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Abstract

In this paper, we present an efficient k-out-of-n secret sharing scheme, which can
identify up to t rushing cheaters, with probability at least 1 − ε, where 0 < ε < 1/2,
provided t < k/2. This is the optimal number of cheaters that can be tolerated in the
setting of public cheater identification, on which we focus in this work. In our scheme,

the set of all possible shares Vi satisfies the condition that |Vi| = (t+1)2n+k−3|S|
ε2n+k−3 , where S

denotes the set of all possible secrets. In PODC-2012, Ashish Choudhury came up with an
efficient t-cheater identifiable k-out-of-n secret sharing scheme, which was a solution of
an open problem proposed by Satoshi Obana in EUROCRYPT-2011. The share size, with
respect to a secret consisting of one field element, of Choudhury’s proposal in PODC-2012

is |Vi| = (t+1)3n|S|
ε3n . Therefore, our scheme presents an improvement in share size over

the above construction. Hence, to the best of our knowledge, our proposal currently has
the minimal share size among existing efficient schemes with optimal cheater resilience,
in the case of a single secret.

Keywords : cheater identifiable secret sharing, share size, rushing adversary.

1 Introduction:

According to Time Magazine, May 4, 1992, control of nuclear weapons in Russia involves a
two-out-of-three mechanism. In order to launch a nuclear missile, the cooperation of at least
two parties out of three is needed. The three parties involved are the President, the Defence
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Minister and the Defence Ministry. A similar situation may occur in a bank. There are many
such instances in today’s open system environment. In the open system environment, it is
important to restrict access of confidential information in the system or on certain nodes in
the system. Access is gained through a key, password or token and governed by a secure key
management scheme. If the key or the password is shared among several participants in such
a way that it can be reconstructed only by a significantly large and responsible group acting
in agreement, then a high degree of security is attained.

Shamir [22] and Blakley [3] independently addressed this problem in 1979 when they
introduced the concept of a threshold secret sharing scheme. A (k, n) threshold scheme is
a method where n pieces of information of the secret, called shares are distributed to n
participants so that the secret can be reconstructed from the knowledge of any k or more
shares and the secret cannot be reconstructed from the knowledge of fewer than k shares,
where k ≤ n. More formally, in a secret sharing scheme, there exists a set of n parties,
denoted by P = {P1, . . . , Pn} and a special party called the dealer, denoted by D. A (k, n)
threshold secret sharing scheme consists of two phases:

1. Sharing Phase: During this phase, the dealer D shares the secret among the n par-
ticipants. In this phase the dealer sends some information, known as share, to each
participant.

2. Reconstruction Phase: In this phase, a set of parties (of size at least k) pool their
shares to reconstruct the secret.

In the sharing phase dealer wants to share the secret in such a way that satisfies the
following two conditions:

1. Correctness: Any set of k or more parties can reconstruct the secret by pooling their
shares.

2. Secrecy: Any set of (k−1) or less participants can not reconstruct the secret. Moreover,
for perfect secrecy, any set of (k − 1) or less participants will have no information
regarding the secret.

In a secret sharing scheme, it is assumed that everyone involved with the protocol is hon-
est or semi honest. But for the real life scenario, this assumption may not hold well. It may
happen that some participants behave maliciously during the execution of the protocol. Mali-
cious participants may submit incorrect shares resulting in incorrect secret. This observation
led to some interesting protocols viz. secret sharing scheme with cheating detection, secret
sharing scheme with cheating identification, robust secret sharing scheme, verifiable secret
sharing scheme.

Tompa and Woll [23] first presented a cheater detecting secret sharing scheme. This work
is followed by several other works (for example, [1], [2], [9], [5], [18], [20]). However, all these
schemes can only detect cheating, without identifying the exact identity of the cheaters, who
submitted incorrect shares.

McElice and Sarwate [16] were the first to point out cheater identification in secret sharing
schemes. There was a shortcoming that to identify the cheaters, more than k participants
are required in the reconstruction phase of a (k, n) threshold secret sharing scheme. The
question is whether the cheater identification is possible or not with the minimum number of
shares (namely k), which are required to reconstruct the secret. Secret Sharing with Cheater
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Identification (SSCI) is the answer to this question, and it is the main focus of our paper.
More specifically, in the setting of public cheater identification [17], we propose an SSCI with
reduced share size, compared to existing SSCI schemes, while retaining efficiency and optimal
resiliency.

In another variant called robust secret sharing [4, 8, 9], the main goal is to ensure successful
reconstruction of a correct secret (possibly from more than a threshold of k shares), while
disregarding identities of the cheaters.

In this work, we assume the dealer to be honest. The case of (possibly) dishonest dealer is
handled by verifiable secret sharing [10]. For more information on adversary models in secret
sharing see [15].

There are two types of cheater identification in secret sharing: private as e.g. in [21, 6, 19]
and public as e.g. in [14, 17, 7, 26]. A reconstruction algorithm of SSCI with public cheater
identification can be run by an external entity. This is an essential advantage of SSCI with
public cheater identification over those with private one. However, SSCI with public cheater
identification is only possible for the case of honest majority [14, 17], while for the case of
SSCI with private cheater identification honest majority is not required [12]. In this work, we
only deal with public cheater identification.

1.1 The State of the Art and Our Results

It has been proved in [14] and [17] that an SSCI scheme with public cheater identification,
capable of identifying up to t cheaters, is possible if and only if t < k/2. So, any publicly
cheater identifiable SSCI scheme with k = 2t+ 1 is said to be optimal cheater resilient. The
lower bound [14] on the share size |Vi| of such schemes is |Vi| ≥ |S|−1ε + 1. We summarize the
properties of existing SSCI schemes with public cheater identification in Table 1.

Table 1: Comparison of Our Proposal to Existing SSCI schemes.

Scheme #Cheaters Share Size Efficiency Rushing

[14] t < k/3 |Vi| = |S|/εt+2 Yes No
[17] t < k/3 |Vi| = |S|/ε Yes No
[17] t < k/2 |Vi| ≈ (n.(t+ 1).23t−1|S|)/ε No No
[17] t < k/2 |Vi| ≈ ((n.(t+ 1).23t)2|S|)/ε No No
[7] t < k/2 |Vi| = (t+ 1)3n|S|/ε3n Yes Yes
[26] t < k/3 |Vi| = |S|/εn−t+1 Yes Yes

Proposed t < k/2 |Vi| = (t+ 1)2n+k−3|S|/ε2n+k−3 Yes Yes

In [17], two publicly cheater identifiable SSCI schemes with optimal cheater resilience were
proposed, however, both of them were inefficient. Choudhury [7] came up with an efficient
solution, but the scheme in [7] deals with multiple secrets. In the case of a single secret, the
scheme of [7] is not optimal. In Table 1, we provide the share size of [7] with respect to a single
secret, for a fair comparison with our scheme. We can see that the open question is to fill the
gap between the optimal share size and that of the existing schemes when a single secret is to
be shared. One improvement came from Xu et al. [26] but they did not achieve the optimal
share size. Moreover, their scheme is not an optimal cheater resilient as it tolerates t < k/3
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cheaters. We provide an SSCI scheme with better share size than [7] with optimal cheater
resilience. To the best of our knowledge, the proposed scheme is the most efficient optimal
cheater resilience scheme with respect to the share size.

2 t-Cheater Identifiable (k, n) Threshold Schemes

2.1 Secret Sharing with Cheater Identification (SSCI)

In the model of SSCI, there exists a set of n parties, denoted by P = {P1, . . . , Pn} and a
special party called the dealer, denoted by D. There exist two different centralized adversaries,
denoted by ALis and ACheat, respectively. The adversary ALis is a static, computationally
unbounded, rushing, passive adversary, who can control any (k−1) out of the n parties. On the
other hand, the adversary ACheat is a static, computationally unbounded, rushing, malicious
adversary, who can control any t out of the n parties. By being rushing we mean that the
adversary can observe the information sent by all the honest players at each communication
round, prior to deciding on his own messages. It is also assumed that ALis does not cooperate
with ACheat. This implies that ACheat will not get any information about the computation
and communication of the parties, which may be under the control of ALis, but not under
the control of ACheat. Similarly, ALis will not get any information about the computation
and communication of the parties, which may be under the control of ACheat, but not under
the control of ALis.

Any SSCI scheme consists of the following two phases [7]:

1. Sharing Phase: During this phase, D takes the secret s and generates n shares for
the secret, denoted by V1, . . . , Vn and assigns Vi to the party Pi.

2. Reconstruction Phase: During this phase, a set of m parties, where m ≥ k, publicly
produce their shares to reconstruct the secret. These m parties can be any m parties
out of the n parties.

• Then a cheating identification algorithm is publicly applied on the m shares pro-
duced by the m parties to identify the invalid shares.

• Let L be the set of parties who are identified to be the cheaters by the cheater
identification algorithm.

– If (m− |L|) ≥ k, then a publicly known reconstruction function, called Rec, is
applied on the shares produced by the parties not in L, to reconstruct a secret
s′. Finally, s′ and L are the outputs of the reconstruction phase.

– If (m− |L|) < k, then ⊥ and L are the outputs of the reconstruction phase.

We require an SSCI scheme to satisfy the following properties [7]:

• Perfect Secrecy: At the end of the sharing phase, the adversary ALis should not get
any information about the secret s (in information-theoretic sense) from the shares of
the parties (at most (k − 1)) under its control.

• Correctness: During the reconstruction phase, if any party Pi is under the control of
ACheat and produces incorrect share V ′i 6= Vi, then except with error probability ε, Pi
will be identified as a cheater and will be included in the set L.
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2.2 Communication Model

Communication model assumes that the dealer and the participants are pairwise connected
by a private and authenticated channel. We further assume that a common broadcast channel
is also available to every participant and the dealer.

2.3 Cheater Identification and Share Authentication

Let the dealer D share the secret s with the help of a polynomial f(x) of degree at most
(k − 1) as in Shamir scheme [22]. Then the share of a player Pi is just f(αi), where αi
is a publicly known non-zero field element. Now, if there are some malicious participants,
who may modify the original share at the time of reconstruction, then correctness will not
hold and there will be no option for cheating identification. Therefore, the dealer should
generate some authentication information by which each participant can check consistency
of the share of other participants. Suppose, Pj wants to verify the share of Pi. For this
verification, at the sharing phase the dealer randomly chooses an authentication key kj,i,
computes the authentication tag τj,i and privately sends the key kj,i to Pj so that the later
can verify authenticity of Pi’s share.

Denote by di,0 the Shamir share for player Pi, and use the authentication code (MAC :
M×K → T ,M = F,K = F × F, and T = F, where F is a finite field) [24, 25, 13]. In
particular, for every pair of players Pi and Pj , Pi’s Shamir share di,0 is authenticated with an
authentication tag τi,j , where the corresponding authentication key kj,i is held by player Pj .
Specifically, choose kj,i = (gj,i, bj,i) randomly from F× F and compute τj,i = di,0gj,i + bj,i.

In fact, this method was used by Rabin and Ben-Or [21], but Carpentieri [6] observed that
the authentication code can be used more cleverly. Instead of first choosing the authentication
key and then calculating the authentication tag, one can first fix the authentication tag and
then find the authentication key. The intention for such the reversion of the authentication
protocol is to compress the authentication tags. In Rabin and Ben-Or setting, each player
will get n − 1 keys and n − 1 tags for pair-wise authentication. By using the above trick,
one can, instead of sending n − 1 tags to each player, send a seed ci to player Pi. Then,
the necessary authentication tags will be generated from the seed ci together with some
public information. In fact, the seed for Pi is ci = (di,1, . . . , di,k−1), where di,j for j ∈
{1, . . . , k− 1} is randomly chosen from F and the authentication tag of Pi against Pj ’s key is
τi,j = αidj,1 + α2

i dj,2 + · · ·+ αk−1i dj,k−1. Compared to the setting of Rabin and Ben-Or, each
player now gets a seed of k − 1 field elements from which the n − 1 authentication tags are
generated. Thus, the share size of each player is reduced by n− k filed elements.

3 Proposed Optimal Cheater Resilient (t < k/2) SSCI scheme
with Public Cheater Identification

3.1 High-Level Idea

We first observe that Choudhury’s scheme [7] in the case of single secret can be considered as
an adaptation of the Rabin and Ben-Or [21] scheme to the case of public cheater identification
(against rushing adversary). Next, we recall that Carpentieri [6] presented a method to reduce
the overhead need for authentication in the Rabin and Ben-Or scheme as described in the
previous section. In our proposal, we use the share authentication method derived from that
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of Carpentieri by adapting the latter to the case of public cheater identification and rushing
adversary.

3.2 Our Proposal

• Initialization: For i = 1, . . . , n, let the distinct elements αi ∈ F \ {0} be fixed and
public, where F is a finite field..

• Sharing Phase:

– The dealer D chooses randomly a polynomial f(x) of degree at most (k − 1) in x
from F[X] such that f(0) = s, where s is the secret to be shared. Also, the dealer
D computes f(αi) = di,0, where i = 1, . . . , n.

– The dealer D chooses randomly di,1, . . . , di,k−1 and gi,j from F, where j = 1, . . . , i−
1, i+ 1, . . . , n and i = 1, . . . , n. The dealer computes bi,j = αidj,1 + α2

i dj,2 + . . .+
αk−1i dj,k−1 − gi,jdj,0, where j = 1, . . . , i− 1, i+ 1, . . . , n and i = 1, . . . , n.

– D sends each Pi the share Vi = (di,0, . . . , di,k−1, gi,1, . . . , gi,i−1, gi,i+1, . . . , gi,n, bi,1, . . . ,
bi,i−1, bi,i+1, . . . , bi,n).

• Reconstruction Phase: Denote the set of m (≥ k) participants taking part in the
reconstruction as core.

– Round 1: Each Pi ∈ core broadcasts d′i,0, d
′
i,1, . . . , d

′
i,k−1.

– Round 2: Each Pi ∈ core broadcasts (g′i,1, . . . , g
′
i,i−1, g

′
i,i+1, . . . , g

′
i,n, b

′
i,1, . . . , b

′
i,i−1,

b′i,i+1, . . . , b
′
i,n).

– Local Computation: For each Pi ∈ core computes supporti = {Pj : αjd
′
i,1 +

α2
jd
′
i,2 + . . .+ αk−1j d′i,k−1 = g′j,id

′
i,0 + b′j,i&Pj ∈ core} ∪ {Pi}.

If |supporti| < t+ 1, then put Pi in L, where L is the list of the cheaters.

∗ If m − |L| ≥ k : Using d′i,0 for all Pi ∈ core \ L, interpolate a poly f ′(x). If
degree of f ′(x) is less or equal to k, output (f ′(0), L) otherwise output (⊥, L).

∗ If m− |L| < k : Output (⊥, L).

Theorem 3.1. The above scheme provides perfect secrecy. That is, any adversary ALis
controlling any (k − 1) parties during the sharing phase, will get no information about the
secret s.

Proof. The dealer D shares the secret s through a polynomial f(x), where the degree of the
polynomial is at most (k − 1) in x, and the share of each Pi is Vi = (di,0, . . . , di,k−1, gi,1, . . . ,
gi,i−1, gi,i+1, . . . , gi,n, bi,1, . . . , bi,i−1, bi,i+1, . . . , bi,n).
Without loss of generality, we may assume that the first (k−1) participants, i.e., P1, . . . , Pk−1,
are under the control of the adversary ALis. Now, according to Lagrange interpolation, k such
values di,0 fully define a degree-(k − 1) polynomial. On the other hand, k − 1 such values
provide no information on s, according to the perfect privacy property of Shamir scheme.
Thus, we need to choose one more di,0, where i ∈ {1, 2, . . . , n}\ I, where I = {1, 2, . . . , k−1}.
Without loss of generality, we may assume that i = k. Note that each player Pi (i ∈ I) has
the information (gi,k, bi,k) regarding dk,0.

So, for all i ∈ I,
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bi,k + gi,kdk,0 = αidk,1 + α2
i dk,2 + . . .+ αk−1i dk,k−1.

As the matrix


α1 α2

1 . . . αk−11

α2 α2
2 . . . αk−12

. . . . . . . . . . . .

αk−1 α2
k−1 . . . αk−1k−1

 is non-singular, the above system of linear equa-

tions is consistent for all possible values of dk,0. Thus, ALis can guess the correct dk,0 with
probability 1

|F| , i.e., ALis has no information regarding dk,0. Hence, the theorem.

Theorem 3.2. The proposed scheme satisfies correctness condition. That is, during the
reconstruction phase, if any Pi ∈ core is under the control of rushing ACheat and produces
d′i,0 6= di,0, then except with error probability ε = t+1

|F| , Pi will be identified as a cheater and
will be included in the list L.

Proof. Without loss of generality, let core be formed by the first m parties, namely P1, . . . , Pm,
where m ≥ k. Moreover, let P1, . . . , Pt be under the control of ACheat. Now suppose that P1

submits d′1,0 6= d1,0 and P1 is not identified as a cheater. This implies that |support1| ≥ t+ 1.
In the worst case, P1, . . . , Pt may be present in support1, as all of them are under the control
of ACheat. But |support1| ≥ t+ 1 implies that there exists at least one honest party in core,
say Pj , such that Pj ∈ support1. This is possible only if gj,1d

′
1,0 +bj,1 = αjd

′
1,1 +α2

jd
′
1,2 + . . .+

αk−1j d′1,k−1. Now in Round 1 of reconstruction phase P1 broadcasts d′i,0, d
′
i,1, . . . , d

′
i,k−1 and in

Round 2 of reconstruction phase Pj broadcasts gj,1, bj,1. So, in Round 1 of the reconstruction
phase, a rushing ACheat will have no information about the gj,1. Thus, the probability that
P1 can ensure that gj,1d

′
1,0 + bj,1 = αjd

′
1,1 + α2

jd
′
1,2 + . . . + αk−1j d′1,k−1 even if d′1,0 6= d1,0 is

the same as the probability that P1 correctly guesses gj,1. However, the probability that P1

correctly guesses gj,1 is 1
|F| , as gj,1 is uniformly and randomly selected from F.

Finally, P1 may apply his attack against all t + 1 honest players. Cheating just one of
them is enough to get success. Therefore, taking into account the union bound, the successful
probability for player P1 is t+1

|F| = ε.

Share Size:
During the sharing phase, each party gets 2n+ k− 2 elements from the field F of order p. So,

|Vi| = p2n+k−2 which is (t+1)2n+k−3|S|
ε2n+k−3 .

Remark 3.3. The seed ci = (di,1, . . . , di,k−1) can not contain less than k − 1 field elements.
If this would be the case (say the seed ci contained k−2 elements), then k−1 passive cheaters
could use the equations

gi,kdk,0 + bi,k = αidk,1 + α2
i dk,2 + · · ·+ αk−2i dk,k−2

to solve Shamir share dk,0 for player Pk, thus violating the perfect privacy property of Shamir
secret sharing. This shows that “compression” to k − 1 field elements is optimal.

4 Conclusion

We proposed a simple and efficient, with respect to both share size and computation, SSCI
scheme for public cheater identification and optimal cheater resilience. To the best of our
knowledge the proposed optimally resilient scheme is the most efficient with respect to share

7



size, among other existing computationally efficient scheme with optimal resilience, for the
case of a single secret. It is an interesting open problem to design a computationally efficient
and optimal cheater resilient SSCI scheme with optimal share size in the setting of public
cheater identification.
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