (5(y) + 5(y.)d, respectively:

B(x) = (vo(@) + 3 ewwnl@) + 60t(@)) (wolz) + 3 crwnle) + 6i(x))

ke[m] ke[m]

~ (wol@) + Y cumula) + 0W(w))

kem]

Flnally, compute H = g h(s) _using the values g° " contained in the evaluation key EKg. Output
(,va Mw; ,Uy> Vat7 Vat7v %davmzda Wat,Wat,W idy szd7 YataYatvy idy szda BmzdaH)

To make the proof publicly verifiable, include also {Ay, o}, 2« in 7.
Ver(vk, VKR, L, {zi},=«, T ): Let VKg be the verification key for relation R, L = (Ly,...,L,) be a

vector of labels, and let 7 be a proof as defined above. In a similar way as in Prove, we define

Iy ={iely:L;#*}ClIgand Iy, = I\ Iu. The verification algorithm proceeds as follows:
(A.15¢ret)  If verification is done using the secret key sk = (S, z), check the authenticity of

f/at , Wat and ?at against the labels L:
o = [ TTOWT®] - (Var )?

k€lat

A iy = [ H(Wk>Fs(Lk)] . (Wat )?
ke€lat

A iy = [ TTORF] - (Far)?
kel

(A.1P¥0) If the verification is performed using the public verification key vk = (Z,vk'), first
check the validity of all Ay, by checking that ¥.Ver(vk’, A |Ly,0}) =1 for all k € I,;. Then

check the authenticity of Vi , W ot , and Yo :
e(fiw9) = | TT e An)] - e(Var , 2)

kEIat

e(fiw9) = [ T eWie A0)] - e(War . 2)
k€lat

e(fiy.9) = | T (i Ap)] - e( Yar , 2)

kelaf

(A.2) Check that Vit f/;t , War Wat ,and Yy | ffét were computed using the same linear
combination:

e(Vi,g)=e(Vu, ™) A e(Wh,g)=e(Wau, g*) A (Y, g)=elYu,g™)

(P.1) Check the satisfiability of the QAP by setting Vous = (Vin) ™ = Vi, (similarly Wiy, =
Wy, and Yo = Y,,), where we assume that ¢, = 1 = Cg(z,w) since (z,w) € R, then

computing Vin = [[1e 1., (Vi) Tk (and similarly Wy, Y, ), and finally checking:

6(‘/0 f/at Vun Vmid Voutv WO Wat Wun Wmid Wout) = C(T, }NI )6(1/0 Y/at Yun ffmid Youta g)
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(P.2) Check that all linear combinations are in the appropriate spans:

e( ~r,m'd , 9) =€e( Viia , ™) N e ylm‘d ) =e( Wiia , %) N e Yr’nid , 9) = e( Yiia , g*)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e( Binia . 97) = e( Vinida Wmia Ymia ) 9’87)
If all the checks above are satisfied, then return T; otherwise return L.

Performance and Comparison. Before proving correctness, soundness, and zero-knowledge, we
compare the performance of our construction to Pinocchio [33] (more precisely, to its SNARG
version, which for convenience is recalled in Appendix . First, we note that the generation of the
keys is essentially the same except for the three exponentiations for creating py, pw, py. Second, in
Prove our scheme additionally computes the proof values Vat, f/ét, and i, (and the similar ones for
W and Y'), whose generation cost amounts to 9 multi-exponentiations with N = |I,;| terms. Third,
in Ver, the difference lies in the realm of authenticated statements: equation (P1) in Pinocchio
computes [[pcr, (Vi) [lper, (Wk)* and ], (Ye)® for all the a = |Iy| statement values,
whereas in our scheme we only compute those multi-exponentiations over I, (of size a — N) and
— in the secretly verifiable case — move the checks for the authenticated statements, three multi-
exponentiations (of size N), to equation (A.1)%¢". Hence, the total cost of running (P.1) and
(A.1)%¢ret in our scheme is essentially the same as (P.1) in Pinocchio. In the publicly verifiable case
of equation (A.1)P"%¢ the verifier in our scheme has to perform one signature check for {o}.} per
authenticated statement, and the computation of [[,c; e(Vi, Ax) (and similarly for Wy, Yy.). If we
assume to use, for instance Schnorr’s signatures for o, all the signatures can be verified in batch
with a work roughly the same as that of computing a single multi-exponentiation like [ [, (V).
Also, by considering the micro-benchmarks in [33], the cost of 3N pairings is about the cost of 30
multi-exponentiations with NV termsﬂ Finally, in our scheme we additionally compute six pairings
for equation (A.2).

Given such cost evaluation for our scheme against Pinocchio, for a fair comparison, we compare
our scheme against the best possible instantiation of the generic construction of ie.,
Pinocchio with the extended relation R’. If we assume that each signature verification costs ¢
multiplication gates in the arithmetic circuits, and if we assume that this is the only additional
cost for the design of R, then this means that: if R yields a QAP of size m and degree d, then
R’ yields a QAP of, at least, size m’ = m + ¢N and degree d = d + ¢N. When running on
R/, Pinocchio’s performance in verification remains the same as the one discussed above, whereas
Pinocchio’s performance in proof generation depends on the larger m’ and d’. Precisely, it performs
multi-exponentiations with m’ and d' terms, and a polynomial division operation whose cost is
o(d log? d’ ). In other words, if we compare the two schemes we obtain:

For secret verification both schemes perform almost the same, the only difference being that we
need to perform six more pairings; for public verification our scheme has an additional (concrete)
cost of about 30 multi-exponentiations with N terms over Pinocchio. For proof generation Pinocchio
(with R’) has to perform additional operations that involve a factor at least linear in ¢ - N. We
recall from the discussion in the Introduction that such c is likely to be as large as 1 000.

8 Overall, if we take e.g., N = 100, the cost of such 30 multi-exponentiations is not that terrible: about 0.5ms,
considering costs in [33].
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Therefore, one can see that while our solution charges a little more to the verifier (only in the
public verification case), the costs of our scheme on the prover side can be much cheaper, at least
by a factor c¢N.

Our scheme for relation R|Generic scheme for R with Pinocchio
QAP (size, degree) (m,d) (m',d") = (m+cN,d+cN)
Proof generation
QAP evaluation Q(m,d) Q(m/,d)
Vinidy Vinids Winids Wia ete|[TME(m —a — 1) TME(m —a—1)
Vat, Vs oo €tc 9ME(N) terms —
h(x) Div(d) Div(d")
H 1ME(d) 1IME(d")
Verification
(A.1) seeret 3ME(N) —
(A1) P%® IME(N)+3N-P —
(A.2) 6P —
(P1) 3P +3ME(a—N) 3P + 3ME(a)
(P.2) 6P 6P
(P.3) 2P 2P

Table 1. Cost of generating and verifying a proof. N = number of authenticated values. ¢ =number of multiplications
for one signature verification. P is the cost of a pairing, and M E(n) is the cost of a multi-exponentiation with n
terms. Div(d) is the cost of performing a polynomial division for computing h(z) with polynomials of degree d.

4.1 Completeness

Theorem 2. The above scheme satisfies authentication correctness and completeness.

Proof. 1t is straightforward to see that the scheme has authentication correctness by the correct-
ness of the regular signature scheme and by construction. To show the completeness, we prove all
verification equations in the order they appear in the verification procedure.
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(A.1%¢7et) 'We only show the case for fi,. The cases for fi,, and fi, are analogous.

_ Prove - @ p 5
fl rove [ - (pv)5at rove H (Vi) - (gzm t(s)) at

kelat
Au:th H (Vk)FS(Lk)+ZCk . g"'v t(S)Z(S{(;;)
kelat
Gen [ zc 2oLy
= | TT s iy - v
-kelat
_ - (v)
= [T 0] TT e v
kel T kela
- . (v)\ #
_ H (Vk)Fs(Lk) . ( H (Vk)ck . (W)éat )
_kelat . kelat
Préve [ H (Vk)Fs(Lk)_ . (Vat . (]/;)5517;))2
_kelat )
e [ 1 0] ()
_k‘elat )

(A.1P"")  We only show the case for fi,. The cases for fi,, and fiy are analogous.

~ rov “ (v) rov oy (v)
e(lu’vﬂg) Pée 6(:u"U : (pv)5at ) g) Pée 6( H (Vk)'u‘k . (g Ut(s))(sa,t , g)

kel

AU:th 6( H (Vk)FS(Lk)—i-ch .gru t(s)z(s((l;)), g)
kela

= (T ). ™) - e( [T ). o) - eg™' 9%, ¢7)
kelat kelat

M (T Ves ) - e( TT (W, 2) - e((V)*, 2)

k€lat k€lat

P2 o (TT Ve ) - (V- (W), 2)
k€l

e (I Vi Mb) - e(Vars 2)
kel
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(A.2) We only show the case for f/at. The cases for Wat and ffat are analogous.
(Véta 9) = e(Vét (V;f) o ) 9)

— (V) - (V)% g)

kel
(v)
= e(JJ(vr)wee - (Vp)da, g)
k€lat

= e(H(Vk)Ck ) (Vt)éf,?’ gav)

kelat

= €(Vat : (%)55’?)1 gav)

= e(Var, 9°)
(P.1)
(Vo Vat Vi mldvout, Wo WathnWmidWm)
= 6(9”1}0 ’ % Vi Vi (Vo) Vi, g0 W (W) W Woia (W) it W, )
= (O Vit Vi ViiaVi <v>6(“’+6533d ) W oW Wi Wo (W) 9150
co<£16<[ H g s)cz} (V,)° [ H gre i s)c]] (W) w))
i€[0..m] jelo-m]
_ e( ic[0..m) T Vi(5) Ci gt t(s) 5@ gzje[o_‘m] rww;(s) ¢ grwt(s)é(w)>
_ e(g rel0m] o vi(s) }—&-mt(s)é(“), g[zje[oum]rwwj(s)cj]—0—7"wt(s)§(w)>
_ e(g Sicto.m vils) ei] +1(s)8) grw([zje[o..m]wﬂswj]+t<s>6(w>))
_ e(g Sicionm vi(s) 1] +1(5) <”>)'([2jem..m]wg~<s>w]+t<s>6<w>),g)“’“w
Prove e<g P+ S0 5(5) ] +1(5)60) 9)"
- e(g . { 11 gyusc} L i) 0@ g)”
ke[0..m]
- e<g [ IT g% k} OLES g)
hel0.m)
= (gt ([ IT oot C’“] Yt)‘5<y),9)
k€[0..m]

—1 ()
= e(gTy t(8)7gh(5)) ’ 6()/0 Yot YunYmiaYm - (Y;f)&at

= G(T, f{) : 6(YVO 1~/at}/unY/mial}/outa g)

(v)
(n)émzd g)

(P.2) We refer to the proof of (A.2), which is very similar to the cases of Vinig, Winia, and Ypuig.
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(P.3)

(w) (v)

~ Prove

e(Biar 97) "2 e(Bpia (Bu)mt (Bu)*mit (B,), g7)
[ (v) (w) (v)
= e( H (Bk)ck] (Vt)ﬁémm (Wt)ﬁz?mid (}/t)ﬁéwilzd g)
ke[mld
() (w) )
- €< H ((Vk Wi Yk) ) ] ' (‘/t) Poimia (Wt) Bb.nia (Y;) 673111 . g )
k€ILiq
5 (w) (¥)
= e( H (Vk Wk Yk)ck:| (V%) mid (Wt)67n1d< )5%4 g/g’Y)
k€l g
®) (w) )
= e( Ck (Wk)% H (Yk,)ck . (W)émzd (Wt)é,md( )577?“] 957)
ke[’nud kEI,md kelmid

5 (w) s
= (szd (‘/Yt) mid Womid (Wt)émid mid (Y;f) mid gﬁ’Y)

= €(sz‘d Wmid Ymida Q’B’Y)

4.2 Proof of Security

In the following theorem we prove the adaptive soundness of our AD-SNARG construction. Note
that we can base (part of) its security directly on the soundness of Pinocchio, which is also based
on the ¢-PKE and the ¢-DHE assumptions.

Theorem 3. If Pinocchio is a sound SNARG, F is a pseudorandom function, the ¢-PKE [2]|] and
the ¢-DHE [11] assumptions hold, then the scheme described above is a secretly-verifiable AD/ISNARG
with adaptive soundness.

Before giving the proof, we first recall the ¢-DHE and the ¢-PKE assumptions.

Definition 3 (¢-Diffie-Hellman Exponent assumption [11]). The ¢-DHE problem in a group
G of prime order p is defined as follows. Let G be a bilinear group generator, and let bgpp = (p, G,
Gr,e,g) +r G(1*). Let a +xr Z, be chosen uniformly at random. We define the advantage of an
adversary A in solving the q-DHE problem as

Adv? P"E(\) = PrlA(bgpp, 0, .., 9%, g% g% ) = g2

We say that the g-DHE assumption holds for G if for every PPT algorithm A and any polynomially-
bounded q = poly(\) we have that Adv.q[DHE(A) s negligible in \.

Definition 4 (¢-Power Knowledge of Exponent assumption [24]). Let G be a bilinear group
generator, \ be a security parameter and q = poly(\). The q-PKE assumption holds for G if for
every non-uniform PPT adversary A there exists a non-uniform PPT extractor €4 such that:

Pr[h® = h A h# gizo¥ia’ .
(h, h; o, ..., Tq) < (A|€4)(bgPP, g7, ..., g™, g% g%, ..., g**, auz)] = negl(})
where bgpp = (p,G,Gr,e,9) +xr G(1Y), a,a +x Zy are chosen uniformly at random, and
aux s any auxiliary information that is generated independently of a. The notation (h,h; ;) <

(A|€4)(inp) means that A upon input of inp returns (h, ﬁ) and E4 on the same input returns ;.
In this case, £4 has access to A’s random tape.
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In order to prove we describe a series of hybrid experiments Gy — G4, where ex-
periment Gy is identical to the real adaptive soundness experiment and the remaining experiments
G; — G4 are progressively modified in such a way that each consecutive pair is proven to be (com-
putationally) indistinguishable. Some of the games use some flag values bad; that are initially set
to false. If at the end of a game any of these values is set to true, the Finalize procedure always
overwrites the outcome of the game to 0. For notation, we denote with G; the event that a run of
G; with the adversary outputs 1, and we call Bad; the event that bad; is set to true during a run of
G;. Essentially, whenever an event Bad; occurs, the corresponding game may deviate its outcome.

Game Gg: This is the adaptive soundness experiment described in [Section 3.1] and [Figure 3|

Game G;: This is the same as Gy except that the PRF Fg(-) is replaced by a truly random function
R :{0,1}* — F. By the security of the PRF, G; is computationally indistinguishable from Gy,
ie.,

IPr(Go] — Pr[Gi]| < AdvpiEF ()

Game Gy: This is the same as Gy except that the procedure Ver sets bads < true if the adversary
makes verification queries that (a) verify correctly with respect to the equations (A.1)%¢" and
in which (b) there is a label L ¢ T (i.e., A never asked to authenticate a value under label L).
Clearly, G; and Gg are identical until Bado, i.e.,

|PI‘[G1] — PI"[GQH S Pr[Badg]

We show that Go is statistically close to Gi, by proving in that Pr[Bads] is (uncondi-
tionally) negligible. Intuitively, this follows from the fact that when L ¢ T the first verification
check is an equation with an almost-freshly sampled element A\ = R(L) € F, i.e., the equation
will be satisfied only with negligible probability, which is at most 1/(p — Q).

Game Gj3: This is the same as Gy except for the following change when answering Type 2 verifi-
cation queries, i.e., we assume every label L was previously used to authenticate a value. Let
,uv,Vat, [ Wat, and ,uy,Yat be the elements in the proof ™ queried by the adversary. In Gg
we compute Vg = [[er., (Vi) (and W5, Yy, in the similar way), as well as their correspond-
ing authentication tag py = [];c Iat(Vk)“k (and g3y, p1y,), where each puy is the tag previously
generated for (Lg,ci) upon the respective authentication query. Next, we replace the check of
equations (A.1)%¢™ with checking whether

e(fio/ 1y, 9) = e(Var / Ve at:9°)
N e(ﬁw/:u'f:uag) = ( at/ ) (1)
A e(ﬂy/l'@vg) = ( at/ atr 9 )

is satisfied. Then, if the equations in (A.2) are satisfied, (hence V!, = (Va¢)®, W, = (Wa)®,
Y!, = (Y,)®), we can run an extractor €4 to obtain polynomials @4 (z), We(z), and Fut ()
of degree at most d. If Vy; # (g"*)%(*) or Wy # (g"*)%() or Y,y # (¢"v)7(5), then we set
bads < true.

First, we observe that by correctness, checking equation is equivalent to checking the veri-
fication equation (A.1)%¢cme,

Second, to see that we can run the extractor €4, we observe that the 1nput received by the
adversary A can indeed be expressed as a pair (S, auz), where S = {g*', g® }16[0 4 and auz
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is some auxiliary information independent of a — exactly as in the definition of the d-PKE
assumption.
Hence, Gy and Gg are identical up to Bads, i.e.,

Pr[Gy] — Pr[Gs]| < Pr[Bads]

and it is easy to see that the d-PKE assumption immediately implies that the probability of

Bads (i.e., that the extractor outputs a polynomial which is not a correct one) is negligible.
Game G4: This game proceeds as Gz except for the following change in the Ver procedure. Assume

that the equations are satisfied and that bads < true is not set (i.e., Vi = (g“)f’“(s) holds,

and similar the corresponding cases of Wat and ffat).

Then, compute the polynomials vy, (z) = > c;  cxvr(r) and 0y(7) = Dar(z) — vy (2), where

Uq¢ () is the polynomial obtained from the extractor. Similarly, compute w}, (x), 0w (), yi (), 0y ().

If any among 6,(x), dy(x), 6y(x) is not divisible by t(x) then set bady « true.

Clearly, G3 and G4 are identical up to Bady, i.e.,

|Pr[Gs] — Pr[Gy]| < Pr[Bady]

To show that the two games are negligibly close, we prove in Lemmathat Pr[Bady] is negligible
under the ¢g-DHE assumption, for some ¢ = 2d + 1.

Finally, we observe that at this point, if Bad4 does not occur, we have verified that f/at, Wat, and
Y,; were computed by using the correct (i.e., authenticated) statement values. Namely, except
for having randomized elements f/at (resp. Wat, f/at), we are almost in the same conditions as in
proof of security of Pinocchio. In fact, in Lemma [3| we show that if any adversary has advantage
at most € in breaking the security of Pinocchio (in the zero-knowledge SNARG version of the
scheme), then Pr[G4] < @ - €, where @ is the number of Gen queries made by the adversary.

3Q
Lemma 1. Pr[Badsy] < -=55.

Proof. Let @ be the number of verification queries made by the adversary in Gg, and let B; be the
event that bady was set from false to true in the i-th verification query. Clearly, we have:

Q Q
Pr[Bady] = Pr [\/ Bi] < ZPF[Bi]

=1

To prove the lemma we will bound the probability Pr[B;] for any 1 < i < @, where the
probability is taken over the random choices of the function R(-).

By definition of B; we have Pr[B;] = Pr[B;|Bi A---AB;_1]. Also, observe that bads is set to true
if 3k € I, such that (Lg, ) ¢ T and at least one of the equations

fio = [[JVe) ) (Va)?, o = [JJOVR) R ]-(War)®, iy = [T (V) 9] (Ya)*  (2)
kelgt kel k€l

is satisfied. )
Let us fix one such index k € I, such that (Lg,-) ¢ T. If Az = R(L;) is sampled uniformly
at random in the i-th query, then an equation as the ones above will be satisfied with probability
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1/p, which by union bound sums up to 3/p. However, the adversary might have asked Lj in some
previous verification query, and this might have leaked some information about A\; = R(Lg). Yet,
since it holds By A --- A B;_1, the only information leaked to the adversary is that a bunch of
equations involving A; were not satisfied. For every such equation, one can exclude at most three
possible values of Az. In conclusion, we have that in the ¢-th query, one of the equations is
satisfied with probability at most m. Hence,

Q
3Q
r[Badq] < < .
32_;]) 31—1 p—3Q

O

Lemma 2. If the ¢-DHE assumption [I1)] holds for G, then for any PPT adversary A we have that
Pr[Bady| is negligible.

Proof. Assume that there is an adversary A such that Pr[Bady] > e is non-negligible. We show how
to build an adversary B that breaks the ¢-DHE assumption with probability ¢/DQ — 1/|F| such
that: (a) D = poly(\) is an upper bound on the number of multiplication gates (and thus the degree
of the corresponding QAP) in the @ relations Ry, ..., Rg queried by A to Gen, and (b) ¢ = 2d* +1
for some d* < D, which is the degree of the QAP in the relation R* for which Bady occurs.

B takes as input an instance of the ¢-DHE assumption (bgpp,g“,g“z, . ,gaq,g“q+2, .. ,g“Qq)
and its goal is to compute the missing element gaqH. To do so, B simulates G4 to A as described
in the following. Assume that Bady occurs for the relation R* which is the j-th relation queried to
Gen.

Initialize()
— B runs Initialize as in G4 with the following modifications.
— It picks random j* «—% {1,...,Q}, d* <% {1,..., D} to guess the query’s index of R* and its

QAP’s degree respectively.

— It picks a random v < {0,1} as a guess on whether Bad, will occur for either 6, (z) or d,(x)

(v =0), or §y(x) or dy(x) (v =1).

— B sets ¢ < 2d* + 1, and takes as input an instance (bgpp, g%, g“Q, . ,g“q,gaq+2, . ,ga2q) of the
q-DHE assumption.

— It defines the degree-d* polynomial t*(x) = Hz*:l(x —ri) where {r;} is a set of canonical roots
used to build the QAP

— B chooses z*(x) as a random polynomial in Flz] of degree d*+1 such that the polynomial

2¥(x) t(z) of degree 2d*+1 has a zero coefficient in front of z¢ *1.

— Bsimulates the secret z with z*(a) by computing Z = 7@ Observe that ¢ (@ can be computed
efficiently using {g“l}?;'fl from the ¢-DHE instance.
— B generates a key pair (sk’,vk’) «xr ¥.KG(1*) for the regular signature scheme and outputs

pap = (pp, prfpp, Z) and vk = (vk', 7).

Gen(R)
B proceeds as follows to simulate the i-th query.
— [Case i # j*] B runs the real Gen(pap, R) algorithm and returns its output.

9 The roots of Pinocchio’s QAP target polynomial can be chosen arbitrarily.
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— [Case i = j*] Let us call R* the queried relation. B simulates the answer to this query as follows.
First, it builds the QAP for R* and if its degree d is not d*, then B aborts the simulation.
Otherwise, we have d = d* and hence t(z) = t*(x) and B proceeds as follows.

For the value s, instead of randomly choosing it, B implicitly uses the value a from the ¢-DHE
assumption as follows.

If v = 0, B implicitly sets r, =7/ a d

d+1

and 1y = 7/, 1y a®TL, where 1y, 7}, <% F, by computing

/ ad+1

Vi=g"

d+

vi(a) Y, = gr{, rw a?t vy (a) V, = gr{, a%t1t(a) Y, = gn’J Tw a1 t(a)_

Notice that these values can be computed efficiently since all the polynomials a®*! vy (a) and
a®™1t(a) have degree at most 2d* 41 = g. Similarly, all the remaining values {W}, Yi }oe[m) can
be simulated as the degree of the polynomials encoded in the exponent is at most d* < q.

If v = 1, B proceeds in the dual way by setting r,, = r/, a®*! and Ty = Ty Tl a®™?! for randomly
chosen r,, 7., +r F. From now on, we describe the simulation for the case v = 0 only. The
other case can easily be adapted.

Finally, p, = (V)7 is simulated by computing (g“dJrl Z*(“)t(“))"i’. Notice that g“dJrl #"(a)t(a) can be
computed since a?t! z*(a) t(a) has degree 3d + 2 and has a zero coefficient in front of a?¢+? =
a?*!. The same holds for the computation of py, Whereas computing p,, = g" #(a)Ua) can be
simulated as z*(a) t(a) has degree 2d + 1 = q.

Auth(L, )

To simulate authentication queries, B samples a random p < F, computes A = g*Z ¢ generates
o’ <x L.Sign(sk’, A|L), updates T <= T U {(L,¢)}, and returns o = (u, 4,0"). Observe that such o
is identically distributed as an authentication tag returned by Auth in G4. Also, although B is not
explicitly generating A <— R(L), as one can notice, these values are no longer used to answer the
verification queries.

Ver(R,L, {xi}Lﬁg*, )
Finally, we describe how B handles verification queries. First, note that for those queries that fall
in the Type 1 branch, B can directly answer L (reject), and it does not have to use the values R(L).
Clearly, due to definition of game G4 and since Bads does not occur, answers to these queries are
correctly distributed. Second, for queries in the Type 2 branch, we distinguish two cases according
to whether the queried relation R is R* or not.
— If R # R*, then B can answer as in game G4. In particular, note that equation (A.1)%"® has
been replaced by equation that requires only public values to be checked.
— If R = R*, then B proceeds as in Gyg. Set §,(x) < Vg(z) — vi(2), dp(x)  War(x) — wihy(x),
and 8, (2) < fur(2) — Y3 ().
e If both 0, (z) and §,(x) are divisible by t*(z), i.e., 0, (x) € Span(t*(x)) and 6, (z) € Span(t(z)),
i.e., Bady did not occur for them, but instead for é,,(z) and d,(z), then B aborts (since here,
we detail the case of v = 0 only).
e Otherwise, assume that either d,(z) or d0,(z) is not in Span(t*(z)), and without loss of
generality assume this holds for d,(x) (the other case is analogous). Then B checks whether
w(z) = dy(x)2z*(x) is such that its coefficient wgyyq is zero. If so, B aborts the simulation
(however, by Lemma 10 [19], this happens with probability at most 1/|F|). Otherwise, if
wg+1 7 0, B returns

- 1/(wat1my)
2= * 2d+1 i akFd+1Np! o
2 Hk:o,k;édJrl(g )"
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Notice that B’s simulation to A is perfect except if B aborts. However, B can abort only in four
cases: if its guess on j* is wrong, i.e., if j # 7* (which happens with probability 1—1/Q); if its guess
on d* is wrong, i.e., if d # d* (which happens with probability 1 — 1/D); if its guess on v is wrong
(which happens with probability 1/2); if w441 = 0 (which holds unconditionally with probability
at most 1/|F|). Also, it is not hard to see that if Bady occurs, then B returns 2 = g@*** = go**'
and breaks the ¢-DHE assumption, as desired.

Therefore, by putting together the probability that B does not abort, with our assumption that
Pr[Bady] > €, then we obtain that B breaks the ¢-DHE assumption with probability > ¢/2DQ —
1/|F|. O

Lemma 3. If Pinocchio is a sound SNARG scheme, and the q-PKFE assumption holds, then for
any PPT adversary A we have that Pr[Gy4] is negligible.

Proof. We make our reduction by considering a slightly modified version of the Pinocchio scheme in
which the evaluation key also includes the values V}/ = { grooeur(s)), 1., (as well as the corresponding
W/, Y/, and By). It is trivial to check that the same proof of security in [33] carries through when
these additional values are included in the evaluation key.

Assume by contradiction that there exists an adversary A such that Pr[G4] > € is non-negligible.
We show how to build an adversary B that breaks the security of Pinocchio with probability at
least €/Q1Q2, where @ is the number of relations Ry, ..., Rg, queried by A to Gen during game
G4, and Q)9 is the number of verification queries. Without loss of generality, assume that B receives
the parameters bgpp of the bilinear groups before choosing the relation R* to attackF_U]

Initialize()

— B picks a random j* <~ {1,...,@1} to guess the query’s index of R*, the relation for which A
will break the security of our AD/SNARG scheme.

— B generates a key pair (sk/, vk') < ¥.KG(1*) for the regular signature scheme, and then samples
a random z <g F. It outputs pap = (bgpp, prfpp, Z = ¢g*) and vk = (vk/, Z).

Gen(R)
B proceeds as follows to simulate the i-th generation query.

— [Case i # j*] B runs the real Gen(pap, R) algorithm and returns its output.

— [Case i = j*] Let us call R* the queried relation. B forwards R* to its challenger and receives
a pair of keys (VKp,EKp) of the Pinocchio scheme. B then uses z to compute p, = (V;)?,
pw = (We)?, and p, = (Y3)?, sets the key pair of the AD/SNARG scheme to (VK*, EK*), where
VK* = VK% and EK* consists of EKp and the additional values py, pw, py, and the elements
{Vk, Wk, Yk}kEIst of VK};

Auth(L,c)

B runs Auth as in Gy, i.e., B outputs o = (u = R(L) + z¢c, A = g®V) o/ = ¥ Sign(sk’, A|L)).
Ver(R, L, {xi}l_i;ﬁ*u fr)

Finally, we describe how B simulates verification queries to A. Notice that all the equation checks

require only public values. Also, observe that in G4 the adversary A can win only by returning a
Type 2 forgery, and by returning a proof 7 containing values Vg, V7, of the “correct form”, i.e.,

10 We note that this reduction to the security of Pinocchio is done for ease of exposition. Indeed, we could have
included in our simulator B the same code of the simulator in the security proof of the Pinocchio scheme, where
the parameters of the bilinear groups are received at the very beginning.
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~ * (v) -~ * (v) . . . .
Var = (g")va(®)H0a 1) and V!, = (g rvo‘v)”at(s)Hm t(s) respectively, for some 5(U) € F. Similarly it
holds the correctness of Wy, W2, Yy and Y/, for some coefficients 55”5 ), 5§t) el

So, for every verification query that passes the verification checks and that involves the relation

R*, B translates the given proof 7 into a proof mp as described below.

Translation of 7 to mp. Let & = (fiv, fiw, » fiy, Vat: Vi Wats Wy, Yat, Y, de, led, W,md, W' .
led, szd,Bmld,H) Flrst B computes Viig = Vinid - Vat/ vand V). =V -V}, /Vi:, where

= [lrer, (Vi) and = [lrer,, (Vi) Similarly, B computes Wmid, W! .4y Ymiq and Y/ ...
Then, B computes By = By (Bu - (B - (5,5, where 8% = (i) - 15 (x)) ).

The values 5(at) and 5(at) are computed accordingly. Next, B changes the (acceptmg) proof T
produced by A by replacing Vinig (resp. led, Wonid. szd, Yonid, me B,md) with the value V,,;4
(resp. V. .0y Winid, W0 Yiid, Y., Bmia) computed above, and by removing Vit f/(;t, Wat, Wat
Yat, Y1y, fiv, fiw and fi,. Let mp be such modified proof. B stores the tuple ({cx}rez.,, 7p) into a
list 2.

First, observe that the proof 7p is identical to a proof in the Pinocchio scheme, and in particular
it has the same distribution. Second, we claim that if 7 is accepted in G4 for relation R* and labels
{Lk }rez,, (used to authenticate {c}rez,,), then 7p is accepted for statement {cy }rez,, in the given
instance of the Pinocchio scheme for relation R*.

The first claim follows by inspection and by observing that since Bad, does not occur, the value

( ot/ V) contains a multiple of #(s) in the exponent, i.e., the honest form of V,,;; is preserved. In

(at) .

particular, the value ;"
deg (v (7). o N

The second claim follows from the fact that the value V.= Vg - Vi - Vinaa - Vouwr computed to
verify the proof in the AD/SNARG scheme, and the value V = (erz (Vi) - Vinia - Vour computed
to verify the proof in Pinocchio are identical (because of Vg = Vinid * Vat /V2). Also, note that
similar arguments apply for the corresponding W and Y values. Since Bady does not occur, the

(at)

value &y

is a scalar value since (g (z)—v}, (2)) is divisible by t(x) and deg(0q:(z)) =

is exactly the value used by A for the randomization of Vat.

After A stops running, B picks a random tuple ({c¢x}rez,,, m7p) from the list {2 (which contains
at most 2 elements) and returns this tuple to its challenger.

To complete the proof we analyze B’s success probability. We claim that if A breaks the security
of the AD/SNARG scheme in game Gy, then B breaks the security of Pinocchio with probability at
least 1/@Q1Q2. It is not hard to see that B’s simulation has a distribution which is statistically close
to the distribution of game Gy. Also, if A breaks the scheme it means that for at least one of its
verification queries that accepts, say the ¢-th query, we have that © ¢ R. Assume that R was the
j-th relation queried to Gen, and that B returns the £*-th tuple in the list 2. Since the simulation
does not leak any information on j* and ¢*, we have that Pr[j* = j A £* = {] > 1/Q1Q2. Therefore,
if A breaks the security of the AD/SNARG scheme in game G4 with probability at least e, then B
breaks the security of Pinocchio with probability > €/Q1Q>. O

Security with public verifiability It is easy to adapt the proof of in order to show
that our scheme is sound also in the case where the proof is made publicly verifiable. Hence, it is
possible to prove the following theorem:
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Theorem 4. If Pinocchio is a sound SNARG, F is a pseudorandom function, X is a secure sig-
nature scheme, the d-PKE [2]] and the ¢-DHE [11|] assumptions hold, then the scheme described
above is a publicly-verifiable AD/ISNARG with adaptive soundness.

In the publicly verifiable case, since the adversary can verify the proofs on its own, we can assume
that it makes a single verification query to Ver. To obtain the proof of we use the same
games as those for The only difference is that the probability Pr[Bads] is now shown
to be negligible under the assumption that the regular signature scheme is secure. Such is rather
straightforward: an adversary which returns a proof involving a statement value with label L that
had not been queried to the Auth oracle, has to show at least one signature o), for some non-queried
label L.

4.3 Proof of the Zero-Knowledge Property

Theorem 5. The AD/SNARG scheme described in Section [4] is statistically zero-knowledge in the

sense of |[Definition 2

Proof. To see that our scheme satisfies zero-knowledge, our first observation is that the group
elements Vat, de, Wat, Wmd, ut, and led are statistically uniform over G. Indeed, as long as
t(s) # 0, each of these elements is uniformly randomized.

Second, we notice that once the elements Vat, led, Wat, szd, at and szd are fixed, the
values of all the remaining elements in 7, i.e., fiy, Vat, szd, J Wat, szd’ Py Yo, szd’ Binid,
and H get determined according to the constraints of the verification equations (A.1), (A4.2), (P.1),
(P.2), (P.3).

Finally, we show that there is a simulator (Simy, Simy), formally described in[Figure 4] that satis-
fies[Definition 2] It is trivial to see that the simulated keys generated by Sim; are distributed as in the
real experlment Regarding Simo, it is not hard to see that the simulated values Vat, led, Wat, szd, Yat
and Y,,;q are statistically uniform. Also, given the trapdoor, Simy can generate (without knowing
the inputs {ck}rer,,) all the remaining elements of 7 with the correct distribution, i.e., such that
verification equations (A.1), (A.2), (P.1), (P.2), (P.3) are satisfied. O

5 Our Construction of Secretly-Verifiable Zero-Knowledge AD-SNARGs

In this section, we show a variant of the scheme proposed in [Section 4] which allows for a verification
algorithm whose efficiency does not depend on the number of authenticated values. In order to
achieve this appealing property, we trade efficiency for usability in making the previous scheme
only secretly verifiable.

Setup(1*): On input the security parameter 1*, run pp = (p, G,Gr,e, g) +x G(1?) to generate a
bilinear group description, where G and G are groups of the same prime order p > 2*, g € G
is a generator and e : G X G — Gr is an efficiently computable bilinear map.

AuthKeyGen(pp): Run (S, prfpp) <+ F.KG(1}) to obtain the seed S and the public parameters
prfpp of a pseudorandom function Fg : {0,1}* — G. Choose a random value z < F. Compute
Z = e(g,9)* € Gp. Return the secret key sk = vk = (S, z), and the public authentication
parameters pap = (pp, prfpp, Z).
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Simz(td, L, {fi}Li:*)

let ¢ = Lvout(2) = cmvm (@), vun () = 30, cp,  crvn()

ot () = emtom (@), W () = Spey.. cx0n(2)

yout(x) = Cmym(x)7 yun(l') = Zkelun Ckyk(m)

{Ak < Fs(Le)brera

Vat (), Dmid (x) <7 Flz]

() < v0(x) + Vat () 4 Vun (@) + Tmia () + vour (2)

Choose random Wim;q (), Wat (x), Ymid (), Gat (), such that ¢t(z)|p(x)
where p(z)  9(z)w(z) — g(z) and

Sim1(pp, R, sk, vk, pap)

Run Gen(pap, R) to obtain () + wo(T) + Wat () + Wan (T) + Winid () + Wour ()
(EKR, VKR) and also store (@) yo(@) + Fat () + Yun (%) + Fmia () + Your ()
sk, 5, B, 0y, Qu, Oy, T, Ty 7y intd | 2(E) < P(T) /H(T) )

Return (EKR,VKR,td) [y er] (Vk)’\k Zrvlat(s)

fw = [y, W) - 27070 iy = T, (Yi) s - 2700l
Vat - g""uvat( s) V’ (f/at) ”,szd P gTvvwd<S) Vrlmd . (f/mzd) v
W grww“t(s) Wt = (War)™™, Wonaa <= g™ "md ) Wy <= (Wonia) ™
Ym (_gryyat(s) Y’ — (ffat)ay Ymm (_gryymm( s) Yviud P ({/md) y
Bnia (szd Wnia ‘sz‘d)ﬂ
H + "
Return 7 = (/-7437 ﬁW7 [Ly7 ‘:/(lty ‘:/a/ta "}rrgidv ‘Zingh WatJ Wz;ta Wmid7

Whia> Yats Yar, Ymias Yinia, Bmia, H)

Fig. 4. Simulator Sim.

Auth(sk,L,c): Let sk = (S, 2). To authenticate a value ¢ € F with label L, use the PRF to compute
R < Fg(L), then compute o = R - (¢%)¢ and output o.

AuthVer(vk, o,L,c): Let vk = (5, z) be the (secret) verification key. To verify that o is a valid
authentication tag for a value ¢ € F with respect to label L, output T if o = Fg(L) - (¢°)¢ and
L otherwise.

Gen(pap, R): Let R : F® x F® be an NP relation with statements of length @ and witnesses of
length b. Let Cr be R’s characteristic circuit, i.e., Cr(z,w) = 1 iff (x,w) € R. Build a QAP
Qr = (t(x),V,W,Y) of size m and degree d for Cr. We denote by I, i, [ou: the following
partitions of {1,...,m}: Iy ={1,...,a}, Lnig ={a+1,...,m—1} and I, = {m}EIn other
words, we partition all the circuit wires into: statement wires I, internal wires I,,,;4 (including
the witness wires), and the output wire I,y;.

Next, pick 7y, 7 <R F uniformly at random and set r, = 7, 7,. Then pick s, o, o, ), 3,77 R
F uniformly at random and compute the following values:

T — gryt(s)
Vk € [m]U{0}: Vi = g™" ), Wy = g™y, = grom(s),
Vk € [m]: V= Vi), W =W, Y= ), By= (Vi WiYi)"

1 For a reader familiar with Pinocchio, we point out our change of notation: we will use vy instead of vy, to refer to
the statement-related inputs.
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Additionally, compute the following values:

Py = ert(s)’ Pw = ert(s)’ py = Zryt(s)’
‘/t — grvt(s)’ Wt :grwt(s)7 th _ gryt(s)
V) = (W)™, W= W)™, Y/ = (1),
B, = (W’, Bw=Wy)’ B, =W’

)

Output the evaluation key EKg and the verification key VKg defined as follows:

EKRr = ({Vkaf, Wi, Wi, Yie, Yy, B b kel Ula» {QSi}ie[d]
‘/157‘/;5/7 Wtawt,a Y%’Y;/’ vaBwaBg,n Pus Pws Py QR)

VKR = (.97 gav7gaw7gay7g'y7 gﬁ’y’ T7 {Vk:kaaYk}kGIstU{O,m})

Prove(EKR,z,w,0): Let EKp the be evaluation key as defined above, (z,w) € F¢x F® be a
statement-witness pair, and o = (071, ..., 0,) be a tuple of authentication tags for x = (z1,...,x4)
such that for any ¢ € [a] either o; = R;- (%)% or oy = . We define Iy = {i € Iy : 05 # *} C Iy
as the set of indices for which there is an authenticated statement value, and let I, = I \ Iy
be its complement.

To produce a proof for (z,w) € R proceed as follows. First, evaluate the circuit Cr(x,w) and

learn the values of all internal wires: {ci}rer, . For ease of description, we assume ¢; = x; for
mid

i € la], and cq4; = w; for ¢ € [b]. The first b indices of I,,,;4 hence represent the witness values
w.

Next, proceed as follows to compute the proof:

Va = [JOR)* Wa = [JW)*, Yu = JJ ()%,

kelat kelat kelat

Va/t = H(Vlé)cka W(;t = H(Wé)cka Ya/t = H(Ykl)ck>
k‘elat ke]at kelat

Viia = [ Vi)™, Winia = [ W), Youa = ] ),
ke]mi(i ke]mid ke[mid

mid = H (V) Wi = H (WR)*, Yo = H (Yi)™,
k€l mia k€l mia k€l mia

Bria= [] (Bi)*.
ke[mid

Authenticate the values Vi, W, and Yy by computing 6, =[ [, e(Vi, 0k), 6w =[Ircr,, 6(Wk, 0%),
and Gy =[[es.,€(Yk, o), respectively.
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To make the proof zero-knowledge, pick random values 55“5),5&2{1,52?),57(7”2,523,6%; +—r F,

and compute:

~ (1}) ~ (w) ~ (v)

Vao = Var + (Vp)°= Wa = Wa - (W)’ Yy = Yy - (V)

~ (v) ~ 6(11)) ~ 5(y)
at = (V) w = Wap - (W])0a Yo =Yy - (Y))u

~ 5(1’) ~ 5(“’) ~ 5(1/)

szd mid * (V;f) mid | Wmid = Wmid : (Wt) mid | Ymid = Ymid ' (Yt) mid |

5(”) ~ 6(11)) ~ 6(9)

Vi = Viia = (V/)0mia, mid = Winia - (W)0mid, mid = Yoia - (Y7)omid,
~ 6<U> 6("”) (v)

Binia = Bmid - (B)mit - (By)’mit - (By ) mid

- ~ (w)
y Ow = Ow (Pw)é‘”

and 6, = dy - (py) 557 , respectively. Note that our technique preserves the re-randomization

. ~ = ~ - N (v)
To authenticate the new values Vy;, Wy, and Yy, compute 6, = 6 - (pv)‘sat

property of Pinocchio.

Next, solve the QAP Qg by finding a polynomial h(z) such that p(z) = h(z) - t(x) where the
polynomial p(z) includes the “perturbed versions” of the polynomials v(x), w(x), and y(z) with
5@ =6 45t 5w — 500 4 5 Dand 6@ = 619 4 5 respectively:

mid’

p(z) = (U0($) + Z cruk(x) + (5(U)t(:n)) (wo(x) + Z crwi(x) + 5(w)t(x)>

ke[m) ke[m]

x)+ Z cryr(x) + 5(y)t(a;)>

ke[m]

Finally, compute H = g h(s) using the values g° " contained in the evaluation key EKg. Output
T = (Uva Ow, O'y7 Vata Vat7v zdaV WataWat>Wm1d7 W YataY Y mid Y BmzdaH)

mid? mid’ at»y mid?

Ver(vk, VKR, L, {zi}L,—«, T ): Let vk = (5, z) be the authentication verification key, VKg be the

verification key for relation R, L = (Ly,...,L,) be a vector of labels, and let & be a proof
as defined above. In a similar way as in Prove, we define Iy = {i € Iy : L; # x} C Iy and
Ly = I \ I4. The verification algorithm proceeds as follows:

(A.1) Check the authenticity of Ve, Wa , and Yy against the labels L:

6o = | [] eV, Fs(Li)| - e( Var , o)
-kelat . _
A = | ] Wi FsL)] - e( W, 9°)
_kelat - -
A oGy =| [ e Fs(l)| - e( Yar , g°)
_kelat )

(A.2) Check that Vi, VI, Wa, W., ,and Yy , Y/, were computed using the same linear
combination:

6( ~(;t 9 g) = 6( Vat 9 gav) A 6( W(/zt 9 g) = 6( VNVat 9 gaw) A 6( f/a/,t 9 g) = 6( Yat ) gay)

31



(P.1) Check the satisfiability of the QAP by setting Vyur = (Vi) Cm _ vy (similarly W, =
Wy, and Yoy = Yin), where we assume that ¢,, = 1 = Cg(x,w) since (z,w) € R, then

computing Vun = [1er. (Vi) Tk (and similarly Wy, Yy, ), and finally checking:

un

6(‘/0 f/at Vun f/mid Vout7 WO Wat Wun Wmid Wout) = e(T, I;[ )e(Yb Yat Yun ifmid Youta g)

(P.2) Check that all linear combinations are in the appropriate spans:

6( Nén'd ) g) = 6( Vinid gav) A 6( ;nid ) g) = 6( Wiiid gaw) A 6( Yylm‘d ) g) = 6( Yonid gay)

(P.3) Check that all the QAP linear combinations use the same coefficients:
e( 1B 057 g7) =¢( Voo | Wien | W 9’87)

If all the checks above are satisfied, then return T; otherwise return L.

Efficient Verification. By assuming a proper labeling of the data and a suitable pseudorandom
function F, the scheme described above is adapted to allow for an improved verification algorithm
whose running time does not depend on the number |I,;| of authenticated values. Following the
ideas in [2], we assume that every input c is labeled by using a multi-label L = (A, 7), where A
is a data set identifier, and 7 is an input identifier. As an example, the input identifiers 7, ...7,
can be specific canonical information like date and time (e.g., day 05, 11:12:42), and the data set
identifier A can be more general information describing the category (e.g., energy consumption for
March 2014).

As for the pseudorandom function, we can instantiate Fg by using the specific ACF-efficient PRF
of 2] Fs : {0,1}* x {0,1}* — G such that: Fg(A,7) = g¢ar+barr where the values (a,ba) and
(Ar, pur) are derived by applying two standard PRFs (mapping into F) to A and 7, respectively. This
function is pseudorandom under the Decision Linear assumption [2]. To achieve efficient verification
one proceeds as follows (we describe only the case for V, i.e., w, and (2,, the computations for W

and Y are similar):

— Offline phase: precompute w’ = e([Trer,, (Vi) ™, g) and Wi = e([lker,, (Vk)"*, g) where

(Ak, pi) are derived from 7 for all k € I4. Store (wg’\),wq(,” )).
— Online phase: given A, derive (aa,ba) from A, and compute 2, = (ng))aA . (w&“))bﬂ. Finally,

use {2, to check the verification equation (A.1), i.e., check that &, = 2, -e( Vu , g7).
The correctness of this efficient verification follows from 2, = [[],c 1., €(Vi, Fs(A4, )]

5.1 Correctness

Theorem 6. The above scheme satisfies authentication correctness and completeness.

Proof. 1t is straightforward to see that the scheme has authentication correctness by construction:
o = Fg(L) - (¢%)°. In order to show the completeness, we prove the correctness of equation (A.1).
The remaining equations are the same as those of the scheme in
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(A.1) We only prove the case for oy, the cases for o,, and o, are equal.

(v) (v)
G0 "2 by (o) " T eV on) - (2701000

k€lqt
Auth s - (v)
=0 T Vi, Fs(Li) g7%) - (e(g, g)* ™ 1))
kEIat
[ (v)
= | I] e(Vi Fs(Le)) - e(Va, g“’“)] “e(g, g)7 ™ ) B
_kelat
[ | (v)
= H G(Vku FS(Lk)) : |: H C(Vk, gzck)i| . e(gTvt(s)éat 792)
-kelat - kel
Gen [ 7 . ; W
= [T et Fs] - e( [T )%, ¢°) - (i) g7)
T kel . kCla
Prove [ 7 ; @,
= H G(Vk, FS(Lk)) ~€(Vat’ g ) . e((‘/t)éat , g )
_kEIlLt -
[ 1 @
= [T ei FsLa)] - e(Va (V)% g7
_kEIat -
Prove [ 7 - .
2 T e, Fs(Li)) | - e(Var, %)
-kEIat -

5.2 Proof of Security

Theorem 7. If Pinocchio is a sound SNARG scheme, F is a pseudorandom function, and the d-
PKE [2]] and q-BDHE [8] assumptions hold, then the scheme described above is an AD/ISNARG
with adaptive soundness.

Before giving the proof, we first recall the ¢-BDHE assumption, which is an easy extension of

the ¢-DHE assumption (Definition 3).

Definition 5 (¢-Bilinear Diffie-Hellman assumption ([8])). Let G be a bilinear group gener-
ator, and let bgpp = (p, G, Gr, e,9) +xr G(1*). Let n,a < Z, be chosen uniformly at random. We
define the advantage of an adversary A in solving the g-BDHE problem as

AdvyPPHE(N) = PrA(begpp, g7, ¢, .-, 9™ 9" g7 ) = e(g, 9™

We say that the g-BDHE assumption holds for G if for every PPT algorithm A and any polynomially-
bounded q = poly(\) we have that Adv?{BDHE()\) 1s negligible in \.

In order to prove the theorem, we describe a series of hybrid experiments Gy — G4 defined as
follows.

Game Gy This is the adaptive soundness experiment described in [Section 3.1] and [Figure 3|
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Game G; This is the same as Gg except that the PRF Fg(-,-) is replaced by a truly random
function R : {0,1}* — G. By the security of the PRF, G; is computationally indistinguishable
from Gy, i.e.,

|Pr[Gp] — Pr[Gy]] < AdVPRF()\)

Game Gy: This is the same as Gy except that the procedure Ver sets bads < true if the adversary
makes verification queries that (a) verify correctly with respect to equation (A.1), and in which
(b) there is a label (L, ) ¢ T (i.e., A never asked to authenticate a value under label L). Clearly,
G1 and Gy are identical until Bado, i.e.,

IPr[G1] — Pr[Gg]| < Pr[Bady)]

As in the proof of it is possible to show that for every PPT adversary the probability

Pr[Bads] is (unconditionally) negligible. In particular, we can use essentially the same argument

of Lemma |1| to show that Pr[Bads] < 1%'

Game Gs: This is the same as Gy except for the following change when answering Type 2 verifi-
cation queries, i.e., we assume every label L was previously used to authenticate a value. Let
Gs Vat, Uw,Wat, and ay,Yat be the elements in the proof 7 queried by the adversary. In Gs
we compute Vi = [[rcr. (Vi)™ (and W5y, Yy, in the similar way), as well as its correspond-
ing authentication tag oy, = [[1¢;., €(Vk, 0x) (and o3, 07), where each oy is the tag previously
generated for (Lg,cx) upon the respective authentication query. Next, we replace the check of
equation (A.1) with checking whether

5'1)/0':: ( at/ atr) 9 )
N Gu/oy, = el at/ atr97) 3)

A ‘}y/U; = e(ffat/Y;tagz)

is satisfied. Then, if the equations in (A.2) are satisfied, (hence Vi, = (Va)®, Wiy = (W),
Yy = (Yat)®), we can run an extractor €4 to obtain polynomials ¥4t (7), Wat(7), Jat (*) of degree
at most d. If Vi, # (g"”)f’“(s) or Wy # (grw)”j’“‘(s) or Yy # (g”f)g“t(s)7 then we set bads < true.

First, we observe that by correctness, checking equation is equivalent to checking verification
equation (A.1). Indeed, if we let R} = [[],c;. €(Vi, R (Ly))], then correctness implies that o =
R} -e(V},, g%), and thus we can rewrite the first part of equation (A.1), i.e., 5, = R} e(Var, 97),

as "
o ~

Y e Z) €<vat7gz)

Oy = ———~
Coe(Vang
(and similar for &,, and &,) from which we obtain equation (3

Second, to see that we can run the extractor €4, we observe that the 1nput received by the
adversary A can indeed be expressed as a pair (S, auz), where S = {g*', g® }16[0 4 and auz
is some auxiliary information independent of o — exactly as in the definition of the d-PKE
assumption.

Hence, Gy and Gg are identical up to Bads, i.e.,

|Pr[Ga] — Pr[Gs]| < Pr[Bads]

and it is easy to see that the d-PKE assumption immediately implies that the probability of
Bads (i.e., that the extractor outputs a polynomial which is not a correct one) is negligible.
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Game G4: This game proceeds as Gg except for the following change in the Ver procedure. Assume
that the equations (3)) are satisfied and that bads < true is not set (i.e., Vo = (g"*)%(*) holds,
and similar the corresponding cases of Wat and ffat).

Then, compute the polynomials vy, (z) = > c; cxvr(x) and 0y(7) = Dar(z) — vy (2), where
Uat () is the polynomial obtained from the extractor. Similarly, compute w}, (), 0w (), yh (x), dy(x).
If any among 6,(x), 6y (), 6y(x) is not divisible by t(x) then set bads « true.

Clearly, G3 and G4 are identical up to Bady, i.e.,

|PI‘[G3] — PI"[G4” S Pr[Bad4]

To show that the two games are negligibly close, we prove in Lemmathat Pr[Bad,] is negligible
under the ¢-BDHE assumption, for some g = 2d + 1.

Finally, we observe that at this point, if Bady does not occur, we have verified that Vat, Wae, and
Y,; were computed by using the correct (i.e., authenticated) statement values. Namely, except
for having randomized elements Vat (resp. Wat, ?at), we are almost in the same conditions as in
proof of security of Pinocchio. In fact, in Lemma [5| we show that if any adversary has advantage
at most € in breaking the security of Pinocchio (in the zero-knowledge SNARG version of the
scheme), then Pr[G4] < @ - €, where @ is the number of Gen queries made by the adversary.

To conclude the proof, we prove our lemmas bounding, respectively, the probabilities Pr[Bad,] and
Pr[Gy].

Lemma 4. If the q-BDHE assumption holds for G, then for any PPT adversary A we have that
Pr[Bady] is negligible.

Proof. Assume that there is an adversary A such that Pr[Bady] > € is non-negligible. We show how
to build an adversary B that breaks the ¢-BDHE assumption with probability €/2DQ? —1/|F| such
that: (a) D = poly()) is an upper bound on the number of multiplication gates (and thus the degree
of the corresponding QAP) in the @ relations Ry,..., Rg queried by A to Gen, and (b) ¢ = 2d* +1
for some d* < D, which is the degree of the QAP in the relation R* for which Bady occurs.

B takes as input an instance of the ¢-BDHE assumption (bgpp, ¢", g%, g“Q, L g“ﬁg, R ga2q)
and its goal is to compute the missing element e(g", g%’ 1). To do so, it simulates G4 to A as de-
scribed in the following. Assume that Bady occurs for the relation R* which is the j-th relation

queried to Gen.
Initialize()
— B runs Initialize as in G4 with the following modifications.
— It picks random j* +—x {1,...,Q}, d* <5 {1,..., D} to guess the query’s index of R* and its
QAP’s degree respectively.
— It picks a random v <% {0,1} as a guess on whether Bady will occur for either 6, (z) or d,(x)
(v =0), or dy(x) or §y(x) (v =1).
— B sets g < 2d* + 1, and takes as input an instance (bgpp,g",ga,ga2, s ,gaq,gaqH, e ,ga2q) of
the ¢-BDHE assumption.
— It defines the degree-d* polynomial t*(z) = ngl(:z; — k) where {r;} is a set of canonical roots
used to build the QAP

12 The roots of Pinocchio’s QAP target polynomial can be chosen arbitrarily.
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— B chooses z¥(z) as a random polynomial in F[z| of degree d*+1 such that the polynomial
2%(x) t*(x) of degree 2d* 41 has a zero coefficient in front of 2% 1.

— B simulates the secret z with 7 2%(a) by computing Z = e(g", g7 @). Observe that g*" (@) can be
computed efficiently using {g* }?_, from the ¢-BDHE instance.

Gen(R)
B proceeds as follows to simulate the i-th query.

— [Case i # 7*| B runs the real Gen(pap, R) algorithm and returns its output.

— [Case i = j*] Let us call R* the queried relation. B simulates the answer to this query as follows.
First, it builds the QAP for R* and if its degree d is not d*, then B aborts the simulation.
Otherwise, we have d = d* and hence t(z) = t*(x) and B proceeds as follows.

For the value s, instead of randomly choosing it, B implicitly uses the value a from the ¢-DHE
assumption as follows.

If v = 0, B implicitly sets 7, = ! a®*!

d

and ry, = ! ryy a1l where ry,, vl <+~ F, by computing

/ ad+1 d+

Vi = grv vk (a) Y, = gr{, rw a®t 1 vy (a) V, = gr{, a?tl t(a) Y, = gr; rw a1 t(a).
Notice that these values can be computed efficiently since all the polynomials a4t vi(a) and
a1 t(a) have degree at most 2d* 41 = ¢. Similarly, all the remaining values {W}, Yk }eem] can
be simulated as the degree of the polynomials encoded in the exponent is at most d* < q.

If v = 1, B proceeds in the dual way by setting r,, = r/, a®! and Ty =Ty Th a®?! for randomly
chosen 7,7, <x F. From now on, we describe the simulation for the case v = 0 only. The
other case can easily be adapted.

Finally, p, = Z" %) is simulated by computing e(g”,g“d+1 #"(a) t(a))’";. Notice that g®
can be computed since a®*! 2*(a) t(a) has degree 3d + 2 and has a zero coefficient in front of
a?82 = 1. The same holds for the computation of p,, whereas computing p,, = e(g", g (@ #@))rw

can be simulated since z*(a) t(a) has degree 2d + 1 = q.

Auth(L,c)

To simulate authentication queries, B samples a random R <— G, updates T «— T U {(L,¢)}, and
returns ¢ = R. Observe that such ¢ is identically distributed as an authentication tag returned by
Auth in Gy4. Also, although B is not explicitly generating R < R(L), as one can notice, these values
are no longer used to answer the verification queries.

Ver(R,L, {$i}|_i¢*, )
Finally, we describe how B handles verification queries. First, note that for those queries that fall
in the Type 1 branch, B can directly answer L (reject), and it does not have to use the values R(L).
Clearly, due to definition of game G4 and since Bads does not occur, answers to these queries are
correctly distributed. Second, for queries in the Type 2 branch, we distinguish two cases according
to whether the queried relation R is R* or not.
— If R # R*, then we only show how B simulates the check of equations , ie., o,/0) =
e(Vae /VZ, %), and similar for W and Y. Note that B does not know g* = ¢"*(@),
First, let s,7, € F be the values chosen in Gen, which B knows because of R # R*. Then B
proceeds as in G4 except that it replaces equations with

d+1 2%(a)t(a)

Gy =0, e(g", g7 (@)re(@ar(s)=ve(s)

(and similar for W and Y’). The polynomial 0, (x) is obtained by the extractor. It is not hard
to see that such replacement generates an equivalent check.
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— If R = R*, then B proceeds as in Gy. Set 0,(x) + Ugt(x) — v (2), dp(x)  War(x) — Wk (2),
and 8,(2) < Gur(z) — yiu(@).
o If 0,(z) and d,(z) are divisible by t*(z), i.e., dy(z) € Span(t*(z)) and é,(x) € Span(t(x)),
then B replaces equation with

!

Gy = ahe(gh, g O @F@YL G = gt e(gh, g @@y G = gt e(gh, gt @@y

Recall that we assume v = 0 and observe that g“dﬂ‘s”(a)z*(“)
has a zero coefficient in front of a??+2? = q9+1,

e Otherwise, we assume that 6,(x) ¢ Span(t(x)). The case for §,(x) is analogous.
B checks whether w(x) = d§,(z)z*(x) is such that its coefficient wgy1 is zero. If so, B aborts
the simulation (however, by Lemma 10 [19], this happens with probability at most 1/|F]).
Otherwise, if wg11 # 0, B computes

can indeed be computed as it

- 1/ (wat1my)
G

=
2d+1
o* [Tkzokzat1 €979

qd+k+1 )T;wk

and inserts (2 in a list List and outputs L (reject).

At the end of the simulation, B picks a random value {2 in List and returns {2 as its solution
for the ¢-BDHE assumption. Notice that B’s simulation is perfect except if B aborts. However, B
can abort only in three cases: (a) if its guess on j* is wrong, i.e., if j # j* (which happens with
probability 1 —1/Q); (b) if its guess on d* is wrong, i.e., if d # d* (which happens with probability
1—-1/D); and (c) if wgy1 = 0 (which holds unconditionally with probability at most 1/|F|). Also, it
is not hard to see that if Bady occurs and if the guess of v is correct (which happens with probability
1/2), then B must insert 2* = e(g",gaqH) in List. Since List contains at most @ values, B will
pick the correct 2* with probability at least 1/Q.

Therefore, by putting together the probability that B does not abort, and that the correct
(2* is picked, with our assumption that Pr[Bads] > €, then we obtain that B breaks the ¢-BDHE
assumption with probability > ¢/2DQ? — 1/|F|. O

Lemma 5. If Pinocchio is a secure verifiable computation scheme, then for any PPT adversary A
we have that Pr[Gy4] is negligible.

The proof is essentially the same as that of Lemma

5.3 Proof of the Zero-Knowledge Property

Theorem 8. The AD/SNARG scheme described in Section[3 is statistically zero-knowledge.

Proof. The proof of this theorem is essentially the same as that for the scheme of Section [d The
only difference is the pseudorandom function.
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SNNARGs

We recall the definition of SNARGs [3122]. IT = (Gen, Prove, Ver) is a succinct non-interactive
argument for an NP language L with a corresponding NP relation R as follows:

— Given a relation R, the generation algorithm Gen(1%, R) generates a (public) reference string

EKg and the corresponding (private) verification information VKg for R.

— Given statement x and witness w with R(x, w), the prover produces a proof = <— Prove(EKg, z, w).
— The verifier runs {L, T} < Ver(VKg, z, ) to verify the validity of =.

A

SNARG is called adaptive if the prover may choose the statement x after seeing the reference

string EKgz. The following three properties need to be satisfied.
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— Completeness. For all (z,w) € R, we have that
Pr[Ver(VKg, z,7) = 0 : (EKg, VKR) + Gen(1*, R), m < Prove(EKg, z, w)] = negl(\)
— Soundness. (Adaptive case) For all efficient Prove’, we have
Pr[Ver(VKg,z,7) = T Az & L : (EKg, VKg) + Gen(1}, R), (z, ) < Prove’(EKR)] = negl(\)
(Non-adaptive case) For all efficient Prove’, and z € L, we have
Pr[Ver(VKg, z,7) = T : (EKg, VKR) < Gen(1*, R), m + Prove'(EKg, )] = negl(\)

— Succinctness. The length of a proof 7 is given by |7| = poly(A)polylog(|z|, |w|).

Verifiable non-interactive computation on authenticated data via SNARGs. Verifiable
computation over authenticated data [2] describes a setting in which a lightweight (possibly mobile)
client outsources the evaluation of a function F' over authenticated, possibly outsourced, data D
to a more powerful (but untrusted) worker. Verification of the result y = F(D) should require
less work than the evaluation of F(D) itself. Verification can be performed by the client who
outsources the computation (designated verifiability), or by anyone using only public information
(public verifiability).

Using SNARGSs to implement a verifiable computation scheme, the idea is to encode possible
values of F': {0,1}" — {0,1}" as an N'P-relation R as follows: for all  and y with F(z) =y, set
(z||ly,w) € R. The client sends input z for the evaluation under F' to the worker, who computes
y = F(z) and produces a corresponding witness w. The worker runs the Prove algorithm of the
SNARG with the completed statement z||y and witness w to obtain a succinct proof 7. Finally,
the worker returns y and 7 to the client, who in turn runs the SNARG verification algorithm.

In the case of authenticated data, the client does not send the input z itself to the worker,
but instead, the client sends labels Ly, ...,L, that uniquely identify the authenticated input. The
verification includes checks for the validity of the signatures to refer to the right computation input.

B The Pinocchio SNARG Scheme

We review the corrected SNARG version of the Pinocchio VC scheme, as published on the ePrint
archive [33]. Pinocchio basically consists of the algorithms KeyGen, Compute, and Verify, which
are used in the context of verifiable computation. This section describes a small variation, where
arbitrary N'P relations R € R are considered (instead of arithmetic functions), and where proofs
are generated for statements = and witnesses w with (z,w) € R (instead of computation results for
input u). The Compute algorithm is hence replaced by a Prove algorithm.

— (EKR, VKR) + KeyGen(R,1"): Let R be an N'P relation with statements = = (21, ...,7,) € F?
and witnesses w = (w1, ...,wp) € F*. Let N = a + b. Let C be R’s characteristic circuit, i.e.,
C(z,w) = 1 whenever (z,w) € R. Build the corresponding QAP Qr = (t(z),V,W,)) for C
with size m and degree d. Let I, = {a+1,...,a+b}U{N +1,...,m} be the indices of the
internal wires including the indices of the witness values. Let I,,; = {m} be the index of the
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output wire. Let e : G x G — G be a non-trivial bilinear map and let g be a generator of G.
Choose 1y, Ty, 8, 0y, Qs iy, 3,77 <1 F, set 1y, = ry1y,, and compute the following values:

T — gryt(s)
Vk € [m]u{0}: Vi =g Wy = grer) Y = gren(®),
Vk € Ipia : Vi= Vi), W] =Wp)*™, Y=, Bp= (Vi WY’

Additionally, compute the following values:
Vi = g™l = gty = grel(s)
Vi = (V)™ Wi=Wy™, Y/ = (Y™,
By = (W', Bw=W’, By =)
Construct the public evaluation key and the public verification key
EKRr = ({Vka/a Wi, Wi, Yie, Yi, BiYkelas {QSi}ie[d]
ViV, Wi, W), Yo Y/, By, Bu, By, Qr )

VKr = <g7 gav7gaw7gay7g'y’ gﬂ’)/’ T, {Vk7 Wi, Y, }kG[N]U{O,m})

(m) < Prove(EKRg, z,w): on input statement x and witness w, the prover evaluates the circuit
C(z,w) to obtain the internal circuit values {c;}; € I 4. For ease of description, we assume
¢ = x; for i € [a], and cq4y = w; for ¢ € [b]. The first b indices of I,,;; hence represent the
witness values w. Next, the prover computes the values

Viia = [ V)% Wiia = [ W% Ymia = J] V)™,

kelmid ke[mid kelmid
! o I\Cf ! o I\ C ! _ I\ Ck R Cl
mid H (sz) ) mid — H (Wk) ’ mid — H (Yk) y Bida = H (Bk)
k€l mia k€lniq k€l mid k€l mia

©) 5w 5w

i Opnis Opnig <R I, and compute:

To make the proof zero-knowledge, pick random values §

- 5 . s - s

Vinid = Vimid + (V) mid, Winida = Winig - (Wy) mid, Ymida = Ymia - (Yz) mid,

y st B 5t Y s

mid = Vinia - (V) mia, mid = Winia - (W)omid, mid = Ymia - (V) mia,

~ (v) (w) (y)

Bmid: Bmid . (B,U)(Smid . (Bw)67nid . (By>5mid
Next, the prover solves the QAP Q by finding a polynomial h(z) such that p(x) = h(z) - t(x)
where the polynomial p(x) includes the “perturbed versions” of the polynomials v(z), w(x),
and y(z):

p(z) = (1)[)(.’17) + Z cpvk(x) + 57(71}3dt(a:)) (wg(x) + Z crwi(z) + 67(:22#(:1:))

ke[m)]
Finally, the prover computes fil = gif(s) using the values gsi contained in the evaluation key
EKR7 and OUtputs ﬁ-y = (Vmid7 VT;“'da Wmida W;mld’ Ymid7 Yr,;nda Bmida H)

41



— {0,1} + Verify(VKg,z, 7 ): in order to verify a proof 7 (as defined above) for statement z,
perform the following steps.

(P.1) Check the satisfiability of the QAP by first computing V = Vipig - er[a](Vk)ck “Vin,
W = Wid -er[a](Wk)Ck Wi, Y = Yopid - sze[a](ykz)ck - Yy, where the ¢; with k € [a]
are the statement wires of . Second, perform the divisibility check:

(Vo V., Wo W) =e(T, H) ey Y, g)

(P.2) Check that all linear combinations are in the appropriate spans:

e( Véml , 9) =€e( Vinia , %) N e Wr’nid  9) =e( Wiia » 9°°) N e Yr’nid , 9) = e( Yiia , g°)

(P.3) Check that all the QAP linear combinations use the same coefficients:

6( Bmid ) g’}') = 6( Vmid Winida Ymid » gﬁ'y)

If all the checks above are satisfied, then return T; otherwise return L.
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