
(Nothing else) MATor(s):
Monitoring the Anonymity of Tor’s Path Selection

Michael Backes1,2 Aniket Kate1,3

Sebastian Meiser1,2 Esfandiar Mohammadi1,2

1 Saarland University, 2 CISPA, 3 MMCI

{backes, meiser, mohammadi}@cs.uni-saarland.de
aniket@mmci.uni-saarland.de

October 14, 2014

Abstract

In this paper we present MATOR: a framework for rigorously assessing the degree of anonymity in the
Tor network. The framework explicitly addresses how user anonymity is impacted by real-life characteristics
of actually deployed Tor, such as its path selection algorithm, Tor consensus data, and the preferences and the
connections of the user. The anonymity assessment is based on rigorous anonymity bounds that are derived in
an extension of the ANOA framework (IEEE CSF 2013). We show how to apply MATOR on Tor’s publicly
available consensus and server descriptor data, thereby realizing the first real-time anonymity monitor. Based
on experimental evaluations of this anonymity monitor on Tor Metrics data, we propose an alternative path
selection algorithm that provides stronger anonymity guarantees without decreasing the overall performance of
the Tor network.

Contents

1 Introduction 2

2 Overview 3

3 The extended AnoA Framework 4
3.1 The extended AnoA challenger 4
3.2 Adversary classes 6
3.3 Sequential composability 7

3.3.1 Composability theorem 8
3.4 Anonymity Notions 10

4 Modeling Tor in AnoA 11
4.1 The Tor’s path selection (PSTOR) algo-

rithm 11
4.2 The Tor protocol in extended AnoA . . 12

5 Anonymity Monitors 13
5.1 Modeling MATor in AnoA 13
5.2 Computing Sender Anonymity Bounds . 13
5.3 Computing Recipient Anonymity Bounds 16
5.4 Approximations 18
5.5 Relationship Anonymity Bounds 19

6 Experimental results 22
6.1 Implementation and Data collection . . 22
6.2 Path Selection Strategies 23
6.3 Lessons learned 24
6.4 The impact of a multiplicative factor . . 25

7 Conclusion & Future Work 26

1

1 Introduction
The onion routing network Tor is a widely employed low-latency anonymous communication service [30]. To
provide anonymity Tor routes a user’s traffic through anonymizing proxies. In Tor the trust in these anonymizing
proxies (also called nodes) is distributed over three nodes, instead of one proxy, which are chosen from more than
5000 volunteer nodes. Using these anonymizing proxies, Tor creates an anonymous channel for the user, which
leads to the following central question from a user perspective:

How anonymous is this channel that Tor creates, i.e., how likely is it that an adversary can deanonymize
me?

Deriving the degree of a user’s anonymity is challenging for such a complex system where each of the 5000
fluctuating nodes is entrusted with different bandwidth, and each node offers a different set of ports for a commu-
nication. Previous mathematically founded analyses abstract the Tor network by ignoring characteristics of Tor,
such as the path selection algorithm, the varying entrusted bandwidth of different Tor nodes, or the user’s requested
ports [6,13–16,19]. However, these real-life characteristics of Tor significantly influence a user’s anonymity, which
renders the previously proven bounds inaccurate.

Contribution. In this paper, we present MATOR: the first system to derive sender, recipient and relation-
ship anonymity guarantees based on Tor’s real-life characteristics, such as its actual path selection strategy. Our
anonymity definitions are founded in the ANOA framework [6] and are thus modular. MATOR entails light-weight
real-time monitors that compute sender, recipient and relationship anonymity guarantees based on the actual Tor
consensus data and the user requested ports.

As ANOA, the theoretical framework upon which we base MATOR, does not provide a formalism to model
adversaries that resemble the worst case for a realistic scenario, we extend ANOA with the concepts of adversary
classes and adaptive user behavior. These adversary classes allow for restricting the strong ANOA adversary to
the scenario of interest, whereas extending ANOA with adaptive user behavior enables interactive communication
scenarios. We show that sequential composition does not hold for some adversary classes and characterize those
adversary classes for which we show sequential composition. We consider this extension of the ANOA framework
to be of independent interest for the analysis of other anonymous communication networks.

Using MATOR, we conduct experiments on Tor Metrics [29] data that span the last 24 months. These experi-
ments illustrate that the anonymity guarantees fluctuate substantially on an hourly basis, which further underscores
the value of MATOR’s novel methodology to monitor anonymity in real-time. The experiments additionally high-
light the influence of the entrusted bandwidth on a user’s anonymity, as Tor’s path selection algorithm places a
large amount of trust into single high-bandwidth nodes and hence has similar weaknesses as choosing a single
anonymizing proxy. Based on our findings from the experiments, we propose DISTRIBUTOR: a novel path se-
lection algorithm that improves Tor for all three considered anonymity notions (sender, recipient and relationship
anonymity) by redistributing the trust in single high-bandwidth nodes to a larger set of Tor nodes. In contrast to
previous proposals for path selection algorithms that solely concentrate on improving the users’ anonymity [4,11],
our path selection algorithm additionally preserves the overall performance of the Tor network.

Related work. In the literature, there are two lines of work about estimating the degree of anonymity of Tor users.
The first line of work assumes a worst case adversary and proves rigorous anonymity bounds for Tor users [6,

13–16, 19]. These pieces of work, however, abstract the Tor network by ignoring characteristics of Tor that
significantly influence a user’s anonymity, such as the path selection algorithm, the varying entrusted bandwidth of
different Tor nodes, or the user’s requested ports. Nevertheless, these previous approaches for proving anonymity
degrees for Tor offer a valuable foundation for our work: in particular, the rigorous ANOA framework. ANOA,
however, has several severe limitations: it only considers a worst-case adversary that has full control over all
actions of all users, which is too strong for many realistic and interesting scenarios. However, there are important
scenarios in which the adversary should not have full control over all actions of all users and that cannot be
modeled in ANOA. Therefore, we extend ANOA such that it also allows much more fine-grained scenarios.

The second line of work models Tor’s anonymity relevant characteristics more accurately [22, 31], e.g., they
explicitly model Tor’s path selection. Johnson et al. [22] give estimates for the anonymity that Tor provides for
typical users based on simulation experiments that assume an experimentally estimated adversarial strategy for
compromising relays, which, however, does not model the worst case adversary. Moreover, they characterize the
adversary by its bandwidth and split this bandwidth up between entry and exit nodes (i.e., the first and third proxy),
which neglects the following case: a relay that offers its bandwidth as entry node will with significant probability
be chosen as a middle node (i.e., the second proxy) or as an exit node (i.e., the third proxy) and can still learn some
information. This case is ignored by their analysis, which significantly reduces the estimated de-anonymization
probability of adversarial relays. The work by Wacek et al. [31] goes into a similar direction. They construct

2

 0

 0.2

 0.4

 0.6

 0.8

 1

2012-01 2012-04 2012-07 2012-10 2013-01 2013-04 2013-07 2013-10 2014-01 2014-04 2014-07

A
n

o
n

y
m

it
y
 b

o
u

n
d

 δ

Recipient Anonymity PSTor
Sender Anonymity PSTor

Recipient Anonymity DistribuTor
Sender Anonymity DistribuTor

Figure 1: Output of MATOR on historical data from January 2012 until the end of July 2014: HTTPS + IRC vs.
HTTPS, The graph shows a bound on the success probability of a worst case adversary in deanonymizing a user,
where the adversary may compromise up to 0.5% of the nodes.

a small-scale model of the Tor network, on which they perform extensive simulations, using the real Tor client
code, to evaluate the impact of path selection algorithms on Tor’s performance and anonymity. As both analyses
are based on simulations, they, in contrast to our work, do not yield provable bounds on the degree of a user’s
anonymity. Moreover, unlike MATOR, their analyses cannot be performed in real time on commodity hardware.

With respect to the improvement on Tor’s path selection algorithm, there is an extensive line of work. Wang et
al. [32] focus on improving Tor’s latency by using a congestion-aware path selection. This proposed path selection
would improve the overall performance of Tor, but the authors show that their path selection does not improve a
user’s anonymity and even slightly reduces it. In contrast, there are several proposals to improve the anonymity of
single user’s in Tor significantly [4,11,23], but these path selection algorithms solely aim to improve the anonymity
of Tor and ignore the influence on the overall performance of the Tor network. If one of these latter path selection
algorithms was to be widely deployed and used by the majority of Tor users, the overall performance of the
Tor network would significantly decrease, as the path selection would no longer allow the traffic to be distributed
according to the bandwidth of the nodes. In this work, we propose a path selection algorithm that both significantly
improves the anonymity of users and at the same time is completely performance-preserving; i.e., even if every
Tor user applied our technique, the overall performance of Tor would not change at all.

2 Overview
The Tor network is an overlay network consisting of OR nodes that relay user traffic and of a distributed directory
service that maintains and provides the users with cryptographic information and with routing information about
the OR nodes in form of a consensus. On a regular basis (typically every 10 minutes) users select a sequence of
(three) OR nodes based on the directory information, such as bandwidth and accepted ports, and create a path,
called a circuit over the selected set. The users then employ these circuits to send traffic to their destinations and
to receive responses from those. The selection of nodes is done by a random choice. However, to improve the
performance of the Tor network, this choice is not uniformly at random, but a weighted random choice over all
possible nodes, where the weight depends on the node’s bandwidth.

Our goal is to perform a rigorous real-time analysis of a user’s anonymity bounds in the presence of real-life
parameters such as the current path selection algorithm in a mathematically founded framework.

Due to the lack of a suitable theoretical framework that we could use off-the-shelf, we chose to extend the
ANOA framework [6], a general framework for anonymity guarantees, such that we can prove our analysis secure.
ANOA is a mathematical framework that is conceptually based on differential privacy in three ways: first, it
considers the user behavior as a database of user actions, hence statically determines a users’ behaviors; second,
it leaves the choice over a user’s behavior to the adversary; and third, it allows for deriving guarantees for all
sufficiently similar user behaviors. By statically determining the behavior of all users (in a database) before this
behavior is executed, ANOA excludes interactive communication scenarios.

In Section 3 we extend the ANOA framework to such interactive communication scenarios by allowing the
adversary to specify user actions as atomic steps instead of providing databases. In addition, we restrict the
adversary’s power in ANOA by introducing wrapper machines that we coin adversary classes for including settings
with uncompromised servers. With these adversary classes we, additionally, are able to describe usage patterns
and to restrict the ports that an adversary may choose for a user’s connection and the influence that the adversary
may have on user preferences. With adversary classes, a variety of user profiles and realistic restrictions for the

3

adversary can be defined. In addition, they can modularly be combined with anonymity notions, such as sender
anonymity, recipient anonymity and relationship anonymity.

Before we discuss how a user’s anonymity in Tor is assessed in MATOR, we describe in Section 4 Tor and its
path selection in order to illustrate that there is a variety of parameters that need to be carefully considered. Then,
we finally define, on top of ANOA, MATOR as a framework for assessing a user’s anonymity in the Tor network.
We describe how to derive bounds on the degree of anonymity, depending on the path selection algorithm and
actual Tor consensus data. From this data we derive the impact of individual relays on anonymity – which is the
likelihood that they are used as entry, middle or exit node in a user’s circuit – depending on the user’s preferences,
the ports she wants to connect to and the structure of the Tor network, such as the active Tor nodes with their tags,
entrusted bandwidths and family relations [29]. We then base the computation of bounds for sender, recipient, and
relationship anonymity on these calculations, and we show these bounds to be founded in ANOA. To allow users
to compute their anonymity, we present light-weight live-monitors that implement MATOR for sender, recipient
and relationship anonymity.

In Section 6 we conduct experiments by applying MATOR to Tor network data, taken from the Tor Metrics
archive [29]. These experiments give several interesting insights into Tor’s anonymity guarantees: these guaran-
tees heavily depend on a user’s preferences, Tor’s path selection algorithm and the status of all active Tor nodes.
Consequently, the guarantees vary over time as new nodes become active, are entrusted with more or less band-
width and receive different tags. As depicted in Figure 12, these guarantees significantly fluctuate with every
new consensus file, i.e., every hour. Moreover, our experiments show that the current path selection algorithm
does not properly distribute the trust over Tor nodes and extremely prioritizes a few high-bandwidth nodes. This
leads to single points of failure and thus decreases the anonymity guarantees we can derive. Based on this insight,
we propose an alternative path selection algorithm, coined DISTRIBUTOR, that maximally distributes the trust
without decreasing the overall performance of the Tor network, thereby achieving significantly better anonymity
guarantees while preserving Tor’s throughput and latency.

Figure 1 depicts the result of applying our monitor to Tor’s archive data, from Tor Metrics [29], of the last two
years, where the anonymity guarantees are averaged for each day for the sake of readability. In the experiment
the monitor assumes that 0.5% of all nodes are compromised, that the user requested the ports 443 (HTTPS) and
194 (IRC) and wants to compare itself against the set of users that solely request port 443, i.e., the probability
that it is in the anonymity set including the set of users that solely surf1. The figure compares Tor’s path selection
algorithm against DISTRIBUTOR for sender anonymity and recipient anonymity and shows that DISTRIBUTOR
leads to significant improvements. The figure additionally illustrates that a user’s degree of anonymity highly
fluctuates. This fluctuation underscores the value of providing a real-time, user-centric, anonymity monitor.

3 The extended AnoA Framework
The theoretical framework upon which we base MATOR is an extension of the ANOA framework for proving
anonymity guarantees of anonymous communication networks [6]. ANOA is a useful building block for analyzing
anonymity, but it lacks the generality to model the scenarios in MATOR. As a consequence, we extend the ANOA
framework in this section such that it is suitable for proving that the anonymity bounds of our MATOR monitors
are secure. In this section, we first present the extended ANOA challenger for stronger, adaptive adversaries and
define adversary classes as realistic restrictions for this strong adversary. We then analyze how the anonymity
guarantees provided by our extended ANOA framework compose under sequential composition. Finally, we
present instantiations of the three anonymity notions we need for MATOR: sender anonymity, recipient anonymity
and relationship anonymity.

3.1 The extended AnoA challenger
ANOA generalizes the notion of adjacency from differential privacy [10] to anonymity definitions. The challenger
of ANOA defines at its heart an indistinguishability game in which a challenge bit b is chosen, and depending on
this bit b one of two settings is executed. The goal of the adversary is to guess this bit b.

The challenger for ANOA (for n challenges) expects two kinds of messages: input messages of the form
(input,m), that are processed by the protocol by running the protocol and letting a user S send the message m
to a recipient R, and challenge messages of the form (challenge, r1, r2,Ψ), where r1 and r1 correspond to two
different inputs and where Ψ is an identifier for the challenge. In each challenge message (challenge, r1, r2,Ψ),
the two messages r1, r2 have to be adjacent in a generalized sense. To simplify the notation of our adjacency
functions, they get the bit b from the challenger as an additional input. Consequently, the adjacency functions can

1We choose port 443 as the Tor browser uses by default the add-on HTTPS Everywhere, which uses HTTPS whenever possible.

4

Adaptive ANOA Challenger CH(P, α, n, b)

Upon message(input, r = (S,R,m, sid))

1: RunProtocol(r, 0)

Upon message (challenge, r0, r1,Ψ)

1: if Ψ /∈ {1, . . . , n} then abort
2: else if Ψ ∈ T then /* if Ψ is known */
3: Retrieve s := sΨ
4: if s = over then abort
5: else s := fresh and add Ψ to T /* if Ψ is fresh */
6: Compute (r∗, sΨ)← α(s, r0, r1, b)
7: RunProtocol(r,Ψ)

RunProtocol(r = (S,R,m, sid),Ψ)

1: if ¬∃y such that (sid, y,Ψ) ∈ S then /* if sid is fresh */
2: Let sidreal ← {0, 1}k; Store (sid, sidreal,Ψ) in S.
3: else sidreal := y /* if a real session id for sid has already been chosen */
4: Run P on r = (S,R,m, sidreal) and forward all messages that are sent by P to the adversary A and send all

messages by the adversary to P .

Figure 2: Extended ANOA Challenger

model the anonymity challenges on their own and simply output a message r∗ that is sent to the challenger. We
assume an anonymity function α, with the following interface:

α(r0 = (S0,R0,m0, sid0), r1 = (S1,R1,m1, sid1), b)

For every challenge with tag Ψ, the challenger maintains a state sΨ that can be either fresh, over, or contain
some information about an ongoing challenge. For every challenge that is not in the state over, we apply the
anonymity function with its correct state – fresh for newly started challenges, some other state sΨ if the challenge
is already active – and simulate the protocol on the output of the adjacency function. The challenger only allows
n challenges. This restriction is implemented by restricting the set of possible challenge tags Ψ, which are used
by the adversary to distinguish the challenges. We store all tags of already started challenges Ψ in a set T.

To model more complex anonymity notions, such as anonymity for a session, the adjacency function is allowed
to keep state for each challenge, i.e., sessions created by challenge messages are isolated from sessions created
by input messages. Thus, an adversary cannot use the challenger to hijack sessions. This is done by choosing
and storing session IDs sidreal for every challenge separately as follows. Whenever a message with a new session
ID sid is to be sent to the protocol, randomly pick a fresh session ID sidreal that is sent instead, and store sidreal

together with sid and the challenge tag Ψ (if it is a challenge) or zero (if it is not a challenge). We store all
mappings of sessions (sid, sidreal,Ψ) in a set S.

By definition, the sessions created by challenge messages are isolated from sessions created by input messages.
Thus, an adversary cannot use the challenger to hijack sessions.

Multiplicative factor. ANOA introduces a multiplicative factor eε to the indistinguishability based definition,
which gives the notion a flavor of differential privacy. Although they do not illustrate the usefulness of this factor
in their analysis, we find that such a factor can in some cases be surprisingly helpful in describing anonymity
guarantees. The most prominent case we have found is the analysis of an adversary that compromises no, or
only a very limited amount of nodes. Before describing the details of this aspect we present our generalization of
ANOA and then later elaborate on the impact of a multiplicative factor in Section 6.4.

The full description of the session challenger is available in Figure 2.

Definition 1 ((n, ε, δ)-α-IND-CDP). A protocol P is (n, ε, δ)-α-IND-CDP for a class of adversaries A, with ε ≥ 0
and 0 ≤ δ ≤ 1, if for all PPT machines A,

Pr [0 = 〈A(A(n))||CH(P, α, n, 0)〉]
≤ enε Pr [0 = 〈A(A(n))||CH(P, α, n, 1)〉] + enεnδ

where the challenger CH is defined in Figure 2.

5

Example 1: Single message sender anonymity. For modeling the simplest version of sender anonymity, where only
a single message is sent by one of two possible senders, the adjacency function αSA depending on the challenge bit
b simply chooses which of the two senders sends the message. As the adjacency function models sender anonymity,
it makes sure that no information is leaked by the message itself or the recipients identity. Therefore it chooses
the same message and the same recipient in both scenarios, e.g., by requiring that they are equal or by simply
always choosing the message and recipient that are sent forthe first scenario. Moreover, since here we only allow
a single message per session, for each message a fresh session is created and this session is terminated by setting
the state to over, i.e., αSA(s, (S0,R0,m0), (S1, ,), b) = ((Sb,R0,m0), over). In Section 3.4 we formally define
the anonymity functions for sender, recipient, and relationship anonymity. �
Modifications made to AnoA. In ANOA only static, i.e., non-interactive, scenarios can be modeled, which
excludes two-way communication. Moreover, the adversary is not restricted in its choices to determine the actions
of the challenge users, which excludes many interesting and realistic scenarios. In practice, it makes an enormous
difference to which server a user wants to connect, as this might require a different port or different settings. The
worst-case adversary in ANOA could always choose the ports and settings for which the weakest guarantees can
be given (c.f. Section 6 for the influence of ports and settings on anonymity). However, such an adversary is
meaningless in practice because a user is rather interested in its real anonymity (e.g., the difficulty to distinguish
its behavior from a regular user that only uses port 443 for HTTPS) and not in a superficial worst-case behavior.

3.2 Adversary classes
An adversary class A(·) is a wrapper that restricts the adversary A in its possible output behavior, and thus, in
its knowledge about the world. Technically, it is a PPT machine A(A) that internally runs the adversary A and
forwards all messages that are sent from a compromised node to the adversary A and vice versa.
Example 2: Hiding recipients. With such a notion of an adversary class we can model an interactive scenario in
which the adversary solely learns the information that an ISP would learn (and the information from its addition-
ally compromised Tor nodes). The adversary class A(·) computes the behavior of the servers without informing
the adversaryA about the communication. Thus, the adversary class would respond for the servers and the adver-
sary will not be directly informed about the messages by the servers themselves. In the same way, the adversary
class can additionally control which responses from the servers the adversary can see and, possibly, allow very
few choices and solely inform the adversary whether a challenge session has ended. �

The following example shows a scenario in which an (unrestricted) adaptive adversary might be too strong.
Example 3: Tor with entry guards. In ANOA all actions, including the responses that servers give to users, are
computed by the adversary. This design makes the definition of use Consider the Tor network with entry guards.
Every user selects a small set of entry nodes (his guards) from which he chooses the entry node of every circuit.
Guards are rotated only after several months. As a compromised entry node is fatal for the security guarantees
that Tor can provide, the concept of entry guards helps in reducing the risk of choosing a malicious node. However,
if such an entry guard is compromised the impact is more severe since an entry guard is used for a large number
of circuits.

An adaptive adversary can choose its targets adaptively and thus perform the following attack. It (statically)
corrupts some nodes and then sends (polynomially) many messages (input, r = (S, , ,)) for different users S,
until one of them, say Alice, chooses a compromised node as its entry guard. Then A proceeds by using Alice and
some other user in a challenge. As Alice will quite likely use the compromised entry guard again, the adversary
wins with a very high probability (that depends on the number of guards per user). �

Although this extremely successful attack is not unrealistic (it models the fact that some users that happen to
use compromised entry guards will be deanonymized), it might not depict the attack scenario that we are interested
in. Thus, we define an adversary class that makes sure that the adversary cannot choose its targets. Whenever the
adversary starts a new challenge for (session) sender anonymity, the adversary class draws two users at random
and places them into the challenge messages of this challenge.

Downward composability. The adversary classes that we define here are downwards composable for all proto-
cols. More precisely, if a protocol P is α secure for an adversary class A1(·) and if A2 is an arbitrary adversary
class, then P is also α secure for an adversary class A1(A2(·)).

This observation follows directly from the fact that within the adversary classes, arbitrary PPT Turing ma-
chines are allowed, which includes wrapped machines A2(·).

Complex anonymity properties as adversary classes. It is possible to describe complex anonymity properties
as the composition of a simpler adjacency function and an adversary class. For modeling sender anonymity in the
presence of specific user profiles, for example, we can simply compose an adversary class that models the user
profile with the (session) sender anonymity adjacency function (c.f. Section 3.4).

6

A
Ch

A
ACREAL

A
Ch

A S
ACSIM

Figure 3: The two games from Construction 1

Defining user profiles as adversary classes. In [22], realistic, but relatively simple user profiles are defined that
determine the behavior of users. We can model such profiles by defining a specific adversary class. The adversary
class initiates profiles such as the typical users (they use, e.g., Gmail, Google Calendar, Facebook and perform
web search at certain points in time) or BitTorrent users (they use Tor for downloading files on other times) as
machines and measures time internally. If the adversary sends an input message, the adversary class initiates a
profile. The adversary class might also initiate more profiles for random users at the beginning, which corresponds
to “noise”. If the adversary sends a challenge message, the adversary class initiates profiles for two different users
(or two different profiles, depending on the anonymity notion).

On its own, the adversary class machine runs a loop that activates the profiles and increases a value t for time
every now and then, until the adversary decides to halt with its guess b∗ of the challenge bit b. Although the
adversary class activates the profiles in a random order, it makes sure that all profiles have been activated before
it proceeds to the next point in time. It additionally tells the activated profiles the point in time, such that they can
decide whether or not they want to output a valid user action r or an error symbol ⊥. The adversary class then
sends input messages or challenge messages, depending on how the profiles have been initialized.

3.3 Sequential composability
It turns out that for some combinations of adversary classes and protocols proving an anonymity property for a
single session does not imply that this anonymity property holds for multiple session, i.e., sequential composition
does not hold. As an example, consider a protocol that leaks all secrets once the second message is sent, and
consider an adversary class A(A) that only forwards challenge-messages to the challenger and that blocks all
input-messages. This combination of a protocol and an adversary class is insecure only from the second challenge
on; hence, for this combination sequential composability does not hold.

We show that sequential composability holds for adversary classes where additional challenges do not enable
qualitatively new attacks, i.e., the adversary does not gain any conceptually new power. This can be ensured by
requiring conditions from an adversary class A(A) with respect to α.

Before we define these composability conditions, we first present a few helpful definitions. To discuss what
it means that a challenge is simulatable, we consider the following two games, where ACREAL presents a real
game with a regular adversary A within an adversary class A(A) that interacts with a challenger: CH ↔ A(A).
In contrast, ACSIM presents a game in which part of what the adversary sends to the adversary class is simulated
by a simulator S that is placed between the adversary and the adversary class: CH ↔ A(S(A)).

Construction 1. Consider the following two scenarios (as in Figure 3):
ACREAL(b, n): A communicates with A(A) andA communicates with CH(b, n). The bit of the challenger is

b and the adversary may send challenge tags in {1, . . . , n}.
ACSIMSz(b, n): A communicates with Sz(b) that in turn communicates withA(A) andA communicates with

CH(b, n). The bit of the challenger is b and the adversary may send challenge tags in {1, . . . , n}.
We index a simulator with a simulator index z = [(z1, b1), . . . , (zn, bn)] ∈ {0, 1}2n that defines for which

challenge tags this simulator simply forwards the messages and for which it simulates the challenge (and for
which bit this challenge is simulated). If the bit zi of the simulator index is set to sim, the simulator transforms
the challenge with tag i, by simulating the adjacency function on the challenge message for the bit bi.

The simulator indexes explicitly specify the challenge bit for which they simulate the adjacency function, as
the simulator is unable to know the real challenge bit b. We call two simulator indexes consistent with respect to b,
if for every challenge the simulator behaves consistently for both indexes (either does not simulate the challenge
for both indexes or simulates them both for the same bit or simulates the adjacency function correctly).

7

Definition 2 (Consistent simulator index). A simulator index (for n challenges) is a bitstring z = [(z1, b1), . . . ,
(zn, bn)] ∈ {0, 1}2n. A pair of simulator indices z, z′ ∈ {0, 1}2n (for n challenges) is consistent w.r.t. b if

∀i ∈ {1, . . . , n} s.t. zi = z′i = sim.

bi = b′i

and ∀i ∈ {1, . . . , n} s.t. zi 6= z′i.

(zi = sim⇒ bi = b) ∧ (z′i = sim⇒ b′i = b).

Equipped with the notation from above, we define the composability conditions for an adversary class. The
conditions which we coin reliability, alpha-renaming and simulatability make sure that the security of a protocol
is not broken qualitatively depending on quantitative changes. Reliability ensures that the adversary class does
not initiate its own challenges. It may, however, still modify or drop challenges. Alpha-renaming ensures that
the behavior of the adversary class is independent of the actual challenge tags per se and it does not interpret
challenge tags semantically. Simulatability ensures that the adversary can simulate challenge messages (for a bit
that he guessed) by input messages.

Definition 3 (Conditions for adversary class). An adversary class A(·) is composable for an anonymity function
α, if the following conditions hold:

1. Reliability: A(A) never sends a message (challenge, , ,Ψ) to the challenger before receiving a message
(challenge, , ,Ψ) from A with the same challenge tag Ψ.

2. Alpha-renaming: A(A) does not behave differently depending on the challenge tags Ψ that are sent by A
except for using it in its own messages (challenge, , ,Ψ) to the challenger and in the (otherwise empty)
message (answer for, ,Ψ) to A.

3. Simulatability: For every n ∈ N and every simulator index z = [(z1, b1), . . . , (zn, bn)] ∈ {0, 1}2n there
exists a machine Sz such that:

(a) For every i ∈ {1, . . . , n}. If zi = sim then Sz never sends a message (challenge, , , i) to A(·).

(b) The games ACREAL(b, n) and ACSIMSzdontsim (b, n) (cf. Construction 1) are computationally indistin-
guishable, where zdontsim = [(dontsim,), . . . ,(dontsim,)]∈ {0, 1}2n for Sz and A(A).

(c) for all simulator indices z, z′ ∈ {0, 1}2n that are consistent w.r.t. b (see Definition 2) ACSIMSz(b, n)
and ACSIMSz′ (b, n) are indistinguishable.

3.3.1 Composability theorem

Theorem 1. For every protocol P , every anonymity function α, every n ∈ N and every adversary class A(A)
that is composable for α. Whenever P is (1, ε, δ)-α-IND-CDP for A(A), with ε ≥ 0 and 0 ≤ δ ≤ 1, then P is
(n, n · ε, n · enε · δ)-α-IND-CDP for A(A).

Proof. We will show this theorem inductively. Assume that P is (i, i · ε, eiε · i · δ)-α-IND-CDP. We show that P
is also (i+ 1, (i+ 1) · ε, e(i+1)·ε(i+ 1) · δ)-α-IND-CDP.

Let A be an adversary that sends at most i+ 1 challenges. To do so, we construct several games:

• Game: G0 is the normal game ACREAL(0, i+ 1) with up to i+ 1 challenges where b = 0.

• Game: G1 is an intermediate game ACSIMSzdontsim (0, i + 1). Here every message from A to A(A) (and
otherwise) goes through the simulator Szdontsim

. However, this simulator does not need to simulate anything,
as there are still up to i+ 1 challenges and b = 0.

Claim: G0 and G1 are computationally indistinguishable.

Proof: By item 3b Definition 3 the simulator Szdontsim
exists and the games are indistinguishable.

• Game: G2 is an intermediate (hybrid) game ACSIMSz(0, i + 1) with b = 0 and fixed input messages
instead of the challenge with tag i + 1 (so there are at most i challenges left). This is done by using the
simulator Sz for z = [(dontsim,), . . . , (dontsim,), (sim, 0)] ∈ {0, 1}i+1, i.e., the simulator simulates the
i+ 1st challenge for b = 0.

Claim: G1 and G2 are computationally indistinguishable.

Proof: By item 3 of Definition 3, we know that the simulator Sz exists. Since the simulator Sz from G2

uses the correct bit bi+1 = 0 for the simulated challenge, Item 3c of Definition 3 implies that the games are
indistinguishable.

8

• Game: G3 is the intermediate (hybrid) game ACSIMSz(1, i + 1) where the simulator stays Sz but the
challenger changes to b = 1.

Claim: G2 and G3 are (iε, eiεiδ)-indistinguishable.

Proof: The adversary Sz(A) makes at most i queries with challenge tags in {1, . . . , i}. From the re-
liability property of the adversary class (item 1 of Definition 3) we know that thus A(Sz(A)) uses at
most i challenge tags in {1, . . . , i}. The claim immediately follows from the induction hypothesis: P is
(i, i · ε, i · δ)-α-IND-CDP.

• Game: G4 is a game ACSIMSz′ (1, i+1) where the simulator Sz′ with z′ = [(sim, 1), . . . , (sim, 1), (sim, 0)]
simulates all challenges from A. For the challenge tags 1 to i, Sz′ simulates the challenges for b1 = . . . =
bi = 1, whereas for the tag i+ 1 it still simulates it for bi+1 = 0. The challenger uses b = 1.

Claim: G3 and G4 are computationally indistinguishable.

Proof: Since the simulator Sz′ from G4 uses the correct bit b1 = . . . = bi = 1 for the challenges that are
not simulated in Sz, Item 3c of Definition 3 implies that the games are indistinguishable.

• Game: G5 is the game ACSIMSz′ (0, i+ 1) where we use the same simulator Sz′ but we have b = 0 again.

Claim: G4 and G5 are computationally indistinguishable.

Proof: Since there are no challenge messages (everything is simulated, as by item 3a Sz′ does not send
any messages (challenge, , ,Ψ)), changing the bit b of the challenger does not have any effect. Hence, the
games are indistinguishable.

• Game: G6 is the game ACSIMSz′′ (0, i+1) where we use the simulator Sz′′ with z′′ = [(sim, 1), . . . , (sim, 1),
(dontsim,)]. In other words, we do not simulate the challenge for i + 1 with bi+1 = 0, but we use the
challenger again (also with b = 0).

Claim: G5 and G6 are computationally indistinguishable.

Proof: Since the simulator Sz′ from G5 uses the correct bit bi+1 = 0 for the simulated challenge (which
the simulator Sz′′ does not simulate), Item 3c of Definition 3 implies that the games are indistinguishable.

• Game: G7 is ACSIMtranslator(Sz′′)(0, i + 1) where we build around the simulator Sz′′ we an interface
translator(·) that translates the challenge tag from i+1 to 1 and vice versa in all messages (challenge, , ,Ψ)
from Sz′′ to A(A) and in all messages (answer for, ,Ψ) from A(A) to Sz′′ ..
Claim: G6 and G7 are information theoretically indistinguishable.

Proof: Item 2 of Definition 3 requires that the renaming of challenge tags does not influence the behavior
of A(A). It also does not influence the behavior of the challenger (by definition) or the protocol (that never
sees challenge tags). Thus, the games are indistinguishable.

• Game: G8 is the game ACSIMtranslator(Sz′′)(1, i+ 1) where the simulator is defined as in G7 but b = 1.

Claim: G7 and G8 are (ε, δ) indistinguishable.

Proof: By assumption of the theorem, the protocol P is (1, ε, δ)-α-IND-CDP for A(A). Moreover, by
definition of z′′ and by item 3a, the adversary translator(Sz′′(A)) only uses at most one challenge tag,
namely the tag 1. From the reliability property of the adversary class (item 1 of Definition 3) we know that
thus A(translator(Sz′′(A))) uses only the challenge tag 1. Thus, G7 and G8 are (ε, δ) indistinguishable.

• Game: G9 is ACSIMSz′′ (1, i+ 1) where we remove the translation interface again.

Claim: G8 and G9 are information theoretically indistinguishable.

Proof: As before, Item 2 of Definition 3 requires that the renaming of challenge tags does not influence the
behavior of A(A). It also does not influence the behavior of the challenger (by definition) or the protocol
(that never sees challenge tags). Thus, the games are indistinguishable.

• Game: G10 is the normal game ACREAL(1, i+ 1) where b = 1.

Claim: G9 and G10 are computationally indistinguishable.

Proof: Since Sz′′ uses the correct bit b1 = . . . = bi = 1 for all simulations, we can replace it with Szdontsim
,

that, in turn, is indistinguishable from ACREAL(1, i+ 1).

9

We slightly abuse notation in writing Pr [0 = A(G0)] for Pr [0 = 〈A(A(n))||CH(P, α, n, 0)〉], Pr [0 = A(G1)]
for Pr [0 = 〈A(Sz(b,A(n)))||CH(P, α, n, 0)〉], etc..

Pr [0 = A(G0)]

≤ Pr [0 = A(G1)] + µ1

≤ Pr [0 = A(G2)] + µ2 + µ1

≤ eiε Pr [0 = A(G3)] + eiεiδ + µ2 + µ1

≤ eiε Pr [0 = A(G4)] + eiε(µ3 + iδ) + µ2 + µ1

≤ eiε Pr [0 = A(G5)] + eiε(µ4 + µ3 + iδ) + µ2 + µ1

≤ eiε Pr [0 = A(G6)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= eiε Pr [0 = A(G7)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

≤ eiε(eε Pr [0 = A(G8)] + δ) + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= e(i+1)ε Pr [0 = A(G8)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

= e(i+1)ε Pr [0 = A(G9)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)ε Pr [0 = A(G10)] + e(i+1)εµ6 + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)ε Pr [0 = A(G10)] + e(i+1)ε(i+ 1)δ

3.4 Anonymity Notions
Finally, we are ready to present the anonymity notions for sender anonymity, recipient anonymity and relationship
anonymity.

Sender anonymity. Sender anonymity models the scenario in which a malicious recipient, which might addition-
ally control some Tor nodes, tries to determine the sender of a message. Since we are not interested in modeling
the (semantic) privacy of messages, we model that the messages do not depend on the sender.

For ease of exposition, we first only allow challenges that consist of one single message each. We can model
this simple variant of sender anonymity, called Single Message Sender Anonymity, as follows:

αSA(s, r0 = (S0,R0,m0), r1 = (S1, ,), b)

output ((Sb,R0,m0), over)

Note that the state of the challenge is set to over. For challenges that span a whole session (consisting of
several messages) we require that within this session the sender does not change (i.e., the adversary cannot choose
a new pair of potential senders per message, but only per challenge). Subsequently, we define the anonymity
function for Session Sender Anonymity as follows.

αSSA(s, r0 = (S0,R0,m0,), r1 = (S1, , ,), b)

if s = fresh ∨ s = (S0,S1) then
output ((Sb,R0,m0, 1), s := (S0,S1))

Recipient Anonymity. In recipient anonymity the adversary is assumed to control the link to the Tor network,
e.g., by compromising the ISP of the user. The goal of the adversary is thus to find out which web pages a user
visits. Similar to sender anonymity, the adversary additionally controls some Tor nodes.

Recall that in Example 2, adversary classes are needed for modeling recipient anonymity for representing the
servers and potentially the user profiles. Hence, recipient anonymity can only be proven for certain adversary
classes. In addition to requiring that the servers are machines and the users follow certain user profiles, as in
Example 2, there is an inherent insecurity for recipient anonymity.

Various so-called website fingerprinting attacks [8, 18, 28] are known against the anonymous communication
service Tor that directly break recipient anonymity. In these attacks, the adversary recognizes recipient by their
traffic patterns, such as direction changes or size. These attacks, however, are not specific to Tor. Every low-latency
anonymous channel is prone to these kinds of attacks. Hence, for a settings in which such website fingerprinting
attacks are possible, recipient anonymity cannot hold.

As a consequence, we only consider settings in which such attacks are not possible. As a first step, we define
an anonymity function αRA for recipient anonymity that excludes challenge messages that are of different size.

10

Similar to sender anonymity, we model the requirement that the sender is constant by always choosing the sender
S0 from the first message.

αSRA(s, r0 = (S0,R0,m0,), r1 = (,R1,m1,), b)

if (s = fresh ∨ s = S0) ∧ |m0| = |m1| then
output ((S0,Rb,mb, 1), s := S0)

These restrictions in the anonymity function, however, do not suffice. We can only define recipient anonymity
for servers, i.e., recipients, in which the response of the recipients has the same length for all messages that are of
the same length, i.e., the length of the response of a server solely depends on the length of the message.

Relationship Anonymity. In relationship anonymity the adversary is an observer that might control some Tor
nodes and that tries to deanonymize a communication between a sender and a recipient. As both sender and recip-
ient of this communication are previously unknown to the adversary (otherwise relationship anonymity collapses
to either sender anonymity or recipient anonymity), we require a slightly more complex anonymity function:

αSRel(s, r0 = (S0,R0,m0,), r1 = (S1,R1, ,), b)

if s = fresh then
a← {0, 1}

else if ∃x. s = (S0,S1, x) then
a := x

if b=0 then
output ((Sa,Ra,m0, 1), s := (S0,S1, a))

else
output ((Sa,R1−a,m0, 1), s := (S0,S1, a))

In this function there are four possible scenarios for a challenge session: Each of the senders could send its
messages to each recipient and again the choice is made depending on the bit of the challenger. If b = 0, then
one message is sent, by a randomly chosen sender Sa (that is then used for the whole challenge) to the recipient
Ra that was specified for this sender by the adversary. If b = 1, the (still randomly chosen) sender Sa sends its
messages to the other recipientR1−a. The goal of the adversary is to figure out whether one of its challenges was
chosen or whether the combination of sender and recipient was swapped.

4 Modeling Tor in AnoA
We briefly recall how Tor and its path selection work and then we explain how they are modeled.

4.1 The Tor’s path selection (PSTOR) algorithm
As mentioned in Section 2, nodes on circuits (or paths) in Tor are not selected (uniform) randomly. To improve the
performance, Tor’s current path selection algorithm makes a weighted random choice over all nodes that support
the user’s connections and preferences, and bases the weights on information that is retrieved from a periodically
published server descriptor and an hourly published consensus document. These documents are generated and
maintained by a small set of semi-trusted directory authorities, and contain up-to-date information about each
node.

In a server descriptor, a Tor node publishes its bandwidth, the ports it would allow as an exit node, its so-
called family (used for distributing trust), its uptime, its operating system, and its version of Tor. In order to
prevent malicious Tor nodes from equivocating (i.e., sending different information to different users), the nodes
are required to periodically upload (every 12 to 18 hours) their current server descriptor to all directory authorities.

The consensus document is computed hourly by the directory authorities, and it contains for each node in-
formation such as the node’s availability, its entrusted bandwidth, a pointer to the up-to-date server descriptor,
and whether this node should be used as an exit node and/or an entry node. Moreover, the consensus document
contains entry, middle, and exit scaling factors for every node in order to balance the bandwidth. This scaling is
necessary since there are fewer nodes that are marked as exit nodes (∼1000 in May 2014) than as entry (∼4000
in May 2014) or middle nodes (∼5000 in May 2014).

The PSTOR algorithm computes the weight of a node based on the retrieved node’s entrusted bandwidth.
Since a circuit establishment is expensive, the path selection tries to include as many of the requested ports into
one circuit as possible. Given a list of requested ports by the user, PSTOR determines the maximal set of ports that
is supported by any exit node, and then excludes all nodes that do not support this maximal set of ports and that are
not marked as exit nodes. Then, the algorithm assigns a weight to every remaining node by dividing its entrusted

11

exitProb(ex , [N , pf , c])

1: if (ex had an Exit tag in the latest consensus) ∧ (ex is suited for c and for pf) then
2: Let bS be an empty list
3: for node ∈ N do
4: if node offers more ports from c than the elements in bS then
5: bS := new list, only containing node
6: else if ex offers exactly the same ports as the elements in bS then
7: bS := bS.append(node)
8: if ex offers |bS| many ports then
9: totalSupport := 0

10: for node ∈ bS do
11: totalSupport := totalSupport + scEx(node)
12: return scEx(ex)/totalSupport
13: else return 0
14: else return 0

Figure 4: The computation of the exit node probabilities for Tor’s path selection algorithm

bandwidth node.bw by the sum of the entrusted bandwidths s of all not excluded nodes and multiplies this with the
corresponding exit scaling factor scEx(node) from the consensus document: node.bw/s ∗ scEx(node). Finally,
the algorithm performs a weighted random choice over these nodes.

As Tor is built upon the principle of distributing trust, the path selection excludes circuits with nodes that are
related, i.e., that are in the same /16 subnet and nodes that are in each other’s family. After having chosen the exit
node, the path selection chooses an entry node in two steps: first, the algorithm excludes all nodes that are related
to the exit node and all nodes that are not marked as entry nodes in the current consensus; second, the algorithm
computes the weight of each of the remaining nodes by dividing their entrusted bandwidth by the sum of all not
excluded nodes and performs a weighted random choice over these nodes. For the middle node the path selection
proceeds as for the entry nodes except that middle nodes do not require specific tags. However, all relatives of
both the exit node and the entry node are excluded.

This path selection algorithm adapts to the preferences of the user, who can, e.g., decide to only use nodes
that have the ‘stable’ tag or to build circuits that only use ‘fast’ nodes. Tor’s path selection algorithm also offers a
configuration for including non-valid entry or exit nodes as well as entry nodes that are not considered to be entry
guards.

4.2 The Tor protocol in extended AnoA
We base our model of Tor on our previous work that models Tor as a UC protocol ΠOR [5]. ΠOR is based on
Tor’s specification and accurately models the key exchange, the circuit establishment, and the process of relaying
message cells over Tor.

However, ΠOR abstracts from Tor’s path selection by considering a uniform path selection. In our work, we
use an extension of ΠOR, where instead of the uniform path selection the above described PSTOR algorithm is
used. This extension of ΠOR gives us a protocol on which we can base our analysis of MATOR.

This extension of ΠOR, which we call ΠOR
′, solely extends the path selection algorithm in ΠOR and leaves

everything else untouched. We accordingly extend the ideal functionality FOR from [5], which abstracts from all
cryptographic operations in ΠOR, with Tor’s actual path selection. FOR uses a shared memory between the honest
parties and sends handles over the network instead of the onion ciphertexts that Tor sends over the network. Each
party looks up then which message corresponds to the respective handle. In this way, the adversary does not learn
more than the handles about the single messages that are sent over the network. We call the extension of the ideal
functionality FOR with Tor’s actual path selection FOR

′. Since ΠOR and FOR both execute the same path selection
algorithm, the UC realization proof for ΠOR and FOR applies verbatim to ΠOR

′ and FOR
′ (Theorem 1).

In [5] secure OR modules are defined, which comprise a one-way authenticated key exchange protocol, and
secure encryption and decryption operations. Moreover, that work uses a network functionalityFNETq

for modeling
partially global network adversaries that compromise at most q links, a key registration functionality FREG and a
functionality for a confidential and mutually authenticated channel (for modeling HTTPS connections) FSCS.

12

Proposition 1. [c.f. [5]] If ΠOR
′ uses secure OR modulesM , then with the global functionality FNETq

the resulting
protocol ΠOR

′ in the FREG,SCS-hybrid model securely realizes the ideal functionality FOR
′ for any q.

5 Anonymity Monitors
In this section, we estimate these anonymity bounds of Tor for a given snapshot of the Tor network computed
from a given consensus document. We devise anonymity monitors that a client can run along with the Tor client
to estimate sound anonymity bounds for the PSTOR algorithm. First, we present the anonymity monitor for
sender anonymity that gives a bound for the probability that a malicious server manages to deanonymize the user.
Second, we present the anonymity monitor for recipient anonymity that bounds the probability that the user’s
ISP can determine the recipient of a communication. Third, we present the anonymity monitor for relationship
anonymity that bounds the probability that an observer can relate traffic to a sender and a recipient.

The output of these three monitors provides a bound of the maximal success probability of a worst-case
adversary to deanonymize a Tor user at a given point in time. The success probability is calculated for an individual
circuit creation, i.e., whenever a new circuit is created the adversary may deanonymize the user for this circuit with
the success probability.

Adversary model. For our monitors, we consider a worst-case adversary that statically compromises a given
number k of Tor nodes of its choice. It may use any auxiliary information it possesses; however, we assume that
it is has no prior knowledge of the entry guards a user will choose or has chosen. In practice the adversary can
gather its k nodes by attacking the existing nodes or (rather easily) by adding new nodes to the Tor network.

5.1 Modeling MATor in AnoA
In MATOR we analyze the anonymity of a real Tor user depending on her preferences pf and connections conn
and the verified Tor consensus file and the latest server descriptors.

Technically, we instantiate MATOR in ANOA by defining an adversary class for the user that restricts the
ANOA adversary as follows. As we are interested in the anonymity of a specific user, we overwrite the adversary’s
choice of preferences for the challenge users with the ones from the real user. The adversary may still choose the
preferences of other users in the network

Definition 4 (MATOR profile). For a set of user preferences pf and two sets of ports ports1, ports2 the profile
MATOR(pf ,ports1,ports2) replaces all messages of the form

(challenge,(S1,⊥, (initialize, ,), sid1),

(S2,⊥, (initialize, ,), sid1),Ψ)

with (challenge,(S1,⊥, (initialize, pf , ports1), sid1),

(S2,⊥, (initialize, pf , ports2), sid2),Ψ)

and by blocking all challenge messages in which only one user sends initialize. Consequently, only the preferences
pf and ports ports1 and ports2 that are specified for the profile can be used for challenges.

In our monitors’ implementations, we prepare the anonymity analysis as follows.

Monitor—Preparing the scenario. The monitor first prepares the scenario, consisting of user preferences pf , a
list of connections conn that describes to which servers (particularly over which ports) the user wants to connect,
and information about the current consensus file and the respective server descriptors. The monitor then uses a
simulation of the PSTOR algorithm to compute the weights of all nodes for these connections, each depending on
the possible position of the node within the circuit (entry, middle, exit) and depending on the node-specific data
from the consensus file (e.g., its tags, bandwidth and IP address).

The details of how these weights are computed heavily depend on the path selection that is to be used. A
short definition of how the path selection algorithm for Tor computes the probability of a given exit node is given
in Figure 4, where scEx() weights a node depending on its bandwidth, its tags, and the weights given in the
consensus.

5.2 Computing Sender Anonymity Bounds
Sender anonymity considers an adversary that wants to deanonymize a Tor user communicating to a given server
that is under adversarial control.

13

SAMonitor(N , pf , ps)
1: for ex ∈ N do
2: for en ∈ N do
3: if ps.allows(en, ex , pf) then
4: exitP := ps.exP(ex); entryP = ps.enP(en, ex)
5: δ(en)+=exitP · entryP
6: sort all nodes inN by their δ(·) value in a list sorted
7: for node ∈ sorted and 1 ≤ i ≤ k do
8: δ += δ(node); i := i+ 1
9: return δ

Figure 5: Sender Anonymity Monitor

A long history of prior work on traffic correlation attacks shows that whenever an adversary controls the entry
and the exit node of a circuit, or the entry node and the server, it may deanonymize the user [9, 12, 17, 20, 21,
24–26]. Directly following the analysis from [6] we notice that a (local) adversary with control over the server
can deanonymize the user only if it manages to compromise the entry node of a circuit. Our monitor thus checks
the probability that an entry node is compromised, which depends on the user’s preferences and connections as
well as on the active nodes. We give guarantees even against a worst-case adversary that compromises the k most
probable entry nodes.

Figure 5 depicts the pseudocode for computing the bounds for sender anonymity. Here, the adversary compro-
mises the k most likely entry nodes for the given connection. Since the probability that an entry node is chosen is
independent of the user (for a fixed connection), the sender anonymity bound is the sum that any of these nodes is
chosen. Thus, the bounds computed by the sender anonymity monitor are the worst case bounds.

Theorem 2 (Sender Anonymity Monitor). Given a consensus and a corresponding set of server descriptors,
let N be a set of nodes with bandwidth weights, the preferences pf of the user, the ports ports to which the
user wants to connect, and a path selection algorithm ps that uses these informations. Then for the output δ
of the algorithm SAMonitor(N , pf , ps) the following holds: against passive local adversaries ΠOR

′ satisfies
(1, 0, δ) − αSSA-IND-CDPMATOR(pf ,ports,∅) , where αSSA-IND-CDPMATOR(pf ,ports,∅) denotes session sender anonymity
(see Section 3) with the MATOR profile as in Definition 4.

Proof. By Theorem 1 and Lemma 22 from the full version of the AnoA framework [7, Lemma 22], we know that
it suffices to show that (1, 0, δ)− αSSA-IND-CDPMATOR(pf ,ports,∅) holds for the ideal functionality FOR

′.
Recall that the ideal functionality FOR

′ sends handles over the network instead of onions (i.e. ciphertexts) for
honest nodes. For compromised nodes, FOR

′ reveals which handles belong together, and if all nodes of the circuit
to the exit node are compromised, FOR

′ additionally reveals the message along with the handle.
LetAb denote the event thatA in the game b correctly guesses the bit b andA1−b denote the event thatA in the

game 1− b wrongly guesses the bit b, and let Cb denote the event that the circuit C is chosen by the path selection
in the game b. Since only the user differs in a sender anonymity scenario, i.e., the preferences and the connections
are the same, by the construction of Tor’s path selection algorithm (see Figure) the distribution of selected path is
the same for both user connections:

Pr[Cb] = Pr[C1−b]

Hence, we omit the subscript b for Cb in the following.
Since the sender is the same in both scenarios and since the same messages are sent over the circuit, the view

of the adversary is the same once the circuit is fixed and the adversary did not compromise the circuits entry
node. We say that a circuit is honest, written as HC , if for the circuit C = (n1, n2, n3) the entry node n1 is not
compromised. Hence, for all circuits C, the following holds

Pr[Ab | C ∧HC] = Pr[A1−b | C ∧HC] (1)

Observe that the events C and HC are independent since the adversary first chooses which nodes to compromise,
and the path selection does not know which nodes are compromised.

Observe that

Pr[Ab] =
∑

C∈nodes3
Pr[Ab | C] · Pr[C] (2)

14

Moreover, observe that

Pr[Ab | C]

= Pr[Ab | C ∧HC] · Pr[HC]

+ Pr[Ab | C ∧ ¬HC]︸ ︷︷ ︸
=1

·Pr[¬HC]

(1)
= Pr[A1−b | C ∧HC] · Pr[HC] + Pr[¬HC]

= Pr[A1−b | C ∧HC] · Pr[HC]

+ 0︸︷︷︸
=Pr[A1−b|C∧¬HC]

·Pr[¬HC] + Pr[¬HC]

= Pr[A1−b | C ∧HC] · Pr[HC]

+ Pr[A1−b | C ∧ ¬HC] · Pr[¬HC] + Pr[¬HC]

= Pr[A1−b | C] + Pr[¬HC] (3)

Thus, we have the following:

Pr[Ab]

(2)
=

∑
C∈nodes3

Pr[Ab | C] · Pr[C]

(3)
=

∑
C∈nodes3

(Pr[A1−b | C] + Pr[¬HC]) · Pr[C]

=
∑

C∈nodes3
Pr[A1−b | C] · Pr[C] + Pr[¬HC] · Pr[C]

= Pr[A1−b] +
∑

C∈nodes3
Pr[¬HC] · Pr[C]︸ ︷︷ ︸

=:δA

Let A be the adversary that compromises the entry nodes with the k-highest weights for the set of ports ports.

Claim 1 (A is the most successful adversary). For each adversary A′ that compromises at most k nodes the
following holds: δA′ ≤ δA.

Proof of Claim 1. Recall that in a sender anonymity scenario the connections and the preferences are the same
in both games. Hence, all entry nodes have the same weights in both games. By the construction of Tor’s path
selection, the weight of an entry node equals the overall probability with which the node is chosen as an entry
node. In other words:

entryW (n) =
∑

(n2,n3)∈unrelatedNodes2
ps.enP (n, n3) · ps.miP (n2, n, n3) · ps.exP (n3)

As a consequence, A compromises those entry node n such that the sum∑
(n2,n3)∈N 2

Pr[(n, n2, n3)]

is k-maximal, i.e., is among the k highest sums. Let K be the k entry nodes with these highest sums.
Then, for any other adversary A′ we have the following:

δA′ =
∑

C∈nodes3
Pr[¬HC] · Pr[C]

≤
∑

(n2,n3)∈nodes2
n∈K

Pr[(n, n2, n3)] = δA

�

15

The sender anonymity monitor and the guard mechanism. The sender anonymity monitor outputs a bound on
the probability that the adversary might deanonymize a user’s communication using Tor. This deanonymization is
heavily based on the probability of compromising the user’s entry node, and thus, sender anonymity only changes
whenever a fresh entry node is chosen. If the user makes use of the guard mechanism [27,34] she will not choose
a fresh entry node for every communication, but only choose from a small set of entry nodes that is kept for a long
time.

The guard mechanism modifies the adversaries possibilities to deanonymize the user as follows: As the user
rarely choses a fresh entry node it is less likely that the adversary manages to compromise the entry node, even if
the user builds many circuits. However, if it manages to compromise a user’s guard, it will be able to deanonymize
this user very often and consistently until she changes her guards again.

5.3 Computing Recipient Anonymity Bounds
Recipient anonymity considers the setting with a malicious ISP of the user that wants to find out which web pages
a user visits and additionally controls some Tor nodes. As presented earlier, in AnoA recipient anonymity is
formalized by comparing two challenge settings in which the user is the same but the recipients differ.

For this analysis we exclude website fingerprinting attacks, as those attacks are attacks on the content of
messages and present an orthogonal attack vector that is not related to the communication protocol. A malicious
ISP could always additionally host fingerprinting attacks, independent of the protocol we analyze. Technically,
we assume that the adversary cannot learn information from the answers to challenge messages.2 Recently, some
provably secure defenses have been developed against these fingerprinting attacks [33].

For computing the recipient anonymity bound, the probability of three scenarios has to be considered. The
first and most relevant scenario encompasses compromising the exit node in the user’s circuit, where recipient
anonymity is immediately broken. The second scenario considers a compromised middle node: in this case, the
adversary knows the circuit’s exit node and can check whether this exit node does not offer a port that is requested
in one of the settings. The third scenario considers a compromised entry node: even in this case, the adversary
can learn which middle node is chosen in the circuit and thereby check whether this middle node is more probable
in one of the settings, e.g., because the middle node is related to a heavy-weighted (i.e., very probable) exit node
that does not offer one of the ports in one of the two challenge settings. Additionally, the adversary might learn
something by seeing the entry node that has been chosen, e.g., it might be less probable to choose an entry node
that is related to a very heavy-weighted exit node.

A precise estimation of the recipient anonymity bounds has to take into account how much an adversary could
learn from any given node and then add these values up for the k most advantageous nodes. For each node
and each of the three positions (entry, middle, and exit), the increase in the distinguishing probability has to be
computed. For the exit position, the adversary can immediately distinguish the challenge settings by compromising
the exit node; hence this increase δEx is the probability that the node n is chosen as an exit node: δEx(node) :=
node.bw/(

∑
node′∈bSi

node ′.bw).
For the entry position, the adversary can not directly learn which setting is chosen, but it can gain evidence

that one of the settings is chosen, e.g., because some entry nodes are more probable to be chosen as entry nodes
in the first setting since in the other settings these entry nodes are in the family of a heavy-weighted exit node that
is only in the best support of the second setting. Hence, this increase can be characterized by the difference in the
probabilities for every triple of nodes.

δEn(node) =
∑

node1∈bS1
node,node1

unrelated

∑
node2∈N

node,node1,node2
unrelated

node,node1,node2
distinguishing

w′1 − w′2

where node,node1,node2 distinguishing ⇔ w′1/w
′
2 > eε, and where w′i = ps.enP(node,node1) ·

ps.exPi(node1) ·ps.miP(node2,node,node1).3

Iterating over all node triples, however, is not sufficiently efficient for a live recipient anonymity monitor. To
improve the efficiency, we over-approximate the influence of the exit node on δEn(node) and omit the exit nodes
in the computation.

2For Tor this formally presents a form of length-regularity: the lengths of the responses the two possible recipients of a challenge message
give have to be equally distributed for input messages of equal length.

3We calculate a bound on δ for a given multiplicative factor of ε ≥ 0. Intuitively, we take a bound for ε as input and compute the probability
that this bound cannot be achieved.

16

RAMonitor(N , pf , ports1, ports2, ps, ε)
1: for ex inN do
2: if ps.allows(ex , pf , ports1) then
3: δ(ex)+=ps.exP(exit, pf , ports1);
4: for en inN do
5: if ps.allows(en, ex , pf , ports1) then
6: δsEn+=ps.enP(en, ex , pf , ports1) · ps.exP(ex , pf , ports1) − ps.enP(en, ex , pf , ports2) ·

ps.exP(ex , pf , ports2)
7: for en inN do
8: tmp := 0
9: for mi inN do

10: w1 := ps.miPMaxEx(mi , en, pf , ports1)
11: w2 := ps.miPMinEx(mi , en, pf , ports2)
12: if w1

w2
> eε then

13: tmp+=(w1 − w2) · ps.enPMaxEx(en, pf , ports1)
14: δ(en)+=min{tmp, en.used as entry}
15: for ex inN do
16: if ps.allows(ex , pf , ports1) then
17: for mi inN do
18: w1 := ps.miPMaxEn(mi , ex , pf , ports1)
19: w2 := ps.miPMinEn(mi , ex , pf , ports2)
20: if w1

w2
> eε then

21: δ(mi)+=(w1 − w2) · ps.exP(ex , pf , ports1)
22: sort all nodes n by the value δ(n) in a list sorted
23: for node in sorted and 1 ≤ i ≤ k do
24: δ+=δ(node); i = i+ 1
25: δ+=δsEn

26: return δ

Figure 6: Recipient Anonymity Monitor

These approximations influence relevant but rather minor factors of the anonymity guarantee, as the δ mostly
depends on the probability to compromise exit nodes. In the next section (Section 5.4) we will give a detailed
description of our approximations.

Theorem 3 (Recipient Anonymity Monitor). For a consensus document, a set of server descriptors, a user’s
preferences pf and two sets of ports ports1 and ports2, let N be the set of nodes in the consensus together with
their weights. Let ε > 0 be a real value . Then for the output δ of the algorithm RAMonitor(N , pf , ports1,
ports2,ps,ε) the following holds against passive local adversaries:

ΠOR
′ satisfies (1, ε, δ)− αSRA-IND-CDPMATOR(pf ,ports1,ports2)

,

where αSRA-IND-CDPMATOR(pf ,ports1,ports2)
denotes session recipient anonymity (see Section 3) .

Proof. By Theorem 1 and Lemma 22 from the full version of the AnoA framework [7, Lemma 22], we know that
it suffices to show that (1, ε, δ)− αSRA-IND-CDPMATOR(pf ,ports1,ports2)

holds for the ideal functionality FOR
′.

Recall that the ideal functionality FOR
′ sends handles over the network instead of onions (i.e. ciphertexts) for

honest nodes. For compromised nodes, FOR
′ reveals which handles belong together, and if all nodes of the circuit

to the exit node are compromised, FOR
′ additionally reveals the message along with the handle.

For a given ε, we can bound δ as follows, where k is the number of estimated compromised nodes from the
user preferences pf .

δ ≤ max
Ks.t.|K|≤k

∑
n∈K

δ(n)

where δ(n) is the increase in the advantage that the adversary gets from compromising the node n.

δ(n) ≤ δEn(n) + δMi(n) + δEx(n)

17

The recipient anonymity monitor approximates δ(n) for efficiency reasons. We show in the following that δ(n)
is safely over-approximated. We first show that δEn(n) is safely over-approximated, then we show that δMi(n) is
safely over-approximated, and for δEx we do not need to show anything since it is precisely computed as

δEx(n) := n.bw/(
∑

n′∈bSi

n′.bw).

For the sake of convenience, we omit in the following the preferences and ports if we call the path simulator
functions ps. (See Figure 8 for the precise arguments for the call.) We say that a triple of nodes n, n1, n2 is
distinguishing ⇐⇒ w′1/w

′
2 > eε, and where w′i = ps.enP(n, n1) · ps.exPi(n1) · ps.miP(n2, n, n1). Then, we

can over-approximate δEn(n) as follows:

δEn(n) =
∑

n1∈bS1
n,n1

unrelated

∑
n2∈N
n,n1,n2
unrelated
n,n1,n2

distinguishing

w′1 − w′2

≤
∑
n2∈N

n,n2 unrelated
n,n2 quasi entry distinguishing

ps.enPMaxEx(n) · (w1 − w2)

where n, n2 quasi entry distinguishing ⇐⇒ w1/w2 > eε, and w1 := ps.miPMaxEx(n2, n) and w2 :=
ps.miPMinEx(n2). We stress that we have to use ps.enPMaxEx(n) because we do not know which exit node
was chosen; hence we have to assume that the entry node with the maximal family has been chosen, whose impact
is worst.

For δMi(n), we also have

δMi(n) =
∑

n1∈bS1
n,n1

unrelated

∑
n2∈N
n,n1,n2
unrelated
n,n1,n2

distinguishing

w′1 − w′2

≤
∑
n2∈N

n,n2 unrelated
n,n2 quasi exit distinguishing

ps.exP(n2) · (w1 − w2)

where n, n2 quasi exit distinguishing ⇐⇒ w1/w2 > eε, where w1 := ps.miPMaxEn(n, n2) and w2 :=
ps.miPMinEn(n, n2). We stress that for ps.exP(n2) we can take the exact weight of the exit node because the
choice of the exit node does not depend on the entry or middle node.

Note that our approximations are exactly what the recipient anonymity monitor computes. Hence, the bounds
computed by the recipient anonymity monitor are secure.

The recipient anonymity monitor and the guard mechanism. In recipient anonymity we assume that the
adversary has knowledge about the user’s connection to the Tor network. For our bounds we model both the case
where the user does not use entry guards, i.e., uses a fresh entry node for every circuit and the case in which the
user uses guards. To this end we allow the user to specify her entry guards (we envision that they are read from
the Tor source-code if MATOR is integrated into Tor). In this case we allow the adversary to even have auxiliary
information about the guards as we can assume that they have been used before. This in particular allows the
adversary to target the entry guards if that helps it to break recipient anonymity. Note, however, that the entry
node plays only a minor role in breaking recipient anonymity.

5.4 Approximations
In this section we explain the approximations we did for the recipient anonymity monitor (c.f. Section 5.3).

We approximate the probability that an entry node n chosen by always assuming that the exit node with the
largest family has been chosen: ps.enPMaxEx(n, pf , ports1) (see Figure 7). Similarly, we over-approximate the
conditional probability that a middle node is chosen in the first scenario, given an entry and exit node, by again
assuming the exit node with the maximal family weight: w1 := ps.miPMaxEx(n2, n) (see Figure 7) . In order to
have a sound approximation, we under-approximate the conditional probability that a middle node is chosen in the
second scenario by not subtracting the weight of any exit family at all: w2 := ps.miPMinEx(n2) (see Figure 7).

18

Assume all variables are initialized with 0.

Computing the largest family joins
1: /* largest exit family join: compute for each entry node en the cumulative middle weight of the largest family of valid exit nodes if en is

chosen as an entry node */
2: for each entry node en inN do
3: Compute the cumulative middle weight of the largest family join of en with exit nodes ex ∈ bS1 such that

ps.allow(en, ex , pf).
4: Save this to en.lExFJ
5: /* largest other exit family: compute for each entry node the cumulative entry weight of the largest family of valid exit nodes if en is chosen

as an entry node */
6: for each entry node en inN do
7: Compute the cumulative entry weight of the largest family for exit nodes ex ∈ bS1 such that ps.allow(en, ex , pf).
8: Save this to en.lOEF
9: /* largest entry family join: compute for each exit node the cumulative middle weight of the largest family of valid exit nodes if ex is chosen

as an exit node */
10: for each exit node ex inN do
11: Compute the cumulative middle weight of the largest family join (i.e., the node en such that the family join is

maximal) of ex with entry nodes en such that ps.allow(en, ex , pf).
12: Save this to ex .lEnFJ.

miPMaxEx(mi , en, pf , ports)

1: return ps.miBW (mi,pf ,ports)
total−en.lExFJ

miPMinEx(mi , en, pf , ports)

1: return ps.miBW (mi,pf ,ports)
total−ps.familyMiddleWeight(en,pf ,ports)

enPMaxEx(en, pf , ports)

1: return ps.enBW (en)
total−en.lOEF

miPMaxEn(mi , ex , pf , ports)

1: return ps.miBW (mi,pf ,ports)
total−ex .lEnFJ

miPMinEn(mi , ex , pf , ports)

1: return ps.miBW (mi,pf ,ports)
total−ps.familyMiddleWeight(ex ,pf ,ports)

Figure 7: Tor Path Selection Approximations

For approximating whether a circuit is distinguishing or not for an entry node n and a middle node n2, we check
whether w1/w2 > eε. ∑

n2∈N
n,n2unrelated

n,n2distinguishing

ps.enPMaxEx(n) · (w1 − w2)

For the middle position, the adversary can in some cases learn which setting is chosen by identifying a port that
is not offered by the observed exit node yet requested in one of the settings. For a node n, computing the increase
δMi(n) in the adversary’s distinguishing probability is analogous to the increase for an entry node. Similar to
δEn(n), we over-approximate the effect of the entry node δMi(n) as depicted in Figure 8.

Finally, we incorporate the effect of the adversary’s ability to always observe which entry node is chosen.
Recall that the probability for choosing a particular entry node can differ if different exit nodes are in the best
support for different lists of requested ports in the two settings. To respect this impact on anonymity we add for
each entry node n the difference of the probabilities that n is chosen in one setting and that n is chosen in the other
setting:

δsEn(n) :=
∑

ex∈bS1

enP1 − enP2,

where enPi = ps.enP(n, ex, pf , portsi).
We approximate the probabilities for relationship analogously.

5.5 Relationship Anonymity Bounds
Relationship anonymity considers a setting in which an observer tries to deanonymize a communication between
a sender and a recipient. The adversary does not already control the ISP of the sender or the server, but corrupts or

19

RelMonitor(N , pf , ports1, ports2, ps, ε)
1: for ex inN do
2: if ps.allows(ex , pf , ports1) then
3: for en inN do
4: if ps.allows(en, ex , pf , ports1) then
5: δEnEx(en, ex) := ps.enP(en, ex , pf , ports1) · ps.exP(ex , pf , ports1)
6: enP(en)+ = δEnEx(en, ex)
7: for mi inN do
8: w1 := ps.miPMaxEn(mi , ex , pf , ports1)
9: w2 := ps.miPMinEn(mi , ex , pf , ports2)

10: if w1
w2

> eε then
11: δintermediate(mi)+ = ps.exP(ex , pf , ports1) · (w1 − w2)
12: for en inN do
13: if enP(en) > 0 then
14: t := 0
15: for mi inN \ {en} do
16: w1 := ps.miPMaxEx(mi , en, pf , ports1)
17: w2 := ps.miPMinEx(mi , en, pf , ports2)
18: if w1

w2
> eε then

19: t+ = ps.enPMaxEx(en, pf , ports1) · (w1 − w2)
20: δEnMi(en,mi)+ = enP(en) · δintermediate(mi)
21: t := min t, enP(en)
22: δEn(en) := t
23: Compute (approximate) the respective δ for the maximal subset of nodes

Figure 8: Relationship Anonymity Monitor

controls some Tor nodes. As presented earlier, in ANOA, relationship anonymity is formalized by comparing two
challenge settings in which there are two possible senders and two possible recipients. As for recipient anonymity,
we exclude fingerprinting attacks for this analysis, as those attacks are based on the content of messages.

For computing the relationship anonymity bound we first observe that the adversary has to break the anonymity
of the sender in order to succeed. Consequently, the scenarios in which an adversary gains an advantage are a
combination of the scenarios from sender anonymity and from recipient anonymity: As long as the probability
for choosing entry nodes is not different for different senders, the entry node has to be compromised. Still, the
probability of three scenarios associated with recipient anonymity has to be considered. The most intuitive and
most severe scenario is a compromised entry node in combination with a compromised exit node. In this case
an adversary can immediately see both the sender and the recipient of a message, and thus, break relationship
anonymity. The second scenario is a compromised entry node in combination with a compromised middle node.
Here, depending on the ports that are used, an observed exit node might be more likely in one of the scenarios
or even impossible, in some other scenarios. The third scenario is a compromised entry node without other
compromised nodes. Even now the adversary might learn something by seeing the middle node, which might be
more or less likely to be chosen, depending on which exit node was chosen (which, again, might depend on the
scenario).

Similarly to recipient anonymity, computing a precise bound for relationship anonymity directly is infeasible
for a light-weight anonymity monitor. Consequently we give a sound approximation for the anonymity guarantee.
We give estimates for the advantage of the adversary for each combination of nodes, as well as for each individual
entry node. To overcome the necessity to compute the best subset of all nodes such that their combinations
yield the optimal advantage for the adversary, we observe that by compromising k nodes an adversary can only
compromise at most k·(k−1)

2 combinations of nodes. Our bound comprises of the top k values from compromising
entry nodes only and the top k·(k−1)

2 values that arise from combinations of two nodes.

Theorem 4 (Relationship Anonymity Monitor). For a consensus document, a set of server descriptors, a user’s
preferences pf and two sets of ports ports1 and ports2, let N be the set of nodes in the consensus together
with their weights. Let ε > 0 be a real value . Then for the output δ of the algorithm RelMonitor(N ,
pf , ports1, ports2,ps,ε) ΠOR

′ satisfies (1, ε, δ) − αSRel-IND-CDPMATOR(pf ,ports1,ports2)
against passive local adver-

saries, where αSRel-IND-CDPMATOR(pf ,ports1,ports2)
denotes session relationship anonymity (see Section 3).

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200

A
n
o
n
y
m

it
y
 b

o
u
n
d
 δ

PSTor 443+194 (IRC) vs 443
PSTor 443 vs 443

DistribuTor 443+194 (IRC) vs 443
DistribuTor 443 vs 443

Figure 9: Relationship anonymity guarantees (value of δ) depending on the number of compromised nodes. We
used ε = 0 and as settings the ports HTTPS+IRC vs. HTTPS.

Proof. The proof assumes that there is no distinguishing exit node, no distinguishing middle node and no distin-
guishing combination of exit and middle nodes. This holds for both PSTOR and DISTRIBUTOR.

By Theorem 1 and Lemma 22 from the full version of the AnoA framework [7, Lemma 22], we know that it
suffices to show that (1, ε, δ)− αSRel-IND-CDPMATOR(pf ,ports1,ports2)

holds for the ideal functionality FOR
′.

In contrast to both sender anonymity and recipient anonymity, the impact that compromising a node has on
δ highly depends on other nodes, as both sender and recipient have to be deanonymized. For the third scenario
that we described above (only the entry node is compromized) we can compute the impact of every node n on δ,
describe it as δ(n) and then sum over the k nodes with the largest values δ(n). For the other two scenarios (Entry
and Exit node are compromized; entry and middle node are compromized), we instead compute how much impact
a combination of two nodes has on δ and coin this impact for nodes n and m as δEnEx(n,m) and δEnMi(n,m)
respectively.

For given ε, we can bound δ as follows, where k is the number of compromised nodes, and x is the number of
compromised connections between Entry-Exit or Entry-Middle nodes:

δ ≤ max
K s.t.|K|≤k

∑
n∈K

(
δEn(n) +

∑
m∈K

δEnEx(n,m) + δEnMi(n,m)

)
To increase the efficiency of our monitors we safely approximate this computation by regarding the values for

δEnEx and δEnMi as weights on a directed graph between nodes. We then collapse the graph into an undirected
graph G = (N,E) with nodes N and edges E. If k nodes within this graph are compromised, their total contribu-
tion to δ (in terms of δEnEx and δEnMi) is given by the sum over the weights δedge of all edges that connect them.
Furthermore we see that for k nodes not more than k(k−1)

2 edges e can be compromised and thus can approximate
the value for δ as:

δ ≤ max
K s.t.|K|≤k

∑
n∈K

δEn(n) + max
X⊆E s.t.|X|≤ k(k−1)

2

∑
e∈X

δedge(e)

where for every e = {n,m}, δedge(e) = δEnEx(n,m) + δEnEx(m,n) + δEnMi(n,m) + δEnMi(m,n). We
show in the following that these values are safely over-approximated, beginning with δEn. We say that a triple
en,mi , ex is distinguishing ⇐⇒ w′1/w

′
2 > eε, wherew′i = ps.exPi(ex)·ps.enP (en, ex)·ps.miP (mi , en, ex).

Then we can over-approximate δEn(en) as follows:

δEn(en) =
∑

ex∈bS1
ex ,en unrelated

∑
mi∈nodes

en,mi,ex unrelated
en,mi,ex distinguishing

w′1 − w′2

≤
∑

mi∈nodes
en,mi unrelated

en,mi quasi entry distinguishing

ps.enPMaxEx(en) · (w1 − w2)

where en,mi quasi entry distinguishing ⇐⇒ w1/w2 > eε and w1 := ps.miPMaxEx(m,n), w2 :=
ps.miPMinEx(m,n). We stress that we have to use ps.enPMaxEx(n) because we do not know which exit node

21

 1

 10

 100

 1000

 10000

 100000

 0 1000 2000 3000 4000 5000

Bandwidths of all nodes
Entry bandwidths

Exit bandwidths

Figure 10: Bandwidth and weights chosen by Tor (from top to bottom: total bandwidths, entry bandwidths, exit
bandwidths, one point for each node; the nodes are sorted by bandwidth for each line)

was chosen, so we choose the entry with the maximal family has been chosen whose impact is worst.

For approximating δedge we proceed as follows. The values for δEnEx can be computed directly by using the
Path Selection algorithm:

δEnEx(en, ex) = ps.exP1(ex) · ps.enP (en, ex)

We approximate the values for δEnMi analogously to the approximation of δEn from above:

δintermediate(mi) =
∑

ex∈bS1
ex ,mi unrelated

∑
en∈nodes

en,mi,ex unrelated
en,mi,ex distinguishing

w′1 − w′2

≤
∑

ex∈nodes
mi,ex unrelated

mi,ex quasi exit distinguishing

ps.exP (ex) · (w1 − w2)

where mi , ex quasi exit distinguishing ⇐⇒ w1/w2 > eε, w1 := ps.miPMaxEn(mi , en) and w2 :=
ps.miPMinEn(mi , en). As this is only middle node weight, to again avoid cubic-time computations , we over-
approximate the probability that particular Entry-Middle pair is chosen by again assuming that the exit with the
maximal family has been chosen:

δEnMi(en,mi) = δintermediate(mi) · ps.enPMaxEx(en)

Note that our approximations are exactly what our relationship anonymity monitor computes. Hence, the
bounds computed by the relationship anonymity monitor are secure.

6 Experimental results
Our anonymity monitors described in Section 5 allow us to perform an analysis on the real consensus-data pub-
lished by Tor [29]. In this section we present a selection of the guarantees that the monitors computed.

6.1 Implementation and Data collection
We implement our sender, recipient, and relationship anonymity monitors as multi-threaded C++ programs. The
code comprises of approximately 3000 lines codes and employs SQLite [2] and Boost [3] libraries. The monitor
programs are available on our website [1].

For our analysis we process the server descriptions of Tor that are released every month to construct a database
of family relationships between nodes. Processing the server descriptors takes a significant amount of time (around
15 minutes), but we require this computation only once per month. Moreover, the information does not depend on
the settings of the user, which means that the database could be precomputed and downloaded once per month.

22

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

A
n
o
n
y
m

it
y
 b

o
u
n
d
 δ

Recipient Anonymity PSTor
Sender Anonymity PSTor

Relationship Anonymity PSTor
Recipient Anonymity DistribuTor

Sender Anonymity DistribuTor
Relationship Anonymity DistribuTor

Figure 11: Comparison between PSTOR and DISTRIBUTOR. The graph shows the value for δ with ε = 0 for 0 to
50 compromised nodes of the adversary’s choice.

 0

 0.2

 0.4

 0.6

 0.8

 1

14-02-01 14-02-08 14-02-15 14-02-22 14-03-01

A
n
o
n
y
m

it
y
 b

o
u
n
d
 δ

Recipient Anonymity PSTor
Sender Anonymity PSTor

Relationship Anonymity PSTor
Recipient Anonymity DistribuTor

Sender Anonymity DistribuTor
Relationship Anonymity DistribuTor

Figure 12: Anonymity guarantees (value of δ) over the course of February 2014 for 0.5% compromised nodes.
We used ε = 0 and as settings the ports HTTPS+IRC vs. HTTPS.

Performance. We measured the performance of the monitors on a standard notebook (MacBook Air 2 GHz Intel
Core i7, 4 GB 1600 MHz DDR3 RAM). Our monitors start by processing a consensus file and by computing the
weights of all nodes depending on the path selection algorithm, the connections of the user (and of the scenario we
want to compare the user with). In our performance evaluation we called this part of the computation “preparing
the weights”. Afterwards the anonymity guarantees are computed. The exact computation times are given in
Figure 13 (averaged over 100 runs on consensus files from Feb. 2014).

6.2 Path Selection Strategies
The bandwidth of Tor nodes is not uniformly distributed as Tor tries improve its performance by selecting nodes
depending on their bandwidth. As a result, a node with twice the bandwidth is twice as likely to be used for
a circuit. The real-life bandwidth distribution, however, contains nodes that are several hundred times as likely
as other nodes. (See the log-scale graph in Figure 10.) Consequently, a small number of nodes with a very high
bandwidth is used in a large percentage of circuits. If these nodes get compromised or similar new nodes are added

Preparing the weights 3.39 sec.
Computing sender anonymity guarantee 0.73 sec.

Computing recipient anonymity guarantee 6.07 sec.
Computing relationship anonymity guarantee 9.10 sec.

Figure 13: Performance of our anonymity monitors

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

A
n
o
n
y
m

it
y
 b

o
u
n
d
 δ

Recipient Anonymity 443+22+23+194 vs 443
Recipient Anonymity 443+23 (Telnet) vs 443
Recipient Anonymity 443+194 (IRC) vs 443
Recipient Anonymity 443+22 (SSH) vs 443

Recipient Anonymity 443 vs 443

Figure 14: Impact of the choice of ports on recipient anonymity. We chose ε = 0. The graph depicts the value for
δ depending on the number of compromised nodes (0 to 50). We compared all settings against HTTPS only (port
443).

to the network by an adversary, this adversary can deanonymize many connections. Consequently the current path
selection of Tor produces obvious targets such that an attacker that compromises these points can deanonymize a
significant part of the network.

Novel loss-less path selection: Re-balancing the workload. To reduce the risk posed by such high bandwidth
nodes we propose DISTRIBUTOR, a path selection algorithm that distributes the trust amongst exit and entry nodes
as evenly as possible. We observe that the exit bandwidth inherently is a bottleneck as only few nodes wish to be
used as exit nodes. Consequently, we first focus on the exit nodes.

1. Distributing the bandwidth for exit nodes: We compute the exit bandwidth that Tor supports at a given
moment by summing over the bandwidth of all possible exit nodes and weighting them according to their tags and
the weights from the consensus. We then compute how evenly we can distribute the bandwidth by using small exit
nodes solely as exit nodes and restricting the usage of the largest exit nodes accordingly. In this process we make
sure that the previous exit bandwidth is still provided by our improved path selection algorithm.

2. Distributing the bandwidth for entry nodes: After the weight of nodes for their position as an exit node
has been set we compute the weights for entry nodes. We proceed just as before, by trying to preserve the entry
bandwidth and still distributing the trust in entry nodes as widely as possible.

Anonymity improvement. As we put a bound for the maximal weight of exit and entry nodes, we use their
remaining bandwidth by increasing their weight to be used as middle node, as this position is considered least
critical. The details of our redistribution can be found in Figure 15. In the following section we present experi-
mental results computed on the real consensus data of Tor and evaluate DISTRIBUTOR against Tor’s path selection
algorithm.

Naturally it would be possible to sacrifice performance of the Tor network for a much stronger improvement
in anonymity by reducing the targeted total bandwidth. In an extreme case one could weight all nodes uniformly,
which would allow much stronger anonymity guarantees.

Note that we did not consider the case that the entry bandwidth poses a bottleneck for Tor. In this case, one
should change the order in which these calculations are made.

6.3 Lessons learned

Advantages of DistribuTor over PSTor. As expected, our DISTRIBUTOR algorithm significantly improves
sender anonymity and also moderately improves recipient anonymity in all experiments. The only moderate
improvement of recipient anonymity is to be expected as the exit bandwidth inherently is a bottleneck of Tor. The
improvement in sender anonymity, however, is more significant (see Figure 11). As the re-balancing path selection
algorithm does not affect Tor’s overall performance, it presents a possibility to improve the anonymity guarantees
at virtually no cost.

Change in the anonymity guarantees over time. Our monitors also allow to analyze whether and how the
anonymity guarantees vary over time. Such variations are the result of changes in the number of available servers,

24

node.exitBW

1: if node can be used as exit then
2: if node.bw < maxExitBW then
3: return node.bw
4: else return maxExitBW
5: else return 0

node.entryBW

1: if node can be used as entry then
2: if node can be used as exit then
3: if node.bw < maxExitBW then
4: return 0
5: else
6: if node.bw −maxExitBW < maxEntryBW then
7: return node.bw −maxExitBW
8: else return maxEntryBW
9: else return 0

10: else return 0

node.middleBW

1: bw := node.bw
2: if node can be used as exit then
3: bw := bw −maxExitBW
4: if node can be used as entry then
5: bw := bw −maxEntryBW
6: if bw > 0 then return bw
7: else return 0

Figure 15: DistribuTor: Our redistribution of the bandwidths

their bandwidth and their exit policies. Figure 12 shows how the guarantees change over the course of a month
(February 2014).

Anonymity guarantees over the last years. As a long-time study analyzed the guarantees for the last 24 Months
in Figure 1 (c.f. Section 2). We smoothed the graph by computing the average anonymity for each day in order
to improve the readability. interestingly, the guarantees improve slightly over time, even though we allowed the
adversary to compromise a fixed percentage of nodes, and thus, to compromise more nodes of its choice as the
Tor network grows in size.

Anonymity guarantees depending on the ports. The ports requested by the user significantly impact the (recip-
ient) anonymity guarantees. In Figure 14 we show the recipient anonymity guarantees depending on the number
of compromised nodes for the 5’th of February. As settings we chose a multiplicative value of ε = 0 and we
disabled guards and did not restrict the path selection to fast or stable nodes.

6.4 The impact of a multiplicative factor
The definition of ANOA introduces a multiplicative factor in addition to the normal additive factor (that often
suffices to describe the success probability of an adversary). This factor allows for accounting for various events
in which an adversary might gain information that may even lead to a non-negligible advantage without overesti-
mating these events.

The experiments show that such a factor often only plays a minor role, as the probability to completely
deanonymize a user is for most settings higher than the probability to just learn some information about them.
Recipient anonymity in a setting with a weaker adversary, that compromises no, or only a very limited amount of
nodes presents a noteworthy exception. Recall that for recipient anonymity we assume that the ISP of the user is
compromised, which means that the adversary can see which entry node the user connects to. For different ports
the probability of choosing these entry nodes, however, will be different, because they might also be possible
exit nodes, or related to possible exit nodes. For PSTOR, an adversary that compromises no (only a very limited

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

A
n
o
n
y
m

it
y
 b

o
u
n
d
 δ

Recipient Anonymity PSTor
Recipient Anonymity with eps PSTor

Recipient Anonymity DistribuTor
Recipient Anonymity with eps DistribuTor

Figure 16: Impact of a multiplicative factor on recipient anonymity. We chose values for ε of ε = 0.25 for one
setting and ε = 0 for the other setting. The graph depicts the value for δ computed by the monitor for both path
selection algorithms. The scenarios are: HTTPS + IRC vs. HTTPS

number of) nodes can have already a non-negligible advantage in guessing which port a user might choose, which
can either be expressed by a multiplicative factor and a δ of zero, or by a non-negligible δ. (See Figure 16.) Notice
that for DISTRIBUTOR the value for δ does not reach zero, as the redistribution of exit bandwidth introduces a
small (distinguishing) event in which the adversary can win without compromising nodes.

7 Conclusion & Future Work
This work presents a framework for rigorously assessing the degree of anonymity in the Tor network: MATOR.
We carefully address the impact of user anonymity by real-life characteristics of Tor, such as its path selection
algorithm, Tor consensus data, and the preferences and the connections of the user. The anonymity assessment
is derived from a theoretical framework for anonymous communication networks. To obtain such a theoretical
framework that suits our needs, we extended the ANOA framework [6]: a general framework for anonymous
communication networks. Using MATOR together with Tor’s publicly available consensus and server descriptor
data, we developed the first real-time anonymity monitor. We apply this real-time monitor to archived data of the
Tor network, using Tor Metrics data [29]. Based on the evaluation of these experiments, we propose an alternative
path selection algorithm DISTRIBUTOR. We illustrate by our experiments that DISTRIBUTOR provides stronger
anonymity guarantees without decreasing the overall performance of the Tor network.

A natural next step is the integration of MATOR to the actual Tor code. An interesting direction for future
research is modeling the recently proposed congestion-aware path selection algorithm [32]. This path selection
improves the overall performance of Tor, but reduces the anonymity guarantees of Tor. It would be great to see
whether it is possible to compute in real-time a bound on the loss of anonymity loss of this more efficient path
selection.

For future work, we also leave the application of the MATOR framework to Tor hidden services. A real-
time anonymity monitor for a hidden service could be used to automatically disconnect from Tor whenever the
anonymity bounds drop below a certain threshold.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful comments and Marcin
Slowik for revising the code and implementing MATOR for relationship anonymity. This work was supported by
the German Ministry for Education and Research (BMBF) through funding for the Center for IT-Security, Privacy
and Accountability (CISPA) and the German Universities Excellence Initiative.

References
[1] Source-code of MATor. available at https://www.infsec.cs.uni-saarland.de/projects/

anonymity-guarantees/mator.html.

[2] SQLite. http://www.sqlite.org/.

[3] The Boost C+ Libraries. http://www.boost.org.

26

https://www.infsec.cs.uni-saarland.de/projects/anonymity-guarantees/mator.html
https://www.infsec.cs.uni-saarland.de/projects/anonymity-guarantees/mator.html
http://www.sqlite.org/
http://www.boost.org

[4] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. LASTor: A Low-Latency AS-Aware Tor Client.
In Proc. of the 2012 IEEE Symposium on Security and Privacy (S& P), pages 476–490. IEEE Computer
Society, 2012.

[5] Michael Backes, Ian Goldberg, Aniket Kate, and Esfandiar Mohammadi. Provably Secure and Practical
Onion Routing. In Proc. 26st IEEE Symposium on Computer Security Foundations (CSF), pages 369–385,
2012.

[6] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Esfandiar Mohammadi. Anoa: A
framework for analyzing anonymous communication protocols. In Computer Security Foundations Sympo-
sium (CSF), 2013 IEEE 26th, pages 163–178. IEEE, 2013.

[7] Michael Backes, Aniket Kate, Praveen Manoharan, Sebastian Meiser, and Esfandiar Mohammadi. AnoA:
A Framework For Analyzing Anonymous Communication Protocols — Unified Definitions and Analyses
of Anonymity Properties. IACR Cryptology ePrint Archive, Report 2014/087, 2014. available at http:
//eprint.iacr.org/2014/087.

[8] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching From a Distance: Website Finger-
printing Attacks and Defenses. In Proceedings of the 19th ACM Conference on Computer and Communica-
tions Security (CCS), pages 605–616, 2012.

[9] Sambuddho Chakravarty, Angelos Stavrou, and Angelos D. Keromytis. Traffic Analysis against Low-
Latency Anonymity Networks Using Available Bandwidth Estimation. In Proceedings of the 15th European
Symposium on Research in Computer Security (ESORICS), pages 249–267, 2010.

[10] Cynthia Dwork. Differential Privacy. In ICALP (2), pages 1–12, 2006.

[11] Matthew Edman and Paul Syverson. As-awareness in tor path selection. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, CCS ’09, pages 380–389, New York, NY, USA,
2009. ACM.

[12] Nathan S. Evans, Roger Dingledine, and Christian Grothoff. A Practical Congestion Attack on Tor Using
Long Paths. In Proceedings of the 18th USENIX Security Symposium (USENIX), pages 33–50, 2009.

[13] J. Feigenbaum, A. Johnson, and P. F. Syverson. A Model of Onion Routing with Provable Anonymity. In
Proc. 11th Conference on Financial Cryptography and Data Security (FC), pages 57–71, 2007.

[14] J. Feigenbaum, A. Johnson, and P. F. Syverson. Probabilistic Analysis of Onion Routing in a Black-Box
Model. In Proc. 6th ACM Workshop on Privacy in the Electronic Society (WPES), pages 1–10, 2007.

[15] Joan Feigenbaum, Aaron Johnson, and Paul F. Syverson. Probabilistic Analysis of Onion Routing in a
Black-Box Model. ACM Transactions on Information and System Security (TISSEC), 15(3):14, 2012.

[16] Nethanel Gelernter and Amir Herzberg. On the limits of provable anonymity. In Proc. 12th ACM Workshop
on Privacy in the Electronic Society (WPES), pages 225–236, 2013.

[17] Yossi Gilad and Amir Herzberg. Spying in the Dark: TCP and Tor Traffic Analysis. In Proceedings of the
12th Privacy Enhancing Technologies Symposiun (PETS), pages 100–119, 2012.

[18] Xun Gong, Negar Kiyavash, and Nikita Borisov. Fingerprinting Websites using Remote Traffic Analysis. In
Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS), pages 684–
686, 2010.

[19] Alejandro Hevia and Daniele Micciancio. An Indistinguishability-Based Characterization of Anonymous
Channels. In Proc. 8th Privacy Enhancing Technologies Symposium (PETS), pages 24–43, 2008.

[20] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much anonymity does network latency
leak? ACM Transactions on Information and Systems Security (TISSEC), 13(2):13, 2010.

[21] Amir Houmansadr and Nikita Borisov. SWIRL: A Scalable Watermark to Detect Correlated Network Flows.
In Proceedings of the 18th Annual Network & Distributed System Security Symposium (NDSS), 2011.

[22] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users get routed: Traffic
correlation on tor by realistic adversaries. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 337–348. ACM, 2013.

27

http://eprint.iacr.org/2014/087
http://eprint.iacr.org/2014/087

[23] Aaron M Johnson, Paul Syverson, Roger Dingledine, and Nick Mathewson. Trust-based anonymous com-
munication: Adversary models and routing algorithms. In Proceedings of the 18th ACM conference on
Computer and communications security, pages 175–186. ACM, 2011.

[24] Zhen Ling, Junzhou Luo, Yang Zhang, Ming Yang, Xinwen Fu, and Wei Yu. A Novel Network Delay
based Side-Channel Attack: Modeling and Defense. In Proceedings of the 31st Annual IEEE International
Conference on Computer Communications (INFOCOM), pages 2390–2398, 2012.

[25] Prateek Mittal, Ahmed Khurshid, Joshua Juen, Matthew Caesar, and Nikita Borisov. Stealthy Traffic Anal-
ysis of Low-Latency Anonymous Communication Using Throughput Fingerprinting. In Proceedings of the
18th ACM Conference on Computer and Communications Security (CCS), pages 215–226, 2011.

[26] Gavin O’Gorman and Stephen Blott. Improving Stream Correlation Attacks on Anonymous Networks. In
Proceedings of the 24th ACM Symposium on Applied Computing (SAC), pages 2024–2028, 2009.

[27] Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the 2006 IEEE Symposium
on Security and Privacy, May 2006.

[28] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website Fingerprinting in Onion
Routing based Anonymization Networks. In Proceedings of the 10th ACM Workshop on Privacy in the
Electronic Society (WPES), pages 103–114, 2011.

[29] Tor Metrics Portal. https://metrics.torproject.org/. Accessed in May 2014.

[30] The Tor Project. https://www.torproject.org/. Accessed in May 2014.

[31] Chris Wacek, Henry Tan, Kevin S Bauer, and Micah Sherr. An empirical evaluation of relay selection in tor.
In Proc. 20th Annual Network & Distributed System Security Symposium (NDSS), 2013.

[32] Tao Wang, Kevin Bauer, Clara Forero, and Ian Goldberg. Congestion-aware path selection for tor. In
Financial Cryptography and Data Security, pages 98–113. Springer, 2012.

[33] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. Effective Attacks and Provable
Defenses for Website Fingerprinting. In Proc. 23th USENIX Security Symposium (USENIX), 2014.

[34] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. Defending Anonymous Communication
Against Passive Logging Attacks. In Proc. 24th IEEE Symposium on Security and Privacy, pages 28–43,
2003.

28

https://metrics.torproject.org/
https://www.torproject.org/

