
The M3dcrypt Password Scheme

Isaiah Makwakwa
imakwakwa@gmail.com

Abstract

M3dcrypt is a password authentication scheme built around the ad-
vanced Ecryption Standard (AES) and the arcfour pseudorandom func-
tion. It uses up to 256-bit pseudorandom salt values and supports 48-byte
passwords.

1 Introduction

The user induced probability distribution, Duser, on the password space, Kp (e.g
a subset of strings from the 95 printable 7-bit ASCII characters) has inherent
low entropy [10, 17, 16]. Therefore, Kp as a source of cryptographic key material
is vulnerable to both brute force and dictionary attacks [9, 20, 7, 14].

Definition 1.1. A password scheme, {PSs}s∈S, is a function family such that
for any salt value s ∈ S there exists a one-way function,

PSs : Kp → {0, 1}L.

A function family is necessary, for since Duser has low entropy, a determin-
istic function as opposed to a pseudorandom function family, allows precompu-
tation of tables of password hashes for all or part of the password space. Thus,
it facilitates on the fly computation of pre-images.

However, high functional dependency on auxiliary randomness (often non-
secret), s ∈ S, from a large space increases the uncertainty associated with the
scheme. Indeed, with a large salt space, the space-time complexity for complete
or partial precomputation might be out of reach of even the most well resourced
of adversaries [7, 9, 14, 16].

For one-way function, we require that within feasible computational effort,
the adversary’s inversion probability (i.e. the probability of a successful pass-
word recovery given a password hash) will remain below a certain [small] thresh-
old [6, 19].

However, in practice, the above postulation requires some qualification. Con-
sider a password scheme based on a cryptographic hash of [a concatenation of]
the user password and some function of the salt value. Clearly, under the ran-
dom oracle model, such a scheme can within certain computational parameters
be considered secure. However, assuming adversarial knowledge of s ∈ S and

the password hash, the time complexity for exhaustive and/or dictionary search
may be too low for certain Duser. Indeed, by Moore’s law, the adversarial
distinguishing probability doubles every 18 months [6, 16, 14].

On the contrary, certain elements of key stretching such as the iterative appli-
cation of some cryptographic primitive(s) allows the adversarial distinguishing
probability to remain constant even with increasing computational power [9]. In
particular, it is known that key stretching techniques, in the absence of design
flaws such as narrow pipes and reusable internal values, allow for a quantifiable
increase in the complexity of dictionary and brute force attacks [9, 20].

The above not withstanding, a moderately resourced adversary can build
special purpose key search machines (e.g. the Electronic Frontier Foundation’s
DES cracker [14] and M. Wiener’s design for a DES cracker [16]) that dramati-
cally reduce the [area-time] cost of brute force attacks.

Moreover, by Moore’s law [16], [cryptographic] circuits not only become
faster but cheaper and smaller allowing for greater parallelism and dramatic
growth in the economies of scale available to the attacker. Therefore, hardware-
frustrating techniques such as memory and/or expensive operations may be nec-
essary for imposing cost constraints on custom circuits while ensuring efficiency
of computation on general purpose processors [9, 13].

In this paper, a new password based key derivation function, M3dcrypt is
proposed. The rest of the paper is organised as follows. Section 2 discusses var-
ious background and preliminary material, Section 3 provides a detailed specifi-
cation of the scheme, Section 4 analyses the security of the scheme and Section 5
explores some implementation issues.

1.1 The M3dcrypt Byte Ordering and Notation

The M3dcrypt password scheme assumes little endian byte ordering. However,
big endian byte ordering can also be used so long consistency is ensured for all
functions and constants [15].

Further, the M3dcrypt password scheme adopts the notation Vi for the ith

element of any array V .

2 Preliminaries

The M3dcrypt password scheme is based on the Advanced Encryption Standard
(AES) algorithm [11]. In particular, M3dcrypt implements a set of AES-like
permutations

E(Nr,Y) : Z128
2 → Z128

2

where Nr denotes the number of rounds of the AES encryption function and Y
is an array of Nr + 1 128-bit round subkeys.

In particular,

E(Nr,Y) = σNr ◦ τ ◦ γ ◦
(
©Nr−1
i=1 σi ◦ θ ◦ τ ◦ γ

)
◦ σ0,

2

where σk(state) = AddRoundKey(state, Yk), γ(state) = ByteSub(state), τ(state) =
ShiftRow(state) and θ(state) = MixColumn(state) [5, 18].

We require the following.

Let g : Z128
2 → Z128

2 be a fixed permutation, define the domain extension,
ĝm : Z128m

2 → Z128m
2 , by

ĝm(x) = (g0(x), g1(x), g2(x), · · · , gm−1(x))

where x = (x0, x1, · · · , xm−1) ∈ Z128m
2 and each

gi(x) = g(gi−1(x)⊕ xi)

is recursively defined by setting g−1(z) = 0,∀z ∈ Z128m
2 .

The domain extension f̃m : Z128m
2 → Z128m

2 for some fixed permutation
f : Z128

2 → Z128
2 is similarly defined

f̃m(x) = (f0(x), f1(x), f2(x), · · · , fm−1(x))

where each

fi(x) = f(fi+1(x)⊕ xi)

is recursively defined by setting fm(z) = 0,∀z ∈ Z128m
2 .

Claim 2.1. The domain extension ĝm : Z128m
2 → Z128m

2 is a permutation.

Proof. We prove by contradiction. Let x = (x0, x1, · · · , xm−1), y = (y0, y1, · · · , ym−1) ∈
Z128m
2 be such that x 6= y and ĝm(x) = ĝm(y). Then, since g is a permutation,

we must have iteratively

gi(x) = gi(y) =⇒ xi = yi, 0 ≤ i ≤ m− 1

contradicting x 6= y. Therefore, by the size of the co-domain, ĝm is a permuta-
tion.

Claim 2.2. The domain extension f̃m : Z128m
2 → Z128m

2 is a permutation.

Proof. Similar to Claim 2.1.

2.1 The M3dcrypt Auxilliary Key Schedule

Let ϑNr : Z128
2 → Z128×(Nr+1)

2 denote the Nr round AES-128 key schedule and

S = θ ◦ τ ◦ γ

denote the unkeyed AES round function.

3

Let πi : Z128m
2 → Z128m

2 be defined by

πi(x) =

{
ĝm(x) i ∈ {0, 2, 4, · · · , }
f̃m(x) i ∈ {1, 3, 5, · · · , },

for all x ∈ Z128m
2 and let πm : Z128m

2 → Z128m
2 denote the permutation defined

by

πm(x) =©m−1
i=0 πi(x)

for all x ∈ Z128m
2 .

Then, the auxilliary key schedule key initialisation function

If : Z128m
2 → Z128×2m

2 ,

is defined by the following algorithm.

Algorithm 1: Key Initialisation Function, If

Require: key ∈ Z128m
2 .

If (key):
(k0, k1, · · · , km−1) := (πm(key)⊕ key)
(km, km+1, · · · , k2m−1) := πm(key)
for i := 0 to m− 1 do

ki := S(ki)
end for

Return (k0, k1, · · · , km−1, km, km+1, · · · , k2m−1)

The auxilliary key schedule key extraction function

fX : Z128m
2 → Z128×(Nr−2m+1)

2

is defined by the following algorithm.

4

Algorithm 2: Key Extraction Function, fX

Require: (k0, k1, · · · , km−1) ∈ Z128m
2

fX(k0, k1, · · · , km−1):
p := 0; ωp−1 := 0; φp−1 := 0
while (p < (Nr − 2m+ 1)) do

ωp := S
(
ωp−1 ⊕ (p+ 1)⊕

(⊕p+m−1
i=p ki

))
kp := S(φp−1 ⊕ ωp)
φp := S(φp−1 ⊕ kp)
p := p+ 1

end while

Return (k0, k1, k2, · · · , kNr−2m)

Finally, define ϕNr : Z128m
2 → Z128×(Nr+1)

2 the Nr-round (Nr ≥ 3m) auxil-
liary key schedule for 128m-bit master keys by

ϕNr(key) = ROT128m
(
If (key), fX(πm(key))

)
for all key ∈ Z128m

2 , where ROTk is the k-bit right cyclic shift function.

2.2 The M3dcrypt Constants

The M3dcrypt constants are based on the first four subkeys of the AES-128 key
schedule for master key 0, C = ϑ3(0). Therefore,

C0 = {0x00000000, 0x00000000, 0x00000000, 0x00000000},
C1 = {0x63636362, 0x63636362, 0x63636362, 0x63636362},
C2 = {0xc998989b, 0xaafbfbf9, 0xc998989b, 0xaafbfbf9},
C3 = {0x50349790, 0xfacf6c69, 0x3357f4f2, 0x99ac0f0b}.

2.3 Properties of the Auxilliary Key Schedule

Claim 2.3. For Nr ≥ 3m, pairs of equivalent keys in ϕNr are unlikely.

Proof. Pairs of equivalent keys are a certainty if there exist pairs of keys key0 6=
key1 ∈ Z128m

2 such that ϕNr(key
0) = ϕNr(key

1).
Since πm(key0) 6= πm(key1) are part of the subkey sequence(s), ϕNr(key

0) 6=
ϕNr(key

1) for all key0 6= key1 ∈ Z128m
2 and Nr ≥ 3m.

Claim 2.4. For Nr ≥ 3m and m < 15, related-key differential attacks in ϕNr
are unlikely.

5

Proof. Related-key attacks exist in ciphers in whch an adversary is able to
transition non-trivial differences through both the key schedule and the inner
state.

Since, on average, a brute force attack requires 2n−1 rekeyings [17, 15], any
n-bit key schedule in which transitioning non-trivial differences has maximum
probability 21−n is resilient against the attack.

However, in effect, this merely re-states the requirement for key schedule
resilience against differential attacks [8, 3].

On the other hand, bearing in mind the arguments of [12, 2], we note that
πm has differential propagation ratio at most 2−120(m+1). Hence, resistance
against related-key attacks holds whenever the following inequality holds

120m+ 120 > 128m− 1

and thus whenever m < 15.

3 The M3dcrypt Password Hashing Algorithm

Let salt ∈ Zk2 , 128 ≤ k ≤ 256, be the arcfour generated salt value zero padded
to 256 bits if necessary, passwd be the user password, 220 ≤ m cost ≤ 231 (a
power of two) be the configurable memory parameter, 23 ≤ tfactor ≤ 25 be
the configurable time factor and X be an array of m cost 128-bit values defined
below.

Then the M3dcrypt password hashing function is the AES based variant of
the bcrypt design [14] defined below.

3.1 The M3dcrypt Key Schedule Parameters

Let 220 ≤ m cost ≤ 231 and 23 ≤ tfactor ≤ 25 be the configurable memory and
time parameters respectively . Further, let

t cost = m cost
tfactor , lt cost = log2(t cost), rt0 = 1, and rt1 = 3

be fixed, then the rest of the M3dcrypt key schedule parameters depend on the
value of lt cost as follows.

lt cost skey rt2 rt3
8− 16 0xD09788FD 6 2
17− 28 0xD09788FD 8 15

29 0x27E6FB94 8 15
30 0x2C8DB305 8 15
31 0xD09788FD 8 16

6

3.2 The M3dcrypt Key Schedule

The M3dcrypt key schedule algorithm V : Z384
2 → Z128×21

2 follows the Anubis
design based on a main key selection function complemented by a key evolution
function [15].

For any fixed integer z ∈ Z, let ψz : Z128
2 → Z128

2 be defined by

ψz(x) = x⊕ z,

where z is considered as a 128-bit little endian integer.
Then the M3dcrypt key evolution function,

χ : Z384
2 × Z256

2 × Z→
(
Z128
2

)m cost
,

is defined by Algorithm 3 below.

Algorithm 3: Key Evolution Function, χ

Require: key := (passwd||0384−|passwd|) ∈ Z384
2 , salt ∈ Z256

2 ,
220 ≤ m cost ≤ 231.

χ(passwd, salt,m cost):
for z = 0 to 3 do

Xz := E(4,ϑ4(0)) ◦ ψz ◦ E(20,ϕ20(key)) ◦ E(16,ϕ16(salt))(Cz).
end for
for z = 4 to m cost− 1 do

Xz := E(4,ϑ4(0)) ◦ ψz(Xz−1 ⊕Xz−4).
end for

Return X

For the key selection function we require the following.

Let ROT (x, k) denote the right cyclic shift of x ∈ Zt cost2 by k bits and
λ : Zt cost → Zm cost denote the the linear injection defined by

λ(x) = ε ◦ l(x),

where

l(x) = ROT (x, rt1)⊕ skey

and

ε(x) = tfactor × (ROT (x, rt0)⊕ROT (x, rt2)⊕ROT (x, rt3))

for all x ∈ Zt cost.

7

Define f∗p , g
∗
p : Z128

2 → Z128
2 , the AES-like permutations defined by

g∗p = E(tfactor−1,(Xλ(p),Xλ(p)+1,Xλ(p)+2,··· ,Xλ(p)+tfactor−1)),

f∗p = E(tfactor−1,(Xλ(p),Xλ(p)+1,Xλ(p)+2,··· ,Xλ(p)+tfactor−1))

where 0 ≤ p ≤ t cost− 1.

Let ĝmp : Z128m
2 → Z128m

2 denote the domain extension defined by

ĝmp (x) = (gp(x), gp+1(x), gp+2(x), · · · , gp+m−1(x))

where x = (x0, x1, · · · , xm−1) ∈ Z128m
2 and each

gp+k(x) = g∗p+k(gp+k−1(x)⊕ xk)

0 ≤ k ≤ m − 1 is recursively defined by setting gp−1(z) = 0, for all z ∈ Z128m
2

and all values of p.

Similarly, let f̃mp : Z128m
2 → Z128m

2 denote the domain extension defined by

f̃mp (x) = (fp(x), fp+1(x), fp+2(x), · · · , fp+m−1(x))

where x = (x0, x1, · · · , xm−1) ∈ Z128m
2 and each

fp+k(x) = f∗p+k(fp+k+1(x)⊕ xk)

0 ≤ k ≤ m − 1 is recursively defined by setting fp+m(z) = 0, for all z ∈ Z128m
2

and all values of p.

Clearly, the above definitions require that f̃mp and ĝmp have instance depen-
dence i.e. given consecutive computations ĝmp (x) and ĝmp+m(x),

gp+m−1(x) =

{
g∗p+m−1(gp+m−2(x)⊕ xm−1) in ĝmp (x)
0 in ĝmp+m(x).

for any fixed input x ∈ Z128m
2 .

Claim 3.1. The domain extensions f̃mp , ĝ
m
p : Z128m

2 → Z128m
2 are permutations.

Proof. Similar to Claim 2.1.

Moreover, since for any 1 ≤ m
′
< m we can unambiguously (by some ap-

propriate isomorphism) express Z128m
2 as Z128m

′

2 ×Z128(m−m
′
)

2 , we obtain trivial

extensions f̃
′m
′

p : Z128m
2 → Z128m

2 , defined by

f̃
′m
′

p (x, y) =
(
f̃m
′

p (x), y
)

8

where x ∈ Z128m
′

2 and y ∈ Z128(m−m
′
)

2 . The case of ĝ
′m
′

p is similar.

Let Ψm
(X,t cost,tfactor) : Z128m

2 → Z128m
2 denote the permutation defined by

Ψm
(X,t cost,tfactor) = f̃

′r−m
′

2m×b t cost2m c+m ◦ ĝ
′m
′

2m×b t cost2m c©
b t cost2m c−1
i=0,p=2mi

(
f̃mp+m ◦ ĝmp

)
where r = (t cost % 2m) and m

′
= Minimum(m, r) with the convention

ĝ
′0
s (z) = f̃

′0
k (z) = z for all s, k ≥ 0 and ∀z ∈ Z128m

2 .

For the special case of the M3dcrypt password hashing algorithm, Ψ3
(X,t cost,tfactor)

can be algorithmically defined by Algorithm 4 below.

Algorithm 4: Algorithmic View of Ψ3
(X,t cost,tfactor)

Require: v = (v0, v1, v2) ∈ Z384
2 , 217 ≤ t cost ≤ 228, X ∈

(
Z128
2

)m cost

23 ≤ tfactor ≤ 25.

Ψ3
(X,t cost,tfactor)(v):

ts := 0; p := 0; z := 0
while z < t cost do

p := λ(z)
key := (Xp, Xp+1, Xp+2, · · · , Xp+tfactor−1)
ts := z % 6
if ts < 3 then

if ts = 0 then
v0 := E(tfactor−1,key)(v0)

else
vts := E(tfactor−1,key)(vts ⊕ vts−1)

end if
else

if ts = 3 then
v2 := E(tfactor−1,key)(v2)

else
v5−ts := E(tfactor−1,key)(v5−ts ⊕ v6−ts)

end if
end if
z := z + 1

end while

Return v

Further, let key = (X(m cost−tfactor), X(m cost−tfactor+1), · · · , X(m cost−1))
and set g = E(tfactor−1,key). Define

ĝmX = ĝm

9

where ĝm is defined in Section 3.

Similarly, let f = E(20,key) where key = (X0, X1, · · · , X20). Define

f̃mX = f̃m

where f̃m is defined in Section 3.

Finally, let key ∈ Z384
2 and g = E(20,ϕ20(key)), define

ĝmkey = ĝm,

where ĝm is defined in Section 3.

Let key ∈ Z384
2 and Πm

(X,t cost,tfactor) : Z128m
2 → Z128m

2 be the permutation
defined by

Πm
(X,t cost,tfactor) = ĝmkey ◦Ψm ◦ f̃mX ◦ ĝmX ,

then the M3dcrypt key selection function is the map

ϕ20 ◦Π3
(X,t cost,tfactor) : {0} → Z128×21

2

where X ∈
(
Z128
2

)m cost
, 23 ≤ tfactor ≤ 25 and 217 ≤ t cost ≤ 228.

Therefore, the M3dcrypt key schedule algorithm

V : Z384
2 × Z256

2 × Z× Z→ Z128×21
2

is defined by Algorithm 5 below.

Algorithm 5: M3dcrypt Key Schedule Algorithm, V

Require: passwd ∈ Kp, salt ∈ Z256
2 , 220 ≤ m cost ≤ 231, 23 ≤ tfactor ≤ 25

V(passwd, salt,m cost, tfactor):
key := passwd||0384−|passwd|
t cost := m cost

tfactor

X := χ(key, salt,m cost)

Return ϕ20 ◦Π3
(X,t cost,tfactor)(0)

10

3.3 The M3dcrypt Password Hashing Function

Let salt ∈ Z256
2 , 220 ≤ m cost ≤ 231 and 23 ≤ tfactor ≤ 25. Then the M3dcrypt

password hashing function,

M3dcrypt hash(salt,m cost,tfactor) : Kp → Z512
2 ,

is defined by Algorithm 5 below.

Algorithm 5: The M3dcrypt hash Algorithm

Require: passwd ∈ Kp, salt ∈ Z256
2 , 220 ≤ m cost ≤ 231,

23 ≤ tfactor ≤ 25, C from Section 2.2.

M3dcrypt hash(salt,m cost,tfactor)(passwd):

g := E(20,V(passwd,salt,m cost,tfactor))

for i := 0 to 3 do
hi := g2(Ci)

end for

Return (h0, h1, h2, h3)

4 Security Analysis

For this section, we require the following properties (Claim 4.1 and Claim 4.2)
of random permutations.

Claim 4.1. For any random permutation π : Zn2 → Zn2 and any two elements
x, y ∈ Zn2 , Pr[π(x) = y] = 2−n [6].

Claim 4.2. For any two random permutations π0, π1 : Zn2 → Zn2 and any two
elements x, y ∈ Zn2 ,

Pr[π0(x) = π1(y)] =

 2−n π0 6= π1
1 π0 = π1 and x = y
0 π0 = π1 and x 6= y

Proof. Since the second and last cases are clear, we consider the case π0 6= π1.

11

We have,

Pr[π0(x) = π1(y)] =
∑
z∈Zn2

Pr[π0(x) = z|π1(y) = z] · Pr[π1(y) = z]

= 2n · 1

22n

= 2−n.

4.1 Properties of χ

Claim 4.3. For any fixed random password and salt value, any set of six con-
secutive elements of the X array has at least two distinct elements.

Proof. We prove by contradiction. Let Xz−4 = Xz−3 = Xz−2 = · · · = Xz =
Xz+1, (4 ≤ z ≤ m cost − 2) be a set of 6 consecutive elements of the X array
for a fixed random password and salt value.

Then we must have

E(4,ϑ4(0))(Xz−4 ⊕Xz−1 ⊕ z) = Xz

= Xz+1

= E(4,ϑ4(0))(Xz−3 ⊕Xz ⊕ (z + 1)).

Since Xz−4 = Xz−1 and Xz−3 = Xz, we have a contradiction.

Claim 4.4. For any fixed random password and salt value, there are with high
probability at least two distinct 128-bit elements in every set of five elements of
the X array.

Proof. For brevity, we abuse notation as follows. Fix the rest of the X indices
and set Xz−4 = E(20,ϕ20(key)) ◦ E(16,ϕ16(salt))(Cz), 0 ≤ z ≤ 3. Therefore, for any
0 ≤ z 6= j ≤ m cost− 1

E(4,ϑ4(0))(X
∗
z−1 ⊕Xz−4 ⊕ z) = Xz

= Xj

= E(4,ϑ4(0))(X
∗
j−1 ⊕Xj−4 ⊕ j)

implies (X∗z−1 ⊕Xz−4)⊕ (X∗j−1 ⊕Xj−4) = z ⊕ j where

X∗k−1 =

{
0 0 ≤ k ≤ 3
Xk−1 4 ≤ k ≤ m cost− 1.

Since z and j are fixed integers, we have

Pr[(X∗z−1 ⊕Xz−4)⊕ (X∗j−1 ⊕Xj−4) = z ⊕ j] = 2−128.

12

Therefore, with probability at most 1 − 2−512 there are at least two distinct
128-bit elements in every set of five elements from the X array.

Claim 4.5. For any fixed random password and salt value, the X array is not
composed of a single repeating cycle of length greater than four.

Proof. We prove by contradiction.
By definition X has a cycle if we can find `, 0 ≤ ` ≤ m cost − µ − 1 and

µ > 1 such that there exists a leading sequence X0, X1, · · · , X`−1 called a leader
and a cycle X`, X`+1, · · · , X`+µ of length µ such that X` = X`+µ [7].

SupposeX = {X0, X1, · · · , Xµ−1, X0, X1, · · · , Xµ−1, · · · } for some µ a power
of two (since m cost is a power of 2). Consider any two points z and j in distinct
cycles such that Xz+k = Xj+k, 0 ≤ k ≤ 4. We must have

E(4,ϑ4(0))(Xz+3 ⊕Xz ⊕ (z + 4)) = Xz+4

= Xj+4

= E(4,ϑ4(0))(Xj+3 ⊕Xj ⊕ (j + 4))

Since Xz+3 = Xj+3 and Xz = Xj we have a contradiction for E(4,ϑ4(0)).
Therefore, we must have µ ≤ 4.

Clearly, Claim 4.5 shows that X does not contain any repeated cycle of
length more than 4. This leads to Claim 4.6.

Claim 4.6. For any fixed random password and salt value, the X array is not
composed of any single repeating cycle.

Proof. We prove by contradiction.
SupposeX = {X0, X1, · · · , Xµ−1, X0, X1, · · · , Xµ−1, · · · } for some µ a power

of two, then by Claim 4.5, µ = 2 or 4.

If µ = 2, Xz = Xz−2 for all 0 ≤ z ≤ m cost− 1. Therefore, by the value of
m cost

E(4,ϑ4(0))(Xz+3 ⊕Xz ⊕ (z + 4)) = Xz+4

= Xz+6

= E(4,ϑ4(0))(Xz+5 ⊕Xz+2 ⊕ (z + 6))

= E(4,ϑ4(0))(Xz+3 ⊕Xz ⊕ (z + 6)),

a contradiction.

13

If µ = 4, Xz = Xz−4 for all 0 ≤ z ≤ m cost− 1. Therefore, by the value of
m cost

E(4,ϑ4(0))(Xz+3 ⊕Xz ⊕ (z + 4)) = Xz+4

= Xz+8

= E(4,ϑ4(0))(Xz+7 ⊕Xz+4 ⊕ (z + 8))

= E(4,ϑ4(0))(Xz+3 ⊕Xz ⊕ (z + 8)),

a contradiction.

As it turns out, we can prove a stronger result.

Claim 4.7. For any fixed random password and salt value, more than two re-
peated cycles in X are unlikely.

Proof. Suppose {Xz, Xz+1, · · · , Xz+µ−1} = {Xj , Xj+1, · · · , Xj+µ−1} ⊂ X, 0 ≤
z 6= j ≤ m cost− 1 is a repeated cycle. Clearly,

E(4,ϑ4(0))(Xz−1 ⊕Xz−4 ⊕ z) = Xz

= Xj

= E(4,ϑ4(0))(Xj−1 ⊕Xj−4 ⊕ j)

implies (Xz−1 ⊕Xz−4)⊕ (Xj−1 ⊕Xj−4) = z ⊕ j.
Therefore, for a fixed random password and salt value, a repeated cycle oc-

curs with probability at most Pr2[(Xz−1 ⊕Xz−4)⊕ (Xj−1 ⊕Xj−4) = z ⊕ j] =
2−256. Hence, two repeated cycles have probability at most 2−512 which is un-
likely for 384-bit passwords.

Claim 4.7 implies that the adversary acquires no nontrivial complexity gain
in exploiting regularities in the X array.

4.2 Differential Properties of the Password Scheme

Claim 4.8. Any set of 4 consecutive elements of the X array for any two
distinct passwords and a fixed salt value are distinct.

Proof. We prove by contradiction.
Suppose there exist two distinct passwords and a fixed salt value such that

{X0
z , X

0
z+1, X

0
z+2, X

0
z+3} = {X1

z , X
1
z+1, X

1
z+2, X

1
z+3}

where Xj is the [ordered] X array for the jth password and z ≥ 0.
Then, we have

E(4,ϑ4(0))(X
0
z+2 ⊕X0

z−1 ⊕ z + 3) = X0
z+3

= X1
z+3

= E(4,ϑ4(0))(X
1
z+2 ⊕X1

z−1 ⊕ z + 3)

14

which implies X0
z−1 = X1

z−1. Similarly, we have X0
z−2 = X1

z−2, X0
z−3 = X1

z−3
and X0

z−4 = X1
z−4.

Applying this iteratively, we arrive at X0
0 = X1

0 , X
0
1 = X1

1 , X
0
2 = X1

2 and
X0

3 = X1
3 . However, this can only happen with probability 2−512 a contradic-

tion for 384-bit passwords by Claim 4.1 and Claim 4.2.

Claim 4.9. Related-password and related-salt attacks in M3dcrypt are unlikely.

Proof. Follows from Claim 2.4, Claim 4.2, Claim 4.8 and the differential prop-
agation ratio for E(4,ϑ(0)) [12].

Claim 4.10. For any fixed salt value, pairs of equivalent passwords in M3dcrypt
are unlikely.

Proof. Claim 2.3 shows that ϕ20(x) 6= ϕ20(y) for any x 6= y ∈ Z384
2 . On the

other hand Claim 4.7 shows that for any two passwords pd0 6= pd1 ∈ Kp,

Π3
(X0,t cost,tfactor) 6= Π3

(X1,t cost,tfactor),

where Xj = χ(keyj , salt,m cost) and keyj = pdj ||0384−|pdj |.

Hence, by Claim 4.2,

Pr [V(pd0, salt,m cost, tfactor) = V(pd1, salt,m cost, tfactor)]

= Pr
[
Π3

(X0,t cost,tfactor)(0) = Π3
(X1,t cost,tfactor)(0)

]
= 2−384.

Therefore, pairs of equivalent keys are unlikely.

4.3 Security of the M3dcrypt Password Scheme

Theorem 4.1. Let salt ∈ Z256
2 , m cost ∈ Z and tfactor ∈ Z be fixed, then the

M3dcrypt password hashing function M3dcrypt hash(salt,m cost,tfactor) : Kp →
Z512
2 satisfies

AdvowfM3dcrypt hash(salt,m cost,tfactor)
(t) ≤ AdvprpF (8, t+ O(640 + TF)) +

57

2129

where F = E(20,V(.,salt,m cost,tfactor))(.) : Kp × Z128
2 → Z128

2 and TF is time for
a single iteration of F .

Proof. For brevity, let

h(k) = M3dcrypt hash(salt,m cost,tfactor)(k)

= (F (k,C0), F (k,C1), F (k,C2), F (k,C3)) ,

where F (k, x) = E(20,V(k,salt,m cost,tfactor))(x) for all k ∈ Kp and all x ∈ Z128
2 .

15

For any inverter I for h, define

Advowfh,I (t) = Pr
[
h(k

′
) = y; k

R←− Kp; y = h(k); k
′

= I(y)
]

where I runs in time at most t [6].

Clearly, for any inverter I of h, we can construct a prf-adversary A for F as
follows.

Adversary Af

Compute y =
(
f2(C0), f2(C1), f2(C2), f2(C3)

)
Run I to obtain k

′
= I(y)

If h(k
′
) = y then

Return 1
else

Return 0

SinceA has oracle access to the function instance f of either F or Rand128→128

it can compute y = f2(x) for all x ∈ Z128
2 . Therefore, it can run I as a sub-

routine which recovers the key with probability Advowfh,I (t) whenever f is an
instance of F and where t is the maximum running time for I.

Moreover, since h is a public function, A can compute h(k
′
) to confirm the

result [4].

Therefore,

Pr[f
R←− F : Af = 1] = Advowfh,I (t)

Pr[f
R←− Rand128→128 : Af = 1] ≤ 1.00002

2383
.

For the last inequality, we note the following. Given k ∈ Kp and any random

k
′ ∈ Kp,

Pr[h(k) = h(k
′
)] = Pr[h(k) = h(k

′
) | k = k

′
] · Pr[k = k

′
]

+Pr[h(k) = h(k
′
) | k 6= k

′
] · Pr[k 6= k

′
]

= 1 · 1

2384
+ (1− 1

2384
) · Pr[h(k) = h(k

′
) | k 6= k

′
]

≤ 1

2384
+ Pr

[
h(k) = h(k

′
) | V(k) 6= V(k

′
)
]

·Pr
[
V(k) 6= V(k

′
) | k 6= k

′
]

+Pr
[
h(k) = h(k

′
) | V(k) = V(k

′
)
]

·Pr
[
V(k) = V(k

′
) | k 6= k

′
]

16

=
1

2384
+

1

2512
· (1− 1

2384
) + 1 · 1

2384

≤ 1

2512
+

1

2383

≤ 1.00002

2383
.

We must have,

AdvprfF (A) = Pr[f
R←− F : Af = 1]− Pr[f Rand←−−−

128→128

: Af = 1]

≥ Advowfh,I (t)− 1.00002

2383
.

Therefore,

AdvprfF (8, t
′
) +

1.00002

2383
≥ max

I
{Advowfh,I (t)}

= Advowfh (t).

Hence, by Proposition 2.5 of [4],

AdvowfM3dcrypt hash(salt,m cost,tfactor)
(t) ≤ AdvprpF (8, t

′
) +

57

2129
,

where q = 8 and t
′

= t+ O(128 + 128 + 384 + TF) = t+ O(640 + TF) [4].

Theorem 4.1 shows that the M3dcrypt passowd scheme is a secure password
hashing function as long as E(20,V(.,salt,m cost,tfactor))(.) : Kp × Z128

2 → Z128
2 is a

secure PRP.

5 Efficiency analysis

5.1 Software Implementations

The M3dcrypt password scheme is designed to exploit the high efficiency Ad-
vanced Encryption Standard New Instructions (AES-NI) through a design that
makes extensive use of the AES encryption round function (AESENC).

Therefore, M3dcrypt admits efficient implementation on all platforms in-
cluding those with modern features such as Single Instruction Multiple Data
(SIMD) and multicore CPUs [5, 1].

For completion, an example non-AES-NI implementation on a 1.6 GHZ Intel
Core 2 Duo Processor running the GCC compiler completes 4.742 evaluations of
M3dcrypt per second (using minimum parameters). In comparison, at creation
in 1977, crypt could be evaluated about 3.6 times per second on a VAX-11/780
[14].

17

5.2 Hardware Implementations

The availability of large random access memory (RAM) in software implementa-
tions shifts the implementation bottleneck from random access memory (RAM)
to optimal implementation of the cryptographic primitive.

On the contrary, we can assume that efficient hardware for primitives in
wide spread use exist (e.g. standardised algorithms such as the AES). Possibil-
ities for further customisation (e.g. external pipelining and/or other extensive
parallelism) are contingent on the availability and cost of RAM [9].

However, by Claims 4.3, 4.4 and 4.7, the high entropy X array ensures that
extensive time/memory trade-offs increase the number of auxiliary computa-
tions required to process further Xk values, 0 ≤ k ≤ m cost− 1.

In particular, any values Xk in step (c) of Algorithm 3 not in memory will
either have to be computed from scratch or from some point further down (in
RAM) the computation chain.

Therefore, assuming large memory requirement for X, massively parallel key
search machines may be [area-time] costly.

6 Conclusion

We have described a new password hashing function which is secure as long as
E(20,V(.,salt,m cost,tfactor))(.) is a secure PRP.

References

[1] R. Benadjila, Use of the AES Instruction Set, ECRYPT II AES Day, Oc-
tober 2012.

[2] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosys-
tems, Journal of Cryptology, 4, 1, pp. 372, 1991.

[3] J. Daemen and V. Rijmen, On the Related-key Attacks Against AES, Pro-
ceedings of the Romanian Academy, Series A, Volume 13, Number 4/2012,
pp. 395400, 2012.

[4] M. Bellare, J. Killian and P. Rogaway, The Security of the Cipher Block
Chaining Message Authentication Code, Journal of Computer and System
Sciences, Vol. 61 No. 3, pp. 362-399, 2000.

[5] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Submission,
http://www.nist.org/aes, 1999.

[6] S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, July 2008.

[7] B. Kaliski, PKCS #5: Password-Based Cryptography Specification Version
2.0, RFC 2898, 2000.

18

[8] J. Kelsey, B. Schneier and D. Wagner, Key-Schedule Cryptanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES, Lecture Notes in Com-
puter Science, 1109, pp. 237-251, 1996.

[9] J. Kelsey, B. Schneier, C. Hall and D. Wagner, Secure Applications of Low-
Entropy Keys, Proceedings of the First International Workshop ISW 97,
Springer-Verlag, 1998.

[10] D. Klein. Foiling the Cracker: A Survey of and Improvements to Password
Security, Proceedings, UNIX Security Workshop II, August 1990.

[11] NIST, FIPS-197: Advanced Encryption Standard, Na-
tional Institute of Standards and Technology (NIST),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November
2001.

[12] S. Park, S. H. Sang, S. Lee, and J. Lim, Improving the Upper Bound on
the Maximum Differential and the Maximum Linear Hull Probability for
SPN Structures and AES, Fast Software Encryption 2003, LNCS 2887, pp.
247-260, Springer-Verlag, 2003.

[13] C. Percival and S. Josefsson, The Scrypt Password-Based Key Derivation
Function, IETF Internet Draft, 2012.

[14] N. Provos and D. Mazieres. A Future-Adaptable Password Scheme,
USENIX Annual Technical Conference, USENIX 99, The Advanced Com-
puting Systems Association, 1999.

[15] V. Rijmen and P. Barreto. The Anubis Block Cipher, Submission to the
NESSIE Project, March 2000.

[16] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons, Second Edition, 1996.

[17] W. Stallings. Cryptography and Network Security: Principles and Practice,
Prentice Hall, Second Edition, 1998.

[18] D. R. Stinson, Cryptography: Theory and Practice, Second Edition, Chap-
man & Hall, 2002.

[19] D. Wagner and I. Goldberg, Proofs of Security For The UNIX Password
Hashing Algorithm, In Advances in Cryptology - Asiacrypt 00, Springer-
Verlag, 2000.

[20] F.F. Yao and Y.L. Yin, Design and Analysis of Password-Based Key Deriva-
tion Functions, CT-RSA 2005.

19

