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ABSTRACT
This paper proposes KT-ORAM, a new hybrid ORAM-PIR con-
struction, to preserve a client’s access pattern to his/her outsourced
data. The construction organizes the server storage as a k-ary tree
with each node acting as a fully-functional PIR storage, and adopts
a novel delayed eviction technique to optimize the eviction pro-
cess. KT-ORAM is proved to preserve the data access pattern pri-
vacy with a negligibly-small failure probability of O(N− logN ).
KT-ORAM requires only a constant-size local storage at the client
side, and has an asymptotical communication cost of O( log2 N

log logN
)

(the best known asymptotical result of ORAM [17]) when k =
logN . The communication cost of KT-ORAM is also compared
with two state-of-the-art ORAM constructions, B-ORAM [17] and
P-PIR [20], which share the same assumption of constant-size client-
side storage as KT-ORAM, in practical scenarios. The results show
that, KT-ORAM outperforms these constructions.

1. INTRODUCTION
To preserve a client’s access pattern to his/her data exported to a
remote storage, the oblivious RAM (ORAM) [10, 11, 14, 12, 13,
17, 21, 27, 28, 29, 22, 26, 24, 25, 7, 23] and private information
retrieval (PIR) [4, 1, 3, 8, 9, 18, 2, 19, 16, 15] constructions have
been developed as security-provable solutions. The practicality of
these constructions, however, are still questionable. Specifically,
existing PIR solutions have been found infeasible when the access
pattern to a large data set needs to be concealed [27]. ORAM ap-
pears to be more practical, however, the state-of-the-art construc-
tions still incur high communication or storage costs. The Balanced
ORAM (B-ORAM) [17] has the best-known asymptotical commu-
nication cost of O( log2 N

log logN
), where N is the total number of ex-

ported data items, and needs only a constant-size local storage at
the client. However, a big constant is hidden behind the big-O no-
tation. For example, according to practical evaluations [20], it de-
mands a client to retrieve more than 1000 extra data items in order
to query just one useful item. Recently, Mayberry et al. [20] pro-
posed a hybrid ORAM-PIR construction named P-PIR, which or-
ganizes the server storage as a binary tree-based ORAM with each
node acting as a smaller PIR storage. The asymptotical communi-

cation cost of P-PIR is O(log2 N), higher than that of B-ORAM,
but it achieves better bandwidth efficiency than B-ORAM in prac-
tice. Even though, P-PIR is still costly in communication; as their
evaluation demonstrates, fetching 1 MB useful data requires the
client to download/upload nearly 200 MB data from/to the server.

In this paper, we propose a new hybrid ORAM-PIR construction
called KT-ORAM, to achieve: (i) an asymptotical communication
cost of O( log2 N

log logN
), which is on the same order as that of B-ORAM

but with a much smaller constant behind the big-O notation; (ii) a
better bandwidth-efficiency than B-ORAM and P-PIR in practice;
and (iii) a lower failure probability than the state-of-the-art ORAM
constructions and P-PIR.

Our proposed KT-ORAM construction shares the similar idea of
building an ORAM storage as a tree with each node acting as a
fully-functional PIR storage. However, significant redesigns have
been conducted to the storage structure and the query and eviction
processes, based on the following key ideas: (i) replacement of
the binary tree-based ORAM storage with a k-ary tree-based stor-
age to reduce the query cost from O(log2 N) to O( log

2 N
log k

); (ii)
mapping the k-ary tree to a logical binary tree and executing evic-
tions on the binary tree; and (iii) delaying evictions to reduce the
eviction cost from O(log2 N) to O( log

2 N
log k

). Through the above
redesigns, KT-ORAM can exploit the tradeoff between communi-
cation, client-side and server-side computational costs in a bolder
way: it reduces both the communication cost and the client-side
computational cost by a factor of O(log k) at the price of increas-
ing the server-side computational cost by a factor of O( k

log k
). We

argue that, the above tradeoff is highly beneficial in practice, be-
cause the following are common characteristics in cloud computing
environments: (i) the communication bandwidth is usually much
more expensive than the server-side computational resource; (ii)
the client-side computational resource is usually more constrained
and hence more expensive than the server; and (iii) the server usu-
ally has a high level of parallelism and hence is able to perform
intensive computational task in short time.

Comprehensive security analysis has been conducted to analyze the
KT-ORAM performance. The results show that the construction
can preserve a client’s data access pattern with a negligibly-small
failure probability of O(N− logN ), which is lower than the failure
probabilities of P-PIR (i.e., O(N−c) with c as a constant) and B-
ORAM (i.e., O(N− log logN )).

Theoretical, numerical, and simulation-based analysis has been con-
ducted to evaluate the cost of KT-ORAM, and compare it with P-
PIR and B-ORAM. Results show that, the asymptotical communi-



cation cost of KT-ORAM is O( log2 N
log logN

) when the system param-
eter k is set to logN . In practical scenarios where N ranges from
216 to 240 and k = logN , the communication cost of KT-ORAM
is only 1/3 to 1/5 of that of P-PIR, and it is at least 20 times lower
than that of B-ORAM.

In the rest of the paper, Section 2 presents the problem definition.
Section 3 reviews the related works on ORAM and PIR. Section 4
introduces the preliminary techniques, and discusses the intuitions
of KT-ORAM, which is followed by detailed description of the con-
struction in Section 5. Sections 6 and 7 report the security and cost
analysis. Finally, Section 8 concludes the paper.

2. PROBLEM DEFINITION
Similar to existing ORAM constructions such as T-ORAM [22] and
P-PIR [20], we consider a system as follows. A client exports N
large, equal-size data blocks to a remote storage server. He/she
accesses the exported data every now and then, and wishes to hide
the pattern of the accesses from the server.

Each data request from the client, which should be kept private, is
one of the following two types: (i) read a data block D of unique
ID i from the storage, denoted as a 3-tuple (read, i,D); or (ii)
write/modify a data block D of unique ID i to the storage, denoted
as a 3-tuple (write, i,D).

To accomplish a private data request, the client needs to access the
remote storage multiple times. Each access to the remote storage,
which is observable by the server, can be one of the following types:
(i) retrieve (i.e., read) a data block D from a location l at the remote
storage, denoted as a 3-tuple (read, l,D); or (ii) upload (i.e., write)
a data block D to a location l at the remote storage, denoted as a
3-tuple (write, l,D).

We assume the client is trusted but the remote server is honest but
curious; that is, it stores data and serves the client’s requests ac-
cording to the protocol that we deploy, but it may attempt to figure
out the client’s access pattern. The network connection between
the client and the server is assumed to be secure; in practice, this
can be achieved using well-known techniques such as SSL [6].

Following the security definition of ORAMs [10, 26, 25], we spec-
ify the security of our proposed ORAM as follows.

Definition Let x⃗ = ⟨ (op1, i1, D1), (op2, i2, D2), · · · ⟩ denote a
private sequence of the client’s intended data requests, where each
op is either a read or write operation. Let A(x⃗) = ⟨ (op′1, l1, D′

1),
(op′2, l2, D

′
2), · · · ⟩ denote the sequence of the client’s accesses to

the remote storage (observed by the server), in order to accomplish
the client’s private data requests. An ORAM system is said to be
secure if (i) for any two equal-length private sequences x⃗ and y⃗
of intended data requests, their corresponding observable access
sequences A(x⃗) and A(y⃗) are computationally indistinguishable;
and (ii) the probability that the ORAM system fails to operate is
negligibly small, i.e., O(N− logN ).

3. RELATED WORK
This section reviews related works on oblivious RAM (ORAM) and
private information retrieval (PIR).

3.1 Oblivious RAM

In the past decades, numerous ORAM constructions have been pro-
posed as provable solutions to hide a client’s access pattern to their
data stored at a remote storage. According to the data lookup tech-
nique adopted, existing ORAMs can be classified into two cate-
gories, namely, hash-based ORAMs and index-based ORAMs.

Some of existing ORAMs [10, 11, 14, 12, 13, 17, 21, 27, 28, 29]
are hash-based ORAMs. These ORAMs require some special data
structure, for example, buckets and stashes, to deal with hash col-
lisions. To the best of our knowledge, the Balanced ORAM (B-
ORAM) [17] proposed by Kushilevitz et. al. achieves the best
asymptotical communication cost, which is O( log2 N

log logN
).

Other ORAMs [22, 26, 24, 25, 7, 23] use a certain index struc-
ture for data lookup. They require the client to store the index,
which is feasible only if the number of data blocks is not too large
(N ≤ 220). When the client-side storage cannot afford to store
the index, the index has to be outsourced to the server recursively
in a way similar to storing data, at the cost of increased commu-
nication cost. Recently, Tree-based ORAM (T-ORAM) and Path
ORAM (P-ORAM) schemes have been proposed. The communi-
cation cost for T-ORAM is O(log3 N), while P-ORAM only incurs
O(log2 N) communication cost with some small constants behind
the big-O notation.

3.2 Private Information Retrieval (PIR)
Private information retrieval (PIR) protocols have been proposed to
preserve the pattern in accessing read-only data from a remote stor-
age. There are two flavors of PIR protocols: information-theoretic
PIR (iPIR) [4, 1, 8, 9], which assumes multiple non-colluding servers
each holding one replica of the shared data; computational PIR
(cPIR) [18, 2, 19, 3], where cPIR usually assumes single server
in the system.

cPIR is more related to our work, and thus is briefly reviewed in the
following. The first cPIR scheme was proposed by Kushilevitz and
Ostrovsky in [18]. Designed based on the hardness of quadratic
residuosity decision problem, the scheme has O(nc) (0 < c <
1) communication cost. Since then, several other single-server
cPIRs [2, 19] have been proposed based on different intractabil-
ity assumptions. Even though cPIRs are impractical when database
size is large, they are still acceptable for small databases. Recently,
several additively homomorphic encryption-based cPIRs [16, 15]
have been proposed to achieve satisfactory performance in prac-
tice, when database size is small. Due to the property of additively
homomorphic encryption, [20] shows that these cPIR schemes can
also be adapted for data updating, which is to be elaborated in detail
in Section 4.

3.3 Hybrid ORAM-PIR Designs
Recently, designs based on a hybrid of ORAM and PIR techniques
have emerged. Among them, the most representative one is P-
PIR [20]. As our proposed KT-ORAM design shares a similar idea
with P-PIR, detailed discussions of P-PIR and comprehensive com-
parisons between KT-ORAM and P-PIR will be given next in Sec-
tions 4 and 5.

4. PRELIMINARIES
Our proposed KT-ORAM employs the additively homomorphic en-
cryption [16, 15] primitives and shares some basic ideas with P-
PIR [20]. Hence, this section starts with an overview of addi-
tively homomorphic encryption primitives and P-PIR, which is fol-



lowed by the performance limitation of P-PIR. Then, we present
two straightforward methods to extend P-PIR and point out their
drawbacks. Finally, we introduce the intuitions behind the design
of KT-ORAM.

4.1 Additively Homomorphic (AH) Encryption
AH encryption [16, 15] is a fundamental primitive used in our pro-
posed design of KT-ORAM. Letting A and B be two data items,
and E(∗) denote an AH encryption (which is also a probabilistic
encryption), the following properties hold:

E(A)⊕ E(B) = E(A+B),

E(A)⊙B = E(A ·B).
(1)

Here, + and · are regular addition and multiplication operations
between two data items; ⊕ stands for a homomorphic addition be-
tween two homomorphically-encrypted data items; the “homomor-
phic” multiplication (denoted as ⊙) between a homomorphically-
encrypted data item E(A) and a data item B represents the homo-
morphic summation of B identical copies of E(A), i.e., ⊕B

i=1E(A).

Based on an AH encryption, primitives PIR-read and PIR-write
have been defined in AH-based PIR constructions [20]. As they are
also used in KT-ORAM, we introduction their definitions below.
Suppose a client exports to a storage server w double-encrypted
data blocks, denoted as

−−−−−−→
E(E(D)) = (E(E(D1)), · · · , E(E(Dw))),

where E(∗) represents a symmetric encryption such as AES [5].
Primitives PIR-read and PIR-write are defined as follows.

PIR-read(m) When the client wishes to query data block Dm

without exposing Dm’s position m to the server, it should issue
a PIR-read(m) request as follows: (i) The client first constructs a
query vector −→q of w entries, in which only the mth entry is E(1)
while each of the other entries is E(0). (ii) The vector −→q is then
sent to the server.

Upon receiving the request, the server performs the following ho-
momorphic encryption operation for each entry qi of −→q :

ci = qi ⊙ E(E(Di)) =

{
E(0), if i ̸= m;

E(E(E(Di))), otherwise. (2)

Then, the server calculates

c1 ⊕ · · · ⊕ cw = E(E(E(Dm))). (3)

Lastly, this result is returned to the user, who will decrypt it to
obtain Dm.

PIR-write(m, ∆D) When the client wishes to replace Dm with
D′

m without exposing the change to the server, it should issue a
PIR-write(m, ∆D) request as follows: (i) The client first computes
∆D = E(D′

m)−E(Dm). (ii) Then, it constructs a writing vector
−→q of w entries, in which only the mth entry is E(1) while each of
the other entries is E(0). (iii) Finally, ∆D and −→q are both sent to
the server.

Upon receiving the request, the server conducts the following com-
putations for each i ∈ {1, · · · , w}:

E(∆Di) = qi ⊙∆D =

{
E(0), if i ̸= m;

E(∆D), otherwise. (4)

E(E(Di)) = E(E(Di))⊕ E(∆Di)

=

{
E(E(Di)), if i ̸= m;
E(E(D′

m)), otherwise.
(5)

Note that, the effect of the above operations is to change only the
mth block to E(E(D′

m)) while other blocks remain intact. Also,
if m = ⊥, it means the write operation is a dummy write, and
therefore all entries of −→q are set to E(0).

4.2 Overview of P-PIR
The design of P-PIR is summarized in the following from the as-
pects of storage organization, data query process, and data eviction
process.

4.2.1 Storage Organization
Assuming N data blocks are exported by the client to a storage
server. The server-side storage of P-PIR is organized as a binary
tree with L = logN + 1 layers, the same as in T-ORAM [22].
Each node can store logN blocks. As the capacity of the storage
is larger than the N real data blocks, dummy blocks are introduced
to fill up the rest of the storage.

A real data block is first encrypted with symmetric encryption and
then re-encrypted with homomorphic encryption before it is stored
to a position in the node; that is, each data block Di is stored as
E(E(Di)) in a node. Each node also contains an encrypted index
block that records the ID of the data block stored at each position
of the node; as the block is encrypted, the index information is not
known to the server.

Figure 1 shows an example, where N = 32 data blocks are ex-
ported and stored in a binary tree-based storage with 6 layers. Start-
ing from the top layer, i.e., layer 0, each node is denoted as vl,i,
where l is the layer number and i is the node index on the layer.

P-PIR requires the client to maintain an index table with N entries,
where each entry i (i ∈ {0, · · · , N − 1}) records the ID of a leaf
node on the tree such that data block Di is stored at some node on
the path from the root to this leaf node. As in T-ORAM [22], the
index table can be exported to the server as well; hence, the user-
side storage is of constant size and only needs to store at most two
data blocks and some secret information such as encryption keys.
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Figure 1: P-PIR’s server-side storage structure. Circled nodes
represent the ones accessed by the client during a query process
when the target data block is mapped to leaf node v5,10.



4.2.2 Data Query Process
To query a certain data block Dt, the client acts as follows:

• The client checks the index table to find out the leaf node
vL−1,f that Dt is mapped to. Hence, a path −→v from the root
to vL−1,f is identified.

• For each node on the path −→v , the client first retrieves the
encrypted index block from it, and checks if Dt is in the
node. If Dt is at a certain position m of the node, the process
PIR-read(m) (as defined in Section 4.1) is launched to re-
trieve Dt; otherwise, the client launched process PIR-read(x)
where x is a randomly-picked position in the node.

• After Dt has been retrieved and accessed, it is re-encrypted
and inserted into the root node v0,0.

An example is given in Figure 1, where the query target Dt is
mapped to leaf node v5,10. Hence, each node on the path v0,0 →
v1,0 → v2,1 → v3,2 → v4,5 → v5,10 is retrieved. Finally, block
Dt is found at node v5,10. After being accessed, it is re-encrypted
and added to root node v0,0. Therefore, the client needs to down-
load 2 logN index and data blocks for each query.

4.2.3 Data Eviction Process
To prevent any node on the tree from overflowing, the following
data eviction process is conducted by the client after every query.
Firstly, for each non-bottom layer l, two nodes are randomly se-
lected. Note that, a single node v0,0 is selected from the top layer
as it only contains a single root node. Then, for each selected node
vl,i, there are two cases:

• If node vl,i contains at least one real data block, one such
real block is selected and evicted to the child node which is
on the path that the selected block is mapped to; meanwhile,
a dummy eviction to another child of vl,i is performed to
hide the actual pattern of eviction. Primitives PIR-read and
PIR-write are employed together for the evictions. Specif-
ically, the index blocks of vl,i and its two child nodes (de-
noted as vl+1,j and vl+1,k) are first retrieved; based on the
index information, it can be determined that a certain real
block De in vl,i should be evicted to one child node (say,
vl+1,j). Then, De in vl,i, a dummy block D′ in vl+1,j , and
an arbitrary block D′′ in vl+1,k are retrieved with primitive
PIR-read. After that, process PIR-write(m,E(De)−E(D′))
(where m is the location of D′ in vl+1,j) is performed for
vl+1,j to obliviously update D′ to De, and dummy process
PIR-write(⊥,x) (where x is an arbitrary value) is performed
for node vl+1,k to pretend an update at the node. Finally,
three index blocks are updated, re-encrypted, and uploaded.

• If node vl,i does not contain any real data block, two dummy
evictions are performed to the two child nodes of vl,i.

Figure 2 shows an example of the eviction process, where circled
nodes are selected to evict data blocks to their child nodes. Let us
consider how node v2,2 evicts its data block. The index block in
the node is first retrieved to check if the node contains any real data
block. If there is a real block De in v2,2 and De is mapped to leaf
node v5,20, De will be obliviously evicted to v3,5, which is v2,2’s
child and is on path from v2,2 to v5,20, while a dummy eviction
is performed to another child node v3,4. Otherwise, two dummy
evictions will be performed to nodes v3,4 and v3,5.
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Figure 2: An example of the eviction process in P-PIR.

4.3 Limitation of P-PIR
Though P-PIR was proposed to reduce the communication cost,
the overall communication cost is still as high as O(log2 N) data
blocks per query. To have a more concrete understanding of the
cost, let us consider an ORAM system of 1 TB capacity and 1 MB
data block size. According to the evaluation result in P-PIR [20],
fetching 1 MB data incurs nearly 200 MB communication cost.
Thus, 5 queries would result in almost 1 GB data transfer between
the client and the server, while the requested data size is only 5 MB.
Therefore, P-PIR is still expensive given the fact that bandwidth is
usually more costly than computation and storage [25].

4.4 Naive Extensions of P-PIR
As the communication cost of P-PIR is mainly determined by the
height of the tree structure (i.e., logN ), two straightforward exten-
sions might be applied on P-PIR to reduce the tree height and hence
the communication cost.

One option is to enlarge the node size. For example, let each node
on the tree store O(α logN) blocks, where α is an adjustable sys-
tem parameter. This way, the tree height is reduced to logN −
logα; however, the overall communication cost is only reduced to
O(logN(logN − logα)) blocks per query.

As another option, the binary tree structure used by P-PIR might be
extended to a k-ary (where k > 2) tree structure. This way, the tree
height can be reduced faster to logN

log k
, and the communication cost

for query can also be decreased to O( log
2 N

log k
). However, oblivious

eviction of a block from one single node needs to access k+1 nodes
(i.e., the node itself and its k child nodes), which makes the com-
munication cost of each eviction process to be O(k · log2 N

log k
). Con-

sequently, the overall communication cost becomes O(k · log2 N
log k

)
per query, which is higher than that of P-PIR.

4.5 Intuition of KT-ORAM
Having realized the limitations of P-PIR and its naive extensions,
we propose KT-ORAM, which, similar to P-PIR, also organizes the
ORAM storage as a k-ary tree (where k is a power of 2) and each
node acts as a small PIR storage. However, significant redesigns



have been conducted to the storage structure and the query and
eviction processes, in order to achieve a much better bandwidth ef-
ficiency. Specifically, the new ideas proposed in KT-ORAM mainly
include the following:

• Replacement of the binary tree-based ORAM storage with a
k-ary tree-based storage. As we discussed in Section 4.4,
adopting this idea can reduce the height of the tree structure
and thus reduce query cost from O(log2 N) to O( log

2 N
log k

).

• Execution of binary-tree eviction in a k-ary tree. As also dis-
cussed in Section 4.4, directly implementing an eviction pro-
cess on the k-ary tree causes a high overhead of O(k · log

2 N
log k

)
per query. To reduce the eviction cost, we propose to treat
a physical k-ary tree as a logical binary tree, where every
node in the k-ary tree (called k-node hereafter) is equivalent
to a binary subtree of k− 1 nodes (called b-nodes hereafter).
Then, the eviction process is performed to the logical binary
tree with possible delayed evictions described below.

• Delayed evictions. This is a unique process in the proposed
KT-ORAM. The key idea is that evictions between b-nodes
within the same k-node may not be executed immediately by
the client; instead, they may be recorded by the storage server
in a data structure called eviction history (EH), and multiple
such recorded evictions may be executed at a later time in a
batch to reduce the communication cost.

5. THE PROPOSED KT-ORAM SCHEME
In this section, we present the details of the proposed KT-ORAM
design in terms of storage organization, system initialization, data
query process, and data eviction process.

5.1 Storage Organization
5.1.1 Server-side Storage

At the server side, data storage is physically organized as a k-ary
tree where k is a power of two and each node in the tree (called a
k-node) is a PIR storage. As shown in Figure 3, each k-node can
be mapped to a binary subtree of k−1 nodes. For example, k-node
u0,0 in Figure 3(a) is mapped to a binary subtree with v0,0 as root,
and v1,0 and v1,1 as leaves in Figure 3(b). This way, the physical
k-ary tree can be treated as a logical binary tree.

In general, each k-node ul,i consists of the following components:

• Data Array (DA): a data container that can store (k−1) logN
data blocks.

• Encrypted Index Table (EI): a table of (k − 1) logN entries
recording the control information for each block stored in the
DA. Specifically, each entry is a tuple of format

(ID, pos, lID, bnID)

which records the following information of each block:

– ID - ID of the block;

– pos - position of the block in the DA;

– lID - ID of the leaf k-node that the block is mapped to;

– bnID - ID of the b-node (within ul,i) that the block
logically belongs to.

• Eviction History (EH): an ordered list of IDs of b-nodes. This
structure is used to support delayed evictions, which will be
elaborated later. In particular, every appearance of the ID
of a b-node on the list indicates that, the b-node has been
scheduled to evict a data block to its child b-node but the
eviction has not been actually executed. Such a scheduled
but not-yet executed eviction is called delayed eviction. Also,
the order between the b-nodes listed on EH reflects the order
in which these evictions should be executed at a later time. In
KT-ORAM, EH is designed to contain up to 2 log k log2 N
records.

5.1.2 Client-side Storage
At the client side, the following storage structures are maintained:

• A client-side index table I: a table of N entries, where each
entry i records the ID of the leaf k-node that data block Di is
mapped to (i.e., block Di is stored at some node on the path
from the root to this k-node). In practical implementation of
KT-ORAM, the table can be exported to the server, just as
in T-ORAM [22] and P-PIR [20]; to simplify presentation of
the design in this section, however, we assume the table is
maintained locally at the client side.

• A constant-size temporary buffer: a buffer used to temporar-
ily store a constant number of blocks downloaded from the
server-side storage.

• A small permanent storage for secrets: a permanent storage
to store the client’s secrets such as the keys used for data
encryption and decryption.

5.2 System Initialization
To initialize the system, the client acts as follows. It first prepares
each real data block Di by encrypting it with a symmetric key and
then homomorphically encrypting it to get E(E(Di)), and then ran-
domly assigns it to a leaf k-node on the k-ary tree maintained at the
server-side storage. The rest of the DA spaces on the tree shall all
be filled with dummy blocks.

For each k-node, its EI entries are initialized to record the informa-
tion of blocks stored in the node. Specifically, the entry for a real
data block should record the block ID to the ID field, the ID of the
assigned leaf k-node to the lID field, the position within the DA of
the k-node to the pos field, and the ID of an arbitrary leaf b-node
within the k-node to the bnID field. In an entry for a dummy data
block, the block ID is marked as “−1” while lID and bnID fields
are filled with arbitrary values. The eviction history of the k-node
is initialized to empty.

For the client-side storage, the index table I is initialized to record
the mapping from real data blocks to leaf k-nodes, and the keys for
data encryption are also recorded to a permanent storage space.

5.3 Data Query
To query a data block Dt with ID t, the client first searches the
index table I to find out the leaf k-node that Dt is mapped to.
Then, for each k-node u on the path from the root k-node to this
leaf node, the following operations are performed:

• The eviction history (EH) and the encrypted index table (EI)
in k-node u are retrieved and EI is decrypted. If it is non-
empty, the delayed evictions recorded in EH are executed
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Figure 3: An example KT-ORAM scheme with a quaternary-tree storage structure. Bold boxes represent the k-nodes accessed when
a client queries a target data block stored at k-node u3,21.

and then the EH is cleared. The details of this step will be ex-
plained later in Section 5.5, as the step would become easier
to understand after the eviction process has been introduced.

• According to decrypted EI, the following operations are ex-
ecuted:

– If block Dt is found at a certain location m of the
DA in u, process PIR-read(m) will be launched by the
client to retrieve E(E(Dt)), and then decrypt and ac-
cess Dt. After the access, Dt will be temporarily stored
locally and re-mapped to another randomly-picked leaf
k-node. To reflect the change, the entry for Dt in the
downloaded EI should be updated to mark the block as
a dummy; the entry for Dt in the client-side index ta-
ble should also be updated to the ID of the newly picked
leaf k-node.

– On the other hand, if Dt can not be found in u, the
client will launch process PIR-read(x), where x is an
arbitrary location at the DA in u, to pretend retrieving
a data block, and the retrieved data block will be dis-
carded without processing.

• Finally, if u is the root k-node, the downloaded EI is tem-
porarily saved locally; else, the downloaded EI is re-encrypted
and uploaded back to u.

After all k-nodes on the path have been processed, the retrieved Dt

is re-encrypted to E(E(Dt)) and then inserted to the root k-node
u0,0. Note that this encrypted block appears differently from the
one downloaded earlier as the AH encryption E(∗) is probabilistic.
Specifically, the insertion is implemented in the following steps:

• From the downloaded EI of the root k-node u0,0, a location
m′ that currently stores a dummy block is identified. Note
that, if such a location cannot be found, the root k-node is

said to overflow, which is a failure of the KT-ORAM system;
but as we prove in the Section 6, the probability for such
failure to occur is negligibly small.

• The client launches process PIR-read(m′) to obliviously re-
trieve and decrypt dummy block D′ from location m′.

• The client launches process PIR-write(m′, E(Dt)−E(D′))
to obliviously replace the dummy block at location m′ with
E(E(Dt)).

• The EI of the root k-node is updated to reflect the change in
position m′, then re-encrypted and uploaded back to the root
k-node.

As shown in Figure 3(a), to query a data block Dt stored at k-node
u3,21, the EIs at u0,0, u1,1, u2,5, and u3,21 should be accessed, as
these k-nodes are on the path from the root to the leaf node that
Dt is mapped to. A dummy data block should be retrieved oblivi-
ously from u0,0, u1,1, and u2,5, respectively, while Dt is retrieved
obliviously from u3,21.

5.4 Data Eviction
To prevent a k-node from overflowing its DA, real data blocks
should be gradually evicted towards leaf k-nodes. Similar to T-
ORAM and P-PIR, a data eviction process should be launched in
KT-ORAM immediately after each query.

As discussed in Section 4.5, data eviction in KT-ORAM is per-
formed to the binary tree that the k-ary tree is logically mapped to.
More specifically, the eviction process is composed of three phases
as elaborated below.

5.4.1 Phase I: Scheduling of Evictions for Logical
Binary Tree



At the beginning of an eviction process, the client randomly selects
a list of b-nodes that should evict data blocks to their child nodes,
and informs the server of the list by sending to it an eviction vector

−→e = (e0, e1, · · · , elogN−log k),

where e0 = (v0,0) and for each l ∈ {1, · · · , logN − log k}, el =
(vl,il , vl,jl) is a pair of IDs of two distinct b-nodes randomly picked
from level l on the binary tree; that is, vl,il and vl,jl should be two
distinct integers randomly picked from {0, · · · , 2l − 1}.

5.4.2 Phase II: Identification and Recording of De-
layed Evictions

Theoretically, the scheduled evictions can all be executed immedi-
ately. However, immediate execution of all of them would require
the client to access O(logN) blocks, which is the same eviction
cost introduced by P-PIR. To reduce the cost, we propose to delay
certain evictions and execute them later in a more efficient man-
ner. The idea is developed based on the observation that there are
two types of evictions between b-nodes: intra k-node evictions and
inter k-node evictions.

Intra k-node Evictions vs. Inter k-node Evictions An eviction is
called an intra k-node eviction if the data block is evicted between
b-nodes that belong to the same k-node; else it is called an inter
k-node eviction. For example, as shown in Figure 4, the scheduled
eviction from v2,2 to its child nodes is an intra k-node eviction, as
v2,2 and its child nodes belong to the same k-node u1,2. On the
other hand, the eviction from v3,2 to its child nodes is an inter k-
node eviction, as v3,2 and its two child nodes belong to different
k-nodes.

As b-nodes within the same k-node share the same DA space for
storing data blocks, an intra k-node eviction only requires an update
of the EI of the k-node to reflect the change of bnID field for the
evicted block. Therefore, such an eviction does not need PIR-read
or PIR-write operations and could be performed more efficiently
than inter k-node evictions.

Opportunities to Delay Intra k-node Evictions Opportunisti-
cally, we may find a k-node that is not involved in any other inter
k-node evictions, i.e., its root b-node is not a child of any evict-
ing b-node while its own leaf b-nodes do not evict any data blocks.
In Figure 4, u2,3 and u2,11 are two examples of such a k-node.
If intra k-node evictions have been scheduled for such a k-node,
they can be delayed to perform later (to update the EI of the k-
node) when the k-node is next accessed during a query process or
an inter k-node eviction. This is possible because the EI of the k-
node is not needed until the k-node is next accessed. Moreover,
since the client has to download the EI of the k-node anyway dur-
ing a query process or an inter k-node eviction, updating of the EI
to complete delayed intra k-node evictions does not cause any ad-
ditional communication overhead, thus reducing the eviction cost.
Delayed evictions are recorded in the eviction history (EH) of the
k-node in the order that they were scheduled in the eviction vector.

For example, as shown in Figure 4, evictions from b-nodes v4,3 and
v4,11 can be delayed and hence are recorded in the EH of their k-
nodes u2,3 and u2,11, respectively. Later on, when u2,3 and u2,11

are accessed, as elaborated in Section 5.5, the recorded evictions
shall be executed first before any other updates.

5.4.3 Phase III: Execution of Inter k-node Evictions

All scheduled inter k-node evictions have to be executed imme-
diately according to their appearance order in eviction vector −→e .
Specifically, the eviction for vl,x is performed as follows. Let ul′,x′

denote the k-node where b-node vl,x resides, let b-nodes vl+1,y and
vl+1,z denote the two child b-nodes of vl,x, and let ul′+1,y′ and
ul′+1,z′ denote the two k-nodes where b-nodes vl+1,y and vl+1,z

reside. The EHs and EIs of ul′,x′ , ul′+1,y′ , and ul′+1,z′ are down-
loaded, and if any of the EHs are non-empty, the delayed evictions
recorded in the non-empty EH shall be executed as Section 5.5 de-
scribes.

If vl,x stores at least one real data blocks, one of them is down-
loaded by using the PIR-read primitive. Let the downloaded real
block be De and without loss of generality, assume k-node ul′+1,y′

is on the path from the root to the leaf k-node that De is mapped
to. Then, one dummy block D′ will be downloaded from k-node
ul′+1,y′ and an arbitrary block will be downloaded from k-node
ul′+1,z′ , both using the PIR-read primitive. After that, E(E(De))
will be written to k-node ul′+1,y′ to replace dummy block D′ by
using the PIR-write primitive, and block De becomes a data block
stored in the root b-node within k-node ul′+1,y′ . Meanwhile, a
dummy PIR-write process is launched to update a block in k-node
ul′+1,z′ as well. Finally, the EIs of the three k-nodes are updated
to reflect the movement of block De from k-node ul′,x′ to ul′+1,y′ ,
re-encrypted, and uploaded back to the server.

On the other hand, if vl,x does not have any real data blocks, three
arbitrary blocks will be retrieved from the three k-nodes, respec-
tively, with the PIR-read primitive. Then, two dummy PIR-write
processes will be launched to update two blocks in k-nodes ul′+1,y′

and ul′+1,z′ , respectively. Finally, the EIs of the three k-nodes will
be re-encrypted and uploaded back to the server.

5.5 Execution of Delayed Evictions
When a k-node is accessed during a query process or an inter k-
node eviction, its eviction history (EH) may not be empty. That
is, some delayed evictions may have been recorded in the EH, and
these delayed evictions shall be executed before any other opera-
tions can be performed on the k-node.

Suppose the EH of an accessed k-node contains the following se-
quence of b-node IDs:

vl1,i1 , vl2,i2 , · · · , vln,in ,

which indicates that the eviction from b-node vlj ,ij (j = 1, · · · , n)
to one of its child b-nodes has been delayed. To execute the delay
evictions, the EI of the k-node shall be updated as follows:

• If b-node vlj ,ij has at least one real data block (i.e., there is
at least one real data block whose EI entry has vlj ,ij in the
bnID field), one of such real blocks, denoted as De, shall be
selected. Suppose b-node vlj+1,x is a child of vlj ,ij and is on
the path from the root to the leaf k-node that De is mapped
to. Then, the bnID field of De’s EI entry shall be updated to
vlj+1,x to indicate the eviction of De from vlj ,ij to vlj+1,x.

• On the other hand, if b-node vlj ,ij does not have any real data
blocks, no change will be made to the EI as the scheduled
evictions are dummy ones.

• Finally, after all the entries in the EH have been processed,
the EH is cleared.
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Figure 4: An example data eviction process in KT-ORAM with a quaternary-tree storage structure. The b-nodes that are selected to
evict data blocks are circled. The k-nodes scheduled with delayed evictions (i.e., u2,3 and u2,11) are highlighted with bold boundaries.

6. SECURITY ANALYSIS
In this section, we first show that the KT-ORAM construction fails
with only a negligibly small probability of O(N− logN ) through
proving (i) the DA of each k-node overflows with probability O(N− logN )
and (ii) the EH of each k-node overflows with probability O(N− logN ).
Then, we show that the query and eviction processes both access k-
nodes independently of the client’s private data request. Based on
the above steps, we finally present the main theorem.

LEMMA 1. Assume k ≥ logN . The DA of any k-node in the
k-ary tree has a probability of O(N− logN ) to overflow.

LEMMA 2. In the k-ary tree, the probability that the EH of a
k-node has more than 2 log k log2 N records is O(N−logN ).

LEMMA 3. A query process in KT-ORAM accesses k-nodes from
each layer of the k-ary tree, uniformly at random.

LEMMA 4. An eviction process in KT-ORAM accesses a se-
quence of k-nodes independently of the client’s private data re-
quest.

Due to space limitation, please refer to Appendices for proofs of
the lemmas.

THEOREM 1. Assuming PIR-read and PIR-write are both obliv-
ious operations, KT-ORAM is secure under Definition 2.

PROOF. Given any two equal-length sequence x⃗ and y⃗ of the
client’s private data requests, their corresponding observable access
sequences A(x⃗) and A(y⃗) are computationally indistinguishable,
because both of the observable sequences are independent of the
client’s private data request sequences. This is due to the following
reasons:

• According to the query and eviction algorithms, sequences
A(x⃗) and A(y⃗) should have the same format; that is, they
contain the same number of observable accesses, and each
pair of corresponding accesses have the same access type.

• According to Lemma 3, the sequence of locations (i.e., k-
nodes) accessed by each query process are uniformly random
and thus independent of the client’s private data request.

• According to Lemma 4, the sequence of locations (i.e., k-
nodes) accessed by each eviction process after a query pro-
cess is also independent of the client’s private data request.

• Finally, PIR-read and PIR-write operations are oblivious. Hence,
each PIR-read or PIR-write operation does not expose which
data block within a k-node is actually read or written, or what
has been written in the case of write operation.

Also, according to Lemmas 1 and 2, the KT-ORAM construction
fails with probability O(N− logN ), which is considered negligible
and no higher than the failure probability of existing ORAMs.

7. COST ANALYSIS
In this section, we analyze the costs of KT-ORAM, and compare
KT-ORAM with the following state-of-the-art ORAM schemes: B-
ORAM [17], T-ORAM [22], and P-PIR [20].



7.1 Costs of KT-ORAM
Same as T-ORAM and P-PIR, the server-side storage cost for KT-
ORAM is O(N logN) data blocks. Before analyzing the commu-
nication and computational costs of KT-ORAM, we introduce the
following notations:

• Hk and Hb: heights of the k-ary and binary trees. Obviously,
Hb = logN + 1 and Hk = Hb

log k
= logN+1

log k
.

• SB : size of a data block in the unit of bits.

• b: size of an additively homomorphic encryption cipher-text,
in the unit of bits. In practice, b ≪ SB .

• SEH : size of an EH, which is upper bounded by 2 log2 k log2 N
bits and is smaller than SB in the design.

• SEI : size of an EI, which is (k − 1) · logN · {2 logN +
log[(k − 1) logN ] + log(k − 1)} bits and smaller than SB

in the design.

7.1.1 Per-query Communication Cost
During a query process, one k-node is accessed from each layer of
the k-ary tree. For the access of each k-node, (i) its EH and EI are
downloaded and then EI is uploaded after access, which consume a
bandwidth of SEH +2SEI ; and (ii) a data block is read obliviously
using PIR-read, which consumes (k−1) · b · logN bits for reading
vector and SB bits. After the above accesses, a block is obliviously
written back to the root k-node using PIR-write, which consumes
(k − 1) · b · logN bits for writing vector and SB bits. Hence, the
total bandwidth consumption for a query process is

Qu(N) = Hk ·(SEH+2SEI)+(Hk+1)·((k−1)·b·logN+SB).
(6)

During an eviction process, up to six k-nodes are accessed for each
layer of the k-ary tree. When a k-node is accessed, its EH and EI
are downloaded and EI is uploaded after access, while at most one
data block is obliviously read via PIR-read and at most one data
block may be obliviously written via PIR-write. Hence, the total
bandwidth consumption is bounded by

Ev(N) = 6Hk ·(SEH+2SEI+2SB+2·(k−1)·b·logN). (7)

Considering that the client-side index table needs to be exported
recursively to keep client-side local storage constant, the overall
bandwidth consumption per query is

logN · [Qu(N) + Ev(N)], (8)

which is O( log
2 N

log k
· SB + log3 N

log k
· b · k) because SEI < SB and

SEH < SB . Practically, b ≪ SB ; for example, b = 2048 bits
while SB = 1 MB in the implementation of P-PIR [20]. Hence,
the overall bandwidth is O( log

2 N
log k

) per query in practice.

7.1.2 Per-query Computational Cost
Server-side Computational Cost The server-side computational
cost is dominated by the homomorphic addition (i.e., ⊕) and multi-
plication (i.e., ⊙) operations; hence, we only count such operations.

During a query process, a PIR-read operation is conducted on each
accessed k-node. As we analyzed in the previous subsection, the
total number of accessed k-node is Hk. As each k-node has (k −
1) logN blocks each with SB bits and hence SB/b data pieces

operate-able by AH operations, each PIR-read operation on a k-
node requires (k − 1) logNSB/b AH multiplications and [(k −
1) logN − 1]SB/b AH additions. Therefore, the computational
cost for a query process is O( k log2 N

log k
· SB

b
) AH operations.

During an eviction process, at most one PIR-read and one PIR-
write operations are conducted on each accessed k-node. The num-
ber of accessed k-nodes is bounded by 6Hk and the cost of PIR-
write is similar to that of PIR-read. Therefore, the computational
cost for an eviction process is also O( k log2 N

log k
· SB

b
) AH operations.

In summary, the server-side computational cost is O( k log2 N
log k

· SB
b
)

AH operations per query.

Client-side Computational Cost The computational cost at the
client side is mainly contributed by decrypting and re-encrypting
downloaded data blocks, where each block needs both normal (e.g.,
AES) and homomorphic decryption/re-encryption. Since the num-
ber of data blocks accessed per query is O( log

2 N
log k

), the numbers of
normal and AH encryption/decryption operations required are both
O( log

2 N
log k

· SB
b
).

7.2 Comparisons with Other ORAMs
The costs of KT-ORAM are compared with state-of-the-art ORAM
constructions which shares the same baseline assumption, i.e., con-
stant client-side storage, including B-ORAMand P-PIR. (Note that,
we do not compare KT-ORM with ORAMs such as [7, 26], though
they use a similar structure as in KT-ORAM. This is because, these
constructions do not share the constant local storage assumption
and it has been shown that they are outperformed by P-PIR in terms
of communication cost [20].)

7.2.1 Asymptotical Comparisons
First, we show the asymptotical comparisons in terms of the com-
munication, server-side and client-side computational costs.

From Table 1, we can see that, when b ≪ SB and k = logN ,
the communication cost of KT-ORAM is asymptotically equiva-
lent to that of B-ORAM, a state-of-the-art ORAM construction that
achieves the best asymptotical bound. However, as we will show
later, KT-ORAM is much more efficient than B-ORAM in terms of
communication in practical scenarios.

P-PIR and KT-ORAM both leverage the tradeoff between commu-
nication and computational costs. When bandwidth is more expen-
sive than computation (especially server-side computational cost),
it is desirable to seek low communication cost at the price of in-
creased server-side computational cost. Comparing between them,
KT-ORAM achieves an even lower communication and client-side
computational costs by trading off more server-side computational
cost.

7.2.2 Comparisons under Practical Settings
We now compare the communication costs of B-ORAM, P-PIR,
and KT-ORAM under practical settings where b is fixed to 2048
bits as in [20], N varies from 216 to 240, and block size SB varies
between 256 KB and 1 MB.

As shown in Figure 5, KT-ORAM outperforms other schemes in all
the studied scenarios. Particularly, its communication cost is much
lower that that of B-ORAM, though their asymptotical costs are the



Table 1: Asymptotical Cost Comparisons between B-ORAM, P-PIR, and KT-ORAM
Communication Client-side Computation Server-side Computation

B-ORAM O( log2 N
log logN

· SB) O( log2 N
log logN

· SB) N/A
P-PIR O(b · log3 N + log2 N · SB) O(log2 N · SB

b
) O(log2 N · SB

b
)

KT-ORAM O(b · k log3 N
log k

+ log2 N
log k

· SB) O( log
2 N

log k
· SB

b
) O( k log2 N

log k
· SB

b
)
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Figure 5: Comparison of communication costs under practical
settings.

same. The communication cost introduced by KT-ORAM is only
about 1/3 to 1/5 of that by P-PIR, and the improvement becomes
more significant when k or SB increases with a fixed value of N .

7.2.3 Simulation-based Comparisons
We simulate KT-ORAM and P-PIR using C++ and compare their
performances under the settings similar to those in [20], where
SB = 1 MB, b = 2048 bits, N varies from 216 to 220, and k
is set to 4 or 16.

Figure 6 shows the average communication cost per query over N
random requests. As we can see, the communication cost incurred
by KT-ORAM is only 1/3 to 1/5 of that incurred by P-PIR, which
conforms to the numerical results in the previous subsection.
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Figure 6: Comparison of communication costs using simula-
tions.

Table 2 lists the maximum EH size when N data blocks are ran-
domly requested. We can see that the EH size is consistently small,
varying between 26 and 30 bits when k = 4 and between 92 and
108 bits when k = 16, which is significantly less than its upper
bound of 2 log2 k log2 N bits.

Table 2: Maximum EH Size in KT-ORAM (in the unit of bits)
N 216 217 218 219 220

k = 4 30 30 28 26 28
k = 16 100 92 108 100 100

8. CONCLUSION
This paper proposes a new, security-provable hybrid ORAM-PIR
construction called KT-ORAM, which organizes the server storage
as a k-ary tree with each node acting as a fully-functional PIR stor-
age. It also adopts a novel delayed eviction technique to optimize
the eviction process. KT-ORAM is proved to have a negligibly-
small failure probability of O(N− logN ). Theoretically, its asymp-
totical communication cost is as low as O( log2 N

log logN
), when k =

logN . In practice, it consumes significantly less bandwidth than B-
ORAM and P-PIR, two state-of-the-art ORAM or hybrid ORAM-
PIR solutions.
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Appendix I: Proof of Lemma 1.
The proof considers non-leaf and leaf k-nodes separately.

Non-leaf k-nodes The proof for non-leaf k-node proceeds in two
steps.

In the first step, we consider the binary tree that a k-ary tree in KT-
ORAM is logically mapped to, and study the number of real data
blocks (denoted as a random variable Xv) logically belonging to an
arbitrary b-node v on an arbitrary level l of the binary tree.

As the eviction process of KT-ORAM completely simulates the
eviction process of T-ORAM and P-PIR over the logical binary
tree, their results [22] of theoretical study on the number of real
data blocks in a binary tree node can still apply. Specifically, Xv

can be modeled as a Markov Chain denoted as Q(αl, βl). In the
Chain, the initial one is Xv = 0, The transition from Xv = i to
Xv = i + 1 occurs with probability αl, and the transition from
Xv = i + 1 to Xv = i occurs with probability βl, for every non-
negative integer i. Here, αl = 1/2l and βl = 2/2l for any level l.
Also, for any l ≥ 2, an unique stationary distribution exists for the
Chain; that is, πl(i) = ρil(1− ρl), where

ρl =
αl(1− βl)

βl(1− αl)
=

2l − 2

2(2l − 1)
∈
[
1

3
,
1

2

)
. (9)

In the second step, we consider an arbitrary k-node u on the k-ary
tree and study the number of real data blocks stored at the DA of u,
which is denoted as a random variable Yu.

The binary subtree that u is logically mapped to contains k − 1
b-nodes, which are denoted as v1, · · · , vk−1 for simplicity. Then
Yu =

∑k−1
i=1 Xvi . Also, as k should be greater than 2 to make KT-

ORAM nontrivial, any of the b-nodes v1, · · · , vk−1 should be on
a level greater than or equal to 2 on the logical binary tree (Those
b-nodes on level 0 and 1 never overflow).

Now, we compute the probability

Pr [Yu = t] = Pr [Xv1 + · · ·+Xvk−1 = t]. (10)

Note that, there are

(
t+ k − 2

k − 2

)
different combinations of Xi =

ti (i = 1, · · · , k − 1) such that t1 + · · · + tk−1 = t. Hence,
according to Equation (9), we have:

Pr [Yu = t] ≤

(
t+ k − 2

k − 2

)
k−1∏
i=1

(
1

2
)ti(1− 1

3
)

=

(
t+ k − 2

k − 2

)
(
1

2
)t(

1

3
)k−1

≤
(
(t+ k − 2) · e

k − 2

)k−2

(
1

2
)t(

2

3
)k−1.

(11)

Note that, the last inequality is due to
(
n
k

)
≤
(
n·e
k

)k for all 1 ≤
k ≤ n. Thus, given t = (k − 1) logN and k ≥ logN , the above
probability can be simplified to:

Pr [Yu = (k − 1) logN ]

=

(
((k − 1) logN + k − 2) · e

k − 2

)k−2

(
1

2
)(k−1) logN (

2

3
)k−1

<

(
((k − 1) logN + k − 2) · e

k − 2

)k−1

(
1

2
)(k−1) logN (

2

3
)k−1

≤ [e · 4
3
logN ]k−1(

1

2
)(k−1) logN

= [e · 4
3
logN(

1

2
)logN ]k−1.

(12)

Therefore, we have:

Pr [Yu ≥ (k − 1) logN ]

=
∞∑
i=0

Pr [Yu = (k − 1 +
i

logN
) logN ]

<

∞∑
i=0

[e · 4
3
logN(

1

2
)logN ]k−1+i/ logN

=
[e · 4

3
logN( 1

2
)logN ]k−1

1− [e · 4
3
logN( 1

2
)logN ]1/ logN

.

(13)

Equation (13) renders a negligible probability of O(N− logN ) as
long as k ≥ logN .

Leaf k-nodes At any time, all the leaf k-nodes contain at most N
real blocks and each of the blocks is randomly placed into one of
the leaf k-nodes. Thus, we can apply standard balls and bins model
to analyze the overflow probability. In this model, N balls (real
blocks) are thrown into N/k bins (i.e., leaf k-nodes) in a uniformly
random manner.

We study one particular bin and let X1, · · · , XN be N random



variables such that

Xi =

{
1 the ith ball is thrown into this bin,
0 otherwise. (14)

Note that, X1, · · · , XN are independent of each other, and hence
for each Xi, Pr [Xi = 1] = 1

N/k
= k

N
. Let X =

∑N
i=1 Xi. The

expectation of X is

E[X] = E

[
N∑
i=1

Xi

]
=

N∑
i=1

E[Xi] = N · k

N
= k. (15)

According to the Chernoff bound, when δ = j/k − 1 ≥ 2e− 1, it
holds that

Pr [at least j balls in this bin]

= Pr [X ≥ j] <

(
eδ

(1 + δ)(1+δ)

)k

<

(
eδ

(2e)δ

)k

= 2−kδ.

(16)

By applying the union bound, we obtain:

Pr [∃ a bin with at least j balls]

<
N

k
· 2−kδ.

(17)

Further considering j = (k − 1) logN and k ≥ logN , it follows
that

Pr [∃ a bin with at least (k − 1) logN balls]

<
N

logN
· 2−(log2 N−2 logN)

= O(N− logN ).

(18)

Appendix II: Proof of Lemma 2.
Let us consider the EH of an arbitrary k-node u. As a root k-node
is always accessed during every query and eviction process, the
number of entries in its EH should never be larger than 2(log k−1),
which is obviously smaller than log k log2 N . Hence, we assume
u is on layer l (l > 0) of the k-ary tree, and let m = 2l denote the
total number of k-nodes on level l.

Since u is logically a binary subtree with log k levels, let us first
consider an arbitrary binary tree level l′ within u, and study the
number of entries (denoted as a random variable X) that are the
IDs of b-nodes on level l′ in the EH.

After every eviction process, X may increase by 1 or 2 if k-node u
is not accessed by the client but some intra k-node evictions have
been appended; or, it may decrease to 0 if it has been accessed by
the client during the eviction process. To simplify our study, we do
not differentiate the cases that it increases by 1 or 2, but treat both
as increasing by 2; hence, we may over-valuate X . Hence, X can
be modeled as a Markov Chain as shown in Figure 7.

0 2 4 ... M ...
p p p p p

'p

'p

'p

... ...

Figure 7: Markov Chain for random variable X (i.e., the num-
ber of EH entries from layer l′).

Next, we compute the probability p to transition from X = i to
X = i + 2 and the probability p′ to transition from X = i to 0,
where i is every even integer.

Transition from X = i to 0 occurs when u is accessed by the client
during an eviction process. This could be due to the following two
cases: (i) the b-node that is the parent of the root b-node in u is
selected to evict, for which the probability is 4

m
; (ii) a b-node on

the bottom layer of the binary subtree within u is selected to evict,
for which the probability is positive. So, p′ > 4

m
due to (i) and (ii).

Transition from X = i to X = i + 2 occurs when one or two
b-node on level l′ are selected to evict. Denoting the number of
b-nodes on level l′ within u as n, the probability is

p =

(
n
2

)
+
(
n
1

)(
(m−1)n

1

)(
mn
2

) <
4

m
.

To further simplify the analysis, let p′ = p = 4
m

. Note that, as p′ is
under-valuated and p is over-valuated, X is further over-evaluated.
Then, we can find that the Markov Chain has stationary distribution
π = (π0, π2, · · · , πM ), where πi = ( 1

2
)i/2+1. Hence,

Pr[X ≥ 2 log2 N ] = (
1

2
)log

2 N .

Node u has log k − 1 such layers in its binary subtree. Its EH has
more than 2 log k log2 N records, only if at least one of the layers
has more than log2 N records, for which the probability is less than
log k · ( 1

2
)log

2 N , i.e., O(N− logN ).

Appendix III: Proof of Lemma 3.
(sketch) In KT-ORAM, each real data block is initially mapped to
a leaf k-node uniformly at random; and after a real data block is
queried, it is re-mapped to a leaf k-node also uniformly at random.
When a real data block is queried, all k-nodes on the path from
the root to the leaf k-node the real data block currently mapped to
are accessed. Due to the uniform randomness of the mapping from
real data blocks to leaf k-nodes, the set of k-nodes accessed during
a query process is also uniformly at random.

Appendix IV: Proof of Lemma 4.
(sketch) During an eviction process, the accessed sequence of k-
nodes is independent to the client’s private data request due to: (i)
the selection of b-nodes for eviction (i.e. Phase I of the eviction
process) is uniformly random on each layer of the logical binary
tree and thus is independent of the client’s private data request;
and (ii) the rules determining which scheduled evictions should be
executed immediately (and hence the involved k-nodes should be
accessed) are also independent of the client’s private data requests.


