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Abstract. We revisit the impossibility of a variety of cryptographic tasks including privacy and differ-
ential privacy with imperfect randomness. For traditional notions of privacy, such as security of encryp-
tion, commitment or secret sharing schemes, dramatic impossibility results are known [MP90,DOPS04].
In fact, they are true even if the imperfect source is modeled as a seemingly very “nice and friendly”
Santha-Vazirani (SV) source. The SV source outputs a sequence of bits r1, r2, . . ., where each ri has
almost 1 full bit of fresh entropy conditioned on the previous bits r1, . . . , ri−1. Moreover, Bosley and
Dodis [BD07] gave strong evidence that many traditional privacy tasks (e.g., encryption) inherently
require an “extractable” source of randomness.

The common interpretation of these negative results is that traditional privacy is impossible even with
“very structured” imperfect sources. Somewhat surprisingly, Dodis et al. [DLMV12] put a slight dent in
this belief, by showing that non-trivial differential privacy is possible with SV sources. This suggested
a qualitative gap between traditional and differential privacy, and left open the question if differential
privacy is possible with more realistic (i.e., less structured) sources than the SV sources. Motivated by
solving this question, we abstract and generalize prior techniques for showing impossibility results for
achieving privacy with various imperfect sources of randomness. In particular, we introduce the concepts
of separability and expressivity of a given imperfect source as a measure of its “imperfectness”, and
show the following results:
– Separability implies expressivity;
– Low levels of expressivity (and, thus, separability) generically imply strong impossibility results for

both traditional and differential privacy;
– Existing (and quantitatively improved!) impossibility results for traditional privacy with respect

to known imperfect sources easily follow as corollaries of our unified framework; New results follow
equally easily.

– Although, unsurprisingly, our new impossibility results for differential privacy (barely) miss the
highly structured SV sources, they come back extremely quickly once the source becomes slightly
more realistic. E.g., if a small number of bits ri can be fully determined by the previous bits;

– Any imperfect source allowing (either traditional or differential) privacy admits a certain type of
deterministic bit extraction. (This result is incomparable to the result of [BD07].)

Overall, our results unify and strengthen the belief that, for the most part, privacy with imperfect
randomness is impossible, unless the source is (almost) deterministically extractable.

Keywords: imperfect randomness, entropy sources, Santha-Vazirani sources, Bias-Control Limited
sources, randomness extraction, privacy, differential privacy
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1 Introduction

Traditional cryptographic tasks take for granted the availability of perfect random sources, i.e., sources
that output unbiased and independent random bits. However, in many situations it seems unrealistic to
expect a source to be perfectly random, and one must deal with various imperfect sources of randomness.
Some well known examples of such imperfect random sources are physical sources [BST03,BH05], biometric
data [BDK+05,DORS08], secrets with partial leakage, and group elements from Diffie-Hellman key exchange
[GKR04,Kra10].

Imperfect Sources. To abstract this concept, several formal models of realistic imperfect sources have
been described (e.g., [vN51,CFG+85,Blu86,SV86,CG88,LLS89,Zuc96,ACRT99,Dod01]). Roughly, they can
be divided into extractable and non-extractable. Extractable sources (e.g., [vN51,CFG+85,Blu86,LLS89])
allow for deterministic extraction of nearly perfect randomness. And, while the question of optimizing the
extraction rate and efficiency has been very interesting, from the qualitative perspective such sources are
good for any application where perfect randomness is sufficient. Unfortunately, it was quickly realized that
many realistic sources are non-extractable [SV86,CG88,Dod01]. The simplest example of such a source is
the Santha-Vazirani (SV) source [SV86], which produces an infinite sequence of (possibly correlated) bits
r1, r2, . . ., with the property that Pr[ri = 0 | r1 . . . ri−1] ∈ [ 12 (1 − γ), 12 (1 + γ)], for any setting of the
prior bits r1 . . . ri−1. However, despite the fact that each bit has almost one bit of fresh entropy, Santha
and Vazirani [SV86] showed that there exists no deterministic extractor Enc : {0, 1}n → {0, 1} capable of
extracting even a single bit of bias strictly less than γ from the γ-SV source, irrespective of how many SV
bits r1 . . . rn it is willing to wait for.

Despite this pessimistic result, ruling out the “black-box compiler” from perfect to imperfect (e.g., SV)
randomness for all applications, one may still hope that specific “non-extractable” sources, such as SV-
sources, might be sufficient for concrete applications, such as simulating probabilistic algorithms or cryp-
tography. Indeed, a series of results [VV85,SV86,CG88,Zuc96,ACRT99] showed that very “weak” sources
(including SV-sources and even much more realistic “weak” sources) are sufficient for simulating proba-
bilistic polynomial-time algorithms; namely, for problems which do not inherently need randomness, but
which could potentially be sped up using randomization. Moreover, even in the area of cryptography —
where randomness is essential (e.g., for key generation) — it turns out that many “non-extractable” sources
(again, including SV sources and more) are sufficient for authentication applications, such as the designs
of MACs [MW97,DKRS06] and even signature schemes [DOPS04,ACM+14] (under appropriate hardness
assumptions). Intuitively, the reason for the latter “success story” is that authentication applications only
require that it is hard for the attacker to completely guess (i.e., “forge”) some long string, so having (min-
)entropy in our source should be sufficient to achieve this goal.

Negative Results for Privacy with Imperfect Randomness. In contrast, the situation appears
to be much less bright when dealing with privacy applications, such as encryption, commitment, zero-
knowledge, and few others. First, McInnes and Pinkas [MP90] showed that unconditionally secure symmetric
encryption cannot be based on SV sources, even if one is restricted to encrypting a single bit. This result
was subsequently strengthened by Dodis et al. [DOPS04], who showed that SV sources are not sufficient for
building even computationally secure encryption (again, even of a single bit), and, if fact, essentially any
other cryptographic task involving “privacy” (e.g., commitment, zero-knowledge, secret sharing and others).
This was again strengthened by Austrin et al. [ACM+14], who showed that the negative results still hold
even if the SV source is efficiently samplable. Finally, Bosley and Dodis [BD07] showed an even more negative
result: if a source of randomness R is “good enough” to generate a secret key capable of encrypting k bits,
then one can deterministically extract nearly k almost uniform bits from R, suggesting that traditional
privacy requires an “extractable” source of randomness.1

What about Differential Privacy? While the above series of negative results seem to strongly point in
the direction that privacy inherently requires extractable randomness, a recent work of Dodis et al. [DLMV12]
put a slight dent into this consensus, by showing that SV sources are provably sufficient for achieving a more
recent notion of privacy, called differential privacy [DMNS06]. Intuitively, a differentially private mechanism

1 On the positive side, [DS02] and [BD07] showed that extractable sources are not strictly necessary for encrypting
a “very small” number of bits. Still, for natural “non-extractable” sources, such as SV sources, it is known that
encrypting even a single bit is impossible [SV86,DOPS04,ACM+14].
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M(D; r) uses its randomness r to add some “noise” to the true answer q(D), where D is some sensitive
database of users, and q is some useful aggregate information (query) about the users of D. This noise is
added in a way as to satisfy the following two conflicting properties (see Definitions 11 and 12 for formalism):

(a) ε-differential privacy (ε-DP): up to “advantage” ε, the returned value z = M(D, r) does not tell any
information about the value D(i) of any individual user i, which was not already known to the attacker
before z was returned; and

(b) ρ-utility: on average (over r), |z − q(D)| is upper bounded by ρ, meaning that perturbed answer is not
too far from the true answer.

Since we will be mainly talking about negative results, for the rest of this work we will restrict our attention
to the simplest concrete example of differential privacy, where a “record” D(i) is a single bit, and q is the
Hamming weight wt(D) of the corresponding bit-vector D (i.e., wt(D) =

∑
D(i)). In this case, a very simple

ε-DP mechanism [DMNS06] M(D, r) would simply return wt(D) + e(r) (possibly truncated to always be
between 0 and |D|), where e(r) is an appropriate noise2 with ρ = E[|q(r)|] ≈ 1/ε. Intuitively, this setting
ensures that when the value D(i) changes from 0 to 1, the answer distribution M(D; r) does not “change”
by more than ε.

Coming back to Dodis et al. [DLMV12], the authors show that although no “additive noise” mechanism
of the form M(D, r) = wt(D) + e(r) can simultaneously withstand all γ-SV-distributions r ← R, a better
designed mechanism (that they also constructed) is capable to work with all such distributions, provided
that the utility ρ is now relaxed to be polynomial of 1/ε, whose degree and coefficients depend on γ, but not
on the size of the database D. Coupled with the impossibility of traditional privacy with SV-sources, this
result suggested a qualitative gap between traditional and differential privacy, but left open the question
if differential privacy is possible with more realistic (i.e., less structured) sources than the SV sources.
Indeed, SV sources seem to be primarily interested from the perspective of negative results, since real-world
distributions are unlikely to produce a sequence of bits, each of which has almost a full unit of fresh entropy.

Our Results In Brief. In part motivated by solving this question, we abstract and generalize prior tech-
niques for showing impossibility results for achieving privacy with various imperfect sources of randomness.
Unlike prior work (with the exception of [BD07]), which focused on specific realistic imperfect sources R
(e.g., SV sources), we obtain most of our results for general sources R, but then use various realistic sources
(namely, SV sources [SV86], weak sources [CG88] and bias-control limited sources [Dod01]) as specific ex-
amples illustrating our technique. In particular, we introduce the concepts of separability and expressivity
of a given imperfect source R as a measure of its “imperfectness”, and show the following results:

(1) Separability implies expressivity;
(2) Low levels of expressivity (and, thus, separability) generically imply strong impossibility results for both

traditional and differential privacy;
(3) Existing (and quantitatively improved!) impossibility results for traditional privacy with respect to known

imperfect sources easily follow as corollaries of our unified framework; New results follow equally easily.
(4) Although, unsurprisingly, our new impossibility results for differential privacy (barely) miss the highly

structured SV sources, they come back extremely quickly once the source becomes slightly more realistic.
E.g., if a small number of bits ri can be fully determined by the previous bits;

(5) Any imperfect source allowing (either traditional or differential) privacy admits a certain type of deter-
ministic bit extraction.

We briefly expand on these results below, but conclude that, despite the result of [DLMV12], our results
seem to unify and strengthen the belief that, for the most part, privacy with imperfect randomness is
impossible, unless the source is (almost) deterministically extractable.

1.1 Our Results in More Detail

At a high level, our results follow the blueprint of [DOPS04] (who concentrated exclusively on the SV
sources), but in significantly more modular and quantitatively optimized way. First, we introduce notions
of separability and expressivity (Result (1)). Intuitively, separability of R means that R is rich enough to

2 So called Laplacian distribution, but the details do not matter here.
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“separate” any sufficiently large disjoint sets G and B (where |G| ≥ |B|; see Definition 4): there exists R ∈ R
s.t. (Pr[R ∈ G] − Pr[R ∈ B]) is “noticeable”. For example, if R only consists of the uniform distribution
U , the latter is impossible when |G| = |B|. In contrast, all natural “non-extractable” sources are separable.
This is known (or trivial to see) for the SV and general weak sources, but we show how it can be easily
demonstrated for other sources as well.

In particular, we concentrate on the bias-control-limited (BCL) source of Dodis [Dod01]. BCL source
generates n bits r1, r2, . . . , rn, where for i = 1, 2, . . . , n, the value of ri can depend on r1, r2, . . . , ri−1 in one
of the following two ways: (A) ri is determined by r1, r2, . . . , ri−1, but this happens for at most b bits, or (B)
1−γ
2 ≤ Pr[ri = 1 | r1r2 . . . ri−1] ≤ 1+γ

2 . In particular, when b = 0, it degenerates into the γ-SV source [SV86];
when γ = 0, it yields the b-sequential-bit-fixing source of Lichtenstein, Linial and Saks [LLS89]. The BCL
source models the setting that each of the bits produced by a realistic streaming source is unlikely to be
perfectly random: slight errors of the source are inevitable almost always, and, rarely, some of the bits could
have non-trivial dependencies on the previous bits, to the point of being completely determined by them.
Hence, BCL source appears much more realistic than the SV source, especially if the number of interventions
b is somewhat moderate. From our perspective, the BCL source will be especially interesting when we deal
with differential privacy. Indeed, since it naturally (and realistically!) relaxes the SV source, for which non-
trivial differential privacy is possible, it will be interesting to see the minimal value of b when the impossibility
results come back.

Returning to our results, after showing simple separability claims for weak, SV and BCL sources (see
Lemma 1), we define the notion of expressivity. Intuitively, expressivity of R means that R is rich enough
to “distinguish” any functions f and g which are not point-wise equal almost everywhere (see Definition 6):
there exists R ∈ R s.t. SD(f(R), g(R)) is “noticeable”, where SD is the statistical distance between distri-
butions.3 We then show that separability generically implies expressivity, with nearly identical parameters
(see Theorem 1). This is where we differ and quantitatively improve the argument from [DOPS04]: while
[DOPS04] used a bit-by-bit hybrid argument to show expressivity (for SV source), our proof of Theorem 1
used a more clever “universal hashing trick”.4 This allowed us to obtain results which are independent of
the ranges of f and g (which, in turn, will later correspond to bit sizes of ciphertexts, commitments, secret
shares, etc.) As a consequence, we get simple and elegant expressivity statements for a variety of natural
sources (Corollary 1).

We then use very similar technique to [DOPS04] to show that most traditional privacy tasks are impossi-
ble with any “mildly expressive” source R (Theorem 2 and first part of Result (2)). Applying this to specific
separable/expressive source (weak, SV, BCL), we immediately derive a variety of impossibility results for
traditional privacy (Table 1 and Result (3)). Although these results were derived mainly as a “warm-up”
to our (completely new) impossibility results for differentially privacy, they offer quantitative improvements
to the results of [DOPS04] (due to stronger expressivity bounds), and also allow immediate applications
to other imperfect sources. E.g., we get the following new result for BCL sources: even constant security
1/2 for traditional privacy is impossible to achieve when the number of interventions b = Ω(1/γ). More
importantly, instead of focusing the entire proof on some specific SV/weak sources [MP90,DOPS04], our
privacy impossibility results for such sources were obtained in a more modular manner, making these proofs
somewhat more illuminating.

More interestingly, despite the positive result of [DLMV12] regarding the SV sources, we show that
expressivity is again sufficient to rule out even differential privacy (Theorem 4 and second part of Result
(2)). The slight catch is that the expressivity requirement on R for ruling out differential privacy will be
slightly higher than for traditional privacy (Theorem 4 vs. Theorem 2). As a result, the impossibility results
will (barely) miss the Santha-Vazirani sources. However, once we consider general weak sources, or even
much more structured BCL sources with b > 0, the impossibility results come back extremely quickly! For
example, when studying ε-DP with utility ρ, n-bit weak sources of min-entropy k are ruled out the moment
k = n − log(ερ) − O(1) (Theorem 5), while BCL sources are ruled out the moment b = Ω(log(ερ)/γ)
(Theorem 6). As ερ is typically desired to be a constant, log(ερ) is an even smaller constant, which means we
even rule out constant entropy deficiency (n−k) or number of interventions b, respectively. We also compare
impossibility results for traditional and differential privacy in Table 2, and observe that the latter are only

3 Like in [DOPS04] and unlike [MP90], our distinguishers between f(R) and g(R) will be very efficient, but we will
not require this in order not to clutter the notation.

4 Similar trick with randomness extractors was used, in a slightly different context, by [ACM+14].
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marginally weaker than the former. This gives us our Result (4), and the conclusion that differential privacy
is still rather demanding to achieve with realistic imperfect sources of randomness.

Finally, we show that any imperfect source allowing (either traditional or differential) privacy admits
a certain type of deterministic bit extraction (Result (5), formalized in Theorem 7): (a) when produced,
the extracted bit is guaranteed to be almost unbiased, (b) although the extractor is allowed to fail, it will
typically succeed at least on the uniform distribution. This result is similar in spirit, but incomparable to
the result of Bosley and Dodis [BD07]. Namely, [BD07] showed that several traditional privacy primitives,
including (only multi-bit) encryption and commitment (but not secret sharing) imply the existence of multi-
bit deterministic extraction schemes capable of extracting almost the same number of bits as the plaintext.
On the positive, our result applies to a much wider set of primitives P (e.g., secret-sharing, as well as even
single-bit encryption and commitment). On the negative, we can only argue a rather weak kind of single-bit
extraction, where the extractor is allowed to fail, while [BD07] showed traditional, and possibly multi-bit,
extraction.

2 Preliminaries

For a positive integer n, let [n]
def
= {1, 2, . . . , n}. For a set S, we write US to denote the uniform distribution

over S. For simplicity, denote Un
def
= U{0,1}n . For a distribution or a random variable R, let r ← R denote

the operation of sampling a random r according to R. All logarithms are to the base 2. The min-entropy of

a random variable R is defined as H∞(R)
def
= min

r∈supp(R)
log 1

Pr[R=r] .

For two random variables R and R′ over {0, 1}n, the statistical distance between R and R′ is denoted as

SD(R,R′)
def
= 1

2

∑
r∈{0,1}n

|Pr[R = r]− Pr[R′ = r]| = max
Eve
|Pr[Eve(R) = 1]− Pr[Eve(R′) = 1]|, where each Eve

is a distinguisher. We say that the relative distance between R and R′ is ε, denoted as RD(R,R′) = ε, if ε
is the smallest number such that Pr[R = r] ∈ [e−ε ·Pr[R′ = r], eε ·Pr[R′ = r]] for all r ∈ {0, 1}n. It’s easy to
see that RD(R,R′) ≤ ε implies SD(R,R′) ≤ eε − 1.

We call a family of distributions over {0, 1}n a source, denoted as Rn. Now we define several imperfect
sources Rn: the (n, k)−source [CG88], γ-Santha-Vazirani source [SV86], and (γ, b, n)-Bias-Control Limited
source [Dod01] as follows.

Definition 1. The (n, k)−source is defined by Weak(k, n)
def
= {X ∈ {0, 1}n | H∞(X) ≥ k}.

Definition 2. Let r1, r2, . . . , rn be a sequence of Boolean random variables and 0 ≤ γ < 1. A probability
distribution R = (r1, r2, . . . , rn) over {0, 1}n is an n-bit γ-Santha-Vazirani (SV) distribution, denoted by
SV (γ, n), if for all i ∈ [n] and for every string s of length i− 1, we have

1− γ
2
≤ Pr[ri = 1 | r1r2 . . . ri−1 = s] ≤ 1 + γ

2
.

We define the n-bit γ-SV source SV(γ, n) to be the set of all n-bit γ-SV distributions.

Definition 3. Assume that 0 ≤ γ < 1. The (γ, b, n)-Bias-Control Limited (BCL) source BCL(γ, b, n) gen-
erates n bits r1, r2, . . . , rn, where for all i ∈ [n], the value of ri can depend on r1, r2, . . . , ri−1 in one of the
following two ways:

(A) ri is determined by r1, r2, . . . , ri−1, but this can happen for at most b bits. This rule of determining
a bit is called an intervention.

(B) 1−γ
2 ≤ Pr[ri = 1 | r1r2 . . . ri−1] ≤ 1+γ

2 .
Every distribution over {0, 1}n generated from BCL(γ, b, n) is called a (γ, b, n)-BCL distribution BCL(γ, b, n).

In particular, when b = 0, BCL(γ, b, n) degenerates into SV(γ, n) [SV86]; when γ = 0, it yields the
sequential-bit-fixing source of Lichtenstein, Linial and Saks [LLS89].
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3 Separability and Expressivity of Imperfect Sources of Randomness

In this section, we introduce the concept of separability of a source. Then we prove that several weak sources
(i.e.,Weak(k, n), SV(γ, n), and BCL(γ, b, n)) are separable. Afterwards, we introduce another concept called
expressivity of a source. Then we investigate the relationship between separability and expressivity. Based
on this result, we show that the Weak(γ, n), SV(γ, n), and BCL(γ, b, n) sources are all expressive.

Intuitively, separable sources Rn allow one to choose a distribution R ∈ Rn capable of “separating” any
sufficiently large, disjoint sets G and B, where |G| ≥ |B|: increasing a relative weight of a G w.r.t. R without
doing the same for the counterpart B.

Definition 4. We say that a source Rn is (t, δ)−separable if for all G,B ⊆ {0, 1}n, where G ∩ B = ∅,
|G ∪B| ≥ 2n−t and |G| ≥ |B|, there exists a distribution R ∈ Rn such that

| Pr
r←R

[r ∈ G]− Pr
r←R

[r ∈ B] | ≥ δ.

In the following, we enumerate several natural sources which are separable.

Lemma 1.
(a) Assume that k ≤ n−1. ThenWeak(k, n) is (t, 1)−separable when k ≤ n−t−1, and (t, 2n−t−k−1)−separable
when n− t− 1 < k ≤ n− 1. In particular, it’s (t, 12 )−separable when k ≤ n− t.
(b) SV(γ, n) is (t, γ

2t+1 )−separable.

(c) BCL(γ, b, n) is (t, 1− 2t+2

(1+γ)b
)−separable. In particular, it’s (t, 12 )−separable for b ≥ t+3

log(1+γ) = Θ( t+1
γ ).

Proof. Assume that G,B ⊆ {0, 1}n where G ∩B = ∅, |G ∪B| ≥ 2n−t and |G| ≥ |B|. Then |G| ≥ 2n−t−1.

(a) Case 1: Assume that k ≤ n− t− 1. Pick any S ⊂ {0, 1}n of size |S| = 2k such that S ⊆ G. Then

Pr
r←US

[r ∈ G]− Pr
r←US

[r ∈ B] = 1− 0 = 1.

Case 2: Assume that n− t− 1 < k ≤ n− 1.
Case 2.1: Suppose that |G| ≤ 2k. Then |B|+ 2k ≤ |G|+ 2k ≤ 2k + 2k ≤ 2n. Choose a set S ⊂ {0, 1}n of

size |S| = 2k such that G ⊆ S and B ∩ S = ∅. Then

Pr
r←US

[r ∈ G]− Pr
r←US

[r ∈ B] =
1

2k
· |G| − 0 ≥ 2n−t−k−1.

Case 2.2: Now assume that |G| > 2k. Then pick any S ⊂ {0, 1}n of size |S| = 2k such that S ⊂ G. Then

Pr
r←US

[r ∈ G]− Pr
r←US

[r ∈ B] = 1− 0 = 1.

Assume that k ≤ n − t. If k ≤ n − t − 1, it can be reduced to Case 1. Otherwise, it can be reduced to
Case 2.

(b) In proving Lemma 1(b), we use a notion called the γ−biased halfspace source [DOPS04], which was
implicitly defined by [RVW04].

Definition 5. Given S ⊂ {0, 1}n of size |S| = 2n−1, and 0 ≤ γ < 1. The distribution HS(γ, n) over {0, 1}n
is defined as

R ≡ HS(γ, n)
def
=

{
Pr[R = r] = (1 + γ) · 2−n, if r ∈ S;

Pr[R = r] = (1− γ) · 2−n, otherwise.

The γ-biased halfspace source H(γ, n) is defined as

H(γ, n)
def
= {HS(γ, n) | S ⊆ {0, 1}n and |S| = 2n−1}.

Claim. ([DOPS04,RVW04]) For any n ∈ Z+ and 0 ≤ γ < 1, H(γ, n) ⊂ SV(γ, n).
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Therefore, we only need to choose a subset S such that Pr
r←HS(γ,n)

[r ∈ G]− Pr
r←HS(γ,n)

[r ∈ B] ≥ γ
2t .

Case 1: Suppose that |G| ≤ 2n−1. Then |B|+ 2n−1 ≤ |G|+ 2n−1 ≤ 2n. Choose a set S ⊂ {0, 1}n of size
|S| = 2n−1 such that G ⊆ S and B ∩ S = ∅. Then

Pr
r←HS(γ,n)

[r ∈ G]− Pr
r←HS(γ,n)

[r ∈ B] =
1 + γ

2n
· |G| − 1− γ

2n
· |B| = |G| − |B|

2n
+ γ · |G|+ |B|

2n
≥ γ · 2n−t

2n
=

γ

2t
.

Case 2: Now assume that |G| > 2n−1. Pick any S ⊂ {0, 1}n of size |S| = 2n−1 such that S ⊂ G. Then
|S| = |{0, 1}n \ S| ≥ |G \ S|.

Pr
r←HS(γ,n)

[r ∈ G]− Pr
r←HS(γ,n)

[r ∈ B] =
1 + γ

2n
· |S|+ 1− γ

2n
· |G \ S| − 1− γ

2n
· |B|

=
1− γ

2n
· (1 + γ

1− γ
· |S|+ |G \ S| − |B|)

=
1− γ

2n
· (|S|+ |G \ S| − |B|+ 2γ

1− γ
· |S|)

≥ 1− γ
2n

· [(|S|+ |G \ S|)− |B|+ γ

1− γ
· (|S|+ |G \ S|)]

=
1− γ

2n
· [(|G| − |B|) +

γ

1− γ
· |G|]

≥ 1− γ
2n

· γ

1− γ
· 2n−t−1

=
γ

2t+1
.

(c) We start by recalling the following auxiliary result from [Dod01].

Given a Boolean function fe : {0, 1}n → {0, 1}, it is associated with an event E such that “E happens
⇐⇒ fe(x) = 1”, where x ∈ {0, 1}n. The natural probability p of E is defined as the probability that E
happens for an ideal source (in our case, emitting n perfect unbiased bits). More formally,

p = Pr
r←Un

[fe(r) = 1] = Pr
r←Un

[E happens].

We then say that E (or fe) is p-sparse. We define the set of all p-sparse events (or Boolean functions) as E .

We view the source BCL(γ, b, n) as an adversary A who can influence the ideal behavior of the source by
applying rules (A) and (B) of Definition 3. Our goal is to see whether our adversary A has enough power
to significantly influence the occurrence of the event E. For a given number of interventions b, to obtain the
largest probability of “success” that A can achieve (i.e., the largest probability that any p-sparse event E
happens for BCL(γ, b, n)), we first study the complement notion of “smallest probability of failure” and get
the following claim.

Claim. ([Dod01]) Let F (p, n, b)
def
= max

e∈E
min

R∈BCL(γ,b,n)
Pr

r←R
[fe(r) = 0]. Then F (p, n, b) ≤ 1

p·(1+γ)b = 2log
1
p−Θ(γb).

In other words, if b is “high enough” (i.e., b � 1
γ log 1

p ), then the imperfect source attacker A can force
any p-sparse event to happen with probability very close to 1.

Now let’s come back to our Lemma. Define the function fe : {0, 1}n → {0, 1} as follows.

fe(r) =

{
1, if r ∈ G;

0, otherwise.

Then from the above claim, we have min
R∈BCL(γ,b,n)

Pr
r←R

[fe(r) = 0] ≤ 1
|G|
2n ·(1+γ)b

.
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Thus, there exists a (γ, b, n)−BCL distribution R0 such that

Pr
r←R0

[fe(r) = 0] = min
R∈BCL(γ,b,n)

Pr
r←R

[fe(r) = 0] ≤ 1
|G|
2n · (1 + γ)b

.

Hence,

Pr
r←R0

[r ∈ G] = Pr
r←R0

[fe(r) = 1] ≥ 1− 1
|G|
2n · (1 + γ)b

.

Pr
r←R0

[r ∈ B] ≤ Pr
r←R0

[fe(r) = 0] ≤ 1
|G|
2n · (1 + γ)b

.

Correspondingly, Pr
r←R0

[r ∈ G] − Pr
r←R0

[r ∈ B] ≥ 1 − 2
|G|
2n ·(1+γ)b

≥ 1 − 2t+2

(1+γ)b
. Therefore, BCL(γ, b, n) is

(t, 1− 2t+2

(1+γ)b
)−separable.

Let 2t+2

(1+γ)b
≤ 1

2 , that is, b ≥ t+3
log(1+γ) . Therefore, BCL(γ, b, n) is (t, 12 )−separable if b ≥ t+3

log(1+γ) .
2

Informally, an expressive source Rn can separate two distributions f(R) and g(R), unless the functions
f and g are point-wise equal almost everywhere.

Definition 6. We call that a source Rn is (t, δ)−expressive if for any functions f, g : {0, 1}n → C, where C
is any universe, such that Pr

r←Un

[f(r) 6= g(r)] ≥ 1
2t for some t ≥ 0, there exists a distribution R ∈ Rn such

that SD(f(R), g(R)) ≥ δ.

We show that separable sources must be expressive. The high-level idea of the proof comes from the
work of [DOPS04] (who only applied it to SV sources), but we we quantitatively improve the technique
of [DOPS04], by making the gap between expressivity and separability independent of the range C of the
functions f and g.

Theorem 1. If a source Rn is (t+ 1, δ)−separable, then it’s (t, δ)-expressive.

Proof. Suppose that f, g : {0, 1}n → C are two arbitrary functions such that Pr
r←Un

[f(r) 6= g(r)] ≥ 1
2t . Let

S = {r ∈ {0, 1}n | f(r) 6= g(r)}. By assumption, |S| ≥ 2n−t.
To build intuition, let’s start with the special case where C = {0, 1}, in which case we will even show that

(t, δ)-separability is enough (i.e., no need to increase t by 1). For α, β ∈ {0, 1}, denote Sαβ = {r ∈ {0, 1}n |
f(r) = α and g(r) = β}.

The distinguisher Eve is defined as Eve(x) = 1 ⇔ x = 0. Without loss of generality, assume that

|S01| ≥ |S10|. Denote G
def
= S01 and B

def
= S10. Since Rn is (t, δ)−separable and |G ∪B| ≥ 2n−t, there exists

a distribution R ∈ Rn such that | Pr
r←R

[r ∈ G]− Pr
r←R

[r ∈ B] | ≥ δ. That is, | Pr
r←R

[r ∈ S01]− Pr
r←R

[r ∈ S10] | ≥ δ.
Therefore,

SD(f(R), g(R)) ≥ | Pr
r←R

[Eve(f(r)) = 1]− Pr
r←R

[Eve(g(r)) = 1] |

= | Pr
r←R

[f(r) = 0]− Pr
r←R

[g(r) = 0] |

= |{ Pr
r←R

[r ∈ S00] + Pr
r←R

[r ∈ S01]} − { Pr
r←R

[r ∈ S00] + Pr
r←R

[r ∈ S10]} |

= | Pr
r←R

[r ∈ S01]− Pr
r←R

[r ∈ S10] |

≥ δ

In the following, we analyze the general case. We’ll need to use the notion of universal hash function
family [CW79] with a single bit output. Recall that H = {h | h : C → {0, 1}} is a family of universal hash
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functions if for all z 6= z′, Pr
h

$←H
[h(z) 6= h(z′)] = 1

2 . Such families are known to exist for any universe C and

can be made efficient in n if C ⊆ {0, 1}poly(n).
For α, β ∈ {0, 1} and h ∈ H, denote Sαβ(h) = {r ∈ S | h(f(r)) = α and h(g(r)) = β}. Then

Eh←UH [|S01(h)|+ |S10(h)|] = Eh←UH [
∑
r∈S

χS01(h)∪S10(h)(r)]

=
∑
r∈S

Pr
h←UH

[r ∈ S01(h) ∪ S10(h)]

=
∑
r∈S

Pr
h←UH

[h(f(r)) 6= h(g(r))]

=
|S|
2
,

where χS01(h)∪S10(h) denotes the characteristic function of the set S01(h) ∪ S10(h).

Hence, there exists a fixed hash function h∗ ∈ H such that |S01(h∗) ∪ S10(h∗)| ≥ |S|2 ≥ 2n−t−1.
Eve is defined as Eve(C) = 1 ⇔ h∗(C) = 0, for all C ∈ C. Without loss of generality, assume that

|S01(h∗)| ≥ |S10(h∗)|. Denote G
def
= S01(h∗) and B

def
= S10(h∗). Since Rn is (t+ 1, δ)−separable, there exists

a distribution R′ ∈ Rn such that | Pr
r←R′

[r ∈ G] − Pr
r←R′

[r ∈ B] | ≥ δ. That is, | Pr
r←R′

[r ∈ S01(h∗)] − Pr
r←R′

[r ∈
S10(h∗)] | ≥ δ. Hence,

SD(f(R′), g(R′)) ≥ | Pr
r←R′

[Eve(f(r)) = 1]− Pr
r←R′

[Eve(g(r)) = 1] |

= | Pr
r←R′

[h∗(f(r)) = 0]− Pr
r←R′

[h∗(g(r)) = 0] |

= |{ Pr
r←R′

[r ∈ S00(h∗)] + Pr
r←R′

[r ∈ S01(h∗)]} − { Pr
r←R′

[r ∈ S00(h∗)] + Pr
r←R′

[r ∈ S10(h∗)]} |

= | Pr
r←R′

[r ∈ S01(h∗)]− Pr
r←R′

[r ∈ S10(h∗)] |

≥ δ

Therefore, the source Rn is (t, δ)−expressive.
2

Combining Theorem 1 and Lemma 1, we immediately get:

Corollary 1.
(a)Weak(k, n) is (t, 1)−expressive when k ≤ n−t−2, and (t, 2n−t−k−2)−expressive when n−t−2 < k ≤ n−1.
In particular, it’s (t, 12 )−expressive when k ≤ n− t− 1.
(b) SV(γ, n) is (t, γ

2t+2 )−expressive.

(c) BCL(γ, b, n) is (t, 1− 2t+3

(1+γ)b
)−expressive. In particular, it’s (t, 12 )−expressive for b ≥ t+4

log(1+γ) = Θ( t+1
γ ).

Remark 1. Note that if the universe C is a subset of {0, 1}poly(n), then the universal hash function family in
the proof of Theorem 1 can be made efficient (in n). Hence, the distinguisher Eve can be made efficient as well.
Therefore, there exists an efficient distinguisher Eve such that |Pr[Eve(f(R)) = 1]−Pr[Eve(g(R)) = 1]| ≥ δ.
Namely, f(R) is “δ-computationally distinguishable” from g(R).

4 On the Impossibility of Traditional Privacy

We recall (or define) some cryptographic primitives related to traditional privacy: bit extractor, bit encryption
scheme, weak bit commitment, and bit T -secret sharing as follows.

Definition 7. We say that Ext : {0, 1}n → {0, 1} is (Rn, δ)-secure bit extractor if for every distribution
R ∈ Rn, |Pr[Ext(R) = 1]− Pr[Ext(R) = 0]| < δ (equivalently, SD(Ext(R), U1) < δ/2).
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In the following, we consider the simplest encryption scheme, where the plaintext is composed of a single
bit x.

Definition 8. A (Rn, δ)−secure bit encryption scheme is a tuple of functions Enc : {0, 1}n×{0, 1} → {0, 1}λ
and Dec : {0, 1}n×{0, 1}λ → {0, 1}, where, for convenience, Enc(r, x) (resp. Dec(r, c) ) is denoted as Encr(x)
( resp. Decr(c) ), satisfying the following two properties:

(a) Correctness: for all r ∈ {0, 1}n and x ∈ {0, 1}, Decr(Encr(x)) = x;

(b) Statistical Hiding: SD(EncR(0),EncR(1)) < δ, for every distribution R ∈ Rn.

Commitment schemes allow the sender Alice to commit a chosen value ( or statement ) while keeping it
secret from the receiver Bob, with the ability to reveal the committed value in a later stage. Binding and
hiding properties are essential to any commitment scheme. Informally,

– Binding: it is “hard” for Alice to alter her commitment after she has made it;
– Hiding: it is “hard” for Bob to find out the commitment without Alice revealing it.

Each of them can be computational or information theoretical. However, we can’t achieve information
theoretically binding and information theoretically hiding properties at the same time. Instead of defining
computational notions, we relax binding to some very weak property, so that hiding and this new (very
weak) binding properties both can be information theoretical. Since we aim to show an impossibility result,
such relaxation is justified.

Definition 9. A (Rn, δ)−secure weak bit commitment is a function Com : {0, 1}n × {0, 1} → {0, 1}λ satis-
fying the following two properties:

(a) Weak Binding: Pr
r←Un

[Com(0; r) 6= Com(1; r)] ≥ 1
2 ;

(b) Statistical Hiding: SD(Com(0;R),Com(1;R)) < δ, for every distribution R ∈ Rn.

Note that in the traditional notion of commitment, the binding property holds if it is “hard” to find
r1 and r2 such that Com(0; r1) = Com(1; r2). Here we give a much weak binding notion. We only require
that the attacker can not win with probability ≥ 1

2 by choosing r1 = r2 uniformly at random. For example,
Com(b; r) = b ⊕ r, where b, r ∈ {0, 1} can be easily verified to be a weak bit commitment for any δ > 0
(despite not being a standard commitment).

In the notion of T -party Secret Sharing, two thresholds T1 and T2, where 1 ≤ T1 < T2 ≤ T , are involved
such that (a) any T1 parties have “no information” about the secret, (b) any T2 parties enable to recover
the secret. Because our purpose is to show an impossibility result, we restrict to T1 = 1 and T2 = T , and
only consider one bit secret x.

Definition 10. A (Rn, δ)−secure bit T−Secret Sharing scheme is a tuple (Share1,Share2, . . . ,ShareT ,Rec)
satisfying the following two properties:

(a) Correctness: for all r ∈ {0, 1}n and x ∈ {0, 1}, Rec(Share1(x, r),Share2(x, r), . . . ,ShareT (x, r)) = x;

(b) Statistical Hiding: SD(Sharej(0;R),Sharej(1;R)) < δ, for every index j ∈ [T ] and distribution R ∈ Rn.

Now we abstract and generalize the results of [MP90,DOPS04] to show that expressivity implies impos-
sibility of security involving traditional privacy.

Theorem 2.
(a) If a source Rn is (0, δ)−expressive, then no (Rn, δ)-secure bit extractor exists.
(b) If a source Rn is (0, δ)−expressive, then no (Rn, δ)-secure bit encryption scheme exists.
(c) If a source Rn is (1, δ)−expressive, then no (Rn, δ)-secure weak bit commitment exists.
(d) If a source Rn is (log T, δ)−expressive, then no (Rn, δ)-secure bit T -secret sharing exists.
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Proof.

(a) Assume that there exists a (Rn, δ)-secure bit extractor Ext. Define f(r)
def
= Ext(r) and g(r)

def
=

1 − Ext(r). Since for all r ∈ {0, 1}n, it holds that Ext(r) 6= 1 − Ext(r), we get Pr
r←Un

[f(r) 6= g(r)] = 1 = 1
20 .

Definition 6 implies that there exists a distribution R ∈ Rn such that SD(f(R), g(R)) ≥ δ. Therefore,

|Pr[Ext(R) = 1]− Pr[Ext(R) = 0]| = SD(f(R), g(R)) ≥ δ,

which is a contradiction.

(b) Assume that there exists a (Rn, δ)-secure bit encryption scheme. Define f(r)
def
= Encr(0) and g(r)

def
=

Encr(1). Since for all secret keys r ∈ {0, 1}n, it holds that Encr(0) 6= Encr(1), we have Pr
r←Un

[f(r) 6= g(r)] =

1 = 1
20 . Definition 6 implies that there exists a distribution R ∈ Rn such that SD(f(R), g(R)) ≥ δ, which is

in contradiction to SD(f(R), g(R)) < δ.

(c) Assume that there exists a (Rn, δ)-secure weak bit commitment. Define f(r)
def
= Com(0; r) and

g(r)
def
= Com(1; r). Since Pr

r←Un

[Com(0; r) 6= Com(1; r)] ≥ 1
2 , there exists a distribution R ∈ Rn such that

SD(f(R), g(R)) ≥ δ, which is in contradiction to SD(f(R), g(R)) < δ.
(d) Assume that there exists a (Rn, δ)-secure bit T -secret sharing. Let t = log T . Then for all r ∈ {0, 1}n,

(Share1(0; r),Share2(0; r), . . . ,ShareT (0; r)) 6= (Share1(1; r),Share2(1; r), . . . ,ShareT (1; r))

⇒ there exists j = j(r) such that Sharej(0; r) 6= Sharej(1; r).

⇒ there exists j∗ ∈ [T ] such that |{r | j(r) = j∗}| ≥ 2n

T
= 2n−t.

Define f(r)
def
= Sharej∗(0; r) and g(r)

def
= Sharej∗(1; r). Then Pr

r←Un

[f(r) 6= g(r)] ≥ 1
2t . Therefore, there

exists a distribution R ∈ Rn such that SD(f(R), g(R)) ≥ δ, which is in contradiction to SD(f(R), g(R)) < δ.
2

From Theorem 2 and Corollary 1, we conclude:

Theorem 3. For the following values of δ, shown in Table 1, no (Rn, δ)−secure cryptographic primitive
P exists, where Rn ∈ {Weak(k, n),SV(γ, n),BCL(γ, b, n)} and P ∈ {bit extractor, bit encryption scheme,
weak bit commitment, bit T -secret sharing }.

PPPPPPPPRn
P

bit extractor bit encryption scheme weak bit commitment bit T -secret sharing

Weak(k, n) 1, if k ≤ n− 2 1, if k ≤ n− 2 1, if k ≤ n− 3 1, if k ≤ n− log T − 2

Weak(n− 1, n) 1
2

1
2

1
4

1
2T

SV(γ, n) γ
4

γ
4

γ
8

γ
4T

BCL(γ, b, n) 1
2 , if b ≥ 4

log(1+γ)
1
2 , if b ≥ 4

log(1+γ)
1
2 , if b ≥ 5

log(1+γ)
1
2 , if b ≥ log T+4

log(1+γ)

Table 1. Values of δ for which no (Rn, δ)−secure cryptographic primitive P exists.

We notice that, while the impossibility results for the BCL source are new, the prior work of [MP90,DOPS04]
already obtained similar results for the weak and SV sources. However, our results still offer some im-
provements over the works of [MP90,DOPS04]. First, unlike the work of [MP90], our distinguisher is effi-
cient (see Remark 1), ruling out even computationally secure encryption, commitment, and secret sharing
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schemes. Second, unlike the work of [DOPS04], our lower bound on δ does not depend on the sizes of cipher-
text/commitment/shares. In particular, while [DOPS04] used a bit-by-bit hybrid argument to show their
impossibility results, our proof of Theorem 1 used a more clever “universal hashing trick”. More importantly,
instead of focusing the entire proof on some specific SV/weak sources [MP90,DOPS04], our impossibility
results for such sources were obtained in a more modular manner, making these proofs somewhat more
illuminating.

5 On the Impossibility of Differential Privacy

Dodis et al. [DLMV12] have shown how to do differential privacy with respect to the γ-SV source for all
“queries of low sensitivity”. Since we aim to show impossibility results, henceforth we only consider the
simplest case: let D = {0, 1}N be the space of all databases and for D ∈ D, the query function q is the
Hamming weight function wt(D) = |{i | D(i) = 1}|, where D(i) means the i-th bit (“record”) of D. If the
source Rn has only one distribution Un, denote Rn as Un for simplicity. For any D,D′ ∈ D, the discrete

distance function between them is defined by ∆(D,D′)
def
= wt(D ⊕ D′), where ⊕ is the bitwise exclusive

OR operator. We say that two databases D and D′ are neighboring if ∆(D,D′) = 1. A mechanism M is
an algorithm that takes as input a database D ∈ D and a random variable R ∈ Rn, and outputs a random
value z. Informally, we wish z = M(D,R) to approximate the true Hamming weight wt(D) without revealing
too much information about any individual D(i). More formally, a mechanism is differentially private for
the Hamming weight queries if replacing an entry in the database with one containing fake information
only changes the output distribution of the mechanism by a small amount. In other words, evaluating the
mechanism on two neighboring databases, does not change the outcome distribution by much. On the other
hand, we define its utility to be the expected difference between the true answer wt(D) and the output of
the mechanism. More formally,

Definition 11. Let ε ≥ 0 and Rn be a source. A mechanism M (for the Hamming weight queries) is
(Rn, ε)-differentially private if for all neighboring databases D1, D2 ∈ D, and all distributions R ∈ Rn, we
have RD(M(D1, R),M(D2, R)) ≤ ε. Equivalently, for any possible output z:

Pr
r←R

[M(D1, r) = z]

Pr
r←R

[M(D2, r) = z]
≤ eε

We also note that for ε < 1, we can rather accurately approximate eε by 1 + ε.

Definition 12. Let 0 < ρ ≤ N/4 and Rn be a source. A mechanism M has (Rn, ρ)-utility for the Hamming
weight queries, if for all databases D ∈ D and all distributions R ∈ Rn, we have:

Er←R[|M(D, r)− wt(D)|] ≤ ρ.

We show that, much like with traditional privacy, expressivity implies impossibility of differential privacy
with imperfect randomness, albeit with slightly more demanding parameters. As a high-level idea, for two

databases D and D′, define two functions f(r)
def
= M(D, r) and g(r)

def
= M(D′, r). Intuitively, for all R ∈ Rn,

since RD(f(R), g(R)) ≤ ε · ∆(D,D′) implies SD(f(R), g(R)) ≤ eε·∆(D,D′) − 1, we could use expressivity
to argue that f(r) = g(r) almost everywhere, which must eventually contradict utility (even for uniform
distribution). However, we can’t use this technique directly, because if ε · ∆(D,D′) is large enough, then
eε·∆(D,D′) − 1 > 1, which is greater than the general upper bound 1 of the statistical distance. Instead, we
simply use this trick on close-enough databases D and D′, and then use a few “jumps” from D0 to D1, etc.,
until eventually we must violate the ρ-utility. Details follow.

Theorem 4. Assume 1/(8ρ) ≤ ε ≤ 1/4 and the sourceRn is (log(ρεδ )+4, δ)−expressive, for some 2ε ≤ δ ≤ 1.
Then no (Rn, ε)−differentially private and (Un, ρ)-accurate mechanism for the Hamming weight queries
exists. In particular, plugging δ = 2ε and δ = 1

2 , respectively, this holds if either

(a) Rn is (3 + log(ρ), 2ε)−expressive; or
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(b) Rn is (5 + log(ρε), 12 )−expressive.

Proof. Assume for contradiction that there exists such a mechanism M . Let D′ def= {D | wt(D) ≤ 4ρ}.
Denote

Trunc(x)
def
=


0, if x < 0;

x, if x ∈ {0, 1, . . . , 4ρ};
4ρ, otherwise.

For any D ∈ D′, define the truncated mechanism M ′
def
= Trunc(M) by M ′(D, r)

def
= Trunc(M(D, r)).

Since for every D ∈ D′, we have wt(D) ∈ {0, 1, . . . , 4ρ}, M ′ still has (Un, ρ)−utility on D′. Additionally,
from Definition 11, it’s straightforward that M ′ is (Rn, ε)-differentially private on D′. In the following, we
only consider the truncated mechanism M ′ on D′.

Let t = log(ρεδ ) + 4 and s = δ
2ε . Notice, 1 ≤ s ≤ 1/(2ε) ≤ 4ρ, eεs − 1 < δ, and 2t = 8ρ/s.

We start with the following claim:

Claim. Consider any databases D,D′ ∈ D′, s.t. ∆(D,D′) ≤ s, and denote f(r)
def
= M ′(D, r) and g(r)

def
=

M ′(D′, r). Then Pr
r←Un

[f(r) 6= g(r)] < 1
2t .

Proof. Since M ′ is (Rn, ε)-differentially private, then for all R ∈ Rn, we have RD(f(R), g(R)) ≤ ε ·
∆(D,D′) ≤ ε · s. Hence, SD(f(R), g(R)) ≤ eε·s − 1 < δ, by our choice of s. Since this holds for all R ∈ Rn
and Rn is (t, δ)−expressive, we conclude that it must be the case that Pr

r←Un

[f(r) 6= g(r)] < 1
2t .

2

Coming back to the main proof, consider a sequence of databases D0, D1, · · · , D4ρ/s such that wt(Di) =

i · s and ∆(Di, Di+1) = s. Denote fi(R)
def
= M ′(Di, R) for all i ∈ {0, 1, . . . , 4ρ/s}. From the above Claim, we

get that Pr
r←Un

[fi(r) 6= fi+1(r)] < 1
2t . By the union bound and our choice of s and t,

Pr
r←Un

[f0(r) 6= f4ρ/s(r)] <
4ρ

2t · s
≤ 1

2
, (1)

Let α
def
= Er←Un [ f4ρ/s(r)− f0(r) ]. From (Un, ρ)-security, we get that

α ≥ (wt(D4ρ/s)− ρ)− (wt(D0) + ρ) = (4ρ− ρ)− (0 + ρ) = 2ρ

On the other hand, from Equation (1),

α ≤ Pr
r←Un

[f0(r) 6= f4ρ/s(r)] ·max
r
|(f4ρ/s − f0)(r)| < 1

2
· 4ρ = 2ρ,

which is a contradiction.
2

Implications for Weak and BCL sources. Now we apply the impossibility results of differential privacy
to the sources Weak(k, n) and BCL(γ, b, n). In particular, by combining Theorem 4.(b) with Corollary 1.(a)
and Corollary 1.(c), respectively, we get

Theorem 5. If k ≤ n − log(ερ) − 6, then no (Weak(k, n), ε)−differentially private and (Un, ρ)-accurate
mechanism for the Hammimg weight queries exists.

Theorem 6. If b ≥ log(ερ)+9
log(1+γ) = Ω( log(ερ)+1

γ ), then no (BCL(γ, b, n), ε)−differentially private and (Un, ρ)-

accurate mechanism for the Hammimg weight queries exists.
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We discuss the (non-)implications to the SV source below, but notice the strength of these negative
results the moment the source becomes a little bit more “adversarial” as compared to the SV source. In
particular, useful mechanisms in differential privacy (called “non-trivial” by [DLMV12]) aim to achieve
utility ρ (with respect to the uniform distribution) which only depends on the differential privacy ε, and not
on the size N of the database D. This means that the value log(ερ) is typically upper bounded by some
constant c = O(1). For such “non-trivial” mechanisms, our negative results say that differential privacy is
impossible with (1) weak sources even when the min-entropy k = n−O(1); (2) BCL sources even when the
number of interventions b = Ω(1). So what prevented us from strong impossibility for the SV sources, as
is expected given the feasibility results of [DLMV12]? The short answer is that the expressivity of the SV
sources given by Corollary 1.(b) is just not good enough to yield very strong results, as we explain now.

(Non-)Implications for the SV source. We observe that Theorem 4 can’t be applied to the SV source,
as SV(γ, n) is only (t, δ)-expressive for δ = γ

2t+2 , which means that 2tδ = O(γ). In contrast, to apply Theorem
4 we need 2tδ ≥ Ω(ρε). Thus, to have any hope, we need, ρ = O(γ/ε), but this violates our pre-condition
(used in the proof) that ρ ≥ 1/(8ε). In fact, a simple reworking of the proof of Theorem 4 (omitted) can be
used to show that if there exists a (SV(γ, n), ε)−differentially private and (Un, ρ)-accurate mechanism for
the Hammimg weight queries, then ρ > γ

64·ε = Ω(γε ).
Unfortunately, this implication that we get is quite weak, because we can get a stronger result, even if

Rn consists only of the uniform distribution Un. We present this well known folklore result for completeness.

Lemma 2. Assume that the mechanism M is (Un, ε)−differentially private and (Un, ρ)-accurate for the
Hammimg weight queries. Then ρ ≥ 1

e+1 ·
1
ε = Ω( 1

ε ).

Proof. For any D,D′ ∈ D, let β
def
= Er←R[M(D′,R)]

Er←R[M(D,R)] . From Definition 12, we have β ≥ wt(D′)−ρ
wt(D)+ρ . By Definition

11, we obtain

β =

∑
z z Pr[M(D′, R) = z]∑
z z Pr[M(D,R) = z]

≤
∑
z ze

ε·∆(D,D′) Pr[M(D,R) = z]∑
z z Pr[M(D,R) = z]

= eε·∆(D,D′).

Therefore, wt(D′)−ρ
wt(D)+ρ ≤ e

ε·∆(D,D′).

Take a specific D such that wt(D) = 0. Let Ball(D,α) = {D′ : ∆(D,D′) ≤ α}. Then

∀D′ ∈ Ball
(
D,

1

ε

)
⇒ wt(D′)− ρ

ρ
≤ eε·∆(D,D′) ≤ e⇒ ρ ≥ 1

e+ 1
wt(D′).

Taking D′ such that wt(D′) = 1
ε , we get ρ ≥ 1

e+1 ·
1
ε .

2

Thus, our technique cannot yield any results for the γ-SV source, which we even didn’t already know
for the uniform distribution. Of course, this is not surprising, because Dodis et al. [DLMV12] have shown
that we can get (SV(γ, n), ε)−differentially private and (SV(γ, n), ρ)-accurate mechanism for all counting
queries (including the Hamming weight queries), where ρ = poly1/(1−γ)(

1
ε ) � 1

ε and poly1/(1−γ)(x) denotes
a polynomial whose degree and coefficients are fixed (and rather large) functions of 1/(1− γ).

6 Comparing Impossibility Results for Traditional and Differential Privacy

In this section, we compare the impossibility of traditional privacy and differential privacy (see Table 2). For
traditional privacy, we consider bit extractor, bit encryption scheme, weak bit commitment, and bit 2-secret
sharing (e.g., set T = 2 for concreteness).

In particular, while a very “structured” (and, hence, rather unrealistic) SV source was sufficient to
guarantee loose, but non-trivial differential privacy, without guaranteeing (strong-enough) traditional privacy,
once the source becomes more realistic (e.g., number of interventions b becomes super-constant, or one
removes the conditional entropy guarantee within different blocks), both notions of privacy become impossible
extremely quickly. In other words, despite the surprising feasibility result of [DLMV12] regarding differential
privacy with SV sources, the prevalent opinion that “privacy is impossible with realistic weak randomness”
appears to be rather accurate.
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Source Traditional Privacy δ Differential Privacy ε & Utility ρ

Weak(k, n) Impossible if δ ≤ 1
4 , even if k = n− 1 Impossible if k ≤ n− log(ερ)−O(1)

SV(γ, n) Impossible if δ = O(γ)
Impossible if ρ = O( 1

ε ), even for Un

( Possible if ρ = poly1/(1−γ)(
1
ε )� 1

ε )

BCL(γ, b, n)
Impossible if δ = O(γ), even if b = 0;

Impossible if δ ≤ 1
2 and b = Ω( 1

γ )

Impossible if b = Ω( log(ερ)+1
γ )

Table 2. Comparison about the Impossibility of Traditional Privacy and Differential Privacy.

7 Privacy Implies Weak Bit Extraction

Recall, Bosley and Dodis [BD07] initiated the study of the following general question: does privacy inherently
require “extractable” source of randomness? A bit more formally, if a given primitive P admits (Rn, δ)-secure
implementation, does it mean that one can construct a (deterministic, single- or multi-) bit extractor from
Rn?

They also obtained very strong affirmative answers to this question for several traditional privacy prim-
itives, including (only multi-bit) encryption and commitment (but not, secret sharing, for example). Here
we make the observation that our impossibility results give an incomparable (to [BD07]) set of affirmative
answers to this question. On the positive, our results apply to a much wider set of primitives P (e.g., secret-
sharing, as well as even single-bit encryption and commitment). On the negative, we can only argue a rather
weak kind of single-bit extraction (as opposed to [BD07], who showed traditional, and possibly multi-bit
extraction). Our weak notion of extraction is defined below.

Definition 13. We say that Ext : {0, 1}n → {0, 1,⊥} is (Rn, δ, τ)-secure weak bit extractor if

(a) for every distribution R ∈ Rn, |Pr[Ext(R) = 1]− Pr[Ext(R) = 0]| < δ;
(b) Pr[Ext(Un) 6= ⊥] ≥ τ .

We briefly discuss this notion, before showing our results. Like traditional bit-extractor in Definition 7,
the odds of outputting 0 or 1 are roughly the same for any distribution R in the source. However, the the
extractor is also allowed to output a failure symbol ⊥, which means that each of the above two probabilities
can occur with probabilities noticeably smaller than 1/2. Hence, to make it interesting, we also add the
requirement that Ext does not output ⊥ all the time. This is governed by the second parameter τ requiring
that Pr[Ext(R) 6= ⊥] ≥ τ . Ideally, we would like this to be true for any distribution R in the source.
Unfortunately, we will see shortly that such a desirable guarantee will not be achievable in our setting (see
Remark 2). Thus, to salvage a meaningful and realizable notion, we will only require that this non-triviality
guarantee at least holds for R ≡ Un. Namely, while we do not rule out the possibility that some particular
distributions R might force Ext to fail the extraction with high probability, we still ensure that: (a) when
the extraction succeeds, the extracted bit is unbiased for any R in the source; (b) the extraction succeeds
with noticeable probability at least when R is (“close to”) the uniform distribution Un.

We now observe that the notion of weak bit-extraction is simply a different way to express (the negation
of) our notion of separability!

Lemma 3. Rn has a (Rn, δ, 2−t)-secure weak bit extractor if and only if Rn is not (t, δ)-separable.

Proof. We only prove that non-separability implies weak bit extraction, as the converse is clear because all
our steps will be “if and only if”.

Since Rn is not (t, δ)-separable, then there are two sets G and B such that G ∩ B = ∅, |G ∪ B| ≥ 2n−t

and for all R ∈ Rn, we have |Pr[R ∈ G]− Pr[R ∈ B]| ≤ δ. Define
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Ext(r)
def
=


1, if r ∈ G;

0, if r ∈ B;

⊥, otherwise.

This is well defined since G ∩ B = ∅, and satisfies properties (a) and (b) of weak bit extractor, since
δ ≥ |Pr[R ∈ G]− Pr[R ∈ B]| = |Pr[Ext(R) = 1]− Pr[Ext(R) = 1]|, while PrExt[(Un) 6= ⊥] = |G ∪ B|/2n ≥
2n−t/2n = 2−t.

2

We can now combine Lemma 3 with counter-positives of Theorem 1, Theorem 2 (for traditional privacy)
and Theorem 4.(a) (for differential privacy), to get the following result:

Theorem 7.
(a) If (Rn, δ)-secure bit encryption exists, then (Rn, δ, 12 )-secure weak bit-extraction exists.
(b) If (Rn, δ)-secure weak bit commitment exists, then (Rn, δ, 14 )-secure weak bit extraction exists.
(c) If (Rn, δ)-secure bit T -secret-sharing exists, then (Rn, δ, 1

2T )-secure weak bit extraction exists.
(d) If (Rn, ε)−differentially private and (Un, ρ)-accurate mechanism for the Hamming weight queries exists,
then (Rn, 2ε, 1

16ρ )-secure weak bit extraction exists.

It is also instructive to see the explicit form of our weak bit extractor. For example, in the case of bit
encryption (part (a), other examples similar), we get

Ext(r)
def
=


1, if h∗(Encr(1)) = 1 and h∗(Encr(0)) = 0;

0, if h∗(Encr(1)) = 0 and h∗(Encr(0)) = 1;

⊥, otherwise (i.e., if h∗(Encr(1)) = h∗(Encr(0))).

where h∗ is the boolean universal hash function from the proof of Theorem 1, chosen as to ensure that

Pr[Ext(Un) 6= ⊥] = Pr
r←Un

[h∗(Encr(0)) 6= h∗(Encr(1))] ≥ 1

2

In particular, when the bit encryption (resp. commitment, secret sharing, DP mechanism) is computationally
efficient (in n), our bit extractor is efficient as well. This means that even computationally secure analogs
of encryption (commitment, secret sharing, DP mechanism) imply efficient, statistically secure weak bit
extraction.

Remark 2. As we mentioned, the major weakness of our weak bit extraction definition comes from the fact
that the non-triviality condition Pr[Ext(R) 6= ⊥] ≥ τ is only required for R ≡ Un. Unfortunately, we observe
that the analog of Theorem 7.(a)-(c) is no longer true if we require the extraction non-triviality to hold for
all R ∈ Rn. Indeed, this stronger notion of (Rn, δ, τ)-secure weak bit extraction clearly implies traditional
(Rn, 1 + δ − τ)-secure bit extraction (by mapping ⊥ to 1). On the other hand, Dodis and Spencer [DS02]
gave an example of a source Rn for which, for any ε > 0, there exists (Rn, ε)-secure bit encryption (and
hence, weak commitment and 2-secret sharing) scheme, but no (Rn, 1− 21−n/2)-secure bit-extraction. Thus,
the only analogs of Theorem 7.(a)-(c) we could hope to prove using the strengthened notion of weak bit
extraction would have to satisfy τ ≤ δ + 21−n/2, which is not a very interesting weak bit extraction scheme
(e.g., if δ is “negligible”, then the extraction succeeds with “negligible” probability as well). 5
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5 For differential privacy (part (d)), we do not have an analog of the counter-example in [DS02], and anyway the
value τ = O(1/ρ)� δ = O(ε) (so no contradiction). Of course, this does not imply that a stronger bit extraction
result should be true; only that it is not definitely false.
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