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Abstract. Despite more than thirty years of intensive research efforts, textual passwords are still enveloped
in mysterious veils. In this work, we make a substantial step forward in understanding the distributions of
passwords. By conducting linear regressions on a corpus of 56 million passwords, we for the first time show
that Zipf’s law perfectly exists in real-life passwords, figure out the corresponding distribution functions, and
demonstrate some of its fundamental implications for password-based authentication.
As one specific application of this law of nature, we propose the number of unique passwords used in regression

and the slope of the regression line together as a metric for assessing the strength of password datasets, and
prove it in a mathematically rigorous manner. In addition, extensive experiments (including optimal attacks,
simulated optimal attacks and state-of-the-art cracking sessions) are performed to demonstrate the practical
effectiveness of our metric. To the best of knowledge, our new metric is the first one that is both easy to
approximate and accurate to facilitate comparisons, providing a useful tool for the system administrators
to gain a precise grasp of the strength of their password datasets and to adjust the password policies more
reasonably.
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1 Introduction

User authentication is the first line of defense for information systems to safeguard resources and services from
unauthorized access. Even though much has been reported about their pitfalls, textual passwords are still the
dominant mechanism of Internet authentication, protecting hundreds of millions of accounts on Internet-scale
websites. Recently, there have been countless attempts in proposing alternative authentication schemes (e.g., two-
factor authentication [50], graphical passwords [12]) to dislodge passwords, yet passwords are more widely used
and firmly entrenched than ever. As passwords offer many advantages not always matched by other alternative
schemes [7] and moreover, the transition costs of replacing them can not be effectively quantified [21], they are
likely to persist in the foreseeable future.
Despite its ubiquity, password authentication is accompanied by the dilemma of generating passwords which are

both challenging for powerful attackers to crack and easy for common users to remember. Truly random password
is difficult for users to memorize, while user-chosen password may be highly predictable [61]. In practice, users tend
to choose passwords that are related to their daily lives, which means these passwords are drawn from a rather
small dictionary [6] and thus are vulnerable to guessing attacks.
To mitigate this notorious “security-usability” dilemma, there have proposed various password creation policies

(e.g., random generation [61], rule-based [5,52], entropy-based [9,55] and cracking-based [11,22,48]) to force newly
created passwords to adhere to some requirements (rules) and to achieve an acceptable strength. The diversity of
password strength meters and rules brings about an enormous variety of requirements between different websites,
resulting in highly conflicting strength outcomes for the same password [10], e.g., the password password$1 is
deemed “Very Weak” by Dropbox, “Fair” by Google and “Very Strong” by Yahoo!
The above conflicting password strength outcomes (for more concrete examples, see [10]) are a direct result of

the inconsistent password strength meters employed among different websites, which may be further explained by
the diverse interests of each website. It is generally believed that stricter policies might make passwords harder to
crack, but the side effect is that users may feel harder to create and to remember passwords and thus usability is
reduced [54]. Inglesant and Sasse [24] also reported that, inappropriate password policies in a specific context of
use can increase both mental and cognitive workload on users and impact negatively on their productivity and,
ultimately, that of the organisation and the circumvention of such policies.
As a result, different type of websites typically may have quite different favors. For commercial retailers like

Amazon, portals like Yahoo! and advertising supported sites like Facebook, usability is very important because
every login event is a revenue opportunity. Anything that interferes with user experience affects the business
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directly. So they tend to have less restrictive password policies. On the other hand, it’s critical to prevent attackers
from illicitly accessing valuable resources for cloud storage sites (e.g., Dropbox) that maintain sensitive documents
and university sites that manage course grades. So they may require that user-selected passwords are subject to
more complex constraints (e.g., inclusion of mixed-case, digits and special characters, and rejection of popular
passwords like pa$$word123).

1.1 Motivations

Usually, the services provided by a website and its users may vary as time goes on, which may lead to huge changes
in the user password dataset after some period of time (e.g., one year) even though the password policy3 stays the
same. In this situation, the system administrators of a website shall quantify the strength of the whole passwords and
may need to adjust the password policy. Either failing to notice the changes in the password dataset or conducting
improper countermeasures may rise great but subtle security and usability problems as illustrated above. So a
proper assessment of the strength of password dataset is essential, without which the system administrator is
unable to determine the following critical question: How shall the password policy be adjusted? To put it another
way, shall the password policy be enhanced to improve security, kept unchanged or even relaxed a bit to get usability
in return? The essence of designing a password creation policy is to accurately gauge the strength of individual
passwords, while the heart of appropriately adjusting the password creation policies is to accurately assess the
strength of given password datasets. Note that, in this work we presume that a state-of-the-art password creation
policy (e.g., [11, 22]) has already been adopted by the authentication system, and its adjustment mainly involves
changing some rules and the password strength threshold.
Surprisingly, as far as we know, existing literature does not provide a satisfactory answer to the above question

of how to accurately measure the strength of a given password dataset. The settlement of this question will
naturally entail the settlement of a more fundamental question: How to precisely characterize a given password
dataset? And again, little progress has been made on this question. The two most commonly used approaches to
assess the strength of a given password dataset are estimating its information entropy (e.g., [9]) and empirically
analyzing its “guessability” (e.g., [29, 58]). The former, however, is not based on empirical data and has been
shown inaccurate [58], and the latter, which largely depends on the choices of the cracking algorithms and input
dictionaries [15,35], has too many uncertainties to accurately characterize the strength of a given dataset.
Very recently, Bonneau [6] introduced a novel statistical-based metric parameterized by an attacker’s desired

success rate α and it is called α-guesswork, yet its effectiveness has not been testified by empirical results using
different datasets. In addition, α-guesswork is unsuitable for comparing the strength of two datasets in many cases,
for the comparison results may vary with α and thus no deterministic conclusion can be made. This failure is mainly
due to the lack of an appropriate characterization of the distribution of passwords.
To the best of our knowledge, Malone and Maher’s work [37] may be the most relevant to what we will discuss

in the first part of the current paper. They investigated the distribution of passwords, however, contrary to what
we will show in this work, it was concluded that “while a Zipf distribution does not fully describe our data, it
provides a reasonable model, particularly of the long tail of password choices.” According to this conclusion, a Zipf
distribution cannot fully characterize the passwords, then what will work?

1.2 Our contributions

In this work, we bring the evaluation of real-life password datasets onto a sound scientific footing by adapting
statistical techniques, and provide rigorous answers to the above-mentioned two interesting (and important)
questions: (1) How to precisely characterize a given password dataset? and (2) How to accurately measure the
strength of a given password dataset?
Our first contribution is to adopt techniques from computational statistics to demonstrate that Zipf’s law perfectly

exists in real-life passwords, inspired by the applicability of Zipf’s law to describe surprisingly diverse natural and
social phenomena like Linux software distribution [36] as well as US firm sizes [3]. We prune these least frequent
passwords and rank the frequency of each remaining unique password (either in plain-text or hashed form) in
decreasing order and investigate the mathematical relationships between the frequency and the rank by using
linear regression. Extensive experiments on a massive corpus of eight password datasets different in terms of size,
application domain, user localization and language (culture background), show that our model is able to accurately
characterize the distribution of real-life passwords, particularly of the front head of passwords, but not “of the long
tail of password choices” that is reported in [37]. This provides a satisfactory answer to the first question above.

3 Note that, in this work the terms “policy”, “password policy” and “password creation policy” will be used interchangeably.
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Our second contribution is that we propose a novel metric to facilitate the system administrators to have a
concise grasp of the strength of their password datasets in a mathematically rigorous manner, and enable them to
compare the results of their own website at different time points or compare with that of other websites which are
meaningful for reference (at least the datasets revealed in this paper can be used as good counterpoints). Based
on these comparison and assessment results, the system administrators now can make their choice more wisely
than before–whether to continue using the current password policy, enhance it, or even relax it a bit to improve
usability? This suggests the settlement of the above first question.
Our last contribution is to show the effectiveness of our metric for measuring the strength of password datasets

by simulating optimal cracking attacks on eight real-life password datasets. We take a step further to employ
the state-of-the-art cracking algorithm (i.e., probabilistic context-free grammars (PCFG) [29, 59]) to approximate
optimal password cracking attack. Of independent interest may be our observation that PCFG-based cracking
results (i.e., success rates) are much lower as compared to optimal results, which implies that the state-of-the-art
cracking algorithm is far from an optimal one and there leaves much room for future improvement. What’s more,
Bonneau’s α-guesswork [6] is further developed.

Roadmap. In Section 2, we survey related works. We show Zipf’s law exists in passwords in Section 3. Our
password dataset strength metric is presented, proved, and empirically established in Section 4. Section 5 conclues
the paper.

2 Related Work

In this section, we briefly review some related works on password creation policies and password cracking techniques
to provide some backgrounds for the latter discussions.

2.1 Password creation policies

In 1990, Klein proposed the concept of proactive password checker, which enables users to create passwords and
checks, a priori, whether the new password is “safe” [30]. The criteria can be divided into two types. One type is
the exact rules for what constitutes an acceptable password, such as minimum length requirements and character
type requirements. The other type is using a reject function based on estimated password strength. An example
of this is a blacklist of “weak” passwords that are not allowed. Although the author calls the technique “proactive
password checking”, it’s indeed the same as password creation policies we know today, so in the following we use
the two terms interchangeably.
Since Klein’s seminal work, there have been proposed a number of proactive password checkers that aim to reduce

the time and space of matching newly-created passwords with a blacklist of “weak” passwords, such as Opus [52]
and BApasswd [14]. There have also been attempts to design tuneable rules on a per-site basis to shape password
creation, among which is the influential NIST Electronic Authentication Guideline SP-800-63 [9]. However, by
modeling the success rates of current password cracking techniques against real-life user passwords under different
rules, Weir et al. [58] showed that merely rule-based policies perform poorly for ensuring a desirable level of security.
In 2012, on the basis of Weir et al.’s work [58], Houshmand et al. [22] proposed a novel policy that first analyzes

whether a user selected password is weak or strong according to empirical PCFG cracking results, and then modifies
the password slightly if it is weak to create a strengthened password. This policy facilitates the measurement of the
strength of individual passwords more accurately and in addition, it can be adjusted more flexibly than previous
policies due to the fact that an adjustment of the policy only involves tuning the threshold with continuous ranges.
Perhaps the most relevant policy related to our strength metric for assessing password datasets (see Sec.4) is

suggested by Schechter et al. [48]. Their intriguing idea is to use a popularity oracle to replace traditional password
creation policies, and thus passwords with high popularity are rejected. This policy is particularly effective at
thwarting statistical-based guessing attacks against Internet-scale authentication systems that have millions of user
accounts. If this policy is in place, our proposed metric would be largely unnecessary. However, how to prevent an
attacker from using their oracle to guess passwords is an open question. Moreover, this policy rejects passwords
that occur at a frequency exceeding a threshold r (e.g., r = 1

106 as exampled in their work [48]), yet whether it
would greatly reduce usability has not been evaluated thoroughly (e.g., no actual use case studies are reported).
As one can see, an immediate consequence of this policy is that, it would frequently frustrate users to use their
intended passwords that are typically popular. For instance, about 34.89% user in Tianya.cn use passwords that
are more frequent than r = 1

106 , which indicates that more than one third of the users will be annoyed to select
and maintain a new password. In all, such a policy would be very promising if these issues can be addressed.
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2.2 Password cracking

Password-based systems are prone to various attacks, including on-line guessing, offline guessing, keylogging and
social engineering [34]. Here we only consider the on-line and offline guessing attacks, because other attacks where
the attacker obtains the password by non-cryptographic ways, are unrelated to password strength or password
dataset strength and therefore outside the scope of this work. While online guessing attacks can be well thwarted
by no-cryptographic techniques, such as locking an account after a threshold number of failed logins or using more
flexible lockout strategies [2], offline guessing attacks are offline performed and not subject to the defender’s security
measures, and thus the attacker can make as many guesses as possible given enough time and computational power.

Consequently, it is essential for password-based systems to properly evaluate their resilience to offline guessing
attacks. In the literature, this is generally done by comparing the search space size (i.e., number of guesses) against
the percentage of hashed passwords that would be broken by an offline attack. This measure only depends on
the attacking technique and the way users choose their passwords, it is neither related to the particular nature
of the authentication system nor affected by the attacker capabilities. The nature of the system and attacker
capabilities will instead define the cost that the attacker has to pay for each single guess [15]. For example,
system countermeasures against offline guessing attacks, such as salting to defeat pre-computation techniques (e.g.,
Rainbow tables [43]) or key strengthening techniques [17] to make guessing attacks more costly, only constitute a
key parameter when evaluating the resilience of a password system to offline attacks. By combining this cost with
a measure of the search space, it becomes possible to attain a concise cost-benefit analysis for offline attacks. This
kind of measure is also followed by our work.

Password search space essentially depends on how the users choose their passwords. It is a well known fact that
users tend to choose mnemonic passwords [44]. However, users rarely use unmodified elements of such lists, for
instance, because password creation policies prevent this practice, and instead users modify the words in such a
way that they can still recall them easily. For example, the popular password password$ is generated by adding
one symbol to the easily guessable string password.

To model this password generation practice, researchers utilize various heuristic mangling rules to produce
variants of words from an input dictionary like [44], and this sort of techniques have emerged as early as 1979 in
Morris-Thompson’s analysis of 3,000 passwords [40]. This initial work has been followed by independent works by
Klein [30] and Spafford [51]. Later on, some dedicated software tools like John the Ripper [16] appeared. Subsequent
studies (e.g., [32, 60]) have often utilized these software tools to perform dictionary attacks as a secondary goal.

It was not until very recently that password cracking began to deviate from art to science. In 2005, Narayanan
and Shmatikov [41] proposed a new cracking algorithm that uses Markov chain instead of ad hoc mangling rules
to model user password creation patterns. Their algorithm generates passwords that are phonetically similar to
words and is tested on a dataset of 142 hashed passwords and 96 (67.6%) passwords were successfully broken. Yet,
their algorithm is not a standard dictionary-based attack, for it can only produce linguistically likely passwords.
Moreover, the test dataset is too limited to convincingly show its effectiveness.

In 2009, on the basis of probabilistic context-free grammars, Weir et al. [59] proposed a novel technique
for automatically deriving word-mangling rules, and they further employed large real-life datasets to test its
effectiveness. In this technique, a password is considered as a combination of alphabet symbols (denoted by L),
digits (D) and special characters (S). For instance, password pa$$word123 is denoted by L2S2L4D3. Then, a set of
word-mangling rules is obtained from a training set of clear-text passwords. Coupled with another input dictionary,
these rules can be further used to generate password guesses in decreasing probability order, where the probability
of each guess is the product of the probabilities of the mangling rules used in its derivation. To simulate the optimal
attack, this algorithm generates password guesses in decreasing probability order, and is able to crack 28% to 129%
more passwords than John the Ripper [16]. In 2010, Zhang et al. [63] found Weir et al.’s algorithm is the most
effective one among all techniques (including Markov model [41], John the Ripper [16] and Rainbow [43]) they
used, which has also been confirmed by [6,11]. Hence, in this work we also use Weir et al.’s algorithm to crack the
collected datastets and make comparisons based on the proposed metric.

3 The Zipf’s Law in real-life passwords

In this section, we first give some background on the statistical technique–linear regression–used in the following,
and then briefly describe the collected datasets. Further, we provide a fundamental understanding of passwords
and show that Zipf’s law perfectly exists in real-life passwords. Finally, we discuss some foundational implications
of our findings.
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3.1 Linear regression

In statistics, linear regression is an approach for modeling the relationship between two variables by fitting a linear
equation to the observed data. One variable is considered to be an explanatory variable, and the other one is
considered to be a dependent variable. Usually, linear regression refers to a model in which the conditional mean
of y given the value of x is an affine function of x: y = a + b · x, where x is the explanatory variable and y is the
dependent variable. The slope of the line is b, and a is the intercept.
The most common method for fitting a regression line is by using least-squares [42]. This method computes the

best-fitting line for the observed data by minimizing the sum of the squares of the vertical deviations from each
data point to the line. For example, if a point lies on the fitting line exactly, then its vertical deviation is 0. More
specifically, from experiments we collect a bunch of data: (xi, yi), 1 ≤ i ≤ N . We expect y = a+ b ·x+ ε, where a, b

are constants and ε is the error. If we choose b =
∑n

i=1(xi−x̄)(yi−ȳ)∑n
i=1(xi−x̄)2 and a = ȳ− bx̄, where x̄ is the arithmetical mean

of xi, similar for ȳ. Then the sum of the squares of the errors
∑N

i=1(yi − a − b · xi)
2 is minimized. In regression,

the coefficient of determination (denoted by R2 and ranging from 0 to 1) is a statistical measure of how well the
regression line approximates the real data points: the closer to 1 the better.

3.2 Description of the password datasets

In our work we collect eight large-scale real-life password lists different in terms of application domain, size, user
localization and language (cultural background), showing that our model is able to accurately characterize the
distribution of real-life passwords.
All eight datasets, as summarized in Table 1, were compromised by hackers or leaked by anonymous insiders, and

were subsequently disclosed publicly on the Internet. They have also been used by a number of scientific works that
study passwords (e.g., [25, 33,35,58]). We realize that while publicly available, these datasets contain private data
such as emails, user names and passwords. Therefore, we treat all user names as confidential and only report the
aggregation information about passwords such that using them in our research does not increase the harm to the
victims. Furthermore, attackers are likely to exploit these accounts as training sets or cracking dictionaries, while
our study of them are of practical relevance to security administrators and common users to secure their accounts.

Table 1. Basic information about the eight datasets

Dataset Application Location Language When leaked How leaked Total Passwords Unique Passwords
Tianya Social forum China Chinese Dec. 4, 2011 Hacker breached 30,233,633 12,614,676

Dodonew Gaming&E-commerce China Chinese Dec. 3, 2011 Hacker breached 16,231,271 11,236,220
CSDN Programmer forum China Chinese Dec. 2, 2011 Hacker breached 6,428,287 4,037,610

Duowan Gaming China Chinese Dec. 1, 2011 Insider disclosed 4,982,740 3,119,070
Myspace Social forum USA English Oct. 1, 2006 Social engineering (phishing) 41,545 37,144

Single.org Dating USA English Oct. 1, 2010 Query string injection 16,250 12,234
Faithwriters Writer forum USA English Mar. 1, 2009 SQL injection 9,709 8,347

Hack5 Hacker forum USA English July 1, 2009 Hacker breached 2,987 2,351

The first dataset is the “Myspace” which was originally published in October 2006. Myspace is a famous social
networking website in the United States and its passwords were compromised by an attacker who set up a fake
Myspace login page and then conducted a standard phishing attack against the users. While several versions of the
Myspace dataset exist, owing to the fact that different researchers downloaded the list at different times, we get
one version from [8] which contained 41545 plain text passwords.
The following two datasets are the “Singles.org” and the “Faithwriters”. They both are composed of people almost

exclusively of the Christian faith– www.singles.org is a dating site ostensibly for Christians and www.faithwriters.com
an online writing community for Christians. The former was broken into via query string injection and 16250
passwords were leaked, while the latter was compromised by an SQL injection attack which disclosed 9709 passwords.
The fourth dataset is from www.hak5.org and it was compromised by a group called ZF0 (Zero for 0wned) [13].

This dataset is only a small portion of the entire www.hak5.org dataset. Surprisingly, though Hak5 is claimed to be
“a cocktail mix of comedy, technolust, hacks, DIY mods, homebrew, forensics, and network security”, its dataset
is amongst the weakest ones (see Sec.3.4) of all the datasets. In this work, we use this dataset as a counterexample
for representatives of real-life password distributions.
The next four datasets, namely Tianya, Dodonew, CSDN and Duowan, are all from Chinese websites. We name

these password datasets according to the corresponding websites’ domain name (e.g. the “Tianya” dataset is from
www.tianya.cn). They are all publicly available on the Internet due to several security breaches that happened in
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China in December, 2011 [38] and we collected them at that time. CSDN is the largest community website of
Chinese programmers, Tianya is an influential Chinese BBS, Duowan is a popular game forum, Dodonew is also a
popular game forum that enables monetary transactions. All the passwords except part of the “Duowan” dataset
are in plain-text. “Duowan” contains both hashed (MD5) and plain-text passwords, and we limit our analysis to
the plain-text ones.

3.3 Statistics about the password datasets

In this subsection, we report some statistical information about our datasets. Firstly, the character composition
information is summarized in Table 2. It is interesting to note that Chinese users are more likely to use only digits
to construct their passwords, while English users are more likely to use letters to construct their passwords. A
plausible explanation may be that Chinese users, who usually use hieroglyphics and are less familiar with English
letters on keyboards. Another interesting observation is that, Myspace users prefer to generate their passwords by
adding the digit “1” to a sequence of lower-case letters.

Table 2. Character composition information about each password dataset

Dataset
Total [a-z]+ [A-Z]+ [A-Za-z]+ [0-9]+ [a-zA- [a-z]+ [a-z]+1 [a-zA-Z]+ [0-9]+ [0-9]+

Passwords Z0-9]+ [0-9]+ [0-9]+ [a-zA-Z]+ [a-z]+
Tianya 30,233,633 9.96% 0.18% 10.29% 63.77% 98.05% 14.63% 0.12% 15.64% 4.37% 4.11%
Dodonew 16,231,271 8.79% 0.27% 9.37% 20.49% 82.88% 40.81% 1.39% 42.94% 7.31% 6.95%
CSDN 6,428,287 11.64% 0.47% 12.35% 45.01% 96.31% 26.14% 0.24% 28.45% 6.46% 5.88%
Duowan 4,982,740 10.30% 0.09% 10.52% 52.84% 97.59% 23.97% 0.37% 24.84% 6.04% 5.83%
Myspace 41,545 7.18% 0.31% 7.66% 0.71% 89.95% 65.66% 18.24% 69.77% 6.02% 5.66%
Singles.org 16,250 60.20% 1.92% 65.82% 9.58% 99.78% 17.77% 2.73% 19.68% 1.92% 1.77%
Faithwriters 9,709 54.40% 1.16% 59.04% 6.35% 99.57% 22.82% 4.13% 25.45% 2.73% 2.37%
Hak5 2,987 18.61% 0.27% 20.39% 5.56% 92.13% 16.57% 2.01% 31.80% 1.44% 1.21%

Table 3 demonstrates the length distributions of each dataset. We can see that the most popular password
lengths are 6 to 10, which on average account for 85.01% of the whole dataset. Few users choose passwords that
are longer than 12, with Dodonew being an exception. One plausible reason may be that, www.dodonew.com is
a website that enables monetary transactions and its users perceive their accounts as being important, and thus
longer passwords are selected. Of particular interest to our observations is that the CSDN dateset has much fewer
length 6 and 7 passwords as compared to other datasets. This may be due to the fact that www.csdn.net (as well as
many other websites) started with a loose password policy and later on a strict policy was enforced (e.g., requiring
the passwords to be of a minimum-8 length). We also note that passwords from www.christian-singles.org are all no
longer than 8, which may be due to a policy that prevents user from choosing passwords longer than 8 characters.
Such a policy still exits in many financial companies [26], a plausible reason may be that the shift to longer allowed
password lengths is a non-trivial issue.

Table 3. Length distribution information of each dataset

Length 1-3 4 5 6 7 8 9 10 11 12 13-16 17-30 30+ All
Tianya 0.61% 0.65% 0.55% 33.77% 13.92% 18.10% 9.59% 10.28% 5.53% 2.88% 4.05% 0.07% 0.00% 100%

Dodonew 0.36% 0.70% 0.78% 9.71% 13.45% 18.49% 20.29% 14.69% 3.10% 1.34% 10.24% 6.79% 0.04% 100%
CSDN 0.01% 0.10% 0.51% 1.29% 0.26% 36.38% 24.15% 14.48% 9.78% 5.75% 6.96% 0.32% 0.00% 100%

Duowan 0.02% 0.13% 0.12% 20.62% 17.68% 22.49% 15.12% 11.55% 5.30% 2.72% 4.13% 0.12% 0.00% 100%
Myspace 0.25% 0.51% 0.79% 15.67% 23.40% 22.78% 17.20% 13.65% 2.83% 1.13% 1.15% 0.48% 0.17% 100%

Singles.org 0.68% 4.74% 7.68% 32.05% 23.20% 31.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100%
Faithwriters 0.04% 0.14% 0.99% 31.97% 20.95% 22.71% 10.35% 5.98% 3.24% 1.87% 1.53% 0.20% 0.01% 100%

Hak5 0.10% 0.64% 0.97% 12.96% 8.50% 20.89% 8.94% 30.83% 3.58% 3.08% 6.90% 2.44% 0.17% 100%
Average 0.26% 0.95% 1.55% 19.75% 15.17% 24.19% 13.20% 12.68% 4.17% 2.35% 4.37% 1.30% 0.05% 100%

In the 1980s, it was revealed that the most popular password at that time was 12345; thirty years later, as can be
seen from Table 4, 123456 takes the lead. Our results accord with the statistics given in [56]. It is a long-standing
problem that a significant fraction of users prefer the same passwords as if by prior agreement, and this is in part
due to the inherent limitations of human cognition. Note that, this situation can not be fundamentally altered by
simply banning such popular passwords. For example, if password is banned, then password1 will be popular (see
the most popular passwords of Myspace); if password1 is banned, then pa$$word1 will be popular. It is hoped that
the adaptive password meters (e.g., [11,22]) will ultimately eliminate this issue. After having examined Table 2, it
is expected to see that most of the top 10 popular passwords of Chinese users are sole digits, while most of the top
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10 popular passwords of English users are sole letters. What’s interesting is that “love” is also the eternal theme
of passwords: five datasets have a most popular password related to “love”. For instance, the password 5201314,
which sounds as “I love you forever and ever”, ranks the 5th and 7th most popular password in Dodonew and
Tianya, respectively. It is alarming to see that for several datasets, a mere of top 3 most popular passwords account
for more than 5% of all the passwords, which indicates that, to break into these corresponding websites, an online
(trawling) guessing attacker will succeed every one in twenty attempts. Also, as a side note, even though popular
passwords in Hak5 look rather complex (diversified) and actually about 66.18% of its passwords are composed of a
mixture of lower/upper-case letters and numbers, this dataset is still very concentrated and as we will show later in
Section 4, it is among the weakest ones. This means that seemingly complex passwords may not actually be difficult
to crack, which further suggests the necessity and importance of a fundamental understanding of passwords.

Table 4. Top 10 most popular passwords of each dataset

Rank Tianya Dodonew CSDN Duowan Myspace Singles.org Faithwriters Hak5
1 123456 123456 123456789 123456 password1 123456 123456 QsEfTh22
2 111111 a123456 12345678 111111 abc123 jesus writer ——
3 000000 123456789 11111111 123456789 fuckyou password jesus1 timosha

Percent of top3 5.58% 1.49% 8.15% 5.01% 0.40% 2.10% 1.03% 4.62%
4 123456789 111111 dearbook 123123 monkey1 12345678 christ ike02banaA
5 123123 5201314 00000000 000000 iloveyou1 christ blessed 123456
6 123321 123123 123123123 5201314 myspace1 love john316 zxczxc
7 5201314 a321654 1234567890 123321 fuckyou1 princess jesuschrist 123456789
8 12345678 12345 88888888 a123456 number1 jesus1 password westside
9 666666 000000 111111111 suibian football1 sunshine heaven ZVjmHgC355

10 111222tianya 123456a 147258369 12345678 nicole1 1234567 faithwriters Kj7Gt65F
Percent of top10 7.42% 3.28% 10.44% 6.78% 0.78% 3.40% 2.17% 7.20%

3.4 Zipf’s law in passwords

Initially, probabilistic context-free grammar (PCFG) is a machine learning technique used in natural language
processing (NLP), yet Weir et al. [59] managed to exploit it to automatically build mangling rules. Very recently,
NLP techniques have also been shown useful in evaluating the effect of grammar on the vulnerability of long
passwords and passphrases by Rao et al. [47].
Inspired by these earlier works, in this study for the first time we attempt to investigate whether the Zipf’s law,

which resides in natural languages, also exists in passwords. The Zipf’s law was first formulated as a rank-frequency
relationship to quantify the relative commonness of words in natural languages by Zipf in 1949 [64]. It states that
given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank
in the frequency table. More specifically, for a natural language corpus listed in frequency decreasing order, the
rank r of a word and its frequency fr are inversely proportional fr = C

r , where C is a constant depending on
the particular corpus. Hence, the most frequent word will occur approximately twice as often as the second most
frequent word, three times as often as the third most frequent word, and so on. Recently, Zipf’s law has been shown
to account remarkably well for the open source Linux software distribution [36], gene expression [19], as well as US
firm sizes [3].
Interestingly, by excluding the least popular passwords from the datasets (i.e., passwords with less than three

or five counts in this work) and using linear regression, we find that the distribution of real-life passwords obeys a
similar law: For a password dataset, the rank r of a password and its frequency fr follow the equation

fr =
C

rs
(1)

where C and s are constants depending on the chosen dataset. Zipf’s law can be more easily observed by plotting
the data on a log-log graph (base 10), with the axes being log(rank order) and log(frequency). In other words,
log(fr) is linear with log(r):

logfr = logC − s · logr (2)

As can be seen from Fig.1, 30 million passwords from the website www.tianya.cn conform to Zipf’s law to
such extent that the coefficient of determination (denoted by R2) is 0.994204954, which approximately equals 1.
This indicates that the regression line logy= 5.806522 − 0.905773∗logx perfectly fits the data from Tianya. As
illustrated in the miniatures in Fig.2, passwords from the other six datasets also invariably adhere to Zipf’s law
and the regression line well fits the data points from corresponding datasets. Due to space constraints and the
aforementioned imperfect nature of Hak5 dataset, we do not present its related Zipf curve here, though actually its
fitting line also has a high coefficient of determination (i.e., R2 = 0.923).
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Table 5. Linear regression results of password datasets (“PWs” stands for passwords)

Dataset
Totoal Least Total PWs Fraction of PWs Unique PWs in Absolute value Zipf regression Coefficient of de-
PWs frequency in regression in regression regression (N) of the slope (s) line (logy) termination(R2)

Tianya 30,233,633 5 15,250,838 0.504432861 486,118 0.905773 5.806523 − 0.905773∗logx 0.994204954
Dodonew 16,231,271 5 3,512,595 0.216409115 187,901 0.753771 4.618284 − 0.753771∗logx 0.995530686
CSDN 6,428,287 5 1,918,282 0.298412625 57,715 0.894307 4.886747 − 0.894307∗logx 0.985106832
Duowan 4,982,740 5 1,427,734 0.286535922 51,797 0.841926 4.666012 − 0.841926∗logx 0.976258449
Myspace 41,545 3 3,363 0.080948369 706 0.459808 1.722674 − 0.459808∗logx 0.965861431
Singles.org 16,250 3 3,597 0.221353846 658 0.518096 1.875405 − 0.518096∗logx 0.970277755
Faithwriters 9,709 3 1,211 0.124729632 242 0.486348 1.583425 − 0.486348∗logx 0.974175889
Hak5 2,987 3 460 0.154000671 76 0.643896 1.579116 − 0.643896∗logx 0.922662999
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Fig. 1. Zipf’s law in Tianya (R2 = 0.994)
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(f) R2=0.996; N=187901, s=0.753771

Fig. 2. Zipf’s law in real-life passwords plotted on a log-log scale

More precisely, as summarized by the “Coefficient of determination” column in Table 5, every linear regression
(except for Hak5) is with its R2 larger than 0.965, which very much approaches to 1 and thus indicates a remarkably
sound fitting. As for “Hak5”, its R2 is about 0.923, which is, though acceptable, but not as good as that of other
datasets. A plausible reason may be that it only contains less than three thousand passwords and probably can not
represent the real distribution of the entire password dataset of www.hak5.org. It also should be noted that, how
the datasets leak may have a direct effect on R2. As confirmed by Table 5, datasets leaked by phing attacks are
likely to have a lower R2 as compared to that of datasets leaked by website breaches, for the former is unlikely to
obtain the entire dataset of a website, while the latter, once succeed, all (or at least a complete part of) passwords
of the website will be harvested.
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Two other critical parameters involved in the regression process are N and s, which stand for the number of
unique passwords used in regression and the absolute value of the slope of regression line, respectively. While there
is no obvious relationships between N and s, we find there is a close linking between s and the fraction of passwords
(or equally, total passwords) used in regression: the larger s is, the larger the latter will be. Once again, dataset
Hak5 is an exception and the reasons have been stated earlier.
It is worth mentioning that, as said earlier, we have excluded the passwords with less than five frequencies

from the Chinese datasets and with less than three frequencies from the English datasets when performing linear
regression, for we conjecture that it is only these popular passwords that will affect (reduce) the strength of a
dataset. This conjecture will be established by both rigorous proofs and extensive empirical experiments in the
following section.

3.5 General applicability of our observations

In the regressions in the previous section, we have only considered datasets that are generated under loose password
composition policies. As can be seen from Table 1∼3, quite short and letter-only passwords exist in all eight datasets,
which suggests that there is no evident length or composition requirement for generating passwords in any of these
eight websites. We believe a more precise and reasonable explanation for this phenomenon is that most of these
passwords are created under a mixture of unknown policies: Initially, there is no rule (policy); Later on, some (loose
or strict) rule(s) is applied; Sometime later, the sites were hacked and passwords disclosed.
However, this is not the case in many cases, especially for security-critical applications which may implement

strict policies at the very start. To further demonstrate the applicability of our findings, two special kinds of datasets
created under more constrained (yet quite realistic) password composition policies are considered: (1) Datasets with
password lengths no shorter than some minimum length (e.g., at least eight characters long); and (2) Datasets with
each password including a mix of letters and numbers (e.g., at least one letter and one number).
Since we did not have exact examples of passwords exactly generated under some specific creation policy with a

length or composition requirement,4 we attempted to model these policies by further dividing these eight datasets
based on the minimum length or composition requirement. However, we were cautioned that simply dividing an
existing dataset according to some artificial policy may be meaningless, for user behaviors will be largely skewed
in this process. A collateral evidence of this is the observation that, passwords created under an explicit policy
“cannot be characterized correctly simply by selecting a subset of conforming passwords from a larger corpus” and
“such a subset is unlikely to be representative of passwords created under the policy in question” [54]. Fortunately,
after careful examination of our eight datasets (see Table 2 and Table 3), we find that:

(1) Only 2.17% passwords in CSDN are shorter than eight characters long, and these short passwords are highly
due to the initial loose policy and these remaining 97.83% long passwords due to the later enhanced password
policy, and this transition in password policies has been confirmed;

(2) As high as 75.79%(=69.77%+6.02%) passwords in Myspace are composed of both letters and numbers and more
than 18.24% users select passwords with a sequence of letters concatenated with the number “1”, which highly
suggests that there was a transition in composition requirements at sometime before the hacking happened,
though by no means can we confirm this transition.

Consequently, these two datasets provide useful subsets that are representative of passwords complying with
the above two constrained password policies, respectively. More specifically, 97.83% long passwords from CSDN
constitute a dataset created under a policy that requires passwords to be at least eight characters long, and 75.79%
passwords from Myspace constitute a dataset created under a policy that requires passwords to be at least one letter
and one number. And we call them “csdn-lc” and “myspace-cc” for short, where “lc” stands for “length constrained”,
and “cc” stands for “character constrained”. The linear regression results on these two refined datasets are depicted
in Fig.3(a) and 3(b), respectively. We can see that, R2 of these two regressions are both larger than 0.96 and very
close to 1, which indicates a sound fitting. This suggests that Zipf’s law can also be applied to passwords created
under very constrained policies.
To investigate whether subsets of a dataset that obeys Zipf’s law also comply with this law, we further conduct

linear regressions on subsets randomly selected from the eight datasets. As expected, there are no significant
differences in fitting effect between any of the subsets and their parent dataset (Fisher’s exact test, p-valueleq0.001).
Due to space constraints, only four randomly selected subsets (each with a size of 1 million) from Duowan are
depicted in Fig.3(c) ∼ Fig.3(f). As R2 of these four regressions are all 0.977 and very close to 1, which indicates

4 As far as we know, so far there has been no such pure (ideal) data publicly available.
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Zipf’s law fits well in these subsets. This implies that if we can obtain a sufficiently large subset of passwords of
one website, then the distribution of the whole passwords can be (precisely) determined by conduction a linear
regression and fitting to a Zipf’s law. Nevertheless, how much fraction of a dataset can be deemed “sufficiently
large”? How about one sixth, one tenth, or one hundredth? This suggests a natural direction for future research.
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(e) R2=0.977; N=11571, s=0.654038
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Fig. 3. Zipf’s law in passwords created under constrained policies and in passwords selected randomly from a real-life dataset
(using Duowan as a typical example) plotted on a log-log scale

At this stage, a natural question arises: Can our observations be generalized to all user-generated passwords?
Or equally this question may be expressed as: Whether the datasets used in this work can be representative of all
datasets? The answer is highly in the affirmative. On the one hand, the datasets used in this work are so far the most
diversified (in terms of application domain, location and language) and among the largest ones (in terms of both the
total number of passwords and the number of datasets), and thus they are of sound representativeness. In previous
researches on passwords, to the best of our knowledge, the most diversified datasets (i.e., three from US and three
from China, and with each from different applications) have been reported in Ma et al.’s work [35] and the largest
datasets (i.e., seven datasets with a total of 114 million passwords) have been used in Li et al.’s work [33], while in
our work, we employ eight datasets with each from a different application domain and with a total of 56 million
passwords. Admittedly, our datasets (as well as the length-constrained and character-constrained ones) cannot
represent all sorts of real-life datasets, for instance, none of them represent credentials with great importance (e.g.,
email and bank accounts). That being said, these datasets still represent a significant number of user-generated
passwords and can be applied to investigate the underlying distributions.

On the other hand, rigorously speaking, there is no definite answer to the appropriateness of a generalization like
ours. Physicians aim at understanding how the physical world works can never know for sure if their theories (e.g.,
Newton’s laws) are the right ones, instead they can only tell if their theories are consistent with state-of-the-art
experiments. Similarly, we aim at understanding how the real-life passwords distribute, but can never know for
sure if our theory is definitely correct; With adequate data and right tools, we can only develop theoretical models
to characterize the distribution of passwords more and more accurately, and this might be a never-ending work in
progress. We freely admit more efforts need to be devoted to this subject.

Overall, although our data is not ideal, we believe that our findings do provide a much better understanding
of the distributions of user-generated passwords and can be widely applicable. While so little is known about this
important topic, even relatively limited exploration constitutes progress, let alone a fundamental investigation.
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3.6 Some foundational implications

Recently, many works on password policy (e.g., [11,48]) have suggested to disallow users from chosen dangerously-
popular passwords like 123456 and password123. Surprisingly, their motivation is mainly based on the empirical
observation that, some users employ undesirably popular passwords and such passwords are particularly prone to
statistic attacks, a form of dictionary attack (maybe either online or offline) in which an attacker sorts her dictionary
popularity and guesses the most popular passwords first, yet so far little foundational rationale has been given. In
this work, we bridge this gap by showing that in most cases, user-generated password datasets perfectly obey Zipf’s
law, which states that the rank r of a password and its frequency fr follow the equation fr = C

rs , where C is a
constant that is typically a bit smaller than the frequency of the most popular password. This distribution function
explicitly reveals that popular passwords are extremely popular, but it does not mean that popular passwords
are the majority. Instead, from the distribution function one can see that there is an extremely large proportion
of passwords that are not frequent, which is generally called the “Long-tail Theory” in the statistical domain.
Our theory also suggests that only a limited proportion of passwords are overly popular, while the remaining less
popular ones may be secure in the face of a statistic attack. This for the first time provides a sound explanation
(foundation) that is in support of password policies that disallow overly popular passwords.
Another foundational implication is for provably secure authentication protocols that involve passwords, i.e.,

password-based single-factor schemes (e.g., two-party [28] and multi-party [1]) and password-based multi-factor
schemes (e.g., two-factor [57] and three-factor [23]). Here we first show the implication for password-only schemes,
which are also called password authenticated key exchange (PAKE) protocols. In most PAKE protocols with
provable security (e.g., [4,45] in the random oracle model or [20,28] in the standard model), it is typically assumed
that “password pwC (for each client C) is chosen independently and uniformly at random from a dictionary D
of size N , where N is a fixed constant which is independent of the security parameter”, then a security model is
described, and finally a “standard” definition of security as the one in [28] is given:

“· · · · · · Protocol P is a secure protocol for password-only authenticated key-exchange if, for all [password]
dictionary sizes N and for all ppt[probabilistic polynomial time] adversariesAmaking at most Q(k) on-line
attacks, there exists a negligible function ϵ(·) such that:

AdvA,P(k) ≤
Q(k)

N
+ ϵ(k) (3)

where AdvA,P(k) is the advantage of A in attacking P.”

As a prudent side note, some of these works complement that the assumption of a uniform distribution of
passwords with a constant-size dictionary is made for simplicity only, and their security proofs can be extended
to handle more complex cases where passwords do not distribute uniformly, or different distributions for different
clients.
Since system assigned random passwords [49] is hardly usable, most systems allow users to generate their own

passwords, which would highly lead to the passwords complying with the Zipf distribution as we have shown in
the above. According to our theory, now it is fundamentally unnecessary (unrealistic) to make an assumption of
uniform distribution of passwords, instead one may directly make the Zipf assumption about password distributions.
However, under the Zipf assumption, it is highly likely that AdvA,P(k) will be alarmingly large and the system
is in serious danger. For instance, this value reaches 1.49% when making only 3 on-line attacks for the website
www.dodonew.com which enables monetary transactions. In other words, even if the authentication protocol
employed is provably secure, secure user identification still cannot be reached if the passwords of the system
obey Zipf’s law. This once again highlights that cryptographic methods should be compounded with systematic
solutions to assure system security. To this end, the passwords shall not follow a Zipf distribution. This indicates
that some countermeasures (e.g., enhancing some password policies that restrict the overly popular passwords)
shall be taken, which may lead to a set of passwords with skewed Zipf distribution.
While the uniform distribution assumption made about passwords is unrealistic, the Zipf distribution is insecure

and the skewed Zipf distribution seems hardly possible to be rigorously characterized, we are stuck in a conundrum
to formulate the definition of security like Eq.3. Inspired by the essential notion of security that a secure PAKE
protocol can provide – Only oneline impersonation attacks are helpful to the adversary in breaking the security of
the protocol [20], we manage to get out of the problem by giving up the idea of firstly characterizing the distribution
of password and then formulate the definition of security and by providing a tight upper bound for the adversary’s
advantage. More specifically, Eq.3 now is rewritten as follows:

AdvA,P(k) ≤
N0Q(k)

N
+ ϵ(k) (4)
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where N0 denotes the frequency of the most popular password in the password dictionary D with size N , and
the other notations are of the same meaning with those of Eq.3. Note that, the value of N0/N is exactly the
threshold probability (e.g., 1/10,000) that the underlying password policy maintains. According to Bonneau’s
work [6], generally user-generated passwords offer an entropy about 20 ∼ 21, i.e., the value of N is about 220 ∼ 221.
In this case, for a threshold probability 1/10,000, N0 will be 100. Also note that, Eq.3 is actually a special case of
Eq.4, where N0 = 1, i.e., no popularity-based policy is enforced. Moreover, Eq.4 can be used to roughly formulate
the formal security results in situations where user passwords follow Zipf’s law. Though not very accurate, Eq.4 (e.g.,
let N0/N = 1/100) is still much better than the kind like Eq.3 that are currently widely used in the cryptographic
protocol community (e.g., [28, 45,53,57,62]).
Unlike PAKE protocols where users have to interact with the server to register their passwords, most multi-

factor schemes (e.g., [53, 57, 62] provide the functionality to facilitate users change their passwords freely and
locally (i.e., without any interaction with the remote server). Since there is no interaction with the remote server,
popularity-based password policy cannot be enforced, user passwords will almost definitely follow a Zipf distribution.
However, when evaluating whether “truly multi-factor security” can be provided, these schemes typically perform a
reductionist security proof and obtain a security result like Eq.3 (see definition of [62]), under the assumption that
the other factor(s) except the password factor has been compromised. As discussed above, our theory discourages
such simple but unrealistic, actually misleading (i.e., a false sense of security) form of formulation. A formulation
like our proposed Eq.4 is more accurate and appropriate for such cases.
As far as we know, we for the first time pay attention to the joint between passwords and password-based

single-factor or multi-factor authentication protocols. With the knowledge of the exact distribution of passwords,
we manage to develop a more accurate, realistic and versatile formulation to characterize the formal security result
for password-based authentication protocols.

4 Strength metric for password dataset

In this section, we pay attention to the question as to how to accurately measure the strength of a given password
dataset. As one specific (and natural) application of our observation of the distribution of passwords, an elegant
and accurate metric is suggested.

4.1 Our metric

Normally, the offline guessing attacker,5 who is clever, would always attempt to try the most probable password first
and then the second most probable password and so on in decreasing order of probability until the target password
is matched. In the extreme case, if the attacker has also obtained the entire password dataset in plain-text (and
thus, the attacker can obtain the right order of the passwords), this attack is called an optimal attack [6, 15].6

Accordingly, we can use the cracking result λ∗(n) to be the strength metric of a given password dataset:

λ∗(n) =
1

sum

n∑
r=1

fr (5)

where sum is the number of total passwords and n the number of guessing.
In the last section we have shown that the distribution of passwords obeys Zipf’s law, i.e., fr = C

rs . Consequently,
λ∗(n) is essentially determined by N and s (Note that N is the number of unique passwords, and s is the absolute
value of the slope of the fitting line):

λ∗(n) ≈ λ(n) =

∑n
r=1

1
rs∑N

r=1
1
rs

(6)

It should be noted that, in Eq.6, λ∗(n) is not exactly equal to the value of rightmost hand even though our
regression line complies with the actual data very well. We plot λ∗(n) as a function of n according to Eq.5 and λ(n)
as a function of n according to Eq.6, and put these two curves together to see how they agree with each other. In
Fig.4, we depict λ∗(n) and λ(n) for 30 million passwords from the Tianya dataset and obtain an average deviation
of 1.32% (i.e., a sound fitting) for the two curves. As explained in Sec.3.4, here we do not illustrate the related
picture for Hak5 dataset. As for the other six datasets, see the miniatures in Fig.5.

5 The attacks mentioned in this Section are all offline guessing attacks, for our purpose is to measure the strength of an entire
dataset, which is generally characterized by how much percentage of passwords could be successfully covered (guessed).

6 Note that, the optimal attack is of theoretic value (i.e., the upper bound) to characterize the best attacking strategy that
an attacker can adopt. In practice, if an attacker has already obtained all the plain-text passwords, there is no need for
her to order these passwords to crack themselves.
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Fig. 4. Consistence of optimal attack with our fitting metric on Tianya (Average deviation is 1.32%)
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Fig. 5. Consistence of effectiveness between real optimal attack and our fitting metric

We can see that, the λ∗(n) curve well overlaps with the λ(n) curve for each dataset. Specifically, except for Hak5,
the average deviations for these datasets are from 0.54% to 1.93%, which shows perfect consistence of λ(n) with
the optimal attacking results. Note that, the two curves first deviate slightly when n is small and then gradually
merge into each other as n increases. This is caused by the variation of the first few high-frequency passwords to
the fitting line.

Now that the optimal attack can be well approximated by λ(n), it is natural to propose the pair (NA, sA) to
be the metric for measuring the strength of password dataset A, where NA is the number of unique passwords
used in regression and sA is the absolute value of the slope of the fitting line. In the following, we propose a
theorem and a corollary, and show that our metric not only is able to determine whether the strength of a website’s
password dataset becomes weak after a period of time, but also can be used to compare the strength of datasets
from different websites. This feature is rather appealing, for the confidence of security only comes after comparison–
having a comparison with other similar websites, the system administrators now have a clearer picture about what
level of strength their datasets can provide. Recent tens of catastrophic leakages of web accounts (see [27] for an
incomplete list) provide wonderful materials to facilitate such comparisons.

Theorem 1. Suppose NA ≥ NB , sA ≤ sB. Then

λA(n) ≤ λB(n)
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where 0 ≤ n ≤ NA (if n > NB, define λB(n) = 1). If either inequalities of the above two conditions are strict, then
λA(n) < λB(n), where 0 < n < NA.

The theorem will be proved in Sec.4.2, and in Section 4.3 its compliance with cracking results will be shown by
optimal attack and state-of-the-art cracking algorithm (i.e., PCFG [59]), respectively.

Corollary 1. Suppose NA ≤ NB , sA ≥ sB. Then

λA(n) ≥ λB(n)

where 0 ≤ n ≤ NB (if n > NA, define λA(n) = 1). If either inequalities of the above two conditions are strict, then
λA(n) > λB(n), 0 < n < NB.

This corollary holds due to the evident fact that it is exactly the converse-negative proposition of Theorem 1.
The above theorem and corollary indicate that, given two password datasets A and B, we can first use liner

regression to obtain their fitting lines (i.e., NA, sA, NB and sB), and then compare NA with NB, sA with sA,
respectively: (1) If NA ≥ NB and sA ≤ sB , dataset A is stronger than dataset B; (2) If NA ≤ NB and sA ≥ sB , A
is weaker than B; (3) For the remaining two cases where NA ≥ NB , sA ≥ sB or NA ≤ NB , sA ≤ sB , the relationship
between λA(n) and λB(n) depends on the discrete variable n, and thus it is generally unable to reach a conclusion
and may have to resort to traditional methods (e.g., PCFG-based [59] or markov-based [41]) that are less accurate.
Note that, in this work, datasets A and B may be from the same website but collected at different time points.

Some Remarks. Note that, as with the entropy metric recommended in the NIST SP800-63-2 document [9] and
the α-guesswork proposed in [6], our metric is not effective on password datasets that are in clear-text or un-salted
hash. This is an inherent limitation of all statistic-based metrics (e.g., [6,9]). For salted-hash passwords, one needs
to resort to attacking-based approaches (e.g., [29, 35]), albeit at the cost of reduced accuracy (as we will show in
Sec.4.3, attacking-based approaches in their current form have too many uncertainties and are far from accurate).
It is also worth noting that, there could be weak policies that result in a good metric, like requiring users to type
their usernames as the start of a password. Obviously, this would make all passwords more unique and give a better
metric, but it wouldn’t at all increase the resistance of passwords if the attacker knows the underlying policy. This
is another inherent limitation of statistic-based metrics. In this case, one also needs to resort to attacking-based
approaches.
Nevertheless, these and other limitations does not affect much the applicability of our metric mainly for several

reasons. Firstly, our metric can rely on a subset of the entire dataset and only involves offline operations to be
performed after a relatively long period of time (e.g., a year), and thus the website can maintain salted passwords,
which are online, to authenticate users and a subset of passwords in un-salted hash, which are physically offline
and well protected, to facilitate our measurement. Secondly, we believe that websites with un-salted passwords are
by no means a minority despite the difficulty to confirm this conjecture. The most convincing and obvious evidence
lies in the fact that most of the previously leaked datasets from many prominent IT firms or leading organizations
(such as Facebook, Adobe, Dropbox, IEEE, to name just a few [46]) are still in un-salted form. And now, it is
time for these legacy sites to take actions, an important part of which is to access its password policy. Thirdly, it
is well known that the authorities in many countries (e.g., The National Security Agency of U.S. [39]) have been
asking Internet providers and websites to provide user password datasets (in plain-text) to them. In this case, these
websites shall also maintain a copy of un-salted passwords to ensure compliance with the regulations. Last but not
the least, even if no plain-text (or unsalted-hash) passwords from real-life websites are available, field experiments
(e.g., [18,31]) can be used to collect user generated passwords. With these field passwords, our metric can be used
to help password policy designers and system administrators assess the goodness of a given password policy in
terms of security before it is put into any practical use. In a nutshell, our metric is realistically practical.

4.2 Proof of the theorem

Obviously the theorem holds when NA = NB , sA = sB.
First we prove the theorem under the condition sA = sB = s, NA > NB. Recall that fr = C

rs , we denote the

probability of a password with rank r be pr(=
fr

sum = C
rs·sum ). Then

NA∑
r=1

CA

rs
= 1,

NB∑
r=1

CB

rs
= 1

CA =
1∑NA

r=1
1
rs

<
1∑NB

r=1
1
rs

= CB
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So when 1 ≤ n ≤ NB , we have

λA(n)− λB(n) = (CA − CB)(

n∑
r=1

1

rs
) < 0

When NB + 1 ≤ n ≤ NA − 1,
λA(n)− λB(n) < 1− 1 = 0

Next we prove the theorem under the conditions NA = NB = N, sA < sB
0 < CA =

1∑N
r=1

1
rsA

<
1∑N

r=1
1

rsB

= CB

When 1 ≤ n ≤ N − 1,

λA(n)− λB(n)

=
N∑
r=1

CA

rsA
−

N∑
r=1

CB

rsB

=CACB(

N∑
r1=1

1

rsB1

n∑
r2=1

1

rsA2
−

N∑
r1=1

1

rsA1

n∑
r2=1

1

rsB2
)

=CACB(
n∑

r1=1

1

rsB1

n∑
r2=1

1

rsA2
+

N∑
r1=n+1

1

rsB1

n∑
r2=1

1

rsA2

−
n∑

r1=1

1

rsA1

n∑
r2=1

1

rsB2
−

N∑
r1=n+1

1

rsA1

n∑
r2=1

1

rsB2
)

=CACB(
∑

1≤r2≤n<r1≤N

(
1

rsB1 rsA2
− 1

rsA1 rsB2
))

=CACB(
∑

1≤r2≤n<r1≤N

1

rsA1 rsB2
((
r1
r2

)sA−sB − 1))

For r1 > r2, sA < sB , so ( rAr2 )
sA−sB < 1. Further, we have

λA(n)− λB(n) < 0

Now the only left situation is NA > NB, sA < sB . We choose a password dataset C satisfying the conditions
NC = NA, sC = sB, then

λA(n) < λC(n) 1 ≤ n ≤ NA − 1
λC(n) < λB(n) 1 ≤ n ≤ NA − 1

Thus λA(n) < λB(n). This completes the proof.
Interestingly, we observe that, based on the conditions of Theorem 1, the three (preliminary) metrics (i.e.,

λβ ,µα, Gα) for assessing the strength of a given password dataset proposed by Bonneau [6] can be definitely
compared with each other. Note that, λβ stands for the success rate by β guesses under the optimal attack, µα

stands for the least guesses needed to achieve a success rate of α, and Gα is used to measure the resistance to an
online attack (or equally an offline guessing attack against salted passwords) and stands for the average guesses an
attacker has to make in order to achieve a success rate of α by attacking every account at most µα times using an
optimal strategy. Interested readers are referred to [6] for more details.
It is not difficult to see that λβ is essentially the λ∗(n) as in Eq.5, where β is analogous to n. According to Eq.4

and our Theorem 1, we get µα(A) ≥ µα(B). In addition,

Gα =(1− λµα) · µα +

µα∑
i=1

pi · i =
µα∑
i=1

i∑
j=1

pi + (1− λµα) · µα

=

µα∑
j=1

µα∑
i=j

pi +

µα∑
j=1

(1− λµα) =

µα∑
j=1

(1− λµα +

µα∑
i=j

pi)

=

µα∑
j=1

(1− λj)
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Since µα(A) ≥ µα(B) and λj(A) ≤ λj(B), we get
Gα(A) ≥ Gα(B)

If either the two conditions in Theorem 1 is strict, then it holds that Gα(A) > Gα(B), where 0 < α ≤ 1.

4.3 Experimental results

In this subsection, we further use the simulated optimal attack and state-of-the-art password attacking algorithm
(i.e., PCFG [29,59]) on real-life password datasets to demonstrate that our metric in Sec.4.1 is practically effective.
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Fig. 6. Simulated optimal attack on four Chinese datasets (i.e., Tianya, Dodonew, Duowan and CSDN)
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(c) PCFG-based attacks on three English

datasets (using Myspace as the training set)

Fig. 7. Simulated optimal attacks and PCFG-based attacks on different groups of datasets

As the optimal attack is of theoretical importance to serve as the ultimate goal of any real attacks, it can by
no means be seen as a realistic attack, for it assumes that the attacker is with all the plain-text passwords of the
target website. To see whether our metric accords with realistic attacks, we relax this assumption a bit and suppose
that the attacker has obtained a quarter of the plain-text passwords of the target website (and use them to guess
another quarter of the passwords, which is one-third of the remaining passwords). Note that this new assumption
is much more realistic, because most of the compromised websites mentioned in this work have leaked a large part
of their passwords in plain-text! And thus this new attacking scenario is rather practical and we call it “simulated
optimal attack”. For better presentation, we divide the eight datasets into two groups: one with dataset sizes all
larger than one million and the other one smaller than one million. Simulated optimal attacking results on group
one is illustrated in Fig.6, and results on group two is illustrated in Fig.7(a). It is not difficult to confirm that, for
any two datasets in the same group, the attacking results comply with our metric results listed in Table 5. For
instance, from Fig.6 we know that, for any search space size (i.e., ever n), dataset Tianya is weaker than dataset
Duowan, this implies Ntianya > Nduowan, stianya < sduowan. This implication accords with the statistics in Table 5.
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Furthermore, we perform more realistic guessing attacks (i.e. PCFG-based attacks) to assess the effectiveness of
our metric. As in simulated optimal attacks, we divide the eight datasets into two groups according to their sizes and
user locations. For the Chinese group of datasets, we use CSDN as the PCFG training set and a corpus of wordlists
(including the “english lower.lst” from [16], “SogouLabDic.dic”7 and the 20 million hotel reservations dataset8) as
the input dictionary. The results are depicted in Fig.7(b). As for the English group of datasets, we use Myspace
as the PCFG training set and a corpus of two wordlists (including the “dict-0294” [44] and “english lower.lst”
from [16]) as the input dictionary. The results are depicted in Fig.7(c).
The test shows that the PCFG-based attacking results on most of the datasets are consistent with our metric.

As expected, there are leaps in the PCFG-based curves, while the simulated-attack-based curves are quite smooth.
The reason is that the guess dictionary (in decreasing order) generated by PCFG are not as good as suboptimal
(i.e., simulated optimal) guess dictionary – some guesses which should have been tested earlier are delayed, which
further indicates PCFG-based attacks are far from optimal.
The only exception that violates our metric is on dataset Hak5. According to Table 5, NHak5 is smaller than any

other datasets and sHak5 is larger than any other datasets in the same group, which means Hak5 is the weakest
one. However, Fig.7(a) shows that, under the PCFG-based guessing attack, Hak5 is the strongest among the three
English test sets. This inconsistence may be due to its non-representative nature of a real password dataset, or due
to the inappropriateness of our selected training set and input dictionary.
Of particular interest may be our observation that, PCFG-based attacks seem to be much less effective than

simulated optimal attacks. For example, at 1 million guesses, PCFG-based attacks on Chinese datasets achieve
success rates 25%∼100% less than those of simulated optimal attacks. This gap is more pronounced for English
datasets. It shouldn’t come as a surprise, the gap in success rates and the aforementioned leaps in the PCFG-
based curves are all due to the inherent weaknesses of PCFG-based attacks – their performance relies largely
on the choices of training set and input dictionaries, while such choices are subject to too many uncertainties.
This explains why we, in order to reach better success rates, divide our datasets into two groups according to
populations and use different training sets and varied input dictionaries in our PCFG-based experiments. This also
highlights the intrinsic limitations of using empirical attacking results (e.g., [29,58]) as a strength measurement of
password dataset. In a nutshell, there is still room for developing more practical attacking algorithms that have
fewer uncertainties yet are more effective.

5 Conclusion

In this work, we have adopted techniques from computational statistics to demonstrate that the distribution of
real-life passwords exactly obeys Zipf’s law. We have further investigated the implications of our this observation
for password policy designers and for the cryptographic protocol community. Particularly, most of the existing
password-based protocols (e.g., [4, 20, 28, 62]) have been proven secure under the hypothesis that passwords are
uniformly distributed, yet we show that their formulation of security results fails to capture the realistic distribution
of real-life passwords and may have some unintended consequences. Accordingly, we suggest a new formation to
more accurately characterize the formal security results.
Based on our Zipf theory, we put forward a novel metric to measure the strength of password datasets. Our metric

achieves more accuracy and simplicity than existing metrics. The deterministic measurement of the password dataset
strength provided by our metric facilitates system administrators to conduct fair and precise comparisons among
different datasets. We formally proved our metric in a mathematically rigorous manner and also revealed some
implications from Bonneau’s α-guesswork [6]. We further evaluated the effectiveness of our metric by performing
extensive experiments on a corpus of 56 million passwords and demonstrated its practicality.
More work remains to be done on this interesting yet challenging topic, as there are still many important

problems that remains to be investigated. For example, do six-digit PINs obey Zipf’s law? Do extremely high value
accounts (e.g., e-banking) obey Zipf’s law? It is a mixed blessing that the opportunities for such investigations
to be conducted in the future are only growing as more sites of high values are compromised and more datasets
are made available. There are also many new issues brought about by the findings in this work. For example, is
it user-acceptable to employ a password creation policy like Schechter et al. [48] that only allows passwords with
popularity lower than a threshold (e.g., ten times)? And to what extent usability will be reduced? Is it necessary
for multi-factor authentication protocols to disallow users from changing their passwords without interaction with
the remote server? We believe this paper will trigger discussions about the implications that progresses in password
research would have on the password-based cryptographic protocols.

7 http://www.sogou.com/labs/dl/w.html
8 http://www.4hoteliers.com/news/story/12047

http://www.sogou.com/labs/dl/w.html
http://www.4hoteliers.com/news/story/12047
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