
The M3dcrypt Password Hashing Function

Isaiah Makwakwa
imakwakwa@gmail.com

Abstract

M3dcrypt is a password hashing function built around the Advanced
Encryption Standard (AES) algorithm and the arcfour pseudorandom
function. It uses up to 256-bit pseudorandom salt values and supports
48-byte passwords.

1 Introduction

1.1 Properties of the Password Space

A password is an authentication token generated by some rule(s) as a sentential
form over a finite alphabet. Therefore, given an access control system A, the
password space PA ⊆ Σ∗ for A is the set

PA = {x ∈ Σ∗ : RA(x) = ACCEPT} ,

where RA : Σ∗ → {ACCEPT,REJECT} validates conformity to a finite set of
password rules [based on the prevailing security policy] and Σ is the password
alphabet.

Since Σ∗ contains infinite length strings, one expects that in practice,

PA ⊆
⋃

MINp≤i≤MAXp

Σi (Σ∗

for some MAXp ∈ N less than or equal to the maximum string length on A and

MINp = min {|x| : x ∈ Σ∗, RA(x) = ACCEPT} .

Therefore, PA is clearly finite. Alternatively, for any i ≥ 1, let trunci : Σ∗ →⋃
1≤j≤i Σj be the string truncating function defined by

trunci(x) =

{
x
′

= x0x1x2 · · ·xi−1 if |x| > i,
x otherwise,

where xi ∈ Σ, for all 0 ≤ i ≤ |x| − 1. Let 'i denote the equivalence relation on
Σ∗ defined by

u 'i v iff trunci(u) = trunci(v)

for any u, v ∈ Σ∗.
Define

P
′

A =

[x] ∈ Σ∗/ 'MAXp : x ∈
⋃

MINp≤i≤MAXp

Σi, RA(x) = ACCEPT

 ,

where Σ∗/ 'MAXp is the set of all equivalence classes in Σ∗ under 'MAXp .

Then, clearly, there is a bijection between PA and P
′

A. Most importantly, in
relation to RA [and thus the security policy], all y ∈ [x] provide equivalent
security. Thus, we could define PA over infinite length strings as follows

PA =
{
x ∈ Σ∗ : RA(truncMAXp(x)) = ACCEPT

}
.

Since the password space membership problem is decidable in polynomial
time (otherwise, proactive password checking may not admit any password in
the system’s lifetime and inadmissible passwords may be indefinately acceptable
in passive password checking [24, 23]), an efficient algorithm for RA must exist.
That is, there exists a Turing Machine MA (implementing RA) and a polynomial
QA such that for all x ∈ Σ∗

(i) x ∈ PA iff MA(x) accepts.

(ii) MA halts after at most QA(|x|) steps [9].

This implies that PA is at most a type-2 language [10].

Example 1.1. Let PA be the language rejected by the kth-order Markov model
[m,A,T,k] in the Davies-Ganesan proactive checker [7] where m is the number
of states in the Markov model, A is the state space, T is the matrix of transition
probabilities and k ≥ 1 is the order of the model. Then PA is a context-free
(type-2) language.

Proof. We prove by constructing a Pushdown Automata (PDA) MA which ac-
cepts PA by empty stack as follows.

We assume that the password alphabet Σ = {a0, a1, a2, · · · , an} is finite or
the Markov model is unworkable (for example, no polynomial time algorithm
can compute T [7] and no group of earthlings can realistically remember all the
available symbols).

For the stack alphabet we consider the following. Let

Γ
′

=
⋃

2≤i≤k+1

Σi

and Γ
′′

be the set obtained by relabeling the elements of Γ
′

using some lexico-
graphical ordering on Σ i.e.

Γ
′′

=
{
α0, α1, α2, · · · , α|Γ′ |−1

}
,

2

where αi < αi+1 ∈ Γ
′

for all 0 ≤ i ≤ Γ
′ − 2. Then the stack alphabet, Γ, is the

set

Γ =
{
A0, A1, A2, · · · , A|Γ′′ |−1

}
∪ Σ ∪ {Z0},

where Z0 is the initial stack symbol. Therefore, Γ is finite (since Σ is finite).
Further, let ϕ : Γ → Γ

′′ ∪ Σ ∪ {Z0} denote the symbol conversion function
defined by

ϕ(x) =

{
αi if x = Ai ∈ Γ \ (Σ ∪ {Z0}) ,
x otherwise.

Let T
′

: Γ→ [0, 1] ∪ {−1} denote the map defined by

T ′(x) =

{
T (ϕ(x)) if ϕ(x) ∈ Σk+1,
−1 otherwise,

and define

QT =
{
qT ′ (x) : x ∈ Γ

}
.

Let

Q ⊆
⋃

0≤i≤∞

q−1Q
i
T

denote the set of all possible states in MA. Consider the map ρ : QT → [0, 1] ∪
{−1} defined by ρ(qy) = y for any qy ∈ QT .

Clearly, ρ allows recovery of all the probabilities associated with each state in
Q (in relation to the transition probabilities of the n-grams in Γ). For example,
ρ induces the natural extension ρ̂ : Q→ [−1, 1] defined by

ρ̂(p) = ρ(p0)ρ(p1)ρ(p2) · · · ρ(pn)

for any p = p0p1p2 · · · pn ∈ Q, pi ∈ QT for all i. Thus, states associated with
elements of Γ \ Γk+1, q−1, only contribute the sign.

Further, since we intend to accept by empty stack, we can set F = ∅. For
state transitions, δ : Q× (Σ∪{ε})×Γ→ Pfin(Q×Γ∗), where Pfin(B) denotes
the set of all finite subsets of B, see Table 1 below.

Clearly, every element x ∈ Σ∗ such that |x| > k can be broken down into at
most |x|−(k+1)+1 = |x|−k k+1-grams [7] and any such break down leaves a tail
of exactly k alphabet symbols. An optimal (thus, efficient) machine can there-
fore parse x using |x|−k k+1-grams and k n-grams (n ∈ {k− i : 0 ≤ i ≤ k−1})
of decreasing length for the tail resulting in a total of |x|−k+k = |x| steps. By
codifying each processing step as a state in MA using a concatenation of tran-
sition probabilities of n-grams (n ∈ {k+ 1− i : 0 ≤ i ≤ k− 1}) so far processed,
we note that after exactly |x| states the Turing machine (or PDA in our case)
MA arrives in a state where it either accepts x or has an undefined transition or

3

enters into a non-terminating loop. Therefore, we expect the maximal length of
any representation of a state in MA to be exactly MAXp (including the initial
state q−1).

Transition Possible Moves Conditions
δ(q−1, ε, Z0) {(q−1, AkZ0)} Ak ∈ Γ \ (Σ ∪ {ε} ∪ {Z0}).
δ(q, ai, Aj)

{
(qqT ′(Aj), aiAk)

}
k ≥ 2, T

′
(Aj) 6= −1,

ϕ(Aj) = aia
′

1a
′

2 · · · a
′

k,

ϕ(Ak) = a
′

1a
′

2 · · · a
′

kal, al ∈ (Σ ∪ {ε}),
ai, a

′

m ∈ Σ, 1 ≤ m ≤ k.

δ(q, ai, Aj)
{

(qqT ′(Aj), aiAk)
}

k = 1, T
′
(Aj) 6= −1,

ϕ(Aj) = aia
′

1,

ϕ(Ak) = a
′

1al, ai, a
′

1, al ∈ Σ.

δ(q, ai, Aj)
{

(qqT ′(Aj), aial)
}

k = 1, T
′
(Aj) 6= −1,

ϕ(Aj) = aial, ai, al ∈ Σ.

δ(q, ai, Aj)
{

(qqT ′(Aj), aiAk)
}

T
′
(Aj) = −1, ϕ(Aj) /∈ Σ2,

ϕ(Aj) = aia
′

1a
′

2 · · · a
′

|ϕ(Aj)|−1,

ϕ(Ak) = a
′

1a
′

2 · · · a
′

|ϕ(Aj)|−1,

ai, a
′

m ∈ Σ, 1 ≤ m ≤ |ϕ(Aj)| − 1.

δ(q, ai, Aj)
{

(qqT ′(Aj), aial)
}

T
′
(Aj) = −1, ϕ(Aj) ∈ Σ2,

ϕ(Aj) = aial, ai, al ∈ Σ.
δ(q, ai, ai) {(q, ε)} ai ∈ Σ

δ(q, ε, Z0) {(q, ε)}
ln(−ρ̂(q))
|q|−1

−µ
σ ≤ −2.6.

δ(q, ε, Z0) {(q, Z0)}
ln(−ρ̂(q))
|q|−1

−µ
σ > −2.6.

Table 1: Table for MA’s Transition Function δ.

We can thus write

Q =
⋃

0≤i≤MAXp−1

q−1Q
i
T .

Therefore, Q is finite and the PDA MA = (Q,Σ,Γ, δ, q−1, Z0, F) accepts any
x ∈ PA by empty stack in at most QA(|x|) steps for some polynomial QA as
required and PA = N(MA) [8, 10].

1.2 User Induced Distribution on PA

It is known that the user induced probability distribution D on PA has low en-
tropy. Therefore, every password hashing function F over PA admits an attacker
AD called the dictionary attacker, whose main tool is a set UPA (PA such that

Pr[p ∈ UPA | p
D−→ PA] ≥ 1− ε

4

for some fraction 0 ≤ ε < 1.
Secondly, D potentially increases F ’s vulnerability to brute force attacks

since the effective password space is strictly lower than |PA| i.e. H(D) <
log2|PA| where H is the Shannon entropy function [21, 17, 7, 26].

Let PA be the password space for an access control system A, and χS :
Pfin(PA)→ [0, 1] denote the probability function,

χS(UPA) =
∑

p∈UPA

D(p),

that assigns probabilities to finite subsets of PA according to the probability
distribution D. Then, for t ≥ 1, let χD(t) be defined by

χD(t) = max {χS(UPA) : UPA ∈ Pfin(PA), |UPA | ≤ t} .

Therefore, χD(t) is the success probability for an optimal dictionary attack
using a dictionary of size at most t. Thus, any password hashing function for
the distribution D, is at most a (t, χD(t))-secure function. This represents ideal
security against password guessing attacks [26].

However, in practice, this creates insurmountable problems for the designer
of password hashing functions since it is impossible to obtain apriori informa-
tion about the probability distribution D and thus about χD(t) for any t ≥ 1.
Fortunately, the following result - Theorem 4 of [26] - shows that one only needs
prove security for the uniform distribution.

Theorem 1.2. Let f be a password hashing function that is (t, ε)-secure for
uniformly distributed inputs. Then, for every distribution D on PA, f is a
(t, χD(ε|PA|))-secure password hashing function for D.

Therefore, since χD(t) is a monotonically increasing function of t, we have
that

χD(ε|PA|) ≤
ε|PA|
t

χD(t).

Thus, any password hashing function which is (t, ε)-secure for the uniform dis-
tribution does not have ideal security against password guessing attacks by a

factor of at most ε|PA|
t . In short, secure password hashing functions are those

with ε as close to t
|PA| as possible.

Therefore, secure password schemes involve either of the following.
[RQ1a] randomly generated passwords of sufficient length (depending on

some threat model) [21].

[RQ1b] some combination of

(i) user and/or computer generated passwords

(ii) rules and routines to ensure generated passwords meet
some minimum entropy threshold (depending on the threat
model) [24, 7, 20]

5

(iii) some elements of key stretching to increase the time com-
plexity for both exhaustive and dictionary attacks [13].

Requirement [RQ1a] represents the fact that under the uniform distribution,
χD(t) = t

|PA| . Thus, χD(ε|PA|) = ε i.e. the dictionary attacker does no better

than a randomised inversion algorithm.
On the other hand, [RQ1b](ii) ensures that, to the extent possible, user

and/or computer generated passwords model some distribution with higher en-
tropy and thus that χD(t) is small for all reasonably sized password dictionaries
t ≥ 1.

Finally, [RQ1b](iii) ensures that for fixed t the attack probability χD(t) is
quantifiably reduced thus ensuring a significant reduction in the resource enve-
lope available to the dictionary [and/or brute force] attacker. This is particu-
larly true if one views t as the amount of time for t complete iterations of the
password hashing function.

Clearly, the above is sufficient. For example, hosts with tamper resistant
password modules that act as access control oracles [i.e. authentication requests
are treated as oracle queries to which the module only responds to indicate
success or failure] require no transformation on stored password values - a design
similar to the IBM’s Secret-Key Management Protocol [23].

1.3 Password Hashing Functions

Presently, however, such access control systems are unavailable on all but a few
systems. Therefore, in general, the following requirement on password schemes
as postulated in [17, 9, 26] is necessary:

[RQ2] storage of a strong one-way transform of the user password

which requires the use of a strong one-way function F : PA → Ran(F), called
the password hashing function, where Ran(F) denotes the range of F .

However, initial analysis in [17] and further analyses in [15, 24, 21] show
that the user induced probability distribution D on PA allows precomputation
of tables of password dictionaries which act as inversion oracles (return either
the user password or failure to each query) once password files become available.
This leads to the further postulate

[RQ3] the password hashing function F must non-trivially depend on
a random auxiliary input, called salt, of sufficient length to pre-
clude any precomputation of password dictionaries [17, 21].

However, on the other hand, any strong one-way function f : I×Prim(f)→
Ran(f) (where Prim(f) is the primary non-auxiliary input) that non-trivially
depends on auxiliary input from some nonempty set I spawns a collection of
strong one-way functions fc = {fi : Prim(f) → Ran(f)}i∈I , where for any
element x ∈ Prim(f), fi(x) = f(i, x) ∈ Ran(f).

6

Note that it is quite possible that f is easy to invert on a few instances fj ,
j ∈ E (for some subset E (I). However, we require that those instances be

such that |E|×|Prim(f)|
|I|×|Prim(f)| = |E|

|I| ≤ νA (log2|Prim(f)|) for some negligible function

νA. Otherwise, f is not a strong one-way function. Formally, we have the
following [9].

Definition 1.3. Let I be a set of indices and for any i ∈ I, let Di and Ri be
finite. A collection of strong one-way functions is a set f = {fi : Di → Ri}i∈I
satisfying the following conditions.

(1) There exists a Probabilistic Polynomial Time (PPT) algorithm S1 which
on input 1k outputs i ∈ {0, 1}k ∩ I.

(2) There exists a PPT algorithm S2 which on input i ∈ I outputs x ∈ Di.

(3) There exists a PPT A1 such that for i ∈ I and x ∈ Di, A1(i, x) = fi(x).

(4) For every PPT algorithm A there exists a negligible function νA such that
∀k large enough

Pr
[
fi(z) = y : i

$←− I;x
$←− Di; y ← fi(x); z ← A(i, y)

]
≤ νA(k)

where the probability is taken over choices of i and x and the coin tosses
of A.

Clearly, since P ⊆ BPP PPT algorithms S1, S2 and A1 may require some
coin tosses. Furthermore, 1k represents the input length (i.e. k) in unitary form
and, therefore, νA is a function of input rather than output length.

In essence, Definition 1.3 claims that [a collection of] strong one-way func-
tions exist if BPP 6= NP, specifically that there are languages in NP not in
BPP [9].

However, the above definition requires some qualification. In particular,
certain security models allow the possibility of stronger adversaries capable of
making multiple queries under some parameter modifying function e.g. the
related-key attack in symmetric key ciphers [23, 13] and the parameter modify-
ing attacks of [27]. Therefore, a collection of strong one-way functions suitable
for such models require proof of security against parameter modifying adver-
saries (i.e. related-I attacks). This is analogous to the notion of Strongly Secure
Key Derivation Functions postulated in [27].

Claim 1.1, for example, shows that there exists a set of strong one-way
functions f∗c = {fi : Dom(fi)→ Ran(fi)}i∈I (where Dom(fi) is the domain of
fi) such that fi non-trivially depends on i ∈ I, I a nonempty set, which does
not consist a collection of strong one-way functions under related-I attacks.

Claim 1.1. There exists a set of strong one-way functions f∗c = {fi : Dom(fi)→
Ran(fi)}i∈I such that fi non-trivially depends on i ∈ I, I a nonempty set, which
does not consist a collection of strong one-way functions under parameter mod-
ifying adversaries.

7

Proof. We prove by counter example. Suppose the contrapositive holds.
Let I = Z48

2 and for each i ∈ I (called salt for brevity), let gi be the Data
Encryption Standard (DES) algorithm variant (note that for simplicity we follow
the standard cryptanalytic practice of ignoring the initial and final permutations
IP and IP−1 respectively since they are of no cryptographic value) defined by

gi,k = πi16 ◦
(
©15
j=0πj

)
= πi16 ◦ σ ◦DESk

where k ∈ Z56
2 is the DES master key, πj is the (j + 1)th DES round function,

DESk is the DES encryption algorithm with master key k and σ swaps the
32-bit halves of its argument.

Further, let πi16 : Z64
2 → Z64

2 denote the permutation on 64-bits defined by

πi16(xL, xR) = (xL ⊕ (P ◦ γ ◦ ϑi ◦ ψ16 ◦ E(xR)) , xR)

for all (xL, xR) ∈
(
Z32

2

)2 ≡ Z64
2 , E : Z32

2 → Z48
2 the DES Expansion Permutation

function, P : Z32
2 → Z32

2 the DES round Permutation function, γ : Z48
2 → Z32

2

an array of 8 6 × 4 DES round S-boxes, ϑi : Z48
2 → Z48

2 the ith salt addition
function defined by ϑi(x) = x ⊕ i and ψ16 : Z48

2 → Z48
2 the 17th round key

addition function defined by ψ16(x) = x⊕ k16 for all x ∈ Z48
2 .

Let the key schedule kj , 0 ≤ j ≤ 16, for gi,k be defined by

kj = (j + 1)th round DES subkey for master key k, 0 ≤ j ≤ 15

k16 = PC2 (rROT2(C15)||rROT2(D15))

where PC2 is the DES key schedule Permuted Choice Two function, rROT2 right
circular shifts its argument by 2 bits, || is the string concatenation function, C15

and D15 are the 28-bit outputs of the 16th round DES key schedule master key
transformation (round dependent left circular shifts) [24, 23].

It is clear that for any fixed i ∈ I, the function fi : Z56
2 →

(
Z64

2

)4
defined by

fi(k) = (gi,k(0), gi,k(1), gi,k(2), gi,k(3))

is a strong one-way function since gi is essentially a DES wrapper function and
ϑi is a linear permutation (for example see [9, 26, 23]) - that is, discounting
hardware changes since the year 2000.

For clarity, we adopt some notation from the differential attacks in [3] as
follows. Let

S`: denote the `th DES round function S-box, 0 ≤ ` ≤ 7
S`Er: denote the `th six-bit word after the E expansion permutation

of the rth round, 0 ≤ r ≤ 16, 0 ≤ ` ≤ 7

S`S16: denote the `th six-bit word of the salt value j for each function
gj , j ∈ Z48

2 , 0 ≤ ` ≤ 7

S`Kr: denote the `th six-bit word of the rth round subkey, 0 ≤ r ≤ 16,
0 ≤ ` ≤ 7

8

S`Or: denote the four-bit output of the `th S-box of the rth round,
0 ≤ r ≤ 16, 0 ≤ ` ≤ 7.

Thus, for example, S1E16 = c31c0c1c2c3c4, where c = c0c1c3 · · · c63 is the
DESk output (without the initial and final permutations). Further, for any
i 6= j ∈ Z48

2 and fixed k ∈ Z56
2 , gi,k(x) and gj,k(x) are such that S`i,xEX = S`j,xEX

for all x ∈ Z48
2 , 0 ≤ X ≤ 16 and 0 ≤ ` ≤ 7, where S`q,xEX is the value of S`EX

for gq,k(x) and q ∈ Z48
2 .

On the other hand, let x 6= y ∈ Z64
2 and ` be fixed. We claim that

2−6 ≤ Prk[S`i,xE16 = S`i,yE16] < 2−5

where the probability is taken over all keys k ∈ Z56
2 and x 6= y ∈ Z64

2 .
Let A be a PRF adversary that attempts to distinguish the DES algorithm

from a random function from 64 bits to 64 bits by checking whether S`i,xE16 =

S`i,yE16 for some fixed ` ∈ {0, .., 7}. Then we have that

AdvprfDES(A) = Prk[S`i,xE16 = S`i,yE16]− 2−6,

where A runs in time t = o(56 + 64 + 64 + TDES) - TDES being the time for a
single execution of the DES encryption function - and makes 2 oracle queries.

It is clear that Prk[S`i,xE16 = S`i,yE16] ≥ 2−6 (since |S`EX | = 6). For the
second inequality, we use the fact that

AdvprfDES(A) ≤ AdvprfDES(2, t)

≤ c1.
t/TDES

255
+ c2.

2

240
+

2

265

< 2−6

where c1, c2 ∈ {0, 1} (i.e. using the fact that non-key-recovery PRF distin-
guishers for the DES with better advantage are not yet known and that the
best known key recovery attacks against the DES are either exhaustive search
or linear cryptanalysis - the last term is due to the birthday paradox) and

AdvprfDES(2, t) is the PRF advantage for the adversary of maximal PRF advan-
tage that runs in time at most t and makes at most 2 oracle queries [9].

Therefore,

2−6 ≤ Prk[S`i,xE16 = S`i,yE16] < 2−5

as required [1, 9].
Thus, it is clear (since the DES S-box allows transitions from non-zero input

XOR to zero output XOR) that for any random i 6= j ∈ I and fixed k ∈ Z56
2

Pr [fi(k) = fj(k)] ≤
8∑
`=1

Pr [wt6(i⊕ j) = `] p`

≤
8∑
`=1

(
8

`

)
(26 − 1)`

248
p`

≤ 2−42

9

where wt6(x) is the six-bit weight of x ∈ Z48
2 ,

p = (1− 2−5)6 · 2−8 + 12 · (1− 2−5)3 · 2−5 · 2−6 + 12 · (1− 2−5) · 2−5×2 · 2−4

+12 · (1− 2−5)2 · 2−5×2 · 2−4 + 2−5×3 · 2−2.

Therefore, fi non-trivially depends on i. Further, for any two random salt values
i, j ∈ Z48

2 ,

Pr[wt6(i⊕ j) = 8] = Pr[i⊕ j = Y,wt6(Y) = 8]

=
(26 − 1)8

248

≥ 2−0.2.

Thus, it is highly likely that any two random values i, j ∈ Z48
2 will have a six-

bit weight of 8. Therefore, given a zero key XOR difference, a related-key attack
involving any two function instances fi and fj will with very high probability
have eight active S-boxes in the final round of each pair (gi,k(x), gj,k(x)), x ∈
{0, 1, 2, 3} ⊂ Z64

2 .
Moreover, we expect that for fixed i ∈ Z48

2 , ` ∈ {0, 1, 2, · · · , 7} and key k ∈
Z56

2 , with probability at most (1−2−5)6∗8 = (1−2−5)48 the six-bit words S`i,0E16,

S`i,1E16, S`i,2E16 and S`i,3E16 will be pair wise distinct. Further, the probability that
the probability 1 one round differential (∆S`S16,∆S`O16) holds for any 6-bit
candidate key over 4 distinct pairs is at most 2−8 [3]. Thus, with probability at
least 1− (26 − 1) ∗ 2−8 = (1− 2−2 + 2−8) = 0.75390625, no random six-bit key
(other than S`K16) matches all the pairs.

Therefore, we expect that with probability at least 0.75390625, 1 pair of
six-bit candidate keys of the form (S`K16, S`K16 ⊕ ∆S`S16) will be suggested
per S-box (these may not be distinguishable since a constant input XOR value
is used). Thus, with probability at least 0.753906258, we remain with 16 bits of
entropy which we can easily recover by exhaustive search [3].

Hence, there exists a related-key PPT algorithm A such that

Pr
[
fi(z) = y : i

$←− Z48
2 , j

$←− Z48
2 ;x

$←− Z56
2 ; y ← fi(x),

y
′
← fj(x); z ← A(i, j, y, y

′
)
]

> p · 0.753906258 · q

≥ 2−5.7

where p = Pr[Wt6(i ⊕ j) = 8], q = (1 − 2−5)48 and some coin tosses of A. In
particular, the probability is taken over i ∈ Z48

2 , x ∈ Z56
2 and some coin tosses of

A. Therefore, f∗c , is not a collection of strong one-way functions under related-I
attacks which contradicts our initial hypothesis.

Unfortunately, the above example is not merely academic - there exist secu-
rity models within the password hashing domain which make the above attack
practical. For example, both [26] and [21] essentially define a secure password

10

hashing function as one which is ”as good as the passwords users choose”. There-
fore, the user responsibility is limited to choosing and storing secure passwords.

However, on the other hand, implementations that generate new salt values
at each password change (e.g. the Ubuntu 12.04 LTS desktop) create, with high
probability, pairs of salt values with the same password. This is more so with
security policies enforcing mandatory periodic password changes which forces
[many] users to keep a small set of interchangeable passwords to choose from at
each mandatory expiry period (or risk - with time - generating hard to remember
passwords).

Furthermore, many cross subscribing users practice cross site password reuse
especially for systems with similar functionality e.g. social networking sites, web
based email services, online gaming sites etc [21]. An adversary, with access to
multiple password files from a collection of systems with similar functionality
inverts f∗c with high probability for each cross subscribing user regardless of the
strength of the password used.

In particular, whereas password ageing [7] may ameliorate the impact of
the first, the second can only be mitigated by user education with no realistic
enforcement mechanism or assurance of compliance. Thus, contradicting our
hypothesis on the security of the password hashing function. Therefore, f∗c is
not a secure password hashing function under this security model.

Finally, hardware and/or software optimisation on a sliding time scale (e.g.
every 18 months for hardware optimisation) may account for a dramatic reduc-
tion in the adversarial inversion probability. For example, by Moore’s law, the
availability of faster, cheaper and smaller hardware every 18 months halves the
area-time cost for inversion circuits. This results in a significant reduction in
the cost of building special purpose brute force machines and/or significant in-
crement in the amount of computational power available to parallel computing
[9, 23, 21, 20].

Therefore, we require the following final postulate [21, 13, 20]

[RQ4a] the password hashing function F must depend on a configurable
time parameter based on some elements of key stretching to en-
sure the adversarial inversion probability remains constant with
increasing computational power and/or algorithm optimisation.

[RQ4b] the password hashing function F must include hardware frus-
trating techniques such as memory and/or expensive operations
for imposing cost constraints on custom circuits while ensuring
efficiency of computation on general purpose processors.

This leads to the following characterisation of password hashing functions.

Claim 1.2. Any password hashing function is a collection of strong one-way
functions.

Proof. Let F be a password hashing function, then [RQ1a], [RQ1b], [RQ2],
[RQ3], [RQ4a] and [RQ4b] imply that F is a strong one-way function of the

11

form

F : N× T × S × PA → Ran(F)

where S is the salt space, T ⊆ N is the set of time parameters and N the set of
natural numbers is the set of password length parameters.

The definition of F over all possible password lengths N reflects the stan-
dard practice for defining strong one-way functions where security is claimed
asymptotically - as k ∈ N becomes larger (i.e. k ≥ MINp) and the fact that
F may include instructions for padding and/or truncating inputs (i.e. F uses
equivalence classes in Σ∗/ 'MAXp). Note that in practice, password lengths are
often encoded within the password string itself (e.g. using null termination of
strings etc.) we only write it explicitly for clarity.

Therefore, F is a four dimensional array indexed by a password length pa-
rameter, a time parameter, a salt value and a password value [9]. Let S1 be an
injection of the form

S1 : N× T × S → N,

and define F
′

: N× PA → Ran(F) by

F
′
(i, p) =

{
F (n, t, s, p) if S−1

1 (i) = (n, t, s) ∈ N× T × S
0 otherwise.

Let

I =
{
i ∈ N : S−1

1 (i) = (n, t, s) ∈ N× T × S
}
,

then S1 induces a bijection between F and F
′′

: I × PA → Ran(F) defined by

F
′′
(i, p) = F (S−1

1 (i), p)

for all i ∈ I, p ∈ PA, n ∈ N, t ∈ T and s ∈ S.
It is clear that the password p may need some extra transformation depend-

ing on n ∈ N and s ∈ S such as padding, truncation etc. Thus, we may write

F
′′′

(i, S2(i, p)) = F
′′
(i, p) = F (S−1

1 (i), p)

for some F
′′′

such that F
′′

= F
′′′ ◦ (P 2

1 , S2) : I × PA → Ran(F) where P 2
1 is

the projective map and the parameter i ∈ I for S2 serves to encode information
about (n, t, s) ∈ N×T ×S (through S−1

1) [8]. Note that F
′′

and F
′′′

only differ
by the initial password transformation code in S2. For example, in addition
to padding and/or truncation, if the underlying cryptographic primitive is a
symmetric key cipher, this may include length based key scheduling instructions
i.e. the output of S2 may simply be the key schedule for some symmetric key
cipher implemented in F

′′′
.

Clearly, S1 and S2 are PPT algorithms taking on coin tosses (t, s) ∈ T × S
and p ∈ Σ∗/ 'MAXp respectively or F is not polynomial time computable.

12

Therefore, F
′′′

is a collection of strong one-way functions.

In this paper, a new password hashing function, M3dcrypt is proposed. The
rest of the paper is organised as follows. Section 2 discusses various background
and preliminary material, Section 3 provides a detailed specification of the func-
tion, Section 4 analyses the security of the function and Section 5 explores some
implementation issues.

2 Preliminaries

2.1 Notation and Other Issues

The M3dcrypt password hashing function assumes little endian byte ordering.
However, big endian byte ordering can also be used so long consistency is ensured
for all functions and constants [22].

Further, the M3dcrypt password hashing function assumes the natural bi-
jection between vector spaces (Zn2)

m
and Znm2 , where Zq is the set of inte-

gers modulo q ∈ N. Therefore, for brevity, references to these spaces are
used interchangeably. In particular, the reader will find references to elements
(α0, α1, α2 · · · , αm−1) ∈ Znm2 , αj ∈ Zn2 for all 0 ≤ j ≤ m − 1, rather than the
cannonical representation (α0, α1, α2, · · · , αm−1) ∈ (Zn2)

m
.

2.2 The M3dcrypt Key Schedule

The M3dcrypt password hashing function is based on the Advanced Encryption
Standard (AES) algorithm [18, 6]. In particular, M3dcrypt implements a set of
AES-like permutations

ENr : Z128(Nr+1)
2 × Z128

2 → Z128
2

defined by

ENr(Y, x) = σNr ◦ τ ◦ γ ◦
(
©Nr−1
i=1 σi ◦ θ ◦ τ ◦ γ

)
◦ σ0(x)

= ENr,Y (x)

for all Y ∈ Z128(Nr+1)
2 and x ∈ Z128

2 , where θ(state) = MixColumn(state),
σk(state) = AddRoundKey(state, Yk), γ(state) = ByteSub(state) and τ(state) =
ShiftRow(state) [6, 25].

We require the following.

Let g : Z128
2 → Z128

2 be a fixed permutation, define the domain extension,
ĝm : Z128m

2 → Z128m
2 , by

ĝm(x) = (g0(x), g1(x), g2(x), · · · , gm−1(x))

13

where x = (x0, x1, · · · , xm−1) ∈ Z128m
2 and each

gi(x) = g(gi−1(x)⊕ xi)

is recursively defined by setting g−1(z) = 0,∀z ∈ Z128m
2 .

The domain extension f̃m : Z128m
2 → Z128m

2 for some fixed permutation
f : Z128

2 → Z128
2 is similarly defined

f̃m(x) = (f0(x), f1(x), f2(x), · · · , fm−1(x))

where each

fi(x) = f(fi+1(x)⊕ xi)

is recursively defined by setting fm(z) = 0,∀z ∈ Z128m
2 .

Claim 2.1. The domain extension ĝm : Z128m
2 → Z128m

2 is a permutation.

Proof. We prove by contradiction.
Let x = (x0, x1, · · · , xm−1), y = (y0, y1, · · · , ym−1) ∈ Z128m

2 be such that
x 6= y and ĝm(x) = ĝm(y). Then, since g is a permutation, we must have
iteratively

gi(x) = gi(y) =⇒ xi = yi, 0 ≤ i ≤ m− 1

contradicting x 6= y. Therefore, by the size of the co-domain, ĝm is a permuta-
tion.

Claim 2.2. The domain extension f̃m : Z128m
2 → Z128m

2 is a permutation.

Proof. Similar to Claim 2.1.

Let ϑNr : Z128
2 → Z128(Nr+1)

2 denote the Nr round AES128 key schedule
and

Ψ = θ ◦ τ ◦ γ

denote the unkeyed AES round function.
Let πi : Z128m

2 → Z128m
2 be defined by

πi(x) =

{
ĝm(x) if i ∈ {0, 2, 4, · · · , },
f̃m(x) if i ∈ {1, 3, 5, · · · , },

for all x ∈ Z128m
2 and let πm : Z128m

2 → Z128m
2 denote the permutation defined

by

πm(x) =©2m−1
i=0 πi(x)

for all x ∈ Z128m
2 .

14

Then, the M3dcrypt key schedule key initialisation function

Ifm : Z128m
2 → Z128(2m)

2 ,

is defined by Algorithm 1 below.

Algorithm 1: Key Initialisation Function, Ifm

Require: key ∈ Z128m
2 .

Ifm(key):
(k0, k1, · · · , km−1) := (πm(key)⊕ key)
(km, km+1, · · · , k2m−1) := πm(key)
for i := 0 to m− 1 do

ki := Ψ(ki)
end for

Return (k0, k1, · · · , km−1, km, km+1, · · · , k2m−1)

The M3dcrypt key schedule key extraction function

fXm : Z128m
2 → Z128(Nr−2m+1)

2

is defined by Algorithm 2 below.

Algorithm 2: Key Extraction Function, fX
m

Require: (k0, k1, · · · , km−1) ∈ Z128m
2

fXm (k0, k1, · · · , km−1):
p := 0; ω−1 := 0; φ−1 := 0
while p < (Nr − 2m+ 1) do

ωp := Ψ
(
ωp−1 ⊕ (p+ 1)⊕

(⊕p+m−1
i=p ki

))
kp+m := Ψ(φp−1 ⊕ ωp)
φp := Ψ(φp−1 ⊕ kp+m)
p := p+ 1

end while

Return (km, km+1, km+2, · · · , kNr−m)

Finally, form > 1, define ϕmNr : Z128m
2 → Z128(Nr+1)

2 theNr-round M3dcrypt
key schedule for 128m-bit master keys by

ϕmNr(key) = rROT128m

(
Ifm(key), fXm (πm(key))

)
where key ∈ Z128m

2 and rROTk is the k-bit right cyclic shift function.

15

2.3 The M3dcrypt Constants

The M3dcrypt constants are based on the AES128 key schedule for master key
0, ϑNr(0), where Nr is the number of AES128 rounds. Therefore, for example,
C = ϑ3(0) is defined by

C0 = {0x00000000, 0x00000000, 0x00000000, 0x00000000},
C1 = {0x63636362, 0x63636362, 0x63636362, 0x63636362},
C2 = {0xc998989b, 0xaafbfbf9, 0xc998989b, 0xaafbfbf9},
C3 = {0x50349790, 0xfacf6c69, 0x3357f4f2, 0x99ac0f0b},

in hexadecimal.

2.4 Properties of the M3dcrypt Key Schedule

Claim 2.3. For Nr ≥ 3m (m > 1), pairs of equivalent keys in ϕmNr are unlikely.

Proof. Pairs of equivalent keys are a certainty if there exist pairs of keys key0 6=
key1 ∈ Z128m

2 such that ϕmNr(key0) = ϕmNr(key1).
Since πm(key0) 6= πm(key1) is part of the subkey sequence whenever Nr ≥

3m, ϕmNr(key0) 6= ϕmNr(key1) for all key0 6= key1 ∈ Z128m
2 and Nr ≥ 3m.

Claim 2.4. For Nr ≥ 3m (m > 1), related-key differential attacks in ϕmNr are
unlikely.

Proof. Related-key attacks exist in ciphers in which an adversary is able to
simultaneously transition non-trivial differences through both the key schedule
and the cipher inner state.

Since, on average, a brute force attack requires 2n−1 rekeyings [24, 22], any
n-bit key schedule in which transitioning non-trivial differences has maximum
probability 21−n is resilient against the attack, otherwiseo(2n−1) is polynomial.

However, in effect, this merely re-states the requirement for key schedule
resilience against differential attacks [14, 5].

On the other hand, bearing in mind the arguments of [19, 3], we note that
πm has differential propagation ratio at most 2−120(2m+1). Hence, resistance
against related-key attacks holds whenever the following inequality holds

240m+ 120 > 128m− 1

and thus whenever m > 1 (being our base assumption).

3 The M3dcrypt Password Hashing Algorithm

Let S = Z256
2 be the salt space, PA ⊆ Z384

2 be the password space (depending on
the prevailing security policy) and T = T0×T1 ⊂ Z232 ×Z232 be the set of time
parameters, where T0 = {2j : 20 ≤ j < 32}, T1 = {j : 1 ≤ j < 232} and for any

16

time parameter (t0, t1) ∈ T , the time complexity for the M3dcrypt password
hashing function F is some function δ(t0, t1) of both t0 ∈ T0 and t1 ∈ T1 while
its space (memory) complexity is a function of t0 ∈ T0.

Then, the M3dcrypt password hashing function, F is the collection of func-
tions defined as follows [9].

Let S1 : Z49 × T × S → Z2326 denote the injection defined by

S1(n, t, s) = 2320n+ 2288t1 + 2256t0 + s,

where t = (t0, t1) ∈ T , n is the password length in bytes and s ∈ S, define

I = { 2320n+ 2288t1 + 2256t0 + s : n ∈ Z49, (t0, t1) ∈ T, s ∈ S }.

For any t = (t0, t1) ∈ T , define

tcost = t0
8 , lm = log2(tcost), skey = (0xd09788fd % tcost),

then, for any lm ∈ {j + 17 : j ∈ Z15} define ζlm by

lm ζlm lm ζlm lm ζlm
17 29
18 7
19 21
20 7
21 17

22 15
23 11
24 43
25 35
26 15

27 29
28 3
29 11
30 3
31 15

Let λ : Ztcost → Zt0 be the injection defined by

λ(x) = (l ◦ ψ ◦ υ(x)) << 3,

where

υ(x) = ((0xfc6564bd + x) ∗ ζlm) % tcost,

ψ(y) = rROT3(y)⊕ skey,
l(z) = rROT1(z)⊕ lROT8(z)⊕ lROT15(z),

x, y, z ∈ Ztcost, rROTj and lROTj are the right and left cyclic shifts of an lm-bit
input by j bits respectively.

Finally, let S2 : I × PA → Z384
2 denote the function defined by Algorithm

3 below and A1 : I × Z384
2 → Z512

2 be defined by

A1(i, x) = fi(x)

=
(
E20,ϕ3

20(x)(C0), E20,ϕ3
20(x)(C1), E20,ϕ3

20(x)(C2), E20,ϕ3
20(x)(C3)

)
,

for all i ∈ I and x ∈ Z384
2 .

Then, the M3dcrypt password hashing function F is the collection of func-
tions

F = {fi : Z384
2 → Z512

2 }i∈I .

17

Algorithm 3: S2 : I × PA → Z384
2

Require: i ∈ I, p ∈ PA ⊆ Z384
2

S2(i, p):
t0 := (i >> 256) & 0xffff, t1 := (i >> 288) & 0xffff,
n := (i >> 320) & 0x3f, tcost := t0

8 ,
s := i& (2256 − 1), key := (p||0384−8n),
v := (0, 0, 0) ∈ Z384

2 , u := (064||t0||t1)

for z := 0 to 3 do

Xz := E4,ϑ4(0)

(
z ⊕ E20,ϕ3

20(key)

(
E20,ϕ2

20(s)(Cz ⊕ u)
))

end for
for z := 4 to t0 − 1 do

Xz := E4 (ϑ4(0), Xz−1 ⊕Xz−4 ⊕ z)
end for

tkey0 := (Xt0−8, Xt0−7, Xt0−6, · · · , Xt0−1)
tkey1 := (X0, X1, X2)

v := Ẽ3
20,ϕ3

20(tkey1)

(
Ê3

7,tkey0
(v)
)

for j := 0 to t1 − 1 do
ts := 0, tkey := (0, 0, 0, 0, 0, 0, 0, 0)
for z := 0 to tcost− 1 do
q := λ(z)
tkey := (Xq, Xq+1, Xq+2, · · · , Xq+7)
ts := z % 6
if ts < 3 then

if ts = 0 then
v0 := E7(tkey, v0 ⊕ j)

else
vts := E7(tkey, vts ⊕ vts−1)

end if
else

if ts = 3 then
v2 := E7(tkey, v2 ⊕ j)

else
v5−ts := E7(tkey, v5−ts ⊕ v6−ts)

end if
end if

end for
do finish(v, tkey, ts, tcost)

end for

v := Ê3
20,ϕ3

20(key)
(v)

Return v

18

where the function do finish is given by Algorithm 4 below.

Algorithm 4: do finish()

Require: v ∈ Z384
2 , tkey ∈ Z1024

2 , ts ∈ Z6, tcost = t0
8

do finish(v, tkey, ts, tcost):
if ts < 3 then

if (tcost% 3) = 2 then
v2 := E7(tkey, v2 ⊕ v1)

else
v1 := E7(tkey, v1 ⊕ v0)
v2 := E7(tkey, v2 ⊕ v1)

end if
else

if (tcost% 3) = 2 then
v0 := E7(tkey, v0 ⊕ v1)

else
v1 := E7(tkey, v1 ⊕ v2)
v0 := E7(tkey, v0 ⊕ v1)

end if
end if

4 Security Analysis

For this section, we require the following property (Claim 4.1) of [pseudo]random
permutations.

Claim 4.1. For any two distinct permutations ρ0, ρ1 : Zn2 → Zn2 and any two
elements x, y ∈ Zn2 ,

Pr[ρ0(x) = ρ1(y)] =

 2−n if ρ0 6= ρ1

1 if ρ0 = ρ1 and x = y
0 if ρ0 = ρ1 and x 6= y

Proof. Since the second and last cases are clear, we consider the case ρ0 6= ρ1.
We have,

Pr[ρ0(x) = ρ1(y)] =
∑
z∈Zn2

Pr[ρ0(x) = z|ρ1(y) = z] · Pr[ρ1(y) = z]

= 2n · 1

22n

= 2−n

19

4.1 Properties of the X Array

Claim 4.2. For any fixed random password and i ∈ I, any set of six consecutive
elements of the X array has at least two distinct elements.

Proof. We prove by contradiction.
Let Xz−4 = Xz−3 = Xz−2 = · · · = Xz = Xz+1, (4 ≤ z ≤ t0 − 2) be a set of

6 consecutive elements of the X array for a fixed random password and i ∈ I.
Then we must have

E4 (ϑ4(0), Xz−4 ⊕Xz−1 ⊕ z) = Xz

= Xz+1

= E4 (ϑ4(0), Xz−3 ⊕Xz ⊕ (z + 1)) .

Since Xz−4 = Xz−1 and Xz−3 = Xz, we have a contradiction.

Claim 4.3. For any fixed random password and i ∈ I, there are with high
probability at least two distinct 128-bit elements in every set of five elements of
the X array.

Proof. For brevity, we abuse notation as follows.
Let p ∈ PA, s ∈ S, (t0, t1) ∈ T be fixed, let key = (p||0384−|p|) ∈ Z384

2

and u = (064||t0||t1), set Xz−4 = E20,ϕ3
20(key)

(
E20,ϕ2

20(s)(Cz ⊕ u)
)

, 0 ≤ z ≤ 3.

Further, for 0 ≤ k ≤ t0 − 1 define

X∗k−1 =

{
0 if 0 ≤ k ≤ 3
Xk−1 if 4 ≤ k ≤ t0 − 1.

Therefore, for any 0 ≤ z 6= j ≤ t0 − 1

E4
(
ϑ4(0), X∗z−1 ⊕Xz−4 ⊕ z

)
= Xz

= Xj

= E4
(
ϑ4(0), X∗j−1 ⊕Xj−4 ⊕ j

)
implies (X∗z−1 ⊕Xz−4)⊕ (X∗j−1 ⊕Xj−4) = z ⊕ j.

Since z and j are fixed integers, we have

Pr
[
(X∗z−1 ⊕Xz−4)⊕ (X∗j−1 ⊕Xj−4) = z ⊕ j

]
= 2−128.

Therefore, all elements of any 5 element set of the X array are equal with
probability at most (

231

5

)
2−128·(5

2) < 2155−1280

= 2−1125.

20

Therefore, with probability at least 1−2−1125 there are at least two distinct
128-bit elements in any set of five elements from the X array.

In a way the above proof carries inherent risk in assuming that E4,ϑ4(0) acts
randomly on its inputs (which may be a far stronger assumption in reality).
However, all that is required for the proof is that elements of the X-array are
not designed for particular relationships to hold with high probability.

In particular, it is clear that the output of E4,ϑ4(0) at any single point i
is independent of that at any other point j 6= i (for any two fixed integers
0 ≤ i 6= j ≤ t0 − 1) which ensures that the above probabilities hold regardless
of our assumptions on E4,ϑ4(0).

Note that the idea of including iteration count j in the computation of the
jth output of an iteratively computed value so as to increase the resultant en-
tropy is well known, for example see [16, 27, 11].

Claim 4.4. For any fixed random password and i ∈ I, the X array is not
composed of a single repeating cycle of length greater than four.

Proof. We prove by contradiction.
By definition X has a cycle if we can find `, 0 ≤ ` ≤ t0 − µ − 1 and µ > 1

such that there exists a leading sequence X0, X1, · · · , X`−1 called a leader and
a cycle X`, X`+1, · · · , X`+µ−1 of length µ such that X` = X`+µ [12].

Suppose X = {X0, X1, · · · , Xµ−1, X0, X1, · · · , Xµ−1, · · · } for some µ > 1.
Consider any two points z and j in distinct cycles such that Xz+k = Xj+k,
0 ≤ k ≤ 4, 0 ≤ z 6= j ≤ t0 − 1. We must have

E4 (ϑ4(0), Xz+3 ⊕Xz ⊕ (z + 4)) = Xz+4

= Xj+4

= E4 (ϑ4(0), Xj+3 ⊕Xj ⊕ (j + 4))

Since Xz+3 = Xj+3 and Xz = Xj we have a contradiction for E4,ϑ4(0).
Therefore, we must have µ ≤ 4.

In effect, Claim 4.4 proves a stronger result i.e. that X does not contain any
repeated sequence of length more than 4. This leads to Claim 4.5.

Claim 4.5. For any fixed random password and i ∈ I, the X array is not
composed of any single repeating cycle.

Proof. We prove by contradiction.
SupposeX = {X0, X1, · · · , Xµ−1, X0, X1, · · · , Xµ−1, · · · } for some µ ∈ {2, 3, 4}

by Claim 4.4.

21

Then, if µ = 2, we must have Xz = Xz−2 for all 2 ≤ z ≤ t0−1 and therefore,

E4 (ϑ4(0), Xz+3 ⊕Xz ⊕ (z + 4)) = Xz+4

= Xz+6

= E4 (ϑ4(0), Xz+5 ⊕Xz+2 ⊕ (z + 6))

= E4 (ϑ4(0), Xz+3 ⊕Xz ⊕ (z + 6)) ,

a contradiction.
On the other hand, if µ = 3, Xz = Xz−3 must hold for all 3 ≤ z ≤ t0 − 1

and therefore,

E4 (ϑ4(0), Xz+4 ⊕Xz+1 ⊕ (z + 5)) = Xz+5

= Xz+8

= E4 (ϑ4(0), Xz+7 ⊕Xz+4 ⊕ (z + 8))

= E4 (ϑ4(0), Xz+4 ⊕Xz+1 ⊕ (z + 8)) ,

a contradiction.
Finally, if µ = 4, we must have Xz = Xz−4 for all 4 ≤ z ≤ t0 − 1 and

therefore,

E4 (ϑ4(0), Xz+3 ⊕Xz ⊕ (z + 4)) = Xz+4

= Xz+8

= E4 (ϑ4(0), Xz+7 ⊕Xz+4 ⊕ (z + 8))

= E4 (ϑ4(0), Xz+3 ⊕Xz ⊕ (z + 8)) ,

a contradiction.

As it turns out, we can prove a stronger result.

Claim 4.6. For any fixed random password and i ∈ I, the probability that X
has n distinct non-overlapping pairs of repeated sequences of length ` ≥ 2 is
bounded by 2(62−128`)n.

Proof. First, we adopt notation from Claim 4.3 as follows. For any 0 ≤ k ≤ t0−1
define

X∗k−1 =

{
0 if 0 ≤ k ≤ 3
Xk−1 if 4 ≤ k ≤ t0 − 1.

Then for any repeated sequence,

{Xz, Xz+1, · · · , Xz+`−1} = {Xj , Xj+1, · · · , Xj+`−1} ⊂ X,

0 ≤ z 6= j ≤ t0 − ` and 2 ≤ ` ≤ 4, we have that

E4,ϑ4(0)

(
X∗z−1+µ ⊕Xz−4+µ ⊕ (z + µ)

)
= Xz+µ

= Xj+µ

= E4,ϑ4(0)

(
X∗j−1+µ ⊕Xj−4+µ ⊕ (j + µ)

)
22

for all 0 ≤ µ ≤ ` − 1 implies (X∗z−1+µ ⊕ Xz−4+µ) ⊕ (X∗j−1+µ ⊕ Xj−4+µ) =
(z + µ)⊕ (j + µ) for all 0 ≤ µ ≤ `− 1.

Since i, z and µ are fixed integers and assuming E4,ϑ4(0) acts randomly on
its inputs, any such repeated sequence occurs with probability

Pr [(Xz−1+µ ⊕Xz−4+µ)⊕ (Xj−1+µ ⊕Xj−4+µ) = (z + µ)⊕ (j + µ)]
`

= 2−128`.

Therefore, the probability that any given n distinct pairs of X-array indices
represent starting points of n distinct pairs of repeated sequences of length ` is

2−128`n.

However, the X array is not demarcated using ` length vectors of 128-bit el-
ements. Therefore, any 0 ≤ z ≤ t0 − ` is a possible sequence starting point.
Hence, there are at most (

231

2n

)
< 262n

possible (overlapping) n distinct pairs of sequences of length ` which is the
maximum number of possible ways of choosing 2n distinct starting points for
distinct sequences of X indices.

Therefore, the probability that X has n distinct non-overlapping pairs of
repeated sequences of length ` is bounded by 262n · 2−128`n = 2(62−128`)n.

Table 2 below gives a list of probabilities for various possible (or combina-
tions of) number (n) of repeated pairs of sequences for fixed `, 2 ≤ ` ≤ 4, in X
assuming 384-bit passwords and |I| = 2298.

`/n 2 3 4
1 0 0
0 1 0
0 0 1
2 0 0
0 2 0
3 0 0
1 1 0
1 0 1

Maximum Probability
2−194

2−322

2−450

2−388

2−644

2−582

2−516

2−644

Table 2: Probabilities [of combinations] of repeated sequences in X.

Therefore, more than three pairs of distinct repeated sequences are unlikely
in X. This implies that the adversary acquires no non-trivial complexity gain
by exploiting regularities in the X array.

Claim 4.7. Any set of 4 consecutive elements of the X array for any two
distinct passwords and fixed i ∈ I are distinct.

23

Proof. We prove by contradiction.
Suppose there exist two distinct passwords x 6= y ∈ PA and a fixed i ∈ I

such that

{Xx
z , X

x
z+1, X

x
z+2, X

x
z+3} = {Xy

z , X
y
z+1, X

y
z+2, X

y
z+3}

where Xv is the [ordered] X array for the password v ∈ PA and z ≥ 0.
Then, we must have that

E4
(
ϑ4(0), Xx

z+2 ⊕Xx
z−1 ⊕ (z + 3)

)
= Xx

z+3

= Xy
z+3

= E4
(
ϑ4(0), Xy

z+2 ⊕X
y
z−1 ⊕ (z + 3)

)
implies Xx

z−1 = Xy
z−1. Similarly, we have Xx

z−2 = Xy
z−2, Xx

z−3 = Xy
z−3 and

Xx
z−4 = Xy

z−4.
Applying this iteratively, we arrive at Xx

0 = Xy
0 , X

x
1 = Xy

1 , X
x
2 = Xy

2 and
Xx

3 = Xy
3 . However, this can only happen with probability 2−512 which is un-

likely for 384-bit passwords.

Claim 4.8. Any set of 4 consecutive elements of the X array for any two
distinct salt values, fixed password and T values are distinct.

Proof. Similar to Claim 4.7.

4.2 Properties of S2

Claims 4.2 - 4.6 show that the risk of adversarial complexity gain in computing
X values through exploiting regularities in the array are minimal. However, the
rest of S2 especially the final two for loops involve the iterative application of
[a composition of] two primitives defined below.

Therefore, we need to assess possibilities for adversarial complexity gain
through exploiting cycles induced by the action of the composite primitive for
fixed i ∈ I and p ∈ PA [13, 27, 12]. We require the following.

For each j ∈ J = {j : 0 ≤ j ≤ b tcost3 c − 1} and z ∈ Zt1 , define

Gz,j =

(
gzλ(3j), g

0
λ(3j+1), g

0
λ(3j+2)

)
if 0 ≤ j ≤ b tcost3 c − 2,(

gzλ(3j), g
0
λ(3j), g

0
λ(3j)

)
if j = b tcost3 c − 1 and (tcost% 3) = 1,(

gzλ(3j), g
0
λ(3j+1), g

0
λ(3j+1)

)
if j = b tcost3 c − 1 and (tcost% 3) = 2.

where gz` = E7,(X`⊕z,X`+1,X`+2,··· ,X`+7), for all 0 ≤ ` ≤ t0 − 8.

Further, for fixed z ∈ Zt1 , let Ĝz, G̃z : J × Z384
2 → Z384

2 denote the transfor-
mations induced by Gz,j on Z384

2 , for fixed j ∈ J , defined in Table 3 below.

24

Conditions Ĝz(j, x)

0 ≤ j ≤ b tcost3 c − 2
(
gzλ(3j)(x0), g0

λ(3j+1)(u0 ⊕ x1), g0
λ(3j+2)(v0 ⊕ x2)

)
j = b tcost3 c − 1, (tcost% 3) = 1

(
gzλ(3j)(x0), g0

λ(3j)(u0 ⊕ x1), g0
λ(3j)(v0 ⊕ x2)

)
j = b tcost3 c − 1, (tcost% 3) = 2

(
gzλ(3j)(x0), g0

λ(3j+1)(u0 ⊕ x1), g0
λ(3j+1)(v0 ⊕ x2)

)
Conditions G̃z(j, x)

0 ≤ j ≤ b tcost3 c − 2
(
g0
λ(3j+2)(v1 ⊕ x0), g0

λ(3j+1)(u1 ⊕ x1), gzλ(3j)(x2)
)

j = b tcost3 c − 1, (tcost% 3) = 1
(
g0
λ(3j)(v1 ⊕ x0), g0

λ(3j)(u1 ⊕ x1), gzλ(3j)(x2)
)

j = b tcost3 c − 1, (tcost% 3) = 2
(
g0
λ(3j+1)(v1 ⊕ x0), g0

λ(3j+1)(u1 ⊕ x1), gzλ(3j)(x2)
)

Table 3: Values for Ĝz(j, x) = Ĝz,j(x) and G̃z(j, x) = G̃z,j(x) for all x ∈ Z384
2

where x = (x0, x1, x2) ∈ Z384
2 , u0 = gzλ(3j)(x0), u1 = gzλ(3j)(x2),

v0 =

{
g0
λ(3j)(u0 ⊕ x1) if j = b tcost3 c − 1 and (tcost% 3) = 1,

g0
λ(3j+1)(u0 ⊕ x1) otherwise,

and

v1 =

{
g0
λ(3j)(u1 ⊕ x1) if j = b tcost3 c − 1 and (tcost% 3) = 1,

g0
λ(3j+1)(u1 ⊕ x1) otherwise.

Finally, for z ∈ Zt1 , define GXz : J × Z384
2 → Z384

2 by

GXz (j, x) =

{
Ĝz,j(x) if j ∈ {0, 2, 4, 6, · · · },
G̃z,j(x) if j ∈ {1, 3, 5, 7, · · · },

= GXz,j(x),

for all j ∈ J and x ∈ Z384
2 .

Then, for any z ∈ Zt1 , the last (or inner) for loop of S2 can be written as

©b
tcost

3 c−1
j=0 GXz,j .

Claim 4.9. The transformations Ĝz,j , G̃z,j : Z384
2 → Z384

2 for fixed j ∈ J and
z ∈ Zt1 are permutations.

Proof. We prove by contradiction.
Suppose there exists x = (x0, x1, x2) 6= y = (y0, y1, y2) ∈ Z384

2 such that
Ĝz,j(x) = Ĝz,j(y), 0 ≤ j ≤ b tcost3 c − 2. Then we must have that

gzλ(3j)(x0) = gzλ(3j)(y0),

g0
λ(3j+1)(u0 ⊕ x1) = g0

λ(3j+1)(u0 ⊕ y1),

g0
λ(3j+2)(v0 ⊕ x2) = g0

λ(3j+2)(v0 ⊕ y2),

25

which implies x0 = y0, x1 = y1 and x2 = y2, a contradiction.
Similar analysis for the case j = b tcost3 c − 1 shows that Ĝz,j(x) 6= Ĝz,j(y)

whenever x 6= y ∈ Z384
2 and the result follows from the size of the co-domain.

The proof for G̃z,j is similar.

Therefore, the final two for loops are clearly a permutation on Z384
2 .

Claim 4.10. Repeated cycles in the last two for loops of S2 are unlikely.

Proof. From the above discussion, the last two for loops of S2 can be written as

©t1−1
z=0

(
©b

tcost
3 c−1

j=0 GXz,j

)
.

There are two options. Either the adversary takes advantage of repeated

cycles within
(
©b

tcost
3 c−1

j=0 GXz,j

)
for fixed z which allows it to iteratively apply

the cycles through all z ∈ Zt1 . Alternatively, the adversary might target a cycle
over multiple z ∈ Zt1 i.e. over some position(s) (j, j

′
) (not necessarily distinct)

in different iteration rounds say (z, z
′
), z 6= z

′
, which allows it to iterate the

sequence through all z ∈ Zt1 (or just a substantial part thereof).
For brevity, the first option requires at least one complete cycle to occur

before the last run of GXz or the adversary acquires trivial complexity gain.
Clearly, each Ĝz,j and G̃z,j , 0 ≤ j ≤ b tcost3 c − 2, is based on three distinct

permutations on 128 bits (i.e. the three component functions of Gz,j) by Claim
4.4. Further, each permutation gz` , z ∈ Zt1 , 0 ≤ ` ≤ t0 − 8, has a key space of
size at least

2128 · (2128 − 1) · (2128 − 2) · · · (2128 − 7) =
2128!

(2128 − 8)!

by Claim 4.2 and Claim 4.3 (for example, one should consider the effect of
moving the salt value through the entire salt space - 2256 elements - for fixed T
[and fixed password] and applying Claim 4.8).

Therefore, we expect each G̃z,j+1 ◦ Ĝz,j or Ĝz,j+1 ◦ G̃z,j , 0 ≤ j ≤ b tcost3 c−2,
to have a key space of at least(

2128 · (2128 − 1) · (2128 − 2) · · · (2128 − 47)
)

=

(
2128!

(2128 − 48)!

)
,

since Ĝz,j+µ and G̃z,j+µ, µ ∈ {0, 1} are distinct permutations for all 0 ≤ j ≤
b tcost3 c − 2 and z ∈ Zt1 .

Thus, for fixed z ∈ Zt1 , if either

G̃Ĝ =

{
G̃z,j+1 ◦ Ĝz,j : 0 ≤ j ≤ b tcost

3
c − 2

}
,

or

ĜG̃ =

{
Ĝz,j+1 ◦ G̃z,j : 0 ≤ j ≤ b tcost

3
c − 2

}
,

26

(depending on the adversary’s plan of attack) were a group or subgroup of an

even larger group it would have size at least
(

2128!
(2128−48)!

)
, since z simply permutes

the key space. Hence, one expects a cycle to occur with high probability after

2192 = min

{
2 ·
(

2128!

(2128 − 48)!

) 1
2

, 2
384
2

}

successive iterations of GXz [12].
However, the maximum number of iterations of GXz for fixed z ∈ Zt1 in S2

is only

d tcost
3
e < 227.

In particular, assuming GXz (for fixed z) is a random function of its inputs,
the probability of a collision in the v values is at most

227·2

2385
= 2−331.

However, after any such collisions, each successive Gz,j the repeated v value
encounters is component wise distinct by Claim 4.4, hence each repeat of pre-
vious values occurs with probability 2−384 by Claim 4.1. Therefore, even very
short repeated sequences are unlikely using this method.

On the other hand, an adversary that targets cycles across multiple z ∈ Zt1 ,
requires a collision across those z ∈ Zt1 which leads into a repeated sequence
over all t1 iterations or just a majority of them.

However, we note that for 0 ≤ j ≤ b tcost3 c − 2,

Ĝz(j, x) =
(
gzλ(3j)(x0), g0

λ(3j+1)(u0 ⊕ x1), g0
λ(3j+2)(v0 ⊕ x2)

)
,

=
(
g0
λ(3j)(x0 ⊕ z), g0

λ(3j+1)(u0 ⊕ x1), g0
λ(3j+2)(v0 ⊕ x2)

)
,

= Ĝ0(j, x⊕ vz),

where vz = (z, 0, 0) ∈ Z384
2 . Similarly, Ĝz(j, x) = Ĝ0(j, x⊕vz) for j = b tcost3 c−1.

Therefore, Ĝz,j(x) = Ĝ0,j(x ⊕ vz) for all z ∈ Zt1 , 0 ≤ j ≤ b tcost3 c − 1 and

x ∈ Z384
2 . Similar analysis leads to G̃z(j, x) = G̃0(j, x ⊕ uz) for all 0 ≤ j ≤

b tcost3 c − 1 where x, uz = (0, 0, z) ∈ Z384
2 and z ∈ Zt1 .

Thus by [9], for all z 6= z
′
,

Pr
[
Ĝz(j, x) = Ĝz′ (j, x)

]
= Pr

[
G̃z(j, x) = G̃z′ (j, x)

]
= 0,

hence, the adversary can only repeat any sequence with some probability i.e.
by targeting a collision at a pair (z, j) and (z

′
, j
′
) such that z 6= z

′
and j 6=

j
′
. Therefore, by Claim 4.1 any successive repeated values will occur with

probability 2−384 regardless of the input.

27

Therefore, even very short repeated sequences are unlikely using this method.

However, this is merely an instance of the more general problem of exploiting
repeating sequences in keyed functions with a non-repeating key stream - the ad-
versary has no apriori knowledge or control of collisions forcing re-computation
of repeating values. In short, if the key stream does not repeat, the adversary
must re-compute every successive element of the sequence (including those it
observes to be repeating) which eliminates any realistic complexity gain.

Clearly, by the arguments of Claim 4.10, one can view©t1−1
z=0

(
©b

tcost
3 c−1

j=0 GXz,j

)
as a composition of t1 × b tcost3 c distinct permutations. Therefore, non-trivial
adversarial complexity gain through exploiting cycles in F is unlikely for fixed
i ∈ I and p ∈ PA.

4.3 Properties of F

Lemma 4.1. For any fixed i ∈ I, fi ◦ S2,i : PA → Z512
2 is a strong one-way

function, where S2,i(p) = S2(i, p) ∈ Z384
2 for all p ∈ PA.

Proof. Let E i20 : PA × Z128
2 → Z128

2 for fixed i ∈ I be the permutation (for fixed
p ∈ PA) on Z128

2 defined by

E i20(p, x) = E20 ◦
(
ϕ3

20 ◦ S2,i ◦ P 2
1 , P

2
2

)
(p, x)

where P 2
j is the projective map on 2 elements, j ∈ {1, 2}, (p, x) ∈ PA × Z128

2

and E20 is the AES-like permutation defined in Section 2.2.
Clearly, for fixed i ∈ I, one can model the success probability for single key

attacks against E i20 on those from the AES algorithm over 20 rounds. For the
key schedule specific attacks, we have the following.

First, we claim that (for fixed i) pairs of equivalent passwords in E i20 are
unlikely. In short, since ϕ3

Nr admits no equivalent keys for all Nr ≥ 9 by Claim
2.3, we need to show that for all x 6= y ∈ PA there exists a negligible function
ν such that

Pr[S2(i, x) = S2(i, y)] ≤ ν(log2|PA|).

By Claim 2.1, Claim 2.2, Claim 4.1, and Claim 4.8, we have that

Pr[S2(i, x) = S2(i, y)] = Pr[V(i, x) = V(i, y)]

= 2−384,

where for any w ∈ PA,

V(i, w) = Ê3
20,ϕ3

20(keyw) ◦
(
©t1−1
z=0

(
©b

tcost
3 c−1

j=0 GX
w

z,j

))
◦ U(v),

U = Ẽ3
20,ϕ3

20(Xw0 ,X
w
1 ,X

w
2) ◦ Ê

3
7,(Xwt0−8,X

w
t0−7,··· ,Xwt0−1),

28

Xw is the X-array for w, v = (0, 0, 0) ∈ Z384
2 and keyw = w||0384−|w|. Therefore,

pairs of equivalent passwords are unlikely.
Second, we claim that for fixed i, related-password attacks are unlikely. This

follows from Claim 2.4 and Claim 4.7. Finally, we claim that for fixed i, the
Biclique attack on E i20 is unlikely. This follows from the high diffusion and
nonlinearity in ϕ3

20 plus some element of one-wayness in ϕ3
20 for the necessary

few rounds over which propagation of detectable differences is likely [4].
Moreover, the use of round constants ensures that the symmetry of the round

function is eliminated. Therefore, high probability key schedule attacks against
E i20 for fixed i are unlikely.

For brevity, let g = fi ◦ S2,i and i ∈ I be fixed. Then, for any x 6= y ∈ PA,

Pr[g(x) = g(y)] = Pr[g(x) = g(y)|S2(i, x) = S2(i, y)] · Pr[S2(i, x) = S2(i, y)]

+Pr[g(x) = g(y)|S2(i, x) 6= S2(i, y)] · Pr[S2(i, x) 6= S2(i, y)]

whence,

Pr [fi ◦ S2,i(x) = fi ◦ S2,i(y)] = 2−384 + 2−512 · (1− 2−384)

≤ 2−384(1 + 2−128).

Therefore, for any random y ∈ PA, we must have that (on average)

|{x ∈ PA : x 6= y, fi ◦ S2,i(x) = fi ◦ S2,i(y)}|
|PA| − 1

≤ 2−384(1 + 2−128).

Hence,

|{x ∈ PA : x 6= y, fi ◦ S2,i(x) = fi ◦ S2,i(y)}| ≤ (|PA| − 1) ·
(
2−384(1 + 2−128)

)
.

Therefore, we claim that for fixed i

AdvprfEi20
(At′ ,4) ≤ c1

t
′
/Tfi◦S2,i

·
(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

+
12

2129

≤ c1
t
′
/Tfi◦S2,i

·
(

(1− 1
|PA|) · (1 + 2−128) + 1

)
2384

+
12

2129

for any PRF adversary A that makes at most 4 oracle queries and runs in time
at most t

′
= o (log2(|PA|) + 128 + 128 + Tfi◦S2,i

)
, where Tfi◦S2,i is the time for

a single execution of fi ◦ S2,i (about 4 encryption runs of E20 plus one run of
the key schedule, ϕ3

20 ◦ S2,i) and c1 ∈ {0, 1} [9].
On the other hand, for any inverter h for fi ◦ S2,i, define

Advowffi◦S2,i,h
(t) = Pr

[
fi ◦ S2(i, k

′
) = y; k

$←− PA; y = fi ◦ S2(i, k); k
′

= h(y)
]

where h runs in time at most t [9].

29

Clearly, for any inverter h of fi ◦ S2,i, we can construct a prf-adversary A for
E i20 as follows.

Adversary Af

Compute y = (f(C0), f(C1), f(C2), f(C3))

Run h to obtain k
′

= h(y)

If fi ◦ S2,i(k
′
) = y then

Return 1
else

Return 0

SinceA has oracle access to the function instance f of either E i20 or Rand128→128

it can compute y = f(x) for any x ∈ Z128
2 . Therefore, it can run h as a sub-

routine which recovers the key with probability Advowffi◦S2,i,h
(t) whenever f is an

instance of E i20 and where t is the maximum running time for h.
Moreover, since fi ◦ S2,i is a public function, A can compute fi ◦ S2,i(k

′
) to

confirm the result [1].

Therefore,

Pr[f
$←− E i20 : Af = 1] = Advowffi◦S2,i,h

(t)

Pr[f
$←− Rand128→128 : Af = 1] =

1

2512

Thus, we must have,

AdvprfEi20
(A) = Pr[f

$←− E i20 : Af = 1]− Pr[f $←− Rand128→128 : Af = 1]

= Advowffi◦S2,i,h
(t)− 1

2512
.

Therefore,

AdvprfEi20
(4, t

′
) +

1

2512
≥ max

h
{Advowffi◦S2,i,h

(t)}

= Advowffi◦S2,i
(t).

30

Hence, by Proposition 2.5 of [1],

Advowffi◦S2,i
(t) ≤

t
′
/Tfi◦S2,i

·
(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

+
12

2129
+

1

2512

≤
t
′
/Tfi◦S2,i ·

(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

+
13

2129

=
t/Tfi◦S2,i

·
(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

+
13

2129

+
Q/Tfi◦S2,i

·
(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

≤
t/Tfi◦S2,i

·
(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

+ ε

where t
′

= t+Q, Q = o (log2(|PA|) + 128 + 128 + Tfi◦S2,i

)
and ε is some fixed

constant [1, 9].
Therefore, fi◦S2,i is a strong one-way function i.e. for log2 |PA| large enough,

Advowffi◦S2,i
(t) is a negligible function of t and log2 |PA| (ε, for example, becomes

a small constant).

In short, we are claiming that no PRF adversary for E i20 using 4 plaintexts
apart from the birthday paradox exists i.e. according to current literature on
attacks against the AES [4, 5].

Proposition 4.2. The collection of functions F = {fi : Z384
2 → Z512

2 }i∈I , with
S1 and S2 as defined above is a collection of strong one-way functions under
non-parameter modifying adversaries.

Proof. Follows from Lemma 4.1.

Proposition 4.3. The collection of functions F = {fi : Z384
2 → Z512

2 }i∈I , with
S1 and S2 as defined above is a collection of strong one-way functions under
parameter modifying adversaries.

Proof. First, we consider related-salt attacks.
Clearly, by Claim 2.4 such attacks are unlikely since the attacker is unlikely

to transition non-trivial salt differences through ϕ2
20. Further, by Claim 4.8 and

the differential propagation ratio of E4,ϑ4(0) a related-salt attack against F is
unlikely.

For related-T attacks, it is clear that

©t1−1
z=0

(
©b

tcost
3 c−1

j=0 GXz,j

)
6=©t

′
1−1
z=0

(
©b

tcost
′

3 c−1
j=0 GX

′

z,j

)

31

for any distinct pairs of time parameters, (t0, t1) and (t
′

0, t
′

1). Therefore, in gen-
eral, related-T attacks present two inequivalent permutations to the adversary
which by Claim 4.1 and Claim 4.10 ensures the results are only related by some
probability function - since the output of S2 does not interact directly with the
plaintexts and, thus, with the output of F . However, we need to assess the ad-
versarial complexity gain through computation of fixed password and salt values
under distinct time parameters [27].

Clearly, assuming fixed salt and password values, each (t0, t1) ∈ T changes
each of the first four entries of the X-array. Therefore, by arguments of Claim
4.7, every set of four consecutive entries of the X-array for any two distinct
T values will be distinct which ensures all the Gz,j values are component wise
distinct between the pairs. On the other hand, E4,ϑ4(0) ensures that such differ-
ences have very high propagation ratio over the entire t0 ≥ 220 elements of the
X-array.

Therefore, by the arguments in and after Claim 4.10, the adversary needs to
re-compute the final two for loops of S2 for each element in the pair.

Combined attacks encounter similar problems as the adversary needs to suc-
cessfully mount a high probability related key attack against E20 with salt dif-
ferences as key differences and T XOR differences as plaintext differences before
finally navigating through the changing last two for loops environment. How-
ever, this is unlikely by Claim 2.4.

Therefore, related-I attacks are unlikely.

Lemma 4.4. The M3dcrypt password hashing function F achieves near ideal
security for any non-uniform password distribution D.

Proof. We need to show that F is a (t, ε)-secure password hashing function where
ε is as close to t

|PA| as possible under the uniform distribution (see Theorem 1.2

in Section 1.2).
By Lemma 4.1, F is a (t, ε)-secure password hashing function under the

uniform distribution, where

ε =
t ·
(
(|PA| − 1) · 2−384(1 + 2−128) + 1

)
|PA|

≤ t · (2 + 10−38)

|PA|
.

since |PA| ≤ 2384 and only key recovery PRF adversaries are admissible. There-
fore, F achieves near ideal security for any non-uniform password distribution
D [26].

32

5 Implementation Issues

5.1 Software Implementation

The M3dcrypt password scheme is designed to exploit the high efficiency Ad-
vanced Encryption Standard New Instructions (AES-NI) through a design that
makes extensive use of the AES encryption round function (AESENC).

Therefore, M3dcrypt admits efficient implementation on all platforms in-
cluding those with modern features such as Single Instruction Multiple Data
(SIMD) and multicore CPUs [6, 2].

For completion, an example non-AES-NI implementation on a 1.6 GHZ Intel
Core 2 Duo Processor running the GCC compiler completes 4.742 evaluations
of M3dcrypt per second (using minimum parameters i.e. t = (220, 1) ∈ T). In
comparison, at creation in 1977 [21], crypt could be evaluated about 3.6 times
per second on a VAX-11/780.

5.2 Hardware Implementation

The availability of large random access memory (RAM) on general purpose mi-
croprocessors shifts the implementation bottleneck from random access memory
(RAM) to optimal implementation of the cryptographic primitive.

On the contrary, we can assume that efficient hardware for primitives in
wide spread use exist (e.g. standardised algorithms such as the AES). Possi-
bilities for further optimisation (e.g. external pipelining and/or other extensive
parallelism) are contingent on the availability and cost of RAM.

However, by Claims 4.2, 4.3 and 4.6, the high entropy X array ensures that
extensive time/memory trade-offs increase the number of auxiliary computa-
tions required to process further Xk values, 0 ≤ k ≤ t0 − 1, in the computation
of v = (v0, v1, v2) ∈ Z384

2 .
Therefore, assuming large memory requirement for X, massively parallel key

search machines may be [area-time] costly [20, 13].

6 Dedication

To one in whom all things are at once both meaningful and meaningless, all
labours both futile and glorious; and to another of whom I presumed to know
much, yet perceived little until the pulling down of this tent.

7 Conclusion

We have described a new password hashing function which is secure as long as
E20 ◦

(
ϕ3

20 ◦ S2,i ◦ P 2
1 , P

2
2

)
: PA×Z128

2 → Z128
2 is a secure PRF for all adversaries

using at most 4 oracle queries. Furthermore, we have shown that F is close to
ideal security for any password distribution D.

33

References

[1] M. Bellare, J. Killian and P. Rogaway, The Security of the Cipher Block
Chaining Message Authentication Code, Journal of Computer and System
Sciences, Vol. 61 No. 3, pp. 362-399, 2000.

[2] R. Benadjila, Use of the AES Instruction Set, ECRYPT II AES Day, Oc-
tober 2012.

[3] E. Biham and A. Shamir, Differential cryptanalysis of DES-like cryptosys-
tems, Journal of Cryptology, 4, 1, pp. 372, 1991.

[4] A. Bogdanov, D. Khovratovich and C. Rechberger, Biclique Cryptanalysis
of the Full AES, ASIACRYPT 2011, LNCS 7073, pp. 344-371, 2011.

[5] J. Daemen and V. Rijmen, On the Related-key Attacks Against AES, Pro-
ceedings of the Romanian Academy, Series A, Volume 13, Number 4/2012,
pp. 395400, 2012.

[6] J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Submission,
http://www.nist.org/aes, 1999.

[7] C. Davis and R. Ganesan, BApasswd: A New Proactive Password Checker,
16th National Computer Security Conference, September 1993.

[8] J. Gallier and A. Hicks, The Theory of Languages and
Computation, Lecture Notes, University of Pennsylvania,
http://www.cis.upenn.edu/ jean/gbooks/toc.pdf, Accessed December
2014.

[9] S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, July 2008.

[10] T. Jiang et al, Formal Grammars and Languages,
http://www.cs.ucr.edu/ jiang/cs215/tao-new.pdf, Accessed December
2014.

[11] B. Kaliski, PKCS #5: Password-Based Cryptography Specication Version
2.0, RFC 2898, 2000.

[12] B. Kaliski et al, Is the Data Encryption Standard a Group? (Results of
Cycling Experiments on DES), International Association for Cryptologic
Research, Journal of Cryptology, Vol. 1, pp. 3-36, 1988.

[13] J. Kelsey, B. Schneier, C. Hall and D. Wagner, Secure Applications of Low-
Entropy Keys, Proceedings of the First International Workshop ISW 97,
Springer-Verlag, 1998.

[14] J. Kelsey, B. Schneier and D. Wagner, Key-Schedule Cryptanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES, Lecture Notes in Com-
puter Science, 1109, pp. 237-251, 1996.

34

[15] D. Klein. Foiling the Cracker: A Survey of and Improvements to Password
Security, Proceedings, UNIX Security Workshop II, August 1990.

[16] H. Krawczyk, Cryptographic Extraction and Key Derivation: The HKDF
Scheme, Crypto’2010, LNCS 6223, 2010.

[17] R. Morris and K. Thomson, Password Security: A Case History, Commu-
nications of the ACM, Vol. 22 No. 11, November 1979.

[18] NIST, FIPS-197: Advanced Encryption Standard, Na-
tional Institute of Standards and Technology (NIST),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, November
2001.

[19] S. Park, S. H. Sang, S. Lee, and J. Lim, Improving the Upper Bound on
the Maximum Differential and the Maximum Linear Hull Probability for
SPN Structures and AES, Fast Software Encryption 2003, LNCS 2887, pp.
247-260, Springer-Verlag, 2003.

[20] C. Percival and S. Josefsson, The Scrypt Password-Based Key Derivation
Function, IETF Internet Draft, 2012.

[21] N. Provos and D. Mazieres. A Future-Adaptable Password Scheme,
USENIX Annual Technical Conference, USENIX 99, The Advanced Com-
puting Systems Association, 1999.

[22] V. Rijmen and P. Barreto. The Anubis Block Cipher, Submission to the
NESSIE Project, March 2000.

[23] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley & Sons, Second Edition, 1996.

[24] W. Stallings. Cryptography and Network Security: Principles and Practice,
Prentice Hall, Second Edition, 1998.

[25] D. R. Stinson, Cryptography: Theory and Practice, Second Edition, Chap-
man & Hall, 2002.

[26] D. Wagner and I. Goldberg, Proofs of Security For The UNIX Password
Hashing Algorithm, In Advances in Cryptology - Asiacrypt 00, Springer-
Verlag, 2000.

[27] F.F. Yao and Y.L. Yin, Design and Analysis of Password-Based Key Deriva-
tion Functions, CT-RSA 2005.

35

