
On Modes of Operations of a Block Cipher for Authentication
and Authenticated Encryption

Debrup Chakraborty1 and Palash Sarkar2

1 Computer Science Department
CINVESTAV-IPN

Mexico, D.F., 07360, Mexico
email: debrup@cs.cinvestav.mx

2 Applied Statistics Unit
Indian Statistical Institute
203, B.T. Road, Kolkata

India 700108.
email: palash@isical.ac.in

Abstract. This work deals with the various requirements of encryption and authentication in cryp-
tographic applications. The approach is to construct suitable modes of operations of a block cipher to
achieve the relevant goals. A variety of schemes suitable for specific applications are presented. While
none of the schemes are built completely from scratch, there is a common unifying framework which
connects them. All the schemes described have been implemented and the implementation details are
publicly available. Performance figures are presented when the block cipher is the AES and the Intel
AES-NI instructions are used. These figures suggest that the constructions presented here compare well
with previous works such as the famous OCB mode of operation. In terms of features, the constructions
provide several new offerings which are not present in earlier works. This work significantly widens the
range of choices of an actual designer of cryptographic system.
Keywords: authentication, authenticated encryption, authenticated encryption with associated data,
deterministic authenticated encryption with associated data, Galois field masking, block cipher.

1 Introduction

A block cipher maps a fixed length binary string to a string of the same length under the influence
of a secret key. Formally, it is a map E : K×{0, 1}n → {0, 1}n, where for each K ∈ K, the function

EK(·) ∆
= E(K, ·) is a bijection from {0, 1}n to itself. A block cipher is a fundamental primitive

in cryptography and is a major building block of several important cryptographic functionalities.
There is a long history of research in the design and analysis of block ciphers. Currently, the most
popular block cipher is the advanced encryption standard (AES) which has been standardised by
the NIST of USA [18, 57].

Different cryptographic applications have varying security requirements. Further, the strings to
be processed by such applications usually have varying lengths. Consequently, a block cipher has
to be suitably tailored to handle such strings and also to attain the specific security goals. Methods
for doing this are called modes of operations of a block cipher.

Below we describe several security goals that can arise in a cryptographic application.

Privacy: This is a basic goal whereby a secret transformation is applied to a given message so that
the output of the transformation, called the ciphertext, does not reveal the message. The original
message can be recovered by applying the inverse of the secret transformation to the ciphertext.

Authentication: For certain applications, the goal is different from that of achieving privacy
of the message. Rather, it is to ensure that if some modification is made to the message during

transmission, then it will be detected at the receiving end. As a result, the receiver will be able
to ascertain the authenticity of the message along with the authenticity of the sender. One way
of achieving this is to apply a secret transformation to the message to generate a tag and then
transmit the tag along with the message. The secret transformation is available at the receiving
end and a tag can be regenerated from the received message and compared to the received tag to
determine the authenticity of the transmission.

Authenticated encryption (AE): In most cases, the requirement is to both protect the privacy
of the message and to ensure authenticity. A method for simultaneously achieving both these goals
is called authenticated encryption.

Authenticated encryption with associated data (AEAD): Often, along with the message,
there is an additional information called the header (or associated data). The header needs to
be authenticated, but, should not be encrypted as this may cause routing problems. The task of
encrypting the message and authenticating both the header and the message is called authenticated
encryption with associated data.

Deterministic authenticated encryption with associated data (DAEAD): AE(AD) con-
structions use a nonce, which is a quantity that is distinct for every message. If the nonce is reused,
then security is lost. Deterministic authenticated encryption does away with the nonce. Only the
message is processed using a secret (random) key to produce the ciphertext. An extension of this
functionality allows the authentication of associated data and the message.

The on-going CAESAR project [14] has been launched with the aim of creating a portfolio of
symmetric key algorithms for achieving a range of cryptographic functionalities including those
mentioned above.

1.1 Contributions

This work provides a number of modes of operations of a block cipher for achieving the different
functionalities mentioned above. The schemes are obtained by building on and refining existing
schemes in the literature. None of the schemes reported here are built totally from scratch. There
is, however, a common unifying theme which connects them.

The core of our approach to the different modes of operations is the notion of a pseudo-random
function (PRF). Informally, a function f from a (finite) domain D to a co-domain R is said to
be a PRF if it is “indistinguishable” from a function chosen uniformly at random from the set
of all functions from D to R. Formalisation of the notion of indistinguishability requires some
restriction on a possible distinguishing “adversary”. One approach is to require the adversary to
be computationally bounded. The second approach is information theoretic where the restriction
on the adversary is the number of times it can query f and the total number of bits it sends in all
the queries. This work will follow the second approach. There are standard methods to convert a
proof of PRF in the information theoretic setting to the computational setting.

A PRF can be used to provide authentication. This is the connection that we exploit in our
constructions and analyses of the various modes of operations. A short summary of the different
constructions in this paper is given below.

Vector-input pseudo-random function (PRF): A new generic method is provided which
converts a single-input PRF to a vector-input PRF. The construction is simple, generic and efficient.
It compares well to previously known constructions.

Authentication and AE(AD) schemes: These schemes are obtained by small modifications of
similar previous schemes in [53]. The modification consists of eliminating an extra block cipher call
for single-block messages. Instead, the mask generation process is applied in the backward direction
to handle the complications which arise.

All previous works on (nonce-based) AEAD schemes considered the header to be a single string.
We provide the first constructions of AEAD schemes which can handle a vector of strings as the
header.

Deterministic authenticated encryption with associated data: New schemes for DAE and
DAEAD are obtained by combining the generic vector-input PRF with a variant of the counter
mode introduced in [59].

All the schemes presented in this work are efficient and fully parallelisable. They are accom-
panied by usual provable security treatment leading to concrete security bounds. A key feature of
the designs is the use of masking techniques based on linear functions over binary characteristic
fields. Several concrete instantations of the masking function are described. The masking functions
are easily reconfigurable and as a result one specific masking function does not need to be hard
coded into the specifications. Reconfigurability provides additional flexibility in the implementation
of a particular functionality. One advantage is that depending on the application, it is possible to
choose the masking function to be targeted either for high-end Intel processors; or, for 8-bit, 16-bit
or 32-bit microcontrollers such as those manufactured by Atmel [17] and TI [29].

We present implementation details and performance results of all the schemes when the un-
derlying block cipher is the AES. Two separate implementations were made – a simple reference
implementation and a fast implementation on modern Intel processors using AES-NI and other
SIMD instructions. Each of the schemes have been implemented using the various masking meth-
ods. Results for the fast implementations show minor variations in the efficiencies as the masking
method varies. On the whole, the performance data shows that the schemes reported in this work
compare favourably with existing works in the literature. Both the reference and the fast imple-
mentations are publicly available from [16]. We take this opportunity to mention that we have not
filed any IP claims on any of the constructions in the paper.

Finally, we would like to mention that our work provides a unified and comprehensive treatment
of the major functionalities that are realised using block cipher modes of operations. Working
through the constructions and the proofs reveal the underlying and unifying thread of ideas which
form the basis of the different constructions.

The recent CAESAR [14] competition has been launched with the goal of identifying a suite of
schemes for the combined task of encryption and authentication. A set of security goals has been
specified which include AEAD and DAEAD. Presently about 50 submissions are under consideration
and these will go through a multi-year evaluation stage. The scope of CAESAR is broader than
merely that of a mode of operation of a block cipher. Each submission has to be a complete cipher.
Such a cipher can be a mode of operation along with a fully specified block cipher, or, it could be
designed following other approaches.

Our work is along the more conventional lines of constructing modes of operations of a block
cipher satisfying some of the established security goals in the literature. These constructions along
with a fully specified block cipher (such as AES) could have formed possible submissions to CAE-
SAR. Indeed, some of the CAESAR submissions are of these type. We, however, missed the CAE-
SAR submission deadline by several months. Hopefully, due to its scope and completeness, the
present work will be of scientific interest to the cryptographic community even though it could
not be part of CAESAR. One category of users who may be interested in the modes of operations

described in this work are various governmental agencies looking for a single platform for achieving
different cryptographic functionalities using (a possibly proprietary) block cipher.

1.2 Previous and Related Works

Some of the basic works on authentication appear in [60, 25] and the works [56, 10, 9] develop
a line of research on authentication schemes based on universal hash functions. The literature
provides various modes of operations of a block cipher for achieving authentication. A long series
of papers [6, 11, 41, 30, 31] has resulted in the CMAC [21] algorithm which has been standardised
by NIST of USA. CMAC is based on the cipher-block chaining (CBC) mode of operation and is
inherently sequential. Fully parallelisable modes of operations of a block cipher for authentication
are known [12, 50, 15, 53]. We note that by no means the above-referenced papers are the only works
on authentication. Fully referencing all such works is out of the scope of this paper. The previously
reported schemes which are closest to the present work are those which appear in [50, 53]. Later we
mention the exact relation of the scheme described here with that appearing in [53].

The first formal treatment of authenticated encryption was proposed in [7, 38]. Single-pass
AE modes were proposed in [37, 26] and was quickly followed by the first version of the famous
OCB mode [51]. Around the same time as these works, the notion of AEAD was first formally
studied in [49] and generic construction methods were proposed. All later works on AE schemes
also provided for handling of associated data and thus are in effect AEAD schemes. On the other
hand, given an AE scheme and a collision-resistant hash function, it is possible to generically
combine them to obtain an AEAD scheme [54].

Two later variants of the OCB mode have been proposed in [50, 40]. Currently, the version
appearing in [40] is the “official” OCB mode of operation and is sometimes also denoted as OCB3.
AE(AD) modes of operations having efficiency comparable to that of OCB were proposed in [15, 53].
Due to patent issues covering OCB and the modes in [37, 26, 50], the NIST of USA standardised less
efficient AE schemes. One of these is GCM [44, 22] and the recent work [34] points out some security
problems in GCM. The other NIST standardised scheme is CCM [61] which combines the counter
mode of encryption with the sequential cipher block chaining (CBC) mode for authentication.
Improved alternatives to CCM have been proposed as schemes EAX [8] and EAX-prime [58]. The
scheme EAX-prime was, however, broken in [48] and improved authenticity bounds for EAX was
given in [47].

Among the recent works on AEAD modes of operations are CLOC [32] and its variant SILC [33].
Both of these are based on the cipher-feedback mode (CFB) of operation and are essentially se-
quential algorithms. The claimed advantage is that these algorithms are suitable for lightweight
devices such as those using 8-bit or 16-bit words. An interesting recent work is OTR [46] which
describes a parallelisable AEAD scheme using only the encryption function of the block cipher.

DAE(AD) was first formally studied in [52]. The formal security definition was developed and
constructions were provided. Improvements to the constructions were later provided in [36] and a
scheme HBS was proposed. Unlike the work in [52] which uses only a block cipher, the work [36] also
requires a finite field based polynomial hash. A later work which improves upon HBS is BTM [35].
A DAEAD mode of operation is secure against nonce-misuse. One approach to the construction of
nonce-misuse resistant modes of operations is to start with an online cipher [5] and then modify it
to obtain authentication. The constructions POET [43] and COPA [2] are of these type. Another
interesting method used in [19] is to modify the encrypt-mix-encrypt [28] approach to construct a
nonce-misuse resistant mode called ELmD.

A recent work [13] provides a comprehensive implementation of several modes of operations for
both nonce-based AEAD and nonce-misuse resistant constructions. The implementation has been

optimisied for new Haswell processor by Intel. Speed measurements are reported for both single
messages as well as for multiple messages.

Most of the works in the literature on modes of operations for authenticated encryption use
block ciphers as the building block. A systematic treatment of stream cipher modes of operations
for combined encryption and authentication can be found in [55]. Another example of this type is
HS1-SIV [39].

2 Notation and Preliminaries

The underlying primitive is a block cipher which is given by two functions

E,D : {0, 1}k × {0, 1}n → {0, 1}n.

For a fixed key K, EK(·) ∆
= E(K, ·) and DK(·) ∆

= D(K, ·) are permutations of {0, 1}n satisfying the
following basic condition: for any X ∈ {0, 1}n, DK(EK(X)) = X. Some notation is given below.

1. In the descriptions of the modes of operations, we will use the notation π and π−1 to denote a
secretly keyed permutation and its inverse. In practical terms, π can be instantiated as EK and
π−1 as DK ; or, π can be instantiated as DK and π−1 as EK . For the case when the underlying
block cipher is AES, explicit recommendations will be given later.

2. Let (X1, . . . , Xm) and (Y1, . . . , Ym) be two sequences of n-bits strings. Then (X1, . . . , Xm) ⊕
(Y1, . . . , Ym) denotes the sequence (X1 ⊕ Y1, . . . , Xm ⊕ Ym).

3. The notation ecbπ(X1, . . . , Xm) is defined as follows.

ecbπ(X1, . . . , Xm)
∆
= (π(X1), . . . , π(Xm)).

4. For an arbitrary binary string X, let len(X) denote the length of X.
5. If len(X) ≥ r, then the first r bits of X will be denoted by Firstr(X).
6. For an integer ` such that 0 ≤ ` ≤ 2n − 1, let binn(`) denote the n-bit binary representation of
`.

We give examples of Firstr(X) and binn(`). We number the bits of X in increasing order from left
to right. So, if X = 11011100, then we write X = x0x1 · · ·x7 where, x0 = x1 = x3 = x4 = x5 = 1
and x2 = x6 = x7 = 0. First3(X) is x0x1x2 which is equal to 110. Let n = 4 and ` = 13, then
bin4(13) is the 4-bit string y0y1y2y3 = 1101, i.e., y0 = y1 = y3 = 1 and y2 = 0.

Given a string X of arbitrary length, we define the function Format which describes how X is
to be divided into n-bit blocks with possible padding at the end. This also defines the values of m
and r from len(X) and n. Note that the map X 7→ Format(X,n) for n > 1 is not an injective map.
Non-injectivity arises due to strings of the following type: X is a string of length i × n (for some
i ≥ 1) ending with 10j (for some 0 ≤ j ≤ n− 2) and X ′ is the prefix of X of length i× n− j − 1.
Then Format(X,n) = Format(X ′, n). In fact, this is the only way in which X and X ′ can map to
the same string under Format, a necessary condition for which is that n divides the length of one
string but not the length of the other string. In our constructions, we tackle this condition using
suitable masks.

For a non-empty set X , define χq(X) to be

χq(X) = {(x1, . . . , xq) ∈ X q : xi 6= xj , 1 ≤ i < j ≤ q}.

In other words, χq(X) consists of all (x1, . . . , xq) such that x1, . . . , xq are distinct elements of X .

Table 1. Definition of Format(X,n) where X is an arbitrary length binary string and n is a positive integer. The
values of the parameters r and m are defined from len(X) and n.

Format(X,n)
1. if len(X) = 0, then set r = 0, m = 1
2. else write len(X) = (m− 1)n+ r, where 1 ≤ r ≤ n;
3. if r < n, then set pad(X) = X||10n−r−1;
4. else set pad(X) = X;
5. format pad(X) into m blocks X1, . . . , Xm each of length n;
return (X1, . . . , Xm).

2.1 Pseudo-Random Functions

Formally, we will be studying functions from a finite non-empty set X to a finite non-empty set Y.
For example, X could be the set of all binary strings of lengths between 0 and 264 and Y could be
the set of all binary strings of length 128.

By a uniform random function ρ from X to Y we will mean a function chosen uniformly at
random from the set of all functions from X to Y. A more convenient way to view ρ is the following.
For distinct inputs x1, . . . , xq, q ≥ 1, the outputs ρ(x1), . . . , ρ(xq) are independent and uniformly
distributed. If X = Y, then we can talk about a permutation π of Y, which is a bijection π : Y → Y.
By a uniform random permutation, we will mean a permutation chosen uniformly at random from
the set of all permutations of Y.

The analysis of our constructions will follow the information theoretic approach. In the infor-
mation theoretic approach, there is no bound on the computation time of an adversary. So, without
loss of generality, we can consider the adversary to be a deterministic algorithm. An adversary
interacts with an oracle and outputs a bit. The oracle takes as input an element of a set X and
produces as output an element of a finite non-empty set Y. The adversary A makes q queries to
the oracle and then produces its output. Without loss of generality, we will make the assumption
that the adversary never repeats a query.

The query complexity σ of an adversary is measured by the total number of bits that an
adversary provides in all its queries. For n-bit block ciphers, it is more convenient to define the
query complexity to be the total number of n-bit blocks that an adversary provides in all its queries.

Suppose that the oracle is instantiated twice by two random functions f and g both mapping
X to Y. Further, suppose that g is a uniform random function. Then the PRF-advantage of A in
distinguishing f from a uniform random function is defined to be

Adv
prf
f (A) = Pr[Af → 1]− Pr[Ag → 1]. (1)

For positive integers q and σ ≥ q, we define Adv
prf
f (q, σ) to be the maximum advantage of any adver-

sary which makes at most q distinct queries having query complexity σ. The quantity Adv
prf
f (q, σ)

is the PRF-advantage of f against any (q, σ)-bounded adversary.

2.2 Message Authentication Code

Let n be a positive integer and f be a random function from X to {0, 1}n. Then the function f can
be used to authenticate a message. The procedure is to apply f to the message to produce a tag
and the message-tag pair is transmitted. At the receiving end, the same f is applied to the received
message to recreate the tag. If the recreated tag is equal to the original tag, then the message-tag

pair is accepted, otherwise it is rejected. The tag is called a message authentication code (MAC)
and sometimes the function f is also called a MAC.

The authenticity of f is defined as follows. The adversary has access to f as an oracle and can
submit queries in an adaptive manner. Finally, A outputs a “forged” pair (x, y) and is said to be
successful if f(x) = y. The pair (x, y) must not be equal to any previous pair (xi, yi), where xi was
the i-th query and yi was the corresponding response.

By (x, y)← Af we denote the event that A produces (x, y) as output after interacting with f .
The advantage of A in breaking the authenticity of f is defined to be

Advauth
f (A) = Pr[f(x) = y]. (2)

As in the case of PRF, we define Advauth
f (q, σ) to be the maximum of Advauth

f (A) taken over
all adversaries making at most q queries and having query complexity at most σ. In this case, the
query complexity also covers the forgery attempt.

Let f be a random function from X to {0, 1}n. The PRF-advantage of f and its security as an
authentication function is related as follows.

Advauth
f (q, σ) ≤ 1

2n
+ Adv

prf
f (q, σ). (3)

Suppose that the output of f is truncated to t bits and denote the resulting function as t-f ; further,
suppose t-f is used for message authentication. Then we have

Advauth
t-f (q, σ) ≤ 1/2t + Adv

prf
f (q, σ). (4)

Thus, to show the authentication property of f , it is sufficient to show that f is a good PRF.
Equations (3) and (4) are known results and have been used in different ways in the literature. One
way to prove these results can be found in [53].

2.3 Authenticated Encryption

Let N and X be finite non-empty sets of binary strings and let Fn[N ,X] be the set of all functions
f : N × X → X × {0, 1}n such that if f(N,X) = (Y, tag), then len(X) = len(Y). Here N is called
the set of nonces. Given an f : N ×X → X × {0, 1}n, we define the following functions.

1. fmain : N × X → X is defined to be fmain(N,X) = Y if f(N,X) = (Y, tag) for some tag ∈
{0, 1}n.

2. The function f is said to be an AE-function if for every N ∈ N , fmain
N (·) ∆

= fmain(N, ·) is a
length preserving permutation. The invertibility of fmain

N ensures that decryption is possible,
i.e., for a fixed N , it is possible to obtain X from Y .

3. For an AE-function f , f̃ : N ×X → {0, 1}n is defined to be f̃(N,Y) = tag if f(N,X) = (Y, tag)
for some X ∈ X . Due to the invertibility of fmain

N , it follows that f̃ is well defined. The function

f̃ is said to be the authentication function associated with f .

An AE-function is required to satisfy two security properties – privacy and authenticity.

Let f be a random AE-function and f∗ be a function distributed uniformly over Fn[N ,X].
Privacy is defined as indistinguishability from random strings. For defining privacy, an adversary A
is assumed to have oracle access to f , i.e., for 1 ≤ i ≤ q, A can adaptively query f on (N (s), P (s))
and get back (C(s), tag(s)) in return. There is, however, a restriction on A: the nonces of two different

queries cannot be equal. Such an adversary is called nonce-respecting. Finally, A outputs a bit. As
before, Af ⇒ 1 denotes the event that A produces 1 as output after interacting with the oracle f .

The advantage of A in breaking the privacy of f is defined to be

Adv
priv
f (A) = Pr[Af ⇒ 1]− Pr[Af∗ ⇒ 1]. (5)

By a (q, σ)-adversary we mean an adversary A which makes at most q queries and has query com-

plexity at most σ. The resource bounded advantage Adv
priv
f (q, σ) is the maximum of Adv

priv
f (A)

taken over all (q, σ)-adversaries A.

We can think of privacy-advantage of f as the PRF-advantage of f with respect to nonce-
respecting adversaries. We also define the privacy-advantage of fmain in a manner similar to that
of (5).

The authenticity of an AE function is defined in the following manner. An adversary A has
access to f ; on a query (N,P), the corresponding output (C, tag) of f on (N,P) is returned to A.
The adversary adaptively makes q−1 queries (N1, P1), . . . , (Nq−1, Pq−1) and obtains (C1, tag1), . . . ,
(Cq−1, tagq−1). It is assumed that the adversary does not repeat any query. At the end, A produces
a forgery (N,C, tag) such that this triplet is not equal to any (Ni, Ci, tagi) for 1 ≤ i ≤ q − 1. The
adversary is deemed to be successful if there is an X such that f(N,X) = (C, tag). Let succ denote
this event. The advantage of A, denoted as Advae-auth

f (A) is defined to be Pr[succ]. The resource

bounded advantage Advae-auth
f (q, σ) is defined to be the maximum advantage of any adversary

making q queries and having query complexity σ.

Consider a query (N,P) by the adversary. The response is (C, tag). The quantity C is the output
of fmain on input (N,X) while tag is the output of f̃ on (N,C). Suppose that fmain satisfies the
privacy property. Then the output C appears to be random to the adversary. So, the sequence of
queries provides the adversary with random strings C1, . . . , Cq−1 and their corresponding outputs

tag1, . . . , tagq−1 under f̃ . If the function f̃ is a PRF, then the adversary gets no help from the
queries in formulating its forgery. Consequently, a forgery will succeed with low probability. This
intuition has been formalised and the the following result has been proved in [53].

Proposition 1. Given an AE-function f , define another AE function h as follows: h(N,X) =
(Y, g(tag)), where f(N,X) = (Y, tag) and g truncates tag to t bits. Then

Advae-auth
h (q, σ) ≤ 1

2t
+ Adv

priv

fmain(q, σ) + Adv
prf

f̃
(q, σ).

The above result shows that the authenticity of an AE function f follows from the privacy property
of fmain and the PRF-property of f̃ . We note that the requirement of f̃ to be a PRF is actually
an overkill. Since, the adversary gets to see the outputs of f̃ only on random inputs (under the
assumption that fmain is a PRF), it is sufficient to have f̃ to be a weak-PRF. On the other hand,
in the context that we use Proposition 1, it does not appear that requiring f̃ to be a weak-PRF
will lead to more efficient constructions.

2.4 Authenticated Encryption with Associated Data

Let H be a finite non-empty set and let N and X be finite non-empty sets of binary strings. Let
Fn[N ,H,X] be the set of all functions f : N × H × X → X × {0, 1}n such that if f(N,H,P) =
(C, tag), then len(P) = len(C). Here, H is the set of all possible headers and N is the set of all
possible nonces. Note that H is simply defined to be a finite non-empty set with no particular

structure. This allows a header to have a richer structure than a binary string. We will consider
schemes where a header can be a vector of strings.

As in the case of authenticated encryption, given an f : N ×H × X → X × {0, 1}n, we define
the following notions.

1. For a function f ∈ Fn[N ,H,X] define fmain : N×H×X → X is defined to be fmain(N,H,X) =
Y if f(N,H,X) = (Y, tag).

2. The function f is said to be an AEAD-function if for every N ∈ N and H ∈ H, fmain
N,H (·) ∆

=

fmain(N,H, ·) is a length preserving permutation.

If we define N ′ = N × H to be the set of nonces, then we go back to the formal framework
for AE functions. In this case, we have the set of nonces N ′ to consist of possibly variable length
strings. The security notions of privacy and authentication for Fn[N ′,X] are exactly the notions
for Fn[N ,H,X] and coincide with the security notion of AEAD schemes introduced in [49]. We
will use the notation Advaead-auth to denote the authentication advantage of an AEAD scheme.

In this case, the query complexity σ also takes into account the number of n-bit blocks formed
from the headers provided as part of the different queries. We divide the query complexity into two
parts σH and σP , where σH is the query complexity of the headers and σP is the query complexity
of the nonces and the actual messages.

2.5 Deterministic Authenticated Encryption with Associated Data

LetH be a finite non-empty set and let X be a finite non-empty set of binary strings. Let Fn[H,X] be
the set of all functions f : H×X → X×{0, 1}n such that if f(H,P) = (C, tag), then len(P) = len(C).
Here, H is the set of all possible headers. As before, given an f : H× X → X × {0, 1}n, we define
the following notions.

1. fmain : H×X → X is defined to be fmain(H,X) = Y if f(H,X) = (Y, tag).

2. The function f is said to be a DAEAD-function if for every H ∈ H, fmain
H (·) ∆

= fmain(H, ·) is a
length preserving permutation.

Security notions for a random DAEAD function are defined in a manner similar to that of AE(AD)
schemes. The main difference is that there are no nonces in a DAEAD scheme. The only restriction
is that an adversary for a DAEAD scheme is not allowed to repeat a query to the encryption oracle.
Further, for authenticity, a forgery attempt is a triplet (H,C, tag) where (C, tag) is not equal to the
output of any previous query (H, ·) to the encryption oracle. The forgery (H,C, tag) is successful
if there is some P such that the output of the DAEAD scheme on (H,P) is (C, tag).

Privacy of DAEAD schemes is defined as indistinguishability from random strings in exactly the
same manner as that of AE(AD) schemes while authenticity is defined in terms of the probability
of the adversary producing a successful forgery after interacting with the encryption oracle. The
resource bounded advantages are defined in a manner similar to that of AEAD schemes. We will
use the notation Advdaead-auth to denote the authentication advantage of a DAEAD scheme.

3 Galois Field Masking

Let IF2n be the finite field of 2n elements. Suppose that n can be written as n = n1 × n2. We will
consider IF2n to be an extension field, where the first extension is IF2n1 which is of degree n1 over
IF2 and the second extension is IF2n which is of degree n2 over IF2n1 .

Let ρ(α) be an irreducible polynomial of degree n1 in the indeterminate α over IF2, i.e., the
coefficients of ρ(α) are bits. If n1 = n, then we also require ρ(α) to be primitive. This polynomial
is used to define IF2n1 .

Let µ(x) be a primitive polynomial of degree n2 in the indeterminate x whose coefficients are
from IF2n1 . This polynomial is used to define IF2n over IF2n1 . An element of IF2n can be written as
a polynomial in x of degree less than n2 where the coefficients of the polynomial are elements of
IF2n1 . Alternatively, given an n-bit string β we can divide it into n1-bit blocks, i.e., we can write
β = (b0, b1, . . . , bn2−1) where each bi is an n1-bit string. The string β will be taken to represent the
following element of IF2n :

β = β(x) = b0 ⊕ b1x⊕ b2x2 ⊕ · · · ⊕ bn2−1x
n2−1.

Here b0, . . . , bn2−1 are elements of IF2n1 and each bi is a polynomial bi(α) of degree less than n1
whose coefficients are bits. Addition of two elements β(x) and γ(x) is defined to be β(x) ⊕ γ(x).
The product of β(x) and γ(x) is defined to be β(x) × γ(x) mod µ(x) which is again a polynomial
of degree less than n2 with coefficients from IF2n1 .

Note.

1. For n1 < n, we require µ(x) to be primitive, but, it is sufficient to have ρ(α) to be irreducible
and for our application, we do not require the stronger condition of primitiveness for ρ(α).

2. When, however, n1 = n, then IF2n is essentially represented by the polynomial ρ(α) and we
require this polynomial to be primitive.

Representation of IF2n by (ρ(α), µ(x)): Let

ρ(α) = αn1 ⊕ sn1−1α
n1−1 ⊕ · · · ⊕ s1α⊕ s0

µ(x) = xn2 ⊕ tn2−1x
n2−1 ⊕ · · · ⊕ t1x⊕ t0.

Here sn1−1, . . . , s1, s0 are elements of IF2 while tn2−1, . . . , t1, t0 are elements of IF2n1 . The factori-
sation n = n1 × n2 and the pair of polynomials (ρ(α), µ(x)) give a concrete representation of the
field IF2n. In the following discussion, we will be assuming such a representation. With this repre-
sentation, we will also consider an n-bit string to be an element of IF2n as discussed above. As a
consequence, we will identify IF2n with the set {0, 1}n. Examples of field defining polynomials for
n = 128 are given in Table 2.

Table 2. Examples of suitable pairs of polynomials (ρ(α), µ(x)) for n = 128 are given below.

n1 n2 n = n1 × n2 ρ(α) µ(x)

128 1 128 α128 ⊕ α7 ⊕ α2 ⊕ α⊕ 1 x⊕ α
64 2 128 α64 ⊕ α63 ⊕ α29 ⊕ α2 ⊕ 1 x2 ⊕ x⊕ α
32 4 128 α32 ⊕ α27 ⊕ α25 ⊕ α5 ⊕ 1 x4 ⊕ x3 ⊕ x⊕ α
16 8 128 α16 ⊕ α10 ⊕ α9 ⊕ α6 ⊕ 1 x8 ⊕ x3 ⊕ x⊕ α
8 16 128 α8 ⊕ α7 ⊕ α3 ⊕ α2 ⊕ 1 x16 ⊕ x7 ⊕ x⊕ α
1 128 128 α⊕ 1 x128 ⊕ x7 ⊕ x2 ⊕ x⊕ 1

3.1 (Word oriented) LFSR

We define a map

ψ : IF2n → IF2n (6)

in the following manner. We will assume that IF2n is represented by the pair of polynomials
(ρ(α), µ(x)) and so we can think of any n-bit string as an element of IF2n .

Let γ be an n-bit string and suppose β = ψ(γ) which is also an n-bit string. The strings γ
and β can be respectively written as (a0, . . . , an2−1) and (b0, . . . , bn2−1) where ai and bj are n1-bit
strings. We write

ψ(γ) = ψ(a0, . . . , an2−1) = (b0, . . . , bn2−1) = β. (7)

The definition of the bj ’s from the ai’s is as follows.

bi = ai−1 if 1 ≤ i ≤ n2 − 1;
b0 = t0an2−1 ⊕ t1an2−2 ⊕ · · · ⊕ tn2−1a0.

}
(8)

Note that ti’s are the coefficients of µ(x) and are elements of IF2n1 . The map ψ is called a linear
feedback shift register (LFSR) over IF2n1 . If n1 > 1, then the elements of IF2n1 can be considered
to be words and the map is called a word-oriented LFSR. Using the theory of LFSRs [42], it can
be proved that if µ(x) is a primitive polynomial, then for any non-zero γ, the sequence

γ = ψ0(γ), ψ(γ), ψ2(γ), ψ3(γ), . . . (9)

has period 2n − 1, i.e., ψ2n−1(γ) = γ and ψi(γ) is not equal to γ for all i < 2n − 1. A consequence
of the period is the following relation.

ψ−i(γ) = ψ2n−1−i(γ) for 0 ≤ i ≤ 2n − 2. (10)

So, the elements ψ−i(γ) are elements in the sequence (9) and can be computed from γ by repeated
application of ψ. When, i is small, however, it is much more efficient to compute ψ−i(γ) by the
application of the map ψ−1 on γ.

Note.

1. For usual LFSR, we have n1 = 1 and n2 = n, ρ(α) = α and µ(x) to be a primitive polynomial
of degree n over IF2.

2. Suppose n1 = n, n2 = 1, ρ(α) is a primitive polynomial over IF2 and µ(x) is the constant
polynomial α. Then any element of IF2n can be written as a polynomial in α of degree at most
n − 1. If m(α) is this polynomial, then ψ(m(α)) is equal to αm(α) mod ρ(α). This has been
called the powering-up map in [50] and can be seen as a special case of word-oriented LFSRs.

3. When 1 < n2 < n, for the map ψ to be efficient, we need to choose µ(x) carefully. We decided
to fix the constant term of µ(x) to be α (i.e., the root of ρ) and the other coefficients are either
0 or 1. It turns out that there are many possible choices of µ(x) satisfying these conditions.
Table 2 provides some examples.

The map ψ is invertible and the inverse can be computed as follows. Suppose as before that
ψ(a0, . . . , an2−1) = (b0, . . . , bn2−1) so that (a0, . . . , an2−1) = ψ−1(b0, . . . , bn2−1) and then the ai’s
can be expressed in terms of the bj ’s as follows.

ai = bi+1 if 0 ≤ i ≤ n2 − 2;

an2−1 = t−10 (b0 ⊕ t1an2−2 ⊕ · · · ⊕ tn2−1a0)

= t−10 (b0 ⊕ t1bn2−1 ⊕ · · · ⊕ tn2−1b1) .

 (11)

The computation of this method depends on the efficiency of multiplying by t−10 . If n1 = 1 and
n2 = n, then t0 = 1 (since in this case µ(x) is a primtive polynomial over IF2). In all other cases,
by our choice of µ(x) we ensure that t0 = α. So, multiplying by t−10 corresponds to multiplying by
α−1.

We use ψ and ψ−1 to define certain masks. Since the period of ψ is 2n − 1, it is possible to
interchange the roles of ψ and ψ−1 without affecting security.

3.2 The Masking Method

The modes of operations to be described subsequently will use masks. These masks are n-bit strings
and are considered to be elements of IF2n as represented by the pair of polynomials (ρ(α), µ(x)).
Given an n-bit string γ and an integer i, we define Γγ,i as follows.

Γγ,i
∆
= ψi(γ) (12)

where ψ(γ) is given by (8). If i = 0, then ψi(γ) = γ; if i > 0, then ψi(γ) can be computed
iteratively as ψi(γ) = ψ(ψi−1(γ)); similarly, if i < 0, then ψi(γ) can be computed iteratively as
ψi(γ) = ψ−1(ψi+1(γ)).

For the security proofs of the modes of operations to go through, certain properties of the
masking function are required to hold. The following definition from [53] states these properties.

Definition 1. Suppose ψ : IF2n → IF2n is a linear function. We say that the function ψ is a proper
masking function if it satisfies the following properties.

1. For any α ∈ IF2n; any non-negative integer k with 0 ≤ k ≤ 2n − 2; and a uniform random
β ∈ IF2n; Pr[ψk(β) = α] = 1/2n.

2. For any α ∈ IF2n; integers k1, k2 with 0 ≤ k1 < k2 ≤ 2n − 2; and a uniform random β ∈ IF2n;
Pr[ψk1(β)⊕ ψk2(β) = α] = 1/2n.

3. For any α ∈ IF2n; integers k1, k2 with 0 ≤ k1, k2 ≤ 2n − 2; and uniform random (β1, β2) ∈
χ2(IF2n), Pr[ψk1(β1)⊕ ψk2(β2) = α] = 1/(2n − 1).

The following proposition is based on results from [53].

Proposition 2. The function ψ defined in (6) and (8) is a proper masking function, i.e., it satisfies
Definition (1).

3.3 Reconfigurability of the Masking Method

An important aspect of the above masking method is easy reconfigurability. To see this, suppose
that n1 = 1 and n2 = 128. Then the only requirement on µ(x) is that it should be a primitive
polynomial of degree 128 over IF2. There are φ(2128 − 1)/n > 2119 such polynomials. Also, it
is fairly easy to generate such a primitive polynomial using standard algorithms [45]. In terms

of implementation, a polynomial of degree 128 over IF2 can be represented by a 128-bit string.
Call this string PolyStr. For a specific implementation, PolyStr is fixed. Changing PolyStr to the
string representation of another primitive polynomial is easy and gives rise to another specific
instantiation. Similarly, when n1 = 128 and n2 = 1, we require ρ(α) to be a primitive polynomial
of degree 128 and the 128-bit string PolyStr can be used to represent ρ(α).

For the more general case when 1 < n1, n2 < 128, the polynomial ρ(α) can be represented using
n1 bits. By our choice of µ(x), the constant term is α and all other coefficients are either 0 or 1.
So µ(x) is a monic polynomial of degree n2 whose constant term is α and all other coefficients
are either 0 or 1. As a result, n2 − 1 bits are required to represent µ(x). The total number of bits
required to represent both ρ(α) and µ(x) is n1 + n2 − 1. Changing these bits to represent another
suitable pair of polynomials will give rise to a different instantiation.

We recommend that the values of the pair (ρ(α), µ(x)) should not be fixed as part of a standard.
Instead a table of recommended values such as those in Table 2 should be provided. One justification
for this would be the following. The efficiency of masking depends on the choice of the values of
n1 and n2. For example, on processors having only 32-bit registers, it will be fastest to choose
n1 = 32 and n2 = 4. Examples of processors with small word size are the Atmel AVR 8-bit and
32-bit microcontrollers [17] and the MSP430, MSP430X 16-bit microcontrollers [29]. The ability to
suitably customise the masking method to extract the maximum speed from the target architecture
will benefit designers.

4 Vector Input PRF

Let f be a PRF whose domain is the set of all binary strings of some maximum length. It has
been pointed out in [52] that for certain applications, it is required to have a PRF which can take
as input a tuple (X1, . . . , Xk) where k ≥ 0 and each Xi is a binary string. The S2V construction
provided in [52] converts f to a vector-input PRF f∗ as follows.

f∗(X1, . . . , Xk) =

f(1n) if k = 0;
f(αk−1Y0 ⊕ αk−2Y1 ⊕ · · · ⊕ Yk−1 ⊕end Xk) if k > 0 and |Xk| ≥ n;
f(αkY0 ⊕ αk−1Y1 ⊕ · · · ⊕ αYk−1 ⊕Xk||10n−r−1) if k > 0 and |Xk| = r < n.

(13)

where Y0 = f(0); Yi = f(Xi) for i = 1, . . . , k − 1; and ⊕end is the operation of xoring to the last
n bits of the second operand. The construction assumes that the output of f consists of binary
strings of length n. The operation of multiplying by the powers of x is done over the finite field IF2n

which is represented using a primitive polynomial ρ(α) of degree n over IF2. A restriction is that

k < n. It has been shown in [52] that if f is a uniform random function, then Advprf
f∗ (q, σ) ≤ σq/2n.

The construction f∗ is simple and efficient. The restriction k < n is not an issue in practice.
The construction is also generic though not completely so. The reason being that the output of f is
an n-bit string. So, the construction would not work if the output of f could be strings of variable
lengths. Again, for most practical applications this will not be an issue. The other minor drawback
is the additional machinery of finite field arithmetic required over and above that of f . Though
multiplication by x is very efficient, one may ask whether this can be done away with.

We provide a simple and generic description of a vector-input PRF from a single-input PRF.
There is no restriction on f , no use of finite field arithmetic and the resulting information theoretic
bound is better.

−→
f (X1, . . . , Xk) = f(ω0||(f(ω1||X1)⊕→· · ·⊕→f(ωk||Xk))). (14)

Here ω0, . . . , ωk are distinct, fixed w-bit words such that 2w > k+ 1. For binary strings of possibly
different lengths, the binary operation ⊕→ denotes the task of XORing the shorter string to the
rightmost end of the longer string. When the outputs of f have a fixed length, we will use ⊕
instead of ⊕→ to denote the task of XORing these outputs.

For practical purposes, it is sufficient to take w = 8, i.e., the ωi’s are distinct bytes. The value
of k need not be fixed and for k = 0, the output is f(ω0). Note that the case k = 0 is different from
the case k = 1 and |X1| = 0 where in the later case the output is f(ω0||f(ω1)).

The security of the construction can be argued in a simple manner and is given by the following
result.

Theorem 1. If f is a uniform random function, then

Adv
prf−→
f

(q, σ) ≤ q(q − 1)

2`+1

where the adversary makes q queries (X
(1)
1 , . . . , X

(1)
k1

), . . . , (X
(q)
1 , . . . , X

(q)
kq

) with

`i = min
(
len
(
f1(X

(i)
1)
)
, · · · , len

(
fki(X

(i)
ki

)
))

; fi(X)
∆
= f(ωi||X); and ` = min1≤i≤q `i.

Consequently, if the output of f consists only of strings of length n bits, then

Adv
prf−→
f

(q, σ) ≤ q(q − 1)

2n+1
.

Proof : Suppose the number of components in the ith query is ki and the result of applying ⊕→ to
the outputs of f1, . . . , fki is the string Zi. Since f is a uniform random function, then due to the
input space separation, the fi’s are independent and uniform random functions. The length of Zi
is

λi = max
(
len
(
f1(X

(i)
1)
)
, · · · , len

(
fki(X

(i)
ki

)
))
.

For i 6= j, we consider the probability that Zi is equal to Zj . If λi 6= λj , then this probability
is clearly 0. So, suppose that λi = λj . Since the i-th and the j-th queries have to be distinct,
the two queries must differ in some component, say ı. The corresponding outputs of fı are then
independent and uniformly distributed strings of appropriate lengths greater than or equal to `. As
a consequence, the rightmost ` bits of Zi and Zj are independent and uniformly distributed. So,
the probability that the rightmost ` bits of Zi and Zj are equal is 1/2` and the probability that Zi
equals Zj is also at most 1/2`. Extending this argument, the probability that at least two of the
Z’s are equal is at most q(q − 1)/2`+1. Conditioned on the event that all the Z’s are distinct, the
outputs of f0 are independent and uniformly distributed and hence provides no information to the
adversary. Formalising this argument in a standard manner gives the desired result.

If the outputs of f all have the same length n, then ` = n and so the second part of the result
follows. ut

Note that the bound is better than the one for f∗. A downside of
−→
f with respect to f∗ is that

f is applied to one-byte longer strings. This will result in an (insignificant) loss of efficiency.

5 Overview of the Various Constructions

We provide constructions of several different kinds of primitives and for each kind, several con-
structions are described. The purpose of this section is to provide a high-level overview of the
constructions which may help the reader in following the ensuing material.

The first construction is PAuth which is a PRF and hence can be used for authentication.
Next, we tackle AE and AEAD schemes. The descriptions start with two algorithms Forward1 and
Backward1; Forward1 takes a nonce-message pair (N,P) to (C, tag) and Backward1 takes (N,C) to
(P, tag). The algorithm Forward1 is used to define the encryption algorithm of an AE scheme PAE1.
The corresponding decryption algorithm algorithm is derived from Backward1: given (N,C, tag), the
decryption algorithm invokes Backward1 on (N,C) to obtain (P, tag1) and returns P if tag = tag1,
else returns ⊥. The algorithm Backward1 is also used to define a PRF PAuth1 (and the associated
authentication function P̃AE) which given N ||C applies Backward1 to obtain (P, tag) and returns
tag.

PAE1 and PAuth1 are combined to obtain an AEAD scheme PAEAD1. Given nonce-header-
message triplet (N,H,P), if H is non-empty PAuth1 is applied to H to obtain tag2 and PAE1 is
applied to (N,P) to obtain (C, tag1) and (C, tag1⊕ tag2) is returned. (In case of empty header tag2
is set to 0n.) The scheme PAEAD1 is naturally extended to

−−−−−→
PAEAD1 where the header can be a

vector of strings. This variant arises by using
−−−−→
PAuth1 to process the complex header.

In the schemes PAE1, PAEAD1 and
−−−−−→
PAEAD1, the encryption algorithm uses both π and π−1,

whereas the decryption algorithm uses only π−1. We provide a “dual” of this strategy by defin-
ing schemes PAE2, PAEAD2 and

−−−−−→
PAEAD2 where the encryption algorithm uses only π and the

decryption algorithm uses both π and π−1.

The last primitive that we consider is deterministic authenticated encryption with associated
data (DAE and DAEAD). The basic idea for these schemes is based on the SIV construction in [52]
though the details are different. The scheme DAE takes as input a message P and applies PAuth to
produce a tag. The tag is used as an IV in a counter type mode which is applied to P to obtain
C. Finally (C, tag) is returned. The counter-type mode that we use is from [59]. Extension of DAE
to DAEAD is done as follows. Given a vector of strings (H1, . . . ,Hk) as a header and a message P ,−−−→
PAuth is applied to (H1, . . . ,Hk, P) to produce the tag. This tag is then used as in the case of DAE
to produce C.

The following sections provide the details of the constructions mentioned above.

6 Authentication

Table 3 describes the construction of PAuth. The domain of PAuth consists of binary strings x, where
0 ≤ len(P) ≤ 2n − 8. Then the maximum value of m returned by Format(x, n) is d(2n − 8)/ne. The
bound 2n − 8 on the length of any input to PAuth is due to the following reason. The masking
function ψ has period 2n− 1 and it is used in both the forward and the backward directions. In the
backward direction, only ψ−1 and ψ−2 are used. Having at most d(2n − 8)/ne blocks will ensure
that there is no overlap between the forward and the backward applications of ψ. We note, however,
that the security guarantee of PAuth does not hold for strings of lengths up to the above mentioned
bound. This guarantee is given by Theorem 2 proved later. During actual use, it is essential to use
PAuth in a manner such that the bound given by Theorem 2 is meaningful.

The output of PAuth is an n-bit string. This can be truncated to obtain a t-bit tag. We perform
the security analysis of PAuth using n-bit tags. Using Proposition 4 it is possible to obtain the
security of t-PAuth as an authentication function for any t ≤ n.

The construction PAuth is very similar to the construction iPMAC given in [53]. The only
difference is in the way the case of m = 1 is handled. In [53], for m = 1, sum is δ ⊕ P1 or
δ ⊕ P1 ⊕ Γγ,1 according as r = n or r < n, where δ = π(γ). The construction PAuth avoids using
δ which requires an additional application of π. Instead, the masks Γγ,−1 and Γγ,−2 are used. This
eliminates an extra block cipher call when m = 1.

Table 3. Description of PAuth. The values of m and r are computed from len(P) and n as described in Format.

PAuthπ,fStr(P):
1. (P1, . . . , Pm) = Format(P, n);
2. γ = π(fStr);
3. if (m = 1 and r < n) sum = P1 ⊕ Γγ,−1;
4. if (m = 1 and r = n) sum = P1 ⊕ Γγ,−2;
5. if (m > 1)
6. (C1, . . . , Cm−1)

= ecbπ(P1 ⊕ Γγ,1, . . . , Pm−1 ⊕ Γγ,m−1);
7. sum = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm;
8. if (r < n) then sum = sum⊕ Γγ,m;
9. end if;
10. tag = π(sum);
return tag.

For an m-block message, PAuth makes one block cipher call on the string fStr and then makes a
total of m calls to generate the output tag. The call on fStr can be done once per session and then
a total of m calls are required for an m-block message.

The analysis of PAuth is very similar to that of iPMAC and yields the following result. We
provide details of the analysis for PAuth in Section B. The bound for

−−−→
PAuth follows from the bound

of PAuth and Theorem 1.

Theorem 2. Let q and σ ≥ q be positive integers. Then

Advprf
PAuth(q, σ) ≤ σ(7q + 2)

2n
;

Advprf−−−→
PAuth

(q, σ) ≤ q(q − 1)

2n+1
+
σ(7q + 2)

2n
.

7 Authenticated Encryption

Consider the algorithms Forward1 and Backward1 shown in Table 4. The input to Forward1 is a pair
(N,P), where N is an n-bit string and P is a non-empty binary string having maximum length
2n − 8. The reason for the restriction on the length is similar to that for PAuth.

We do not define the encryption of the empty string for the following reason. The output of the
encryption algorithm on input (N,P) is (C, tag) where C is of the same length as P . So, if P is the
empty string, then C is also necessarily the empty string and hence, in this case, P is revealed by
C. Such a scheme cannot satisfy the privacy property.

The output of Forward1 is (C, tag), where C is of the same length as P and tag is an n-bit string.
The input of Backward1 is a pair (N,C), where N is an n-bit string and C is a binary string of
maximum length 2n− 8. The output of Backward1 is (P, tag) where P is of the same length as that
of C and tag is an n-bit string. In both Forward1 and Backward1, it is possible to truncate tag to a
t-bit string. This is not shown in the description.

The authenticated encryption scheme PAE1 is defined from these and is given in Table 5. From
Backward1, we also define the following function.

PAuth1π,fStr(P) : (C, tag) = Backward1π(fStr, P); return tag. (15)

Note that PAuth1 is different from PAuth given in Table 3. The two functions are related though;
and we later argue that the security analysis of PAuth1 follows easily from that of PAuth.

The call to Backward1 is made as part of PAuth1 which returns (C, tag). The output of PAuth1
consists only of tag. It can be verified from the description of Backward1 that the quantity tag does
not depend on the last block of C. As a result, for an h-block message, the total number of block
cipher calls made to generate the tag by PAuth1 is h + 1. One of these calls is made on fStr and
can be made once per session. As a result, the number of block cipher calls made by PAuth1 is the
same as that made by PAuth.

Table 6 describes the scheme PAEAD1. It makes use of PAuth1. The header H can be a binary
string (possibly empty) of length at most 2n − 8. Table 7 provides an AEAD scheme when the
header is a vector of strings. The number of components in the header vector can vary and can
even be zero. Each component of the header vector is a binary string (possibly empty) of maximum
length 2n − 8. We would like to highlight the following points.

1. The construction PAEAD1 with the empty header is same as the PAE1 scheme. So, in practice,
there is no need to have separate implementations of PAE1 and PAEAD1.

2. The construction
−−−−−→
PAEAD1 where the header consists of a single string is not the same as the

PAEAD1 construction. This is due to the fact that
−→
f on a single input does not coincide with

f .

Table 4. Algorithms Forward1 and Backward1. The values of m and r are defined by the calls to Format.

Forward1π(N,P):
4. (P1, . . . , Pm) = Format(P, n);
5. γ = π−1(N);
6. if (m = 1 and r < n) then
7. tmp = π−1(binn(r)⊕ Γγ,−1);
8. C1 = Firstr(P1 ⊕ tmp); T1 = C1||(10n−r−1);
9. sum = T1 ⊕ Γγ,−2;
10. end if;
11. if (m = 1 and r = n) then
12. C1 = π(P1 ⊕ Γγ,−1)⊕ Γγ,−1;
13. sum = C1 ⊕ Γγ,−3;
14. end if;
15. if m > 1 then
16. (C1, . . . , Cm−1)

= ecbπ(P1 ⊕ Γγ,1, . . . , Pm−1 ⊕ Γγ,m−1)
⊕(Γγ,1, . . . , Γγ,m−1);

17. if (r = n) then
18. Cm = π(Pm ⊕ Γγ,m)⊕ Γγ,m;
19. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
20. else
21. tmp = π−1(binn(r)⊕ Γγ,m);
22. Cm = Firstr(Pm ⊕ tmp); Tm = Cm||(10n−r−1);
23. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Tm ⊕ Γγ,m+1;
24. end if;
25. end if;
26. tag = π−1(sum);
return (C1|| · · · ||Cm−1||Cm, tag).

Backward1π(N,C):
3. (C1, . . . , Cm) = Format(C, n);
4. γ = π−1(N);
5. if (m = 1 and r < n) then
6. tmp = π−1(binn(r)⊕ Γγ,−1);
7. P1 = Firstr(C1 ⊕ tmp);
8. sum = C1 ⊕ Γγ,−2;
9. end if;
10. if (m = 1 and r = n) then
11. P1 = π−1(C1 ⊕ Γγ,−1)⊕ Γγ,−1;
12. sum = C1 ⊕ Γγ,−3;
13. end if;
14. if (m > 1) then
15. (P1, . . . , Pm−1)

= ecbπ−1(C1 ⊕ Γγ,1, . . . , Cm−1 ⊕ Γγ,m−1)
⊕(Γγ,1, . . . , Γγ,m−1);

16. if (r = n) then
17. Pm = π−1(Cm ⊕ Γγ,m)⊕ Γγ,m;
18. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
19. else
20. tmp = π−1(binn(r)⊕ Γγ,m);
21. Pm = Firstr(Cm ⊕ tmp);
22. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm ⊕ Γγ,m+1;
23. end if;
24. end if;
25. tag = π−1(sum);
return (P1|| · · · ||Pm−1||Pm, tag).

For a 4-block message, Figure 1 shows the working of the encryption algorithm of PAE1.

Table 5. Encryption and decryption algorithms for PAE1.

PAE1.Encryptπ(N,P):
1. (C, tag) = Forward1π(N,P);
2. return (C, tag).

PAE1.Decryptπ(N,C, tag):
1. (P, tag′) = Backward1π(N,C);
2. if tag = tag′ return P ; else return ⊥.

Table 6. Encryption and decryption algorithms for PAEAD1.

PAEAD1.Encryptπ,fStr(N,H,P):
1. if |H| = 0, tag2 = 0n;
2. else
3. υ = π−1(fStr);
4. tag2 = PAuth1π,υ(H);
5. end if;
6. (C, tag1) = Forward1π(N,P);
7. return (C, tag1 ⊕ tag2).

PAEAD1.Decryptπ,fStr(N,H,C, tag):
1. if |H| = 0, tag2 = 0n;
2. else
3. υ = π−1(fStr);
4. tag2 = PAuth1π,υ(H);
5. end if;
6. (P, tag1) = Backward1π(N,C);
7. if tag = tag1 ⊕ tag2 return P ; else return ⊥.

Table 7. Encryption and decryption algorithms for
−−−−−→
PAEAD1.

−−−−−→
PAEAD1.Encryptπ,fStr(N,H1, . . . , Hk, P):
1. if k = 0, tag2 = 0n;
2. else
3. υ = π−1(fStr);

4. tag2 =
−−−−→
PAuth1π,υ(H1, . . . , Hk);

5. end if;
6. (C, tag1) = Forward1π(N,P);
7. return (C, tag1 ⊕ tag2).

−−−−−→
PAEAD1.Decryptπ,fStr(N,H1, . . . , Hk, C, tag):
1. if k = 0, tag2 = 0n;
2. else
3. υ = π−1(fStr);

4. tag2 =
−−−−→
PAuth1π,υ(H1, . . . , Hk);

5. end if;
6. (P, tag1) = Backward1π(N,C);
7. if tag = tag1 ⊕ tag2 return P ; else return ⊥.

7.1 PAEAD2: A Variant

In this section, we present a variant of PAEAD1. In the variant, the encryption algorithm uses only
the permutation π (and not π−1), while the decryption algorithm uses both π and π−1. The core
difference is in the modifications of the algorithms Forward1 and Backward1 to obtain Forward2 and
Backward2 and the definition of PAuth2 from that of Backward2. The definitions of Forward2 and
Backward2 are given in Table 8 and the definition of PAuth2 is as follows.

PAuth2π,fStr(P) : (C, tag) = Backward2π(fStr, P); return tag. (16)

As discussed in the case of PAuth1, for an h-block message, the number of block cipher calls required
to generate the tag produced by PAuth2 is h+ 1. Again, one of these is on the string fStr and is to
be computed once per session.

7.2 Recommendations for Use with AES

In PAE1, PAEAD1 and
−−−−−→
PAEAD1, the decryption algorithm uses only π−1 while the encryption

algorithm uses both π and π−1. In the case of AES, the encryption routine is simpler than the
decryption routine. Hence, while using AES with PAE1, PAEAD1 and

−−−−−→
PAEAD1, it is advisable to

instantiate π−1 using the encryption module of AES. While using PAE2, PAEAD2 and
−−−−−→
PAEAD2

with AES, it is advisable to instantiate π using the encryption module of AES.

7.3 Security

The following result states the security theorem for PAuth1 and PAuth2. The bounds for the vector
versions follow from the single-input version and Theorem 1.

Table 8. The algorithms Forward2 and Backward2. Differences to Forward1 and Backward1 are highlighted using
boxes.

Forward2π(N,P):
4. (P1, . . . , Pm) = Format(P, n);

5. γ = π(N);

6. if (m = 1 and r < n) then

7. tmp = π(binn(r)⊕ Γγ,−1);

8. C1 = Firstr(P1 ⊕ tmp); T1 = C1||(10n−r−1);
9. sum = T1 ⊕ Γγ,−2;
10. end if;
11. if (m = 1 and r = n) then
12. C1 = π(P1 ⊕ Γγ,−1)⊕ Γγ,−1;
13. sum = C1 ⊕ Γγ,−3;
14. end if;
15. if m > 1 then
16. (C1, . . . , Cm−1)

= ecbπ(P1 ⊕ Γγ,1, . . . , Pm−1 ⊕ Γγ,m−1)
⊕(Γγ,1, . . . , Γγ,m−1);

17. if (r = n) then
18. Cm = π(Pm ⊕ Γγ,m)⊕ Γγ,m;
19. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
20. else

21. tmp = π(binn(r)⊕ Γγ,m);

22. Cm = Firstr(Pm ⊕ tmp); Tm = Cm||(10n−r−1);
23. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Tm ⊕ Γγ,m+1;
24. end if;
25. end if;

26. tag = π(sum);

return (C1|| · · · ||Cm−1||Cm, tag).

Backward2π(N,C):
3. (C1, . . . , Cm) = Format(C, n);

4. γ = π(N);

5. if (m = 1 and r < n) then

6. tmp = π(binn(r)⊕ Γγ,−1);

7. P1 = Firstr(C1 ⊕ tmp);
8. sum = C1 ⊕ Γγ,−2;
9. end if;
10. if (m = 1 and r = n) then
11. P1 = π−1(C1 ⊕ Γγ,−1)⊕ Γγ,−1;
12. sum = C1 ⊕ Γγ,−3;
13. end if;
14. if (m > 1) then
15. (P1, . . . , Pm−1)

= ecbπ−1(C1 ⊕ Γγ,1, . . . , Cm−1 ⊕ Γγ,m−1)
⊕(Γγ,1, . . . , Γγ,m−1);

16. if (r = n) then
17. Pm = π−1(Cm ⊕ Γγ,m)⊕ Γγ,m;
18. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm;
19. else

20. tmp = π(binn(r)⊕ Γγ,m);

21. Pm = Firstr(Cm ⊕ tmp);
22. sum = P1 ⊕ · · · ⊕ Pm−1 ⊕ Cm ⊕ Γγ,m+1;
23. end if;
24. end if;

25. tag = π(sum);

return (P1|| · · · ||Pm−1||Pm, tag).

only full blocks last block is partial

π π π π π−1

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - -

?
Γγ,1 Γγ,2 Γγ,3 Γγ,4

⊕ ⊕ ⊕ ⊕? ? ? ?

? ? ? ?

- - - -
Γγ,1 Γγ,2 Γγ,3 Γγ,4 ?

P1 P2 P3 P4 sum

C1 C2 C3 C4 tag

π π π π−1 π−1

⊕ ⊕ ⊕ ⊕ ⊕? ? ? ? ?

? ? ? ? ?

- - - - -
Γγ,1 Γγ,2 Γγ,3 Γγ,4 Γγ,5

⊕ ⊕ ⊕? ? ?

? ? ?

- - -
Γγ,1 Γγ,2 Γγ,3

?⊕-P4

?
Firstr

?
C4

?

P1 P2 P3 binn(r) sum

C1 C2 C3 tag

sum = P1 ⊕ P2 ⊕ P3 ⊕ C4 T4 = C4||(10n−r−1), sum = P1 ⊕ P2 ⊕ P3 ⊕ T4

Fig. 1. Encryption using PAE1: γ = π−1(N).

Theorem 3. Let q and σ ≥ q be positive integers. Then

Adv
prf
PAuth1(q, σ) ≤ (7q + 2)σ

2n
;

Adv
prf
PAuth2(q, σ) ≤ (7q + 2)σ

2n
;

Adv
prf−−−−→
PAuth1

(q, σ) ≤ q(q − 1)

2n+1
+

(7q + 2)σ

2n
;

Adv
prf−−−−→
PAuth2

(q, σ) ≤ q(q − 1)

2n+1
+

(7q + 2)σ

2n
.

The following provides the security statements for PAE1 and PAE2.

Theorem 4. Let q and σ ≥ q be positive integers. Then

Adv
priv
PAE1(q, σ) ≤ 2(σ + 2q)2

2n
;

Advae-auth
t-PAE1 ≤

1

2t
+

2(σ + 2q)2

2n
+
σ(7q + 2)

2n
;

Adv
priv
PAE2(q, σ) ≤ 2(σ + 2q)2

2n
;

Advae-auth
t-PAE2 ≤

1

2t
+

2(σ + 2q)2

2n
+
σ(7q + 2)

2n
.

The security statements for the AEAD schemes are given by the following theorem.

Theorem 5. Let q and σ ≥ q be positive integers. Then

Adv
priv
PAEAD1(q, σ) ≤ 2(σ + 2q)2

2n
;

Advaead-auth
t-PAEAD1 (q, σ) ≤ 1

2t
+

1

2n−1
×
(
σ(2σ + 11q + 2) + 4q2

)
;

Adv
priv
PAEAD2(q, σ) ≤ 2(σ + 2q)2

2n
;

Advaead-auth
t-PAEAD2 (q, σ) ≤ 1

2t
+

1

2n−1
×
(
σ(2σ + 11q + 2) + 4q2

)
.

Table 9. Encryption and decryption algorithms for PAE2.

PAE2.Encryptπ(N,P):
1. (C, tag1) = Forward2π(N,P);
2. return (C, tag1 ⊕ tag2).

PAE2.Decryptπ(N,H1, . . . , Hk, C, tag):
1. (P, tag′) = Backward2π(N,C);
2. if tag = tag′ return P ; else return ⊥.

Table 10. Encryption and decryption algorithms for PAEAD2.

PAEAD2.Encryptπ,fStr(N,H,P):
1. if |H| = 0, tag2 = 0n;
2. else
3. υ = π(fStr);
4. tag2 = PAuth2π,υ(H);
5. end if;
6. (C, tag1) = Forward2π(N,P);
7. return (C, tag1 ⊕ tag2).

PAEAD2.Decryptπ,fStr(N,H1, . . . , Hk, C, tag):
1. if |H| = 0, tag2 = 0n;
2. else
3. υ = π(fStr);
4. tag2 = PAuth2π,υ(H);
5. end if;
6. (P, tag1) = Backward2π(N,C);
7. if tag = (tag1 ⊕ tag2) return P ; else return ⊥.

Table 11. Encryption and decryption algorithms for
−−−−−→
PAEAD2.

−−−−−→
PAEAD2.Encryptπ,fStr(N,H1, . . . , Hk, P):
1. if k = 0, tag2 = 0n;
2. else
3. υ = π(fStr);

4. tag2 =
−−−−→
PAuth2π,υ(H1, . . . , Hk);

5. end if;
6. (C, tag1) = Forward2π(N,P);
7. return (C, tag1 ⊕ tag2).

−−−−−→
PAEAD2.Decryptπ,fStr(N,H1, . . . , Hk, C, tag):
1. if k = 0, tag2 = 0n;
2. else
3. υ = π(fStr);

4. tag2 =
−−−−→
PAuth2π,υ(H1, . . . , Hk);

5. end if;
6. (P, tag1) = Backward2π(N,C);
7. if tag = (tag1 ⊕ tag2) return P ; else return ⊥.

Security statements for the privacy of the variants of the AEAD schemes where the header can be
a vector of strings remains unchanged. The security statements for authentication changes and is
given by the following result. An additive degradation of q(q−1)/2n+1 occurs due to the conversion
of the single-input PRF to a vector-input PRF.

Theorem 6. Let σ ≥ q ≥ 1. Then

Advaead-auth

t-
−−−−−→
PAEAD1

(q, σ) ≤ 1

2t
+
q(q − 1)

2n+1
+

1

2n−1
×
(
σ(2σ + 11q + 2) + 4q2

)
;

Advaead-auth

t-
−−−−−→
PAEAD2

(q, σ) ≤ 1

2t
+
q(q − 1)

2n+1
+

1

2n−1
×
(
σ(2σ + 11q + 2) + 4q2

)
;

8 Deterministic Authenticated Encryption with Associated Data

The basic idea behind the DAE and the DAEAD schemes is based on the SIV construction in [52].
For encryption using the DAE scheme, a tag is generated by applying PAuth to the plaintext P .
This tag is used as an IV to a variant of the counter mode (used in [59]) to obtain C from P .
The final ciphertext is (C, tag). Decryption from (C, tag) is easy and done as follows. First apply
the counter mode with tag to obtain P from C; apply PAuth to the obtained P to obtain tag1; if
tag = tag1, then return P , else return ⊥ indicating lack of authentication. The scheme is denoted
as DAE and the encryption and decryption algorithms are given in Table 12.

Handling a header in this framework is also quite easy. The idea is to use
−−−→
PAuth to authenticate

the vector of strings (H1, . . . ,Hk, P) and obtain tag. The rest of the scheme remains unchanged. We

denote by DAEAD the algorithm when a header is authenticated. The encryption and decryption
algorithms of DAEAD are given in Table 13. Note that applying DAEAD to the case when the header
is empty is not the same as the scheme DAE. This is due to the fact that PAuth(P) and

−−−→
PAuth(P)

do not provide the same output.

Table 12. Encryption and decryption algorithms for DAE.

DAE.Encryptπ,fStr(P):
1. tag = PAuthπ,fStr(P);
2. (P1, . . . , Pm) = Format(P, n);
3. (C1, . . . , Cm−1) = (P1, . . . , Pm−1)

⊕ ecbπ(tag⊕ binn(1), . . . , tag⊕ binn(m− 1));
4. Tm = Firstr(Pm ⊕ π(tag⊕ binn(m)));
5. C = C1|| · · · ||Cm−1||Tm;
5. return (C, tag).

DAE.Decryptπ,fStr(C, tag):
2. (C1, . . . , Cm) = Format(C, n);
3. (P1, . . . , Pm−1) = (C1, . . . , Cm−1)

⊕ ecbπ(tag⊕ binn(1), . . . , tag⊕ binn(m− 1));
4. Sm = Firstr(Cm ⊕ π(tag⊕ binn(m)));
5. P = P1|| · · · ||Pm−1||Sm;
2. tag1 = PAuthπ,fStr(P);
3. if tag = tag1 return P else return ⊥.

Table 13. Encryption and decryption algorithms for DAEAD.

DAEAD.Encryptπ,fStr(H1, . . . , Hk, P):

1. tag =
−−−→
PAuthπ,fStr(H1, . . . , Hk, P);

2. (P1, . . . , Pm) = Format(P, n);
3. (C1, . . . , Cm−1) = (P1, . . . , Pm−1)

⊕ ecbπ(tag⊕ binn(1), . . . , tag⊕ binn(m− 1));
4. Tm = Firstr(Pm ⊕ π(tag⊕ binn(m)));
5. C = C1|| · · · ||Cm−1||Tm;
5. return (C, tag).

DAEAD.Decryptπ,fStr(H1, . . . , Hk, C, tag):
2. (C1, . . . , Cm) = Format(C, n);
3. (P1, . . . , Pm−1) = (C1, . . . , Cm−1)

⊕ ecbπ(tag⊕ binn(1), . . . , tag⊕ binn(m− 1));
4. Sm = Firstr(Cm ⊕ π(tag⊕ binn(m)));
5. P = P1|| · · · ||Pm−1||Sm;

2. tag1 =
−−−→
PAuthπ,fStr(H1, . . . , Hk, P);

3. if tag = tag1 return P else return ⊥.

The security statements for DAE and DAEAD are given by the following result.

Theorem 7. Let σ ≥ q ≥ 1. Then

Adv
priv
DAE(q, σ) ≤ 2(σ + 2q)2

2n
;

Advdaead-auth
t-DAE (q, σ) ≤ 1

2t
+

1

2n−1
×
(
σ(2σ + 11q + 2) + 4q2

)
;

Adv
priv
DAEAD(q, σ) ≤ q(q − 1)

2n+1
+

2(σ + 2q)2

2n
;

Advdaead-auth
t-DAEAD (q, σ) ≤ 1

2t
+
q(q − 1)

2n+1
+

1

2n−1
×
(
σ(2σ + 11q + 2) + 4q2

)
.

9 Comparison to Some Existing Schemes

The schemes described here are modes of operations of a block cipher based. So, it makes sense to
compare only with other modes of operations of a block cipher. We briefly discuss the relation of
the schemes presented here to a selection of important works by other authors.

9.1 AEAD Schemes

The schemes proposed in this work make one block cipher call per message (or ciphertext) block and
such schemes are called Rate-1 schemes. The NIST standardised GCM requires one block cipher call

and one finite field multiplication per block of data, while the other NIST standard CCM requires
two block cipher calls per data block. So, these are slower than the schemes considered here.

The early Rate-1 parallelisable schemes were due to Jutla [37] and Gligor-Donescu [26]. The
sequence of designs by Rogaway called OCB1 [51], OCB2 [50] and OCB3 [40] are also Rate-1
parallelisable schemes. Of these, OCB3 (currently called OCB) is the most efficient.

Comparison to OCB. Below we highlight several aspects on which the constructions presented
here differ from OCB.

Reconfigurable masking. The Galois field based masking strategy described here has the
unique feature of easy reconfigurability. This feature is not present in OCB. The masking strategy
of OCB is different from that used here. It is mentioned in [40] that if optimised with care, the
masking strategy for OCB can be faster than that of Galois field based masking. The speed-up,
though, is not much. In general, we expect the speed of the masking strategies used here to compare
well with the OCB masking. This is also evident from the experimental results that we report later.

One aspect of having a reconfigurable masking strategy as part of the specification of a mode of
operation is that it allows the optimisation of the code for a target processor. For example, for the
current Intel processors one would choose n1 = 128 and n2 = 1 (or n1 = 1 and n2 = 128) and use the
available vector instructions to write the code for the next and previous mask computations. On the
other hand, for small processors such as the Atmel AVR 8-bit, 16-bit and 32-bit microcontrollers [17,
29] it would make more sense to choose n1 = 8 (correspondingly n2 = 16), n1 = 16 (correspondingly
n2 = 8) and n1 = 32 (correspondingly n2 = 4) respectively. Fixing the values of n1 and n2 in the
specification will bias the efficiency of masking towards one end of the processor architectures. In
particular, we do not see any advantage of fixing one particular masking strategy as part of the
specification.

Another aspect of having a reconfigurable masking strategy is that organisations will have
the option of choosing their own secret values for (ρ(α), µ(x)). If either n1 = 1, n2 = 128 or
n1 = 128, n2 = 1 hold, then as mentioned in Section 3.3, the number of possible choices of the
pair (ρ(α), µ(x)) will be around 2119. So, a particular organisation can randomly choose a mode
of operation from this large family. This customisation facility will provide an additional layer
of ‘security by obscurity’ over and above the provable security guarantee already enjoyed by the
schemes.

Nonce length. Nonces in OCB have to be of lengths less than n. So, if an application generates
n-bit nonces, then such an application will have to drop a bit while ensuring the uniqueness of
nonces. In comparison, the nonce length for our schemes is n bits. If an application generates
shorter length nonces, then this can simply be padded with zeros to obtain an n-bit nonce without
loss of uniqueness.

Number of block cipher calls. For h header blocks and m message blocks, OCB uses a total
of m+ h+ 3 block cipher calls. Out of these, one call is required once per session and the number
of calls per message is m+h+ 2. In the case of non-empty header, the number of block cipher calls
for the PAEAD schemes is m + h + 4 (m + 2 calls to process the message; h + 2 calls to process
the header) where the two successive calls on fStr are made once per session. So, the number of
calls per message is again m + h + 2. If the header is empty, then there are no block cipher calls
required to process the header and so the total number of calls is m+ 2. This is the same as that
of the proposed PAE schemes.

In case the nonces are generated using a counter, OCB uses a clever strategy to ensure that
the encryption of the nonce is to be done only once per 64 messages. This saves a block cipher call
for 63 out of 64 messages. On the other hand, there is small additional processing that is required
over and above the block cipher call. So, if the nonces do not occur as a counter, then OCB has
to encrypt the nonce and perform a processing of it. In such a case, the strategy for avoiding the
encryption of nonces is not useful but, the overhead remains.

Memory requirement. A feature required for efficient mask generation in OCB is that certain
masks can be pre-computed and stored in memory. Storing `+ 2 n-bit blocks allows the processing
of 2` blocks. (A message consisting of 1024 bytes will have 64 blocks when n = 128; so, ` = 6 and
a total of 128 bytes of storage space for the key material will be required.) These blocks have to be
securely stored as their leakage will result in the system becoming insecure. The schemes described
here do not require such storage. For one thing this may be important in scenarios where storage
is costly. Perhaps more importantly, by having a smaller storage requirement, the present schemes
offer lesser targets for attack.

Standalone MAC algorithm. OCB processes the header to obtain an n-bit string and XORs it
with the tag produced on the message. As a standalone algorithm, however, the header processing
algorithm is not a MAC algorithm. If the requirement is to implement an authentication scheme
and an AEAD scheme, then along with OCB one has to implement a separate MAC algorithm.
In contrast, both PAuth1 and PAuth2 are standalone MAC algorithms and are respectively defined
from Backward1 and Backward2. Providing the message to be the empty string returns the tag on
the header. So, a single implementation of the AEAD algorithm can provide both the tasks of
authentication and AEAD.

Handling of a vector of strings as the header. As argued in the context of DAEAD,
applications sometimes require to authenticate a header of strings [52]. By extension, the same
should also be true of nonce-based AEAD schemes. Consequently, we have described variants of
the basic AEAD schemes which can handle a vector of strings as the header. Such an option is
not part of OCB, though we note that it should be possible to modify the specification of OCB to
handle vector headers.

Comparison to CLOC, SILC and OTR. Some of the recent works on AEAD schemes are
the proposals CLOC [32], SILC [33] and OTR [46]. Another recent proposal is COBRA [3], but,
a serious flaw has been pointed out in the construction by Nandi (see http://competitions.cr.

yp.to/round1/aescobra-withdraw.txt).
The schemes CLOC and SILC are similar and are based on the CFB mode of operation. As a

result, the constructions are inherently sequential in nature and cannot benefit from the pipelining
structure of many block ciphers including the AES. The scheme CLOC was proposed as an improved
alternative to CCM and EAX. The claimed advantage of CLOC is that of minimal overhead in terms
of block cipher calls and memory requirement. If there is no header, then processing an m-block
message by CLOC requires 2 + 2m calls and if there is an h-block header, then the total number
of calls to process both the header and the message is 1 + h+ 2m. The state consists of two n-bit
blocks, the memory required to store the two chaining blocks for encryption and authentication.

In the case of the schemes presented here, when h = 0, the number of block cipher calls is m+2
which is smaller than CLOC for all m ≥ 1. If h > 0, then the number of required calls is m+ h+ 4
which is smaller than or equal to that of CLOC for m ≥ 3. Storing one n-bit quantity (the result
of the double encryption of fStr) reduces the number of calls to m + h + 2 which is smaller than

or equal to that of CLOC for all m ≥ 1. In terms of memory requirement, the schemes in this
work will require to store an n-bit mask along with output of the double encryption of fStr (when
h > 0). So, CLOC would be preferred to the presented schemes when messages are very short and
there is a very tight memory constraint. SILC is another scheme which has been proposed as an
improvement over CLOC in requiring an even smaller hardware footprint. The number of block
cipher calls required by SILC is one more than that of CLOC.

Both the schemes CLOC and SILC do not require the inverse of the block cipher. From a
theoretical point of view, this is an advantage since the assumption on the block cipher is that
of a pseudo-random permutation instead of a strong pseudo-random permutation. The other ad-
vantage is in hardware implementation, where the inverse of the block cipher is not required to
be implemented leading to a smaller size hardware. The downside of CLOC and SILC however, is
that these are sequential algorithms and cannot benefit from the pipelined implementation of the
regular structure of block ciphers such as AES.

OTR is an interesting construction which also does not utilise the inverse of the block cipher
and is parallelisable. It uses a Feistel structure two blocks at a time. The parallelism in OTR is
of the following form. The odd numbered data blocks can be processed in parallel and then the
even numbered data blocks can be processed in parallel. Further, the odd numbered data blocks
have to be buffered to be XORed with the outputs of the encryptions of the even numbered data
blocks. Using AES-NI instructions on Intel processors, it is possible to utilise this structure to get
a fast implementation [13]. On the other hand, in hardware, exploiting the parallelism in OTR
will certainly require buffering the segments of odd numbered data blocks which will substantially
push up the area requirement. Also, even for software, it is not clear how to effectively utilise
the parallelism in OTR on processors which do not support AES instructions. In contrast, the
parallelism in all the proposed schemes in this paper is simple and regular and can be fully exploited
in both hardware and software.

9.2 DAEAD Schemes

The first DAEAD scheme was proposed in [52] and was named the SIV construction. This construc-
tion was based on the S2V construction which builds a vector-input PRF from a single-input PRF.
In SIV, the S2V method is used on the CMAC authentication algorithm to build a vector-input
PRF to generate the tag on the header and the message. The CTR mode of encryption is used
to process the message. The two components CMAC and CTR use independent keys. The CMAC
algorithm is based on the CBC mode of operation and is inherently sequential. The CTR mode
used in [52] uses Ctr + i as the i-th offset. This is different from the somewhat simpler CTR mode
from [59] that we use which has Ctr⊕ binn(i) as the i-th offset.

Improvements to the work in [52] were made in [36, 35] which proposed two constructions called
HBS and BTM. These use a single key and a polynomial based hash function to process the vector
of strings which comprise the header. The constructions of DAE and DAEAD schemes that we
describe also use a single key and the processing of the header is done using a block cipher (and
without any finite field multiplication) as in the SIV construction. Unlike SIV, however, we use the
fully parallelisable PAuth algorithm and its vector version to process the header.

McOE-G [24], COPA [2] and POET [43] are three recent examples of nonce-misuse resistant
AEAD modes of operations. Of these, McOE-G is a sequential algorithm which requires both block
cipher calls and finite field multiplications. COPA and POET are both parallel modes which use
only a block cipher as the building block. POET makes three calls per data block while COPA
makes two calls per block. (For AES, there is a suggestion that POET may use reduced-round

AES, but, then the scheme no longer remains a mode of operation of AES.) So, COPA is faster
than both McOE-G and POET and the experimental results in [13] confirms this. The parallelism
in COPA, however, is not unrestricted. Similar to that of OTR, for COPA the inputs to the even
numbered calls depend on the outputs of the odd numbered calls.

The construction ELmD [19] uses a different approach. It is an encrypt-mix-decrypt type of
construction. Unlike COPA, the scheme is fully parallel and makes two block cipher calls per data
block. The parallelism, however, alternates between calls to the encrypt module of the block cipher
and the decrypt module of the block cipher. As a result, hardware implementations will require
two separate pipelines of the encryption and the decryption modules of the block cipher.

All of the constructions McOE-G, COPA, POET and ELmD require both the encryption and
the decryption modules of the underlying block cipher. In contrast, the DAEAD construction given
here requires only the encryption module of the block cipher. It provides unrestricted parallelism
and uses two calls per data block. As a result, it offers better features compared to the other
schemes mentioned here.

10 Software Implementation

For the sake of completeness of the work and also for the sake of illustration of performance, we
decided to implement all the constructions presented here. To obtain a complete implementation,
we needed to decide on a block cipher. The natural choice is the AES since it is currently the most
popular block cipher. We note though that the mode of operation is independent of the actual block
cipher. Any other block cipher can also be easily plugged into the mode of operation.

Two implementations were made in the ‘C’ programming language and both the implementa-
tions are publicly available from [16]. The first implementation is a basic program where a binary
string is represented as an array of zeros and ones. This is to be considered as the reference imple-
mentation of the schemes described in this work. Since the implementation itself is quite simple,
we do not discuss it any further here.

The second implementation was targeted towards modern Intel processors. Whereever possible
we tried to vectorize our code and utilize the 128-bit XMM registers through the SSE instruction
set. The SSE instructions were accessed using Intel intrinsics. In all the schemes, the basic build-
ing blocks are the masking schemes and the block cipher calls. We present some specifics of the
implementations of the masking schemes and the AES below.

Starting from the Westmere processor, Intel has produced a series of successive processors,
namely Sandybridge, Ivybridge and most recently the Haswell processor. The latency and through-
put figures of the various instructions slightly vary from processor to processor. As a result, a code
which is optimised for one of these processors need not be the fastest on another processor. We
have tried to optimise our code keeping the Ivybridge processor in mind and performance figures
reported later are for this processor. At the same time, we do note that the basic principles of our
code design will remain the same across all the processors. So, it should be possible to modify our
code to get optimised implementations on the other processors.

AES supports 128-bit, 192-bit and 256-bit keys. Our reference implementation supports all of
these key sizes. On the other hand, the fast implementation has been done only for 128-bit keys.

10.1 Implementing the Masks

The masking schemes take a 128-bit string as input and produces a 128-bit string as output. The
details of the mapping depend on the type of mask and the chosen irreducible polynomial. We
discuss these issues.

Implementing xtimes: First consider the implementation of the mask where n1 = 128 and
n2 = 1. This operation is popularly known as xtimes or doubling. For this mask, if the input is
A ∈ {0, 1}128, then the output B can be computed using the following steps. The polynomial
representing GF (2128) is given in Table 2.

1. b← msb(A);
2. B ← A� 1;
3. if b = 1;
4. B ← B ⊕ 0x87;
5. return B.

The problem of implementing the above procedure using a 128-bit register in an Intel machine is that
there is no instruction to left shift the content of an XMM register by one bit. Hence, to implement
the above procedure within a 128-bit register using the available instructions requires some more
work. In particular, the steps followed are shown in Figure 2, where the required instructions in
each step are also mentioned. The piece of code using Intel intrinsics implementing the procedure
is shown in Figure 3.

1. parse A as A3||A2||A1||A0 where A3, A2, A1, A0 are 32-bit words, and
Ai = (ai,31, ai,30, . . . , ai,1, ai,0);

2. R← a3,31||a2,31||a1,31||a3,31 where a means a repeated 32 times;

(R can be obtained from A by the instruction PSRAD)
3. S ← a1,31||a1,31||a1,31||a3,31;

(S can be obtained from R by using PSHUFD instruction)
4. S ← S ∧ (0x00||0x01||0x00||0x87);
5. S ← S ⊕ [(A3||A2)� 1||(A1||A0)� 1];
6. return S.

Fig. 2. Computing the next mask with the parameters n1 = 128, n2 = 1 using 128-bit registers.

static inline void gfmulby2(__m128i a,__m128i* res){

*res = _mm_srai_epi32(a,31);

*res = _mm_shuffle_epi32(*res,0x57);

*res = _mm_and_si128(*res,_mm_set_epi32(0x00,0x01,0x00,0x87));

*res = _mm_xor_si128(*res,_mm_slli_epi64(a,0x01));

}

Fig. 3. The code corresponding to the procedure in Figure 2

There can be other strategies to implement xtimes using the 128-bit registers. We discuss two
specific strategies adopted in [4] and [13].

1. The strategy adopted in [4] is depicted in Figure 4(a). The basic idea involves using a table tab

with four 128-bit values. The instruction MOVMSKPD (equivalent intrinsic mm movemask pd(a)),
treats the input a as two 64-bit double precision values and outputs the their sign bits. Based
on these values the appropriate mask from tab is chosen. This strategy uses a data dependent
table look-up.

2. In [13] (shown in Figure 4(b)), the most significant bit of the input a is extracted by novel use of
the instructions PCMPGTB and PEXTRB. Based on this extracted bit proper maskings are done3.
This strategy requires a data dependent branching and hence is not a constant time code.

__m128i computeXtimes1(__m128i a) {

__m128i b; int r;

__m128i tab[4];\

tab[0]= _mm_set_epi32(0x00,0x00,0x00,0x00);

tab[1]= _mm_set_epi32(0x00,0x01,0x00,0x00);

tab[2]= _mm_set_epi32(0x00,0x00,0x00,0x87);

tab[3]= _mm_set_epi32(0x00,0x01,0x00,0x87);

r=_mm_movemask_pd((__m128d)a);

b = _mm_xor_si128(tab[r],_mm_slli_epi64(a,0x01));

return b;

}
(a)

__m128i computeXtimes2(__m128i a) {

__m128i v1, v2, v3;

v3 = _mm_set_epi32(0x0,0x0,0x0,0x87);

v1 = _mm_slli_epi64(a,1);

v2 = _mm_slli_si128(a,8);

v2 = _mm_srli_epi64(v2,63);

if(_mm_extract_epi8(_mm_cmpgt_epi8(_mm_set1_epi8(0x00),a),15)== 0xff)

a = _mm_xor_si128(_mm_or_si128(v1,v2),v3);

else a =_mm_or_si128(v1,v2);

return a;

}
(b)

Fig. 4. (a) The code for xtimes described in [4]; (b) The code for xtimes described in [13].

The various vector instructions along with their latencies and throughputs used in our imple-
mentation of xtimes and the implementations in [4] and [13] are shown in Table 14. The strategy
in [4] uses the least number of instructions, and is also optimal in terms of the latencies, but it
uses a table lookup and the latency associated with that is not shown in the Table. The strategy
in [13] uses the maximum number of instructions. Later we present some experimental results to
compare the three strategies. These show that our strategy is the most efficient followed by that
of [13] and [4]. Moreover, both the strategies in [4] and [13] suffers from the fact that they use data
dependent table lookups and branching, respectively. This feature can lead to avenues for software
side channel attacks, whereas our strategy does not involve such issues.

Implementing the other masking functions: Implementation of the other kinds of masks
using vector instructions have not been considered in the literature. For implementing them, we
use the same strategy as in computing xtimes. In particular, we avoid data dependent branchings
and/or table lookups.

Computing the other kind of masks requires more instructions. For example, consider mask
generation where GF (2128) is represented as a tower field with n1 = 32 and n2 = 4. Let A =

3 The specific code discussed in [13] is incorrect. The instruction PCMPGTB does comparison of signed 8-bit integers,
and this is not considered in the code described in [13].

Instruction Intrinsic Latency Throughput

PSRAD mm srai epi32 2 2
PSHUFD mm shuffle epi32 4 2

This work PAND mm and si128 2 2
PXOR mm xor si128 2 2
PSLLQ mm slli epi64 2 1

MOVMSKPD mm movemask pd 2 2
Aoki et al. [4] PSLLQ mm slli epi64 2 1

PXOR mm xor si128 2 2

PSLLQ mm slli epi64 2 1
PSLLDQ mm slli si128 4 2
PSRLQ mm srli epi64 2 2

Bogdanov et al. [13] PEXTRB mm extract epi8 3 1
PCMPGTB mm cmpgt epi8 2 1
PXOR mm xor si128 2 2
POR mm or si128 2 2

Table 14. The vector instructions along with their latencies used in the various implementations of xtimes. The
latency and throughput data are from [1]. Throughput here means the number of cycles of wait necessary for a
instruction to be invoked after one invocation.

A0||A1||A2||A3, be a 128-bit string where each Ai is 32 bits long. Then to compute the mask based
on the specific polynomials ρ(α) and µ(x) as in Table 2 the following procedure is required:

1. C ← (A3 � 1)
2. if msb(A3) = 1
3. C ← C ⊕ 0x0a000021

4. C ← C ⊕A2 ⊕A0

5. return A2||A1||A0||C

To implement this procedure within a 128-bit register we follow the procedure shown in Figure 5.
The corresponding code using Intel intrinsics is shown in Figure 6.

1. parse A as A3||A2||A1||A0 where A3, A2, A1, A0 are 32-bit words, and
Ai = (ai,31, ai,30, . . . , ai,1, ai,0);

2. R← 〈a3,31||a2,31||a1,31||a3,31〉; (where a means a repeated 32 times)

(R can be obtained from A by the instruction PSRAD)
3. S ← R ∧ 〈0x0a000021||0x00||0x00||0x00〉;
4. C ← (A3 � 1)||(A2 � 1)||(A1 � 1)||(A0 � 1);
5. C ← C ⊕ S;
6. C ← (C � 96);

7. T ← (A� 64);
(now T contains 064||A3||A2)

8. T ← T ⊕A;
9. T ← T ∧ (096||132);

(now T contains (096||A0 ⊕A2))
10. return (A� 32)⊕ T ⊕ C.

Fig. 5. Computing the mask for n1 = 32, n2 = 4 with 128-bit registers.

__m128i mask32(__m128i a) {

__m128i t1, r;

r = _mm_srai_epi32(a,31);

r = _mm_and_si128(r, _mm_set_epi32(0x0a000021,0x00,0x00,0x00));

r = _mm_xor_si128(_mm_slli_epi32(a,1),r);

r = _mm_srli_si128(r,12);

t1 = _mm_srli_si128(a,8);

t1 = _mm_xor_si128(a,t1);

t1 = _mm_and_si128(t1,_mm_set_epi32(0x00,0x00,0x00,0xffffffff));

r = _mm_xor_si128(r,t1);

r = _mm_xor_si128(r, _mm_slli_si128(a,4));

return r;

}

Fig. 6. The code corresponding to the procedure in Figure 5.

Experimental Results: There are five options for generating the masks which correspond to the
first five representations of GF (2128) given in Table 2. We use the notation given in Table 15 to
denote the different masking types.

n1 = 128, n2 = 1 n1 = 64, n2 = 2 n1 = 32, n2 = 4 n1 = 16, n2 = 8 n1 = 8, n2 = 16

Type-1 Type-2 Type-3 Type-4 Type-5
Table 15. Numbering the different types of maskings.

Experimental performance data for the various masking schemes are shown in Table 16. The
values shown in the table correspond to the (average) number of cycles required for computing one
mask. Two experiments were performed. In the first one, starting from a specific 128-bit value,
1024 masks were successively computed and the average time for computing each mask was found
out. This experiment was repeated 1024 times and the row 1 mask in Table 16 shows the median
of of these 1024 values.

The other experiment was directed to judge the extent to which each of the masking strategies
can utilize the instruction level pipelining. To do this we fixed eight different initial 128-bit values
and successively computed 1024 masks for each of these values. Again we found the average time
for computing each mask, and repeated this experiment 1024 times. The row 8 masks reports the
median of these 1024 values. Table 16 clearly shows that the for Type-1 maskings, our strategy is

Type 1 5 4 3 2

[4] [13] Ours

1 mask 15.27 11.58 4.21 7.24 7.51 5.93 6.30
8 masks 2.57 4.97 1.79 4.10 4.04 3.65 3.36

Table 16. Experimental comparison of the various masking strategies.

better than the ones used in [4] and [13]. The principal reason being that our strategy does not use
any conditional branching. Such branchings may lead to higher latencies. The strategy depicted

in [4] does not involve any branchings, but involves a data dependent table look up which has a
performance penalty.

10.2 Implementing the AES

Modern Intel processors provide specialized instruction set called AES-NI for implementing the
AES. Using AES-NI is the best option for implementing AES in processors where these instruc-
tions are available. AES-NI consists of the instructions AESENC, AESDEC, AESENCLAST, AES-
DECLAST. The last two instructions are to be used for the last round of AES encryption and
decryption respectively and the first two are meant for the other rounds. In addition to these
instructions there are instructions for key expansion.

To take advantage of the instruction level pipelining in the AES round instructions it is better if
several calls to the same round of AES are clustered together [27]. In all the modes proposed in this
paper the majority of the block cipher calls do not have any data dependency, hence it is possible
to compute several AES calls at the same time. In our implementations, where ever possible we
clustered eight different calls to a single round function.

10.3 Mask Generation on Small Processors

The Atmel AVR family of microcontrollers [17] support 8-bit and 32-bit words and the TI MSP430,
MSP430X family of microcontrollers support 16-bit words [29]. On such processors, implementing
128-bit masking strategy with n1 = 128 and n2 = 1 is comparatively less efficient, the reason being
the following. Consider the word size to be 32 bits. Then a 128-bit string has to be stored as four
words. A left shift on the 128-bit string will requiring shifting out the msb of each word and placing
it in the lsb of the next word. This typically requires quite a few instructions.

On the other hand, suppose for processors having 32-bit words, the masking strategy uses
n1 = 32 and n2 = 4. Then generating the next mask can be performed using word level operations
which leads to a significantly faster code. In fact, this was the motivation for introducing word-
oriented LFSRs for designing stream ciphers such as SNOW [23] which are fast in software. Similarly,
if the word size of the target processor is 8 bits, then the masking strategy with n1 = 8 and n2 = 16
will work best. This is one of the reasons that we do not fix the masking strategy.

11 Performance Results

Hardware and Software: Time was measured on a single core of a machine with the following
configuration:

CPU: Intel Core i7-3770K (IvyBridge) @ 3.50GHz (8 cores)
cache size: 8192 KB
Memory: 15.6 GB
OS: Fedora release 18 (Spherical Cow)
Kernel: Linux 3.11.10-100.fc18.x86 64
Compiler: GCC version 4.7.2 20121109

Testing Methodology: For each of the schemes compilation was done with -O3 optimization.
The time was measured using the time stamp counter (TSC), which gets incremented with each
CPU cycle. For each scheme X we did the following:

1. Ran X 1000 times on the same data, to ensure that the data and code gets into the cache.

2. Then we ran X 100 more times on the same data and measured the number of clock cycles
taken by reading the TSC counter. We record the average time taken for each run.

3. Steps (1) and (2) are repeated 100 times and we report the median of these 100 runs.

4. The measurements are reported as cycles per byte, i.e., the total number of cycles divided by
the total number of bytes. For authentication schemes, the total number of bytes consists of
only the message which is to be authenticated; in case of authenticating a vector of strings,
the total number of bytes consists of the total number of bytes in all the strings. For AE and
DAE schemes, the total number of bytes consists of the number of bytes in the message to be
encrypted. For AEAD and DAEAD schemes, the total number of bytes consists of the number
of bytes in the message plus the total number of bytes in the header (which may be a vector of
strings).

We have considered five types of maskings as indicated in Table 15. For each scheme and each
masking type, we report the following three kinds of measurements.

Avg: Average run time for messages of lengths 1 byte to 1024 bytes.
4KiB: Run time for messages of length 4096 bytes.
ipi: The internet performance index as introduced in [44] and used in [40].

We present performance figures of the different schemes in Tables 17 to 20. Analysis of per-
formance figures for small messages with varying number of components for vector versions of the
authentication and AEAD schemes are reported in Tables 21 to 23. Based on this data, we make
the following observations.

1. Performance figures for Type-1 masking are consistently lower than the other types of maskings
across all the tables, though the differences are quite small. This is due to the fact that the
SSE2 code for Type-1 masking has the least number of instructions and also the least latency
among all the five masking strategies.

2. From Table 17, the performance figures for PAuth are consistently lower than that for PAuth1
and PAuth2 and the same is true for the vector versions. The differences are again quite small.
Explanation for this observation lies in the fact that both PAuth1 and PAuth2 use a small
number of extra operations compared to PAuth.

3. For small messages, the overhead of the vector versions is substantial and this averages out for
slightly longer messages. To see this, consider the figures for the vector versions of the authen-
tication schemes in Table 17. The column ‘Avg’ reports the average over messages of lengths
1 to 1024 bytes and the performance figure is more than 9 cycles/byte which is substantially
higher than the figure of around 2 cycles/byte for the single-input schemes. On the other hand,
if we consider the columns ‘4KiB’ and ‘ipi’, the performance figures for the vector versions go
down quite sharply and the difference to the single-input version becomes considerably narrow.
A similar effect in the difference of the performance figures between the single-input and the
vector versions of the AEAD schemes can be observed from Tables 18 and 20.

4. The difference in the performance figures between authenticating a message and the authenti-
cated encryption of a message of the same length is small. This can be observed from the figures
for authentication given in Table 17 and that for AE given in Table 18.

5. Considering Tables 17 and 18, the figures for authentication or AE are higher than that for
AEAD. Similarly, the performance figures for the vector versions of the authentication schemes
are higher than that for the AEAD schemes. These may seem to be a counter-intuitive since
for AEAD schemes more computation is required. To understand this, the first thing to note
is that the tables provide cycles/byte figures. The explanation for the observation lies in the

fact that the figures for AEAD schemes correspond to a situation where the header size is 512
bytes. As a result, the total length of the message plus the header is no longer small and the
cycles/byte computation averages out the overhead for the small length messages.

6. Considering Table 19, the performance figures for CTR is lower than the timings for Forward1
and Forward2. For small messages this gap is significant, but, becomes negligible as the length
of the message grows. DAE (and also DAEAD) uses CTR whereas, the AE (and AEAD) schemes
use either Forward1 or Forward2. Since DAE requires essentially two block cipher invocations
per message block whereas the AE(AD) schemes require one such invocation, the speed of CTR
being faster to a certain extent offsets this disadvantage.

7. From Table 19, the performance figures for Forward1 and PAE1 are the same and this is also
true for Forward2 and PAE2. This is to be expected, since the AE algorithms essentially run the
Forward algorithms for encryption.

8. From Table 19, for small messages, there is a significant difference in the performance figures
between DAE and Ctr and the difference reduces for somewhat longer messages. A difference
is to be expected since DAE does significantly more computation than CTR. The results show
that for small messages, the overhead is substantial.

9. From Table 20, for vector versions of the AEAD schemes the performance figures increase with
the increase in the number of components when the total length of all the components remain
fixed. This is to be expected, since the fragmentation cannot benefit from the pipelining of
the SSE2 instructions. Similarly, looking at Table 22, we find a similar effect of the number of
components on the performance figures of the vector versions of the authentication schemes.

10. The effect of message lengths on the vector versions of the authentication schemes with a fixed
number of components is shown in Table 21. These show that there is a substantial overhead for
very small messages which drops off rather sharply as the message length becomes moderate.

11. Table 23 reports the average performance of the vector versions of AEAD schemes over small
messages with a fixed number of components. These figures are to be compared with the per-
formance figures in the column ‘Avg’ for the vector versions of the authentication schemes
using Type-5 masking given in Table 17. These show that the additional cost of AEAD over
authentication is small.

12. A general observation is that for small messages and also for messages with more number of
components, the figures are higher. This is because for such messages, the pipeline for the
AES-NI and the SSE2 instructions cannot be properly utilised.

Comparing performance to OCB: Performance results for OCB on modern Intel processors
are given in [40] and [13]. Results in [40] are reported for the ‘Clarkdale’ processor while the results
in [13] are reported for the latest ‘Haswell’ processor. On Clarkdale, OCB takes 1.48 cycles/byte
(cpb) for 4K messages and 1.87 cpb for the ipi index [40]. For Haswell, [13] reports performance of
0.81 cpb for 2048 byte messages.

The Ivybridge processor on which we have performed our experiments is an intermediate design
between Clarkdale and Haswell. Performance figures for PAE1 (and also PAE2) with Type-1 masking
are 1.02 cpb and 1.51 cpb for 4096 byte messages and the ipi index respectively. For the other
masking types, the maximum is for Type-5 masking where figures of 1.26 cpb and 1.75 cpb are
respectively obtained for 4096 byte messages and the ipi index. The figures for PAE1 for all the
different masking options are intermediate between what has been reported for OCB on Clarkdale
and Haswell. This indicates that the performance of the PAE1 compares well with that of OCB. We
mention, though, that on the same high-end Intel processor platform, we expect OCB to be faster
than PAE1 by a fraction of a cpb. This small speed loss should be tolerable in view of the several

Type-1 Type-2 Type-3 Type-4 Type-5

Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi

PAuth 2.05 0.96 1.32 2.21 1.13 1.48 2.21 1.14 1.48 2.29 1.25 1.58 2.31 1.24 1.59

PAuth1 2.20 1.11 1.49 2.43 1.35 1.71 2.39 1.28 1.67 2.52 1.44 1.81 2.55 1.47 1.84

PAuth2 2.22 1.11 1.50 2.40 1.30 1.68 2.47 1.37 1.74 2.53 1.47 1.83 2.60 1.56 1.91

−−−→
PAuth 9.10 3.06 3.76 9.28 3.26 4.11 9.28 3.27 3.95 9.37 3.38 4.11 9.35 3.40 4.11
−−−−→
PAuth1 9.20 3.26 3.93 9.37 3.42 4.16 9.40 3.48 4.14 9.43 3.62 4.26 9.56 3.64 4.28
−−−−→
PAuth2 9.26 3.27 3.94 9.36 3.42 4.17 9.51 3.58 4.21 9.51 3.62 4.26 9.58 3.64 4.29

Table 17. Performance figures in cycles/byte for the different authentication schemes and their vector versions. For
the measurements of

−−−→
PAuth,

−−−−→
PAuth1 and

−−−−→
PAuth2, a message was divided into four almost equal length portions and

the algorithms were invoked on the resulting 4-component vector.

Type-1 Type-2 Type-3 Type-4 Type-5

Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi

PAE1 2.79 1.02 1.51 2.94 1.17 1.66 2.95 1.19 1.68 2.99 1.21 1.72 3.01 1.26 1.75

PAE2 2.79 1.02 1.51 2.94 1.17 1.67 2.96 1.19 1.69 3.00 1.21 1.72 3.03 1.26 1.75

DAE 3.88 1.70 2.41 4.05 1.90 2.60 4.07 1.88 2.58 4.12 1.96 2.66 4.17 1.98 2.70

PAEAD1 1.49 1.07 1.31 1.63 1.22 1.46 1.67 1.27 1.51 1.74 1.27 1.55 1.77 1.31 1.59

PAEAD2 1.49 1.07 1.31 1.63 1.22 1.47 1.71 1.25 1.53 1.74 1.27 1.55 1.76 1.31 1.58

DAEAD 4.19 3.65 4.06 4.34 3.84 4.28 4.94 4.57 4.80 4.41 3.91 4.30 5.06 4.67 4.94

Table 18. Performance figures in cycles/byte for encryption using the AE and AEAD schemes. For the AEAD
schemes, a single header of length 512 bytes was used.

32 64 128 256 512 1024 2048 4096

PAE1 7.07 3.91 1.79 1.39 1.19 1.09 1.05 1.03
PAE2 7.08 3.91 1.78 1.38 1.19 1.09 1.05 1.03
DAE 11.95 6.99 3.68 2.71 2.17 1.91 1.77 1.70

Forward1 7.07 3.91 1.79 1.38 1.19 1.09 1.04 1.03
Forward2 7.09 3.91 1.78 1.39 1.19 1.09 1.04 1.03
Ctr 3.17 2.34 0.81 0.76 0.74 0.75 0.73 0.73

Table 19. Performance figures in cycles/byte for encryption using PAE1, PAE2 and DAE for different msg lengths
with Type-1 masking. For comparison, we also report figures for Forward1, Forward2 and Ctr (as used in DAE).

1 hdr 2 hdrs 3 hdrs 4 hdrs 8 hdrs

(512) (256+256) (256 + 2× 128) (4× 128) (8× 64)

Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi Avg 4KiB ipi

−−−−−→
PAEAD1 3.08 1.38 2.37 3.24 1.41 2.47 3.43 1.46 2.61 3.59 1.48 2.71 4.78 1.72 3.49
−−−−−→
PAEAD2 3.10 1.38 2.43 3.26 1.41 2.50 3.44 1.46 2.63 3.61 1.49 2.73 4.80 1.73 3.51

DAEAD 4.09 3.63 3.99 4.29 3.68 4.11 4.48 3.72 4.21 4.61 3.76 4.30 6.04 4.04 5.24

Table 20. Performance figures in cycles/byte for encryption using
−−−−−→
PAEAD1,

−−−−−→
PAEAD2 and DAEAD where the number

of headers vary. Type-1 masking (i.e. n1 = 128 and n2 = 1) has been used.

1-64 65-128 129-256 257-512 513-1024

−−−→
PAuth 47.15 17.05 9.96 6.73 4.88
−−−−→
PAuth1 47.80 17.11 9.99 6.71 5.15
−−−−→
PAuth2 47.84 17.29 10.08 6.78 5.15

Table 21. Average of cycles/byte figures for authentication of small messages using the vector versions of the
authentication schemes. The column headings mention the lengths in bytes over which the average has been computed.
Each message has been divided almost equally into four components and the algorithms were invoked on the resulting
4-component vector. Type-5 masking was used in each case.

512 256+256 256 + 2× 128 4× 128 8× 64

−−−→
PAuth 3.95 4.38 4.73 5.10 7.65
−−−−→
PAuth1 4.20 4.62 4.95 5.29 7.60
−−−−→
PAuth2 4.20 4.61 4.93 5.31 7.70

Table 22. Average of cycles/byte figures for authentication of small messages using vector versions of the authen-
tication schemes with varying number of components. The column headings indicate the number and the lengths in
bytes of the different components. Type-5 masking was used in each case.

−−−−−→
PAEAD1 10.45
−−−−−→
PAEAD2 10.27

Table 23. Average of cycles/byte figures for encryption using the vector versions of the AEAD schemes with lengths
varying from 1 byte to 1024 bytes with a string of a particular length been divided almost equally into one message
and three headers. Type-5 masking was used in each case.

features including reconfigurability mentioned in Section 9 and the fact that there are no IP claims
on the schemes in this work.

12 Conclusion

In this work, we have presented a suite of schemes for a variety of tasks of encryption and authen-
tication that have been defined in the literature. The constructions have a common unifying theme
which make them suitable for a joint description. Implementation details and performance results
are presented. These indicate that the schemes compare well with existing works and provide a
designer with additional flexibility in choosing a particular scheme for implementation.

References

1. Intel 64 and IA-32 architectures optimization reference manual. available as http://www.intel.com/content/

dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf, 2014.
2. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and Kan Yasuda. Paral-

lelizable and authenticated online ciphers. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT (1), volume
8269 of Lecture Notes in Computer Science, pages 424–443. Springer, 2013.

3. Elena Andreeva, Atul Luykx, Bart Mennink, and Kan Yasuda. COBRA: A Parallelizable Authenticated Online
Cipher Without Block Cipher Inverse. In FSE, 2014. to appear.

4. Kazumaro Aoki, Tetsu Iwata, and Kan Yasuda. How fast can a two-pass mode go? a parallel deterministic
authenticated encryption mode for AES-NI. Directions in Authenticated Ciphers, workshop records, 2012.

5. Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Namprempre. Online ciphers and the
hash-cbc construction. In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science,
pages 292–309. Springer, 2001.

6. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chaining. In Yvo Desmedt, editor,
CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 341–358. Springer, 1994.

7. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in
Computer Science, pages 531–545. Springer, 2000.

8. Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation. In Bimal K. Roy and Willi
Meier, editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 389–407. Springer, 2004.

9. Daniel J. Bernstein. The Poly1305-AES message-authentication code. In Henri Gilbert and Helena Handschuh,
editors, FSE, volume 3557 of Lecture Notes in Computer Science, pages 32–49. Springer, 2005.

10. Daniel J. Bernstein. Stronger security bounds for Wegman-Carter-Shoup authenticators. In Ronald Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 164–180. Springer, 2005.

11. John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. In
Mihir Bellare, editor, CRYPTO, volume 1880 of Lecture Notes in Computer Science, pages 197–215. Springer,
2000.

12. John Black and Phillip Rogaway. A block-cipher mode of operation for parallelizable message authentication.
In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 384–397.
Springer, 2002.

13. Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. Aes-based authenticated encryption modes in
parallel high-performance software. Cryptology ePrint Archive, Report 2014/186, 2014. http://eprint.iacr.

org/.
14. CAESAR. Competition for Authenticated Encryption: Security, Applicability, and Robustness. http://

competitions.cr.yp.to/caesar.html.
15. Debrup Chakraborty and Palash Sarkar. A general construction of tweakable block ciphers and different modes

of operations. IEEE Transactions on Information Theory, 54(5):1991–2006, 2008.
16. Debrup Chakraborty and Palash Sarkar. ‘C’ Code for Reference and Fast Implementations of Various Block Ci-

pher Based Modes of Operations. https://drive.google.com/file/d/0B7cNoZ_Dy-EhZFhCdFU2emNPQkU/edit?

usp=sharing, 2014.
17. Atmel Corporation. Atmel AVR 8-bit and 32-bit Microcontrollers. http://www.atmel.in/products/

microcontrollers/Avr/, 2014. Accessed on 30th July, 2014.
18. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES – The Advanced Encryption Standard (Infor-

mation Security and Cryptography). Springer, Heidelberg, 2002.
19. Nilanjan Datta and Mridul Nandi. ELmD. submission to CAESAR http://competitions.cr.yp.to/

caesar-submissions.html, 2014.
20. Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,

February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes in Computer Science. Springer,
2009.

21. M. Dworkin. Recommendation for block cipher modes of operations: the CMAC mode for authentication, May
2005. National Institute of Standards and Technology, U.S. Department of Commerce. NIST Special Publication
800-38B.

22. Morris Dworkin. Recommendation for block cipher modes of operation: Galois/Counter Mode (GCM) and
GMAC, November 2011. NIST Special Publication 800-38D, csrc.nist.gov/publications/nistpubs/800-38D/
SP-800-38D.pdf.

23. Patrik Ekdahl and Thomas Johansson. A new version of the stream cipher SNOW. In Kaisa Nyberg and
Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science,
pages 47–61. Springer, 2002.

24. Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of almost foolproof on-line authenticated
encryption schemes. In Anne Canteaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages
196–215. Springer, 2012.

25. Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which detect deception. Bell System
Technical Journal, 53:405–424, 1974.

26. Virgil D. Gligor and Pompiliu Donescu. Fast encryption and authentication: XCBC encryption and XECB
authentication modes. In Mitsuru Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer Science,
pages 92–108. Springer, 2001.

27. Shay Gueron. Intel’s new aes instructions for enhanced performance and security. In Dunkelman [20], pages
51–66.

28. Shai Halevi and Phillip Rogaway. A parallelizable enciphering mode. In Tatsuaki Okamoto, editor, CT-RSA,
volume 2964 of Lecture Notes in Computer Science, pages 292–304. Springer, 2004.

29. Texas Instruments. MSP 16-bit and 32-bit Microcontrollers. http://www.ti.com/lsds/ti/microcontrollers_

16-bit_32-bit/msp/overview.page, 2014. Accessed on 30th July, 2014.

30. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas Johansson, editor, FSE, volume
2887 of Lecture Notes in Computer Science, pages 129–153. Springer, 2003.

31. Tetsu Iwata and Kaoru Kurosawa. Stronger security bounds for omac, tmac, and xcbc. In Thomas Johansson and
Subhamoy Maitra, editors, INDOCRYPT, volume 2904 of Lecture Notes in Computer Science, pages 402–415.
Springer, 2003.

32. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Authenticated Encryption for Short
Input. In FSE, 2014. to appear.

33. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi. SILC:Simple Lightweight
CFB. submission to CAESAR http://competitions.cr.yp.to/caesar-submissions.html, 2014.

34. Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing GCM security proofs. In
Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 31–49. Springer, 2012.

35. Tetsu Iwata and Kan Yasuda. Btm: A single-key, inverse-cipher-free mode for deterministic authenticated en-
cryption. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in
Cryptography, volume 5867 of Lecture Notes in Computer Science, pages 313–330. Springer, 2009.

36. Tetsu Iwata and Kan Yasuda. Hbs: A single-key mode of operation for deterministic authenticated encryption.
In Dunkelman [20], pages 394–415.

37. Charanjit S. Jutla. Encryption modes with almost free message integrity. In Birgit Pfitzmann, editor, EURO-
CRYPT, volume 2045 of Lecture Notes in Computer Science, pages 529–544. Springer, 2001.

38. Jonathan Katz and Moti Yung. Complete characterization of security notions for probabilistic private-key en-
cryption. In STOC, pages 245–254, 2000.

39. Ted Krovetz. HS1-SIV. submission to CAESAR http://competitions.cr.yp.to/caesar-submissions.html,
2014.

40. Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In Antoine
Joux, editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 306–327. Springer, 2011.

41. Kaoru Kurosawa and Tetsu Iwata. TMAC: Two-Key CBC MAC. In Marc Joye, editor, CT-RSA, volume 2612
of Lecture Notes in Computer Science, pages 33–49. Springer, 2003.

42. R. Lidl and H. Niederreiter. Introduction to finite fields and their applications, revised edition. Cambridge
University Press, 1994.

43. David McGrew, Scott Fluhrer, Stefan Lucks, Christian Forler, Jakob Wenzel, Farzaneh Abed, and Eik List.
Pipelineable on-line encryption. In FSE, 2014. to appear.

44. David A. McGrew and John Viega. The security and performance of the Galois/Counter Mode (GCM) of
operation. In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT, volume 3348 of Lecture Notes
in Computer Science, pages 343–355. Springer, 2004.

45. Alfred Menezes, Paul Van Oorschot, and Scott Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.
46. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions. In Crypto,

2014. to appear.
47. Kazuhiko Minematsu, Stefan Lucks, and Tetsu Iwata. Improved Authenticity Bound of EAX, and Refinements.

In Willy Susilo and Reza Reyhanitabar, editors, ProvSec, volume 8209 of Lecture Notes in Computer Science,
pages 184–201. Springer, 2013.

48. Kazuhiko Minematsu, Hiraku Morita, and Tetsu Iwata. Cryptanalysis of EAXprime. IACR Cryptology ePrint
Archive, 2012:18, 2012.

49. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri, editor, ACM Confer-
ence on Computer and Communications Security, pages 98–107. ACM, 2002.

50. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In
Pil Joong Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer,
2004.

51. Phillip Rogaway, Mihir Bellare, and John Black. OCB: A block-cipher mode of operation for efficient authenti-
cated encryption. ACM Trans. Inf. Syst. Secur., 6(3):365–403, 2003.

52. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem. In Serge
Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 373–390. Springer,
2006.

53. Palash Sarkar. Pseudo-random functions and parallelizable modes of operations of a block cipher. IEEE Trans-
actions on Information Theory, 56(8):4025–4037, 2010.

54. Palash Sarkar. A simple and generic construction of authenticated encryption with associated data. ACM Trans.
Inf. Syst. Secur., 13(4):33, 2010.

55. Palash Sarkar. Modes of operations for encryption and authentication using stream ciphers supporting an ini-
tialisation vector. Cryptography and Communications - Discrete Structures, Boolean Functions and Sequences,
6(3):189–231, September 2014.

56. Victor Shoup. On fast and provably secure message authentication based on universal hashing. In Neal Koblitz,
editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 313–328. Springer, 1996.

57. Advanced Encryption Standard. Federal Information Processing Standard Publication 197, 2002. Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

58. American National Standard Protocol Specification For Interfacing to Data Communication Networks. ANSI
C12.22-2008, 2008.

59. Peng Wang, Dengguo Feng, and Wenling Wu. HCTR: A variable-input-length enciphering mode. In Dengguo
Feng, Dongdai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in Computer Science, pages
175–188. Springer, 2005.

60. Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set equality. J.
Comput. Syst. Sci., 22(3):265–279, 1981.

61. Doug Whiting, Russ Housley, and Niels Ferguson. Counter with CBC-MAC (CCM). available as http://csrc.

nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf, 2003.

A Notation and Terminology for the Security Proofs

Let f be a random function with domain X . A collision for f consists of two distinct x, x′ ∈ X
such that f(x) = f(x′). The function f is said to be ε-collision resistant (ε-CR) if, for any two
distinct x and x′, Pr[f(x) = f(x′)] ≤ ε. For certain types of functions, the upper bound may not be
a constant and would depend on the length of the inputs. This is captured as follows. The function
f is said to be ε-CR, if for any two distinct x and x′, Pr[f(x) = f(x′)] ≤ εmax(m,m′), where m
and m′ are respectively obtained from calls to Format(x) and Format(x′).

For the security analysis, we follow the approach used in [53]. The functions PAuth and the
associated authentication functions of the AEAD modes of operations have the following general
structure. Given an input x, a bijection π is applied to different strings; the final output of the
function is also the output of the invocation of π on some n-bit string Z. Let f denote the function
which maps x to π(Z), i.e., f(x) = π(Z) and let f1 denote the function which takes as input x and
produces Z, i.e., f1(x) = Z. So, f(x) = π(f1(x)). Following [53], this structure is formalised by the
next definition.

Definition 2. Let π : Y → Y be a uniform random bijection. A function f : X → Y is said to be a

domain extender for π if f = π ◦ f (π)1 , where f1 : X → Y and f1 satisfies the following conditions.

1. On any input, f1 invokes π a finite number of times.

2. The only randomness involved in computing f1 comes from the invocations of π.

When π is clear from the context, we will write f1 instead of f
(π)
1 .

Suppose f = π ◦ f (π)1 is applied to q distinct inputs x1, . . . , xq. This requires application of π to

different substrings. Suppose Zi = f
(π)
1 (xi) and f(xi) = π(Zi). The basic intuition to showing PRF

property is that Z1, . . . , Zq are distinct and “fresh”, i.e., they have not occurred as previous inputs to

π during the computations of f
(π)
1 on the inputs x1, . . . , xq. Then the outputs of π on Z1, . . . , Zq are

uniformly distributed and independent of all previous values and are also independent of each other.
As a result, these outputs are indistinguishable from the outputs of a uniform random function on
inputs x1, . . . , xq.

The actual analysis consists of determining the probability that Z1, . . . , Zq are distinct and
“fresh”. This amounts to considering collisions between these values and also between these values

and the inputs to π during the computations of f
(π)
1 on x1, . . . , xq. The collision analysis can be

broken down into simpler terms. We follow the approach used in [53].

Definition 3. Let π : Y → Y be a random bijection and f = π ◦ f (π)1 be a map from X to Y
satisfying Definition 2. For x, x′ ∈ X with x 6= x′, let Z = f1(x), Z ′ = f1(x

′); and let U1, . . . , Um
and U ′1, . . . , U

′
m′ be the inputs to the different invocations of π in the computation of f1(x) and

f1(x
′) respectively.

1. Define Self-Disjoint(x) to be the event
∧m
i=1(Z 6= Ui).

2. Define Pairwise-Disjoint(x, x′) to be the event
(∧m

i=1(Z
′ 6= Ui) ∧

∧m′
j=1(Z 6= U ′i)

)
.

Definition 4. Continuing with Definition 3, we say that f1 is (ε1, ε2)-disjoint, if for all pairs of
distinct x, x′ ∈ X ,

Pr[Self-Disjoint(x)] ≤ ε1(m+ 1) and Pr[Pairwise-Disjoint(x, x′)] ≤ ε2(m+m′ + 2).

The following result relates the collision probabilities to the PRF-advantage and follows directly
from Theorem 2 in [53].

Theorem 8. Let π : {0, 1}n → {0, 1}n be a uniform random permutation and f = π ◦ f (π)1 be a
map from X to Y satisfying Definition 2. Suppose that f1 is ε-CR and also (ε1, ε2)-disjoint. Then
for positive integers q and σ ≥ q

Adv
prf
f (q, σ) ≤ σ(qε+ ε1 + 2qε2) +

qσ

2n
.

B Analysis of PAuth

The proof is based on Theorem 8 which in turn is based on bounding the probabilities of certain
types of collisions.

For the analysis it is helpful to have a different description of PAuth. Let PAuthπ,fStr : P 7→ Cm
where γ = π(fStr), Ci = π(Di) for 1 ≤ i ≤ m and

Di =

P1 ⊕ Γγ,−1 i = m = 1, r < n;
P1 ⊕ Γγ,−2 i = m = 1, r = n;
Pi ⊕ Γγ,i m > 1, 1 ≤ i ≤ m− 1;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm m > 1, i = m, r = n;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Γγ,m m > 1, i = m, r < n.

(17)

Define the function PHash as PHashπ,fStr : P 7→ Dm. Then PAuthπ,fStr(P) = π(PHashπ,fStr(P)).
In computing Dm, PHashπ,fStr invokes π a total of m times: once on fStr and m − 1 times on
D1, . . . , Dm−1. To apply Theorem 8, we need to determine ε, ε1 and ε2 such that f1 is ε-CR and
(ε1, ε2)-disjoint. The following lemmas perform this task.

Lemma 1. Let x and x′ be two distinct messages and m and m′ are defined by Format respectively
for x and x′. Suppose x and x′ are mapped to Dm and D′m′ under PHash. Assume that m+m′−3 ≤
2n−1. Then Pr[Dm = D′m′] ≤ (m+m′)/2n ≤ 2 max(m,m′)/2n.

Proof : Assume without loss of generality that m ≥ m′. We start by assuming that both m and
m′ are greater than one. The case when at least one of them is one is considered later. There are
four cases depending on whether r and r′ are less than n or equal to n.

Case r = n, r′ = n: Since x 6= x′, let j be the first index such that either (1 ≤ j ≤ m′ and Pj 6= P ′j)
or (j = m′ + 1 and Pi = P ′i for 1 ≤ i ≤ m′).

If j = m = m′, then Pi = P ′i for 1 ≤ i ≤ m′ − 1 and so Ci = C ′i for 1 ≤ i ≤ m − 1. So,
Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm 6= C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m = D′m′ and Pr[Dm = D′m′] = 0.

If j = m = m′ + 1, then Pi = P ′i for 1 ≤ i ≤ m′ − 1 and so Ci = C ′i for 1 ≤ i ≤ m′ − 1. So,

Dm ⊕D′m′ = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′
= Cm−1 ⊕ Pm ⊕ P ′m′

Since Cm−1 is the output of π, it is uniformly distributed over {0, 1}n and hence, the last expression
is zero with probability 1/2n.

So, we can assume that either (m > m′ + 1, j = m′ + 1) or (1 ≤ j ≤ m′ and m >
m′). In either case, Dj = Γγ,j + Pj . We claim that with high probability Dj is different from

D1, . . . , Dj−1, Dj+1, . . . , Dm−1 and D′1, . . . , D
′
m′−1. To see this, first note that Di = Pi ⊕ Γγ,i,

1 ≤ i ≤ m− 1; and D′k = P ′k ⊕ Γγ,k, 1 ≤ k ≤ m′ − 1. Let E be the event

E :

m−1∧
i=1,

i 6=j

(Dj 6= Di)

 ∧
m′−1∧

i=1

(Dj 6= D′i)

 .
In other words, the event E happens when Dj is distinct from all other Di’s and is also distinct
from D′1, . . . , D

′
m′−1. We first show that E occurs with high probability.

Pr[E] = 1− Pr[E]

≥ 1−
m−1∑
i=1,

i 6=j

Pr[Dj = Di]−
m′−1∑
i=1

Pr[Dj = D′i].

If j < m′, then since Pj 6= P ′j , Dj = Pj ⊕ Γγ,j 6= P ′j ⊕ Γγ,j = D′j so that Pr[Dj = D′j] = 0. In all
other cases, the individual probabilities of either Dj = D′i or Dj = Di for i 6= j are 1/2n by the
properties of Γ given in Definition 1. So,

Pr[E] ≥
(

1− m+m′ − 3

2n

)
.

We have

Pr[Dm 6= D′m′] ≥ Pr[(Dm 6= D′m′) ∧ E]

= Pr[(Dm 6= D′m′)|E] Pr[E]

≥ Pr[(Dm 6= D′m′)|E]×
(

1− m+m′ − 3

2n

)
. (18)

Consider the event Dm 6= D′m′ conditioned upon the event E . Since π is a permutation and Dj is
distinct from all other Dis and D′1, . . . , D

′
m′−1, we have that Cj is distinct from all other Cis and

C ′1, . . . , C
′
m′−1.

Since r = r′ = n, we have

Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm
D′m′ = C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ .

Consider the set of random variables.

{C1, . . . , Cj−1, Cj+1, . . . , Cm−1, C
′
1, . . . , C

′
m′−1}.

Some of the random variables in this set can be equal. We are interested in a subset of random
variables taking equal values only if the number of elements in this subset is odd. Let there be t ≥ 0
such subsets and Q1, . . . , Qt be random variables where each Qi is the XOR of the random variables
in each subset. Note that t ≤ m+m′−3. So, Dm⊕D′m′ = 0 implies that Cj⊕Q1⊕. . .⊕Qt = Pm⊕P ′m′
for some t ≥ 0 and (Cj , Q1, . . . , Qt) is distributed uniformly over χt+1(Y).

1. If t = 0, then Pr[Dm 6= D′m′ |E] = Pr[Cj 6= Pm ⊕ P ′m′ |E] = (1− 1/2n).
2. If t = 1 and Pm = P ′m′ , then Pr[Dm 6= D′m′ |E] = Pr[Cj 6= Qt|E] = 1.
3. In all other cases, Pr[Dm 6= D′m′ |E] = Pr[Cj ⊕Q1 ⊕ · · · ⊕Qt 6= Pm ⊕ P ′m′ |E] ≥ 1− 1/(2n − t) ≥

1− 1/(2n − (m+m′ − 3)) ≥ 1− 2/2n (assuming m+m′ − 3 ≤ 2n−1).

Thus, the inequality, Pr[Dm 6= D′m′ |E] ≥ 1− 2/2n holds for all t.
From this and (18) we have Pr[Dm 6= D′m′] ≥ (1 − (m + m′ − 1)/2n) and so Pr[Dm = D′m′] ≤

(m+m′)/2n.

Case r < n, r′ < n: In this case, we have

Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Γγ,m
D′m′ = C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ Γγ,m′ .

If m = m′, then the terms involving the Γ ’s cancel out and the analysis is exactly the same as
that for the case r = r′ = n. (If r 6= r′, then Format ensures that the last blocks are distinct, i.e.,
Pm 6= P ′m′ . If Pm = P ′m′ (and so necessarily r = r′), then there is an i with 1 ≤ i ≤ m′ − 1, such
that Pi = P ′i .)

So suppose m > m′. Let E be the event that fStr is not equal to any of D1, . . . , Dm−1 or
D′1, . . . , D

′
m′−1. The probability of E is at least 1 − (m + m′ − 2)/2n. In a manner similar to the

previous case, it can be shown Pr[Dm 6= D′m′ |E] ≥ 1− 2/2n so that we again have Pr[Dm = D′m′] ≤
(m+m′)/2n.

Cases (r = n, r′ < n) and (r < n, r′ = n): Both the cases are similar and we consider only r = n
and r′ < n. In this case, we have

Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Γγ,m
D′m′ = C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ .

It is possible that m = m′ and Pi = P ′i for 1 ≤ i ≤ m even though x 6= x′. This happens when
x = pad(x′) 6= x′. Then, Dm ⊕D′m′ = Γγ,m which is equal to 0 with probability 1/2n. If m > m′ or
Pi 6= P ′i for some 1 ≤ i ≤ m′, then an analysis similar to the previous case shows the desired result.

Now we consider the case where at least one of m or m′ is equal to 1.

At least one of m or m′ is equal to 1. If m = m′ = 1 and r = r′ = n, then D1⊕D′1 = P1⊕P ′1.
By the condition that the queries must be distinct, it follows that P1 6= P ′1 and so the probability
that D1 equals D′1 is zero.

If m = m′ = 1 and r = n, r′ < n, then D1 ⊕D′1 = P1 ⊕ P ′1 ⊕ Γγ,−2 ⊕ Γγ,−1. By Definition 1, it
follows that the probability of this event is at most 1/2n.

If m′ = 1 and m > 1, then D′1 = P ′1 ⊕ Υ where Υ is Γγ,−1 if r′ < n and Υ is Γγ,−2 if r′ = n;
and Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Λ, where Λ is either 0n or Γm according as r = n or r < n.
These give rise to four cases and in all these four cases, the properties of the Γ ’s guaranteed by
Definition 1 ensure that Pr[Dm = D′1] ≤ 2m/2n. ut

The disjointness probabilities can be bound in a similar manner and is given by the following
result.

Lemma 2. Let x and x′ be two distinct messages having m and m′ blocks respectively. Then

1. Pr[Dm = D′i] ≤ 2/2n for 1 ≤ i ≤ m′ − 1;
2. Pr[Dm = Di] ≤ 2/2n for 1 ≤ i ≤ m− 1;
3. Pr[Dm = fStr] ≤ 1/2n.

Proof : First suppose m = 1. Then D1 = P1 ⊕ Γγ,−1 or D1 = P1 ⊕ Γγ,−2 according as r < n
or r = n. Point 3 follows from this. For 1 ≤ i ≤ m′ − 1, D′i = P ′i ⊕ Γγ,i. So from Definition 1,
Pr[D1 = D′i] ≤ 2/2n which proves Point 1. For m = 1, Point 2 is vacuous.

If m > 1, then Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm or Dm = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Γγ,m according
as r = n or r > n. A straightforward analysis now shows the result. ut

Consequently, Pr[Pairwise-Disjoint(x, x′)] ≤ (m+m′)/2n and Pr[Self-Disjoint(x)] ≤ 2m/2n. Using
Theorem 8 with ε = ε1 = ε2 = 2/2n gives Theorem 2.

C Security Arguments for the Authenticated Encryption Schemes

We first consider the analysis of PAE1. The analysis of PAE2 is similar and is briefly discussed later.
The analysis of PAE1 consists of two parts – analysis of privacy and that of authenticity.

C.1 Privacy of PAE1

Let A be a (q, σ)-adversary, i.e., A makes a total of q queries and provides a total of σ n-bit blocks
in all the queries. This also includes the n-bit blocks for the nonces. Recall that A is restricted to
be nonce-respecting, i.e., A cannot repeat a nonce.

The s-th query is of the form (N (s), P (s)) and gets back (C(s), tag(s)) where len(P (s)) = len(C(s)).

Note that the output of Format(P (s), n) is (P
(s)
1 , . . . , P

(s)

m(s)) and the output of Format(C(s), n) is

(C
(s)
1 , . . . , C

(s)

m(s)).

For 1 ≤ s ≤ q and 0 ≤ i ≤ m(s) + 1, define

A
(s)
i =

γ(s) if i = 0;

P
(s)
i ⊕ Γγ(s),i if 1 ≤ i ≤ m(s) − 1 and m(s) > 1;

P
(s)

m(s) ⊕ Γγ(s),m(s) if i = m(s),m(s) > 1 and r(s) = n;

P
(s)
1 ⊕ Γγ(s),−1 if i = m(s) = 1 and r(s) = n;

tmp(s) if i = m(s) and r(s) < n;

tag(s) if i = m(s) + 1.

B
(s)
i =

N (s) if i = 0;

C
(s)
i ⊕ Γγ(s),i if 1 ≤ i ≤ m(s) − 1 and m(s) > 1;

C
(s)

m(s) ⊕ Γγ(s),m(s) if i = m(s),m(s) > 1 and r(s) = n;

binn(r(s))⊕ Γγ(s),m(s) if i = m(s),m(s) > 1 and r(s) < n;

A
(s)
1 ⊕ · · · ⊕A

(s)

m(s)−1
⊕Γγ(s),1 ⊕ · · · ⊕ Γγ(s),m(s)−1 ⊕ C

(s)

m(s)

 if i = m(s) + 1,m(s) > 1 and r(s) = n;

A
(s)
1 ⊕ · · · ⊕A

(s)

m(s)−1
⊕Γγ(s),1 ⊕ · · · ⊕ Γγ(s),m(s)−1 ⊕ C

(s)

m(s) ⊕ Γγ(s),m(s)+1

 if i = m(s) + 1,m(s) > 1 and r(s) < n;

C
(s)
1 ⊕ Γγ(s),−1 if i = 1,m(s) = 1 and r(s) = n;

binn(r(s))⊕ Γγ(s),−1 if i = 1,m(s) = 1 and r(s) < n.

C
(s)
1 ⊕ Γγ(s),−3 if i = 2,m(s) = 1 and r(s) = n;

C
(s)
1 ⊕ Γγ(s),−2 if i = 2,m(s) = 1 and r(s) < n.

We define the following sets of random variables.

D(s) =
{
A

(s)
0 , . . . , A

(s)

m(s)+1

}
; R(s) =

{
B

(s)
0 , . . . , B

(s)

m(s)+1

}
;

D =
q⋃
s=1

D(s); R =
q⋃
s=1

R(s).

The number of elements in either of D or R equals
∑q
s=1(m

(s) + 2) ≤ σ + 2q. Note that σ is the
query complexity which is the total number of n-bit blocks provided by the adversary in all its
queries and so σ =

∑q
s=1(m

(s) + 1).

Assume that for any query, the quantities C
(s)
1 , . . . , C

(s)

m(s) , tag
(s) are chosen as follows:

1. C
(s)
1 , . . . , C

(s)

m(s)−1, tag
(s) are chosen uniformly at random and independent of previous choices.

2. Further, if r(s) = n, then C
(s)

m(s) is chosen uniformly and independently at random; if r(s) < n,

tmp(s) is chosen independently and uniformly at random and C
(s)

m(s) is set to Firstr(s)(Pm(s) ⊕
tmp(s)).

The quantities C
(s)
1 , . . . , C

(s)

m(s)−1, C
(s)

m(s) , tag
(s) are returned to the adversary. Let Coll(D) be the

event that two random variables in D take the same value and similarly define Coll(R). Further,
let Coll = Coll(D) ∨ Coll(R). As is standard, it is possible to show that

Adv(A) ≤ Pr[Coll].

The task now reduces to bounding the probability of Coll. Note that, γ(s) = π(N (s)). Since the
adversary is nonce-respecting, the values N (s) are distinct so that applying the uniform random
permutation π on these q values ensures that each γ(s) is uniformly distributed over IF and the joint
distribution of the γ(s)s is uniform over χq(IF). So, the probability that two of the Γ ’s are equal
is at most 1/(2n − 1) ≤ 1/2n−1. Further, Γγ(s),i = ψi(γ(s)), i.e., Γγ(s),i depends on the actual value

of the nonce N (s) provided in the s-th query. The properties of ψ from Definition 1 shows that for
1 ≤ i < j ≤ 2n − 2 and for any β ∈ IF, Pr[Γγ(s),i ⊕ Γγ(s),j = β] = 1/2n.

Using the randomness of the γ’s, the randomness of the C’s and the randomness of the tag’s, it
is possible to show that for any two elements in D, the probability that they are equal is at most
1/2n−1. This is a routine case analysis and is based on the properties of ψ given by Definition 1.
Since the number of elements in D is σ+ 2q, the probability of Coll(D) is at most (σ+ 2q)(σ+ 2q−
1)/(2× 2n−1). In a similar manner, the same bound on the probability of Coll(R) can be obtained
so that Pr[Coll] ≤ (σ + 2q)2/2n−1. This shows the privacy statement of PAE1 in Theorem 4.

C.2 Analysis of PAuth1

Scheme PAuth1 is similar to PAuth. We highlight the similarities and also the differences of the two
schemes in Table 24. The portions where PAuth1 differs from that of PAuth is marked by boxes.

Table 24. Descriptions of PAuth and PAuth1. The parameters m and r are defined by the call to Format(P, n).

PAuthπ,fStr(P):
1. (P1, . . . , Pm) = Format(P, n);
2. γ = π(fStr);
3. if (m = 1 and r < n) sum = P1 ⊕ Γγ,−1;
4. if (m = 1 and r = n) sum = P1 ⊕ Γγ,−2;
5. if (m > 1)
6. (C1, . . . , Cm−1)

= ecbπ(P1 ⊕ Γγ,1, . . . , Pm−1 ⊕ Γγ,m−1);
7. sum = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm;
8. if (r < n) then sum = sum⊕ Γγ,m;
9. end if;
10. tag = π(sum);
return tag.

PAuth1π,fStr(P):
1. (P1, . . . , Pm) = Format(P, n);
2. γ = π(fStr);

3. if (m = 1 and r < n) sum = P1 ⊕ Γγ,−2;

4. if (m = 1 and r = n) sum = P1 ⊕ Γγ,−3;

5. if (m > 1)
6. (C1, . . . , Cm−1)

= ecbπ(P1 ⊕ Γγ,1, . . . , Pm−1 ⊕ Γγ,m−1);
7. sum = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm;

8. if (r < n) then sum = sum⊕ Γγ,m+1;

9. end if;

10. tag = π(sum⊕ Γγ,1 ⊕ · · · ⊕ Γγ,m−1);

return tag.

It is easy to argue that the changes do not affect security. The changes are in the masking of the
last block. Let ξm = Γγ,1 ⊕ · · · ⊕ Γγ,m−1. In PAuth, padded last blocks are masked by Γγ,m+1 ⊕ ξm

instead of by Γγ,m as in PAuth; full last blocks are masked only by ξm while in PAuth they are not
masked at all. The following observations show that the collision analysis is not affected by these
changes.

1. The masking of single block messages changes from Γγ,−1 and Γγ,−2 to Γγ,−2 and Γγ,−3 respec-
tively. It is easy to argue that these changes do not affect the collision analysis with a single
block message when when the number of blocks in the other message is at most 2n−1.

2. Suppose the number of blocks in the messages are m and m′ and assume that both are greater
than 1.

(a) Consider the collision analysis of the last blocks. The structures of the last blocks are as
follows.

Dm =

{
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ ξm if r = n;
C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ Γm+1 ⊕ ξm if r < n;

D′m′ =

{
C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ ξm′ if r = n;
C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ Γm′+1 ⊕ ξm′ if r′ < n;

If m = m′, then the mask ξm is used to mask the last block of both messages and has no
effect on the collision analysis of the last block irrespective of whether they are padded or
full. Suppose m > m′. There are, as before, four cases for the values of r and r′. The point
here is that the probability of Dm being equal to D′m′ can be shown to be small without
involving the Γ s. We consider r = r′ = n, the consideration for the other three cases being
similar. In this case,

Dm ⊕D′m′ = C1 ⊕ · · · ⊕ Cm−1 ⊕ Pm ⊕ C ′1 ⊕ · · · ⊕ C ′m′−1 ⊕ P ′m′ ⊕ Υ
= Y ⊕ Υ

where Υ is the XOR of all the terms which depend on γ and Y is the other part. The analysis
of the distribution of Y is exactly the same as the case r = r′ = n in the proof of Lemma 1.
Further, Y does not depend on γ and hence Y and Υ are independent. This shows that
the collision analysis of the last blocks remain unaffected by the additional masking done in
PAuth.

(b) Now consider the collision analysis of a last block (with m > 1) and an internal block. In
this case also, it can be argued that the additional masking does not make any difference.

Note that it is possible that for some m, Γγ,m+1 ⊕ ξm = Γγ,m+1 ⊕ Γγ,1 ⊕ · · · ⊕ Γγ,m−1 is zero
even for a uniform random γ. This happens if the minimal polynomial τ(x) of ψ over IF2 divides
xm+1⊕xm−1⊕· · ·⊕x1. But, this fact does not affect the collision analysis which remains unchanged
from that of PAuth as argued above. In a nutshell, this happens because Γm+1 is used to rule out
collisions only when the number of blocks in the two messages are equal and the last block of one
is full while the last block of the other is partial. Since, the number of blocks in the two messages
are equal, ξms for both the messages are also equal and they cancel out leaving only Γγ,m+1. We
are then back to the analysis of PAuth.

By the above argument, the PRF-bound for PAuth given by Theorem 2 also holds for PAuth1.
This shows the statement about PAuth1 in Theorem 3. The case of PAuth2 is similar to above and
the bound for PAuth2 in Theorem 3 is obtained in the same way from the bound of PAuth.

C.3 Authenticity of PAE1

The authentication function associated with PAE1 is denoted by P̃AE1 which maps (N,Y) to tag
if there is an X such that PAE1 maps (N,X) to (Y, tag). The function Backward1 maps (N,Y) to
(X, tag) and the output of P̃AE1 is obtained by discarding the X.

The function PAuth1 is also defined using Backward1 as:

PAuth1π,fStr(Y) : (C, tag) = Backward1π(fStr, P); return tag.

This suggests that PAuth1 and P̃AE1 are very similar. They are not identical though. The
difference arises in the manner the first n-bit block is treated. In PAuth1, this is fixed to the string
fStr, whereas, in P̃AE1 this is part of the input. A consequence of this difference is that the domain
of PAuth1 consists of strings of lengths greater than or equal to 0, whereas, the domain of P̃AE1
consists of strings of lengths greater than or equal to n.

Nevertheless, it is easy to argue that P̃AE1 is also a PRF. The basic idea for the collision analysis
is the following. The masks are generated from γ which is obtained by applying π−1 to the first
n-bit block. If the first blocks of two different queries are equal, then γ = γ′ and the collision
analysis is exactly the same as that for PAuth1. On the other hand, if the first blocks are unequal,
then (γ, γ′) is uniformly distributed over χ2({0, 1}n). As a result, the collision analysis between the
internal variables corresponding to the two queries becomes easier: two such variables are equal
with probability 1/2n. Due to this, the PRF-bound for PAuth1 given by Theorem 3 also holds for
P̃AE1.

Theorem 9. Let q and σ ≥ q be positive integers. Then

Adv
prf

P̃AE1
(q, σ) ≤ (7q + 2)σ

2n
. (19)

For 1 ≤ t ≤ n, let t-PAE1 denote the AE function obtained from PAE1 by truncating the tag to
(the first) t bits. So, n-PAE1 is in fact PAE1. The privacy bounds for t-PAE1 and t-PAE1main are
the same as that of PAE1. Using Proposition 1, we have

Advae-auth
t-PAE1 (q, σ) ≤ 1

2t
+ Adv

prf

t-PAE1main(q, σ) + Adv
prf

P̃AE1
(q, σ).

The statement about authenticity of PAE1 in Theorem 4 follows this and Theorem 9.

C.4 Analysis of PAE2

The privacy of PAE2 follows in a manner similar to that of PAE1 and the same bound holds.
Following our approach of authentication analysis, we need to study the PRF-property of P̃AE2.
Note that P̃AE2 uses both π and π−1 which is unlike P̃AE1 which uses only π−1.

The differences between P̃AE1 and P̃AE2 are in the use π instead of π−1 at certain steps. For
producing the masks γ it does not matter whether π or π−1 is applied. For the two functions, tag is
produced by applying π−1 or π. This also does not cause any additional difficulty. In each case, the
argument boils down to showing that the different values of sum⊕ Γγ,1 ⊕ · · · ⊕ Γγ,m−1 are distinct
and are also different from the different values of Ci⊕Γγ,i. This analysis remains the same for both
algorithms and so we omit the details. The bounds for PAE2 are the same as that of PAE1 as stated
in Theorem 4.

D Security Arguments for the AEAD Schemes

Privacy of PAEAD1 as stated in Theorem 5 is easy to obtain and the analysis is similar to that
of PAE1. Similarly, the privacy of PAEAD2 stated in Theorem 5 follows easily from the privacy of
PAE2.

Before getting into the analysis of authenticity of the AEAD schemes, we make a brief digression
to take a closer look at the security requirements of the associated authentication function of an
AE scheme.

D.1 PRF Against Almost Nonce-Respecting Adversaries

Let f be an AE function and consider f̃ . An adversary attacking the PRF property of f̃ has
only one restriction on the queries, namely, two queries (N (s), Y (s)) and (N (t), Y (t)) cannot be the
same. Now suppose, that the following additional restriction is made: for 1 ≤ s < t ≤ q − 1,
N (s) 6= N (t). Note that there is no restriction on N (q) which may or may not be equal to one of
N (s) for 1 ≤ s ≤ q−1. Adversaries of the above type will be called almost nonce-respecting (ANR).
(If the restriction of distinctness is also imposed on N (q), then the adversary is nonce-respecting.)
The ANR-PRF-advantage of f with respect to an almost nonce-respecting adversary A is defined
to be

Adv
anr-prf
f (A) = Pr[Af ⇒ 1]− Pr[Af∗ ⇒ 1]. (20)

The resource bounded advantage is defined as usual to be Adv
anr-prf
f (q, σ). In the definition of

authentication security of an AE function, an adversary is actually restricted to be ANR. In view
of this, the following weaker version of Proposition 1 can be obtained.

Proposition 3. Given an AE-function f , define another AE function h as follows: h(N,X) =
(Y, g(tag)), where f(N,X) = (Y, tag) and g : {0, 1}n → {0, 1}t is a regular function. Then

Advae-auth
h (q, σ) ≤ 1

2t
+ Adv

priv

fmain(q, σ) + Adv
anr-prf

f̃
(q, σ).

Suppose f1 : N×X → {0, 1}n and f2 : H → {0, 1}n are independent random functions. Consider

the function f3 : N ×H × X → {0, 1}n defined as f3(N,H,X)
∆
= f1(N,X) ⊕ f2(H). Since f1 and

f2 are independent functions, it is easy to show that

Adv
prf
f3

(q, σ) ≤Adv
prf
f1

(q, σ) + Adv
prf
f2

(q, σ). (21)

Now consider the following more complicated scenario. Let

S = (N ×X)
⋃

(N ×H×X)

and consider a function f4 : S → {0, 1}n defined as follows:

f4(N,X) = f1(N,X);

f4(N,H,X) = f3(N,H,X) = f1(N,X)⊕ f2(H).

The f4 so defined is not a PRF and is easily demonstrated by four queries:

1. (N (1), X(1)) returning Y (1) = f1(N
(1), X(1));

2. (N (1), H(1), X(1)) returning Y (2) = f1(N
(1), X(1))⊕ f2(H(1));

3. (N (2), X(2)) with (N (2), X(2)) 6= (N (1), X(1)), returning Y (3) = f1(N
(2), X(2));

4. (N (2), H(1), X(2)) returning Y (4) = f1(N
(2), X(2))⊕ f2(H(1)).

Then f2(H
(1)) = Y (1) ⊕ Y (2) = Y (3) ⊕ Y (4) showing that f4 is not a PRF. The problem arises

due to the fact that it is allowed to query f4 on (N (1), X(1)), (N (1), H(1), X(1)) and (N (2), X(2)),
(N (2), H(1), X(2)). Such an adversary is certainly not nonce-respecting and since two nonces have
been repeated, it is also not almost nonce-respecting. The following, however, can be proved.

Proposition 4. Let σ ≥ q ≥ 1. Then

Adv
anr-prf
f4

(q, σ) ≤Adv
prf
f1

(q, σ) + Adv
prf
f2

(q, σ). (22)

Proof : We provide the main idea of the proof. If the adversary never repeats a nonce, then the
analysis is the same as that for two independent PRFs with different input spaces. So, suppose
that the adversary repeats a nonce. Under the almost nonce-respecting restriction, only one nonce
can be repeated. Let this nonce be N and the corresponding queries be (N,M,H) and (N,M1, H1)
with the condition that (N,M,H) 6= (N,M1, H1). If M 6= M1, then the pair (N,M) 6= (N,M1)
and since the nonce is different from all the other nonces, the nonce-message pairs are all different.
From the PRF-property of f1, it follows that the outputs of f4 will appear to be independent and
uniformly distributed.

So, suppose that M = M1 and we consider the two queries (N,M,H) and (N,M,H1). The
nonces of all other queries will be distinct from N and so the outputs of f1 on these queries will be
independent of the output of f1 on (N,M). As a result, the outputs of f4 on all queries other than
(N,M,H) and (N,M,H1) will be independent of the output of f4 on these two queries. So, it is
sufficient to argue that the outputs of f4 on these two queries will be independent. Since queries
cannot be repeated, we have (N,M,H) 6= (N,M,H1) which implies H 6= H1. As a result, the
outputs of f2 on H and H1 are independent which shows that the outputs of f4 on (N,M,H) and
(N,M,H1) are also independent.

The above argument can be formalised in a standard manner. ut
In other words, if we restrict to almost nonce-respecting adversaries, then the ANR-PRF-bound

for f4 is upper bounded by the sum of the PRF-bounds for f1 and f2. From Proposition 3, this is
sufficient to reason about the authentication security of an AE function.

D.2 Analysis of the AEAD Schemes

For authentication, we need to consider the function ˜PAEAD1. Let PAEAD1π,fStr(N,H,P) = (C, tag)
and υ = π−1(fStr). Then from the definition of PAEAD1, the following holds.

• If H is null, then

˜PAEAD1π,fStr(N,H,P) = P̃AE1π(N,P). (23)

• If H is not null, then

˜PAEAD1π,fStr(N,H,P) = P̃AE1π(N,C)⊕ PAuth1π−1,υ(H). (24)

Similar equations can be written for PAEAD2.
The functions PAuth1 and P̃AE1 are both PRFs. However, they are not independent functions

since the same π−1 is used for both of them. We will see how to tackle this difficulty a bit later and
for the moment suppose that these are independent. Then using (22), we get a upper bound on the

ANR-PRF-advantage of ˜PAEAD1. Using Proposition 3 this is sufficient to show the authentication
security bound of t-PAEAD.

Now we turn to the issue of how to tackle the non-independence of PAuth1 and P̃AE1. Let E
be the event that the set of inputs to π−1 in PAuth1 is disjoint from the set of inputs to π−1 in
P̃AE1. (Consequently, the set of inputs to π in PAuth1 will also be disjoint from the set of inputs
to π in P̃AE1.) Then the PRF bounds for the individual functions would hold and using standard
arguments we obtain

Adv
anr-prf˜PAEAD1

(q, σ) ≤Adv
prf

P̃AE1
(q, σ) + Adv

prf
PAuth1(q, σ) + Pr[E]. (25)

Proposition 3 gives

Advaead-auth
t-PAEAD1 (q, σ) ≤ 1

2t
+ Adv

priv

PAEAD1main(q, σ) + Adv
anr-prf˜PAEAD1

(q, σ)

≤ 1

2t
+ Adv

priv

PAEAD1main(q, σ)

+Adv
prf

P̃AE1
(q, σ) + Adv

prf
PAuth1(q, σ) + Pr[E]. (26)

The task, thus, reduces to bounding Pr[E]. The event E represents the separation of the inputs for
π−1 in the message and header part. In the P̃AE1 part, the masks are obtained from γ which is
obtained as π−1(N). On the other hand, in the PAuth1 part the masks are obtained from π−1(υ) =
π−1(π−1(fStr)). Since, the probability that N is equal to π−1(fStr) is 1/2n, we obtain an effective
separation of the masks. We consider this in more details.

First consider the inputs and outputs to π−1 determined by ˜PAEADπ−1(N (s), C(s)). For the

s-th query, let A
(s)
i and B

(s)
i (1 ≤ i ≤ m(s)) be the different inputs and outputs to π, so that

π−1(B
(s)
i) = A

(s)
i . The expressions for A

(s)
i and B

(s)
i are given in Section C.1. Note that each B

(s)
i

(other than the nonce) is masked with the XOR of one or more of the Γγ(s),is.

Next consider the inputs and outputs to π−1 determined by PAuth1π−1(υ,H(s)). Such calls are
made only if H(s) is non-null. Let the number of n-bit blocks in H(s) be k(s) and let the length of

the last block before padding be p(s). Denote the blocks as H
(s)
1 , . . . ,H

(s)

k(s)
. These blocks are the

output of Format(H(s), n) which also defines the values of k(s) and p(s). Let T
(s)
i = π−1(H

(s)
i) for

1 ≤ i ≤ k(s) − 1; and let PAuth1π−1(υ,H(s)) be denoted by htag(s).
Let ω = π−1(υ) and Ωi = ψi(ω). Since fStr does not depend on the queries, neither do the Ωi’s

or υ. For 1 ≤ s ≤ q, if H(s) is non-null, then let E
(s)
i for 1 ≤ i ≤ k(s) be the different inputs to π

and F
(s)
i be the different outputs of π (and so are inputs to π−1), i.e., π(E

(s)
i) = F

(s)
i . The different

F
(s)
i s are as follows.

H
(s)
1 ⊕ Γγ(s),−1 if (k(s) = 1 and p(s) < n);

H
(s)
1 ⊕ Γγ(s),−2 if (k(s) = 1 and p(s) = n);

H
(s)
1 ⊕ Γγ(s),1, . . . ,H

(s)
ks−1 ⊕ Γγ(s),k(s)−1,

E
(s)
1 ⊕ · · · ⊕ E

(s)
ks−1 ⊕H

(s)

m(s)

}
if (k(s) > 1 and p(s) = n);

H
(s)
1 ⊕ Γγ(s),1, . . . ,H

(s)
ks−1 ⊕ Γγ(s),k(s)−1,

E
(s)
1 ⊕ · · · ⊕ E

(s)
ks−1 ⊕H

(s)

k(s)
⊕ Γγ(s),k(s)

}
if (k(s) > 1 and p(s) < n).

We are interested in the event E which holds if one of the following occur.

1. Some B
(t)
j is equal to some F

(s)

k(s)
, where k(s) > 1 and p(n) = n.

2. Some B
(t)
j is equal to some F

(s)
i ,

3. Some B
(t)
j is equal to either υ or ω.

Each B
(t)
j (other than the nonce) has a component which is either δ(t), or Γγ(t),j or a XOR of

some of the Γ ’s. For a fixed j, Γγ(t),j uniquely determines γ(t). Similarly, for a fixed i, Ωi uniquely
determines ω. Here both i and j are greater than 1.

Consider the event Γγ(t),j = υ, i.e., ψj(γ) = υ. If N (t) = fStr, then γ(t) = υ; since j ≥ 1, from

Definition 1, we have Pr[ψj(γ(t)) = υ] = 1/2n. If N (t) 6= fStr, then since γ(t) = π−1(N (t)) and
υ = π−1(fStr), the pair (γ(t), υ) is uniformly distributed over χ2(IF). Again from Definition 1, it
follows that Pr[ψj(γ(t)) = υ] = 1/(2n − 1). So, in both cases, Pr[Γγ(t),j = υ] ≤ 1/(2n − 1).

Now consider the event Γγ(t),j = ω, i.e., ψj(γ(t)) = ω. The analysis is similar, the difference

being that in this case ω = π−1(υ) and so the event N (t) = υ holds with probability 1/2n. Using
this it is possible to show that Pr[Γγ(t),j = υ] ≤ 1/2n−1. A similar analysis holds for the event
Γγ(t),j = Ωi.

These show that the events in Points 2 and 3 above hold with probability at most 1/2n−1. For

the event in Point 1, F
(s)

k(s)
= E

(s)
1 ⊕ · · · ⊕ E

(s)
ks−1 ⊕H

(s)

m(s) . Since k(s) > 1, there is at least one E
(s)
i

in the expression for F
(s)

k(s)
. The probability that this is equal to Γγ(t),j can again be shown to be

bounded above by 1/2n−1. So, the event in Point 1 also holds with probability at most 1/2n−1.

As a result of this analysis, we obtain Pr[E] ≤ σHσP /2
n−1 ≤ σ2/2n−1. This leads to the

authenticity bounds for PAEAD1 in Theorem 5. The authenticity bounds for PAEAD2 in Theorem 5
are obtained in a similar manner.

The security bounds for the privacy and authenticity of
−−−−−→
PAEAD1 and

−−−−−→
PAEAD2 are the same as

that for PAEAD1 and PAEAD2 with an additional degradation of q(q−1)/2 which arises due to the
use of the vector input versions of PAuth1 and PAuth2.

E Analysis of Deterministic Authenticated Encryption with Associated Data

The analysis of privacy of DAE is similar to that of the PAEAD schemes. There are some differences
in the descriptions of the internal variables arising due to the difference in the core encryption modes
of the schemes. This, however, does not cause any problem and the privacy bounds for DAE and
DAEAD given in Theorem 7 are the same as that of PAEAD1.

The analysis of authenticity proceeds along the lines similar to the analysis of authenticity of
the PAEAD schemes. We describe this below for DAEAD the case of DAE being similar and simpler.

For notational convenience, let us denote DAEADπ,fStr as E, where the randomness of E arises

from that of π. The adversary makes a total of (q−1) encryption queries (
−→
H

(1)
, P (1)), . . . , (

−→
H

(q−1)
, P (q−1))

obtaining in response (C(1), tag(1)), . . . , (C(q−1), tag(q−1)) respectively and finally outputs a forgery

(
−→
H,C, tag). By definition, the triplet (

−→
H,C, tag) is not equal to (

−→
H

(s)
, C(s), tag(s)) for s = 1, . . . , q−

1.

The decryption algorithm implicitly defines a P from the forgery triplet (
−→
H,C, tag). We claim

that the pair (
−→
H,P) is not equal to (

−→
H

(s)
, P (s)) for s = 1, . . . , q. This can be seen as follows.

Suppose (C, tag) = (C(s), tag(s)), then the condition (
−→
H,C, tag) 6= (

−→
H

(s)
, C(s), tag(s)) forces

−→
H 6=

−→
H

(s)
and so (

−→
H,P) 6= (

−→
H

(s)
, P (s)). So suppose (C, tag) 6= (C(s), tag(s)): if

−→
H 6= −→H (s)

, then again

(
−→
H,P) 6= (

−→
H

(s)
, P (s)); so, further suppose that

−→
H =

−→
H

(s)
. If P = P (s), then it necessarily follows

that (C, tag) = (C(s), tag(s)) which contradicts the hypothesis. So, P 6= P (s) implying (
−→
H,P) 6=

(
−→
H

(s)
, P (s)).

The decryption algorithm of DAEAD produces tag1 from (
−→
H,P) and this is compared to tag pro-

vided as part of the forgery attempt. In light of the above discussion, the tags tag(1), . . . , tag(q−1), tag1

are produced as the output of
−−−→
PAuth on the distinct inputs (

−→
H

(1)
, P (1)), . . . , (

−→
H

(q−1)
, P (q−1)), (

−→
H,P).

Assuming that
−−−→
PAuth is a PRF, tag(1), . . . , tag(q−1), tag1 are independently and uniformly dis-

tributed and so the probability that tag1 is equal to tag provided in the forgery attempt is 1/2n.
Formalising this argument in a standard manner provides the authenticity bound for DAEAD in
Theorem 7.

