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Despite more than thirty years of intensive research efforts, textual passwords are still enveloped in mysterious
veils. In this work, we make a substantial step forward in understanding the underlying distributions of
passwords. By conducting linear regressions on a corpus of 97.2 million passwords (a mass of chaotic data), we
for the first time show that Zipf ’s law perfectly exists in user-generated passwords, figure out the corresponding
exact distribution functions, and investigate some fundamental implications of our observations for password
policies and password-based cryptographic protocols (e.g., authentication, encryption and signature).

As one specific application of this law of nature, we propose the number of unique passwords used in regression
and the absolute value of slope of the regression line together as a metric for assessing the strength of password
datasets, and prove its correctness in a mathematically rigorous manner. In addition, extensive experiments
(including optimal attacks, simulated optimal attacks and state-of-the-art cracking sessions) are performed to
demonstrate the practical effectiveness of our metric. In two of four cases, our metric outperforms Bonneau’s
α-guesswork in simplicity and to the best of knowledge, it is the first one that is both easy to approximate and
accurate to facilitate comparisons, providing a useful tool for the security administrators to gain a precise grasp
of the strength of their password datasets and to adjust the password policies more reasonably.
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1. INTRODUCTION
User authentication is the most essential security mechanism for networked systems
to safeguard resources and services from unauthorized access. Even though much has
been reported about their pitfalls, textual passwords are still the dominant mechanism of
user authentication, protecting hundreds of millions of accounts on Internet-scale service
providers. Recently, there have been countless attempts in proposing alternative schemes
(e.g., graphical passwords [Chiasson et al. 2012], gesture authentication[Zhao et al. 2013]
and multi-factor authentication [Huang et al. 2014]) to dislodge passwords, yet passwords
are more widely used and firmly entrenched than ever. Since textual passwords offer many
advantages not always matched by other alternative authentication schemes [Bonneau
et al. 2012] and moreover, the transition costs of replacing them can not be effectively
quantified [Herley and Van Oorschot 2012], they are likely to persist and dominate the
authentication systems in the foreseeable future.
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Despite its ubiquity, password-based authentication is accompanied by the dilemma of
generating passwords which are challenging for powerful attackers to crack but easy for
common users to remember. Truly random passwords are difficult for users to memorize,
while user-chosen passwords may be highly predictable [Yan et al. 2004]. In practice,
users tend to gravitate towards weak passwords that are related to their daily lives (e.g.,
birthdays, phone numbers, lovers, friends and pet names) [Brown et al. 2004; Florencio
and Herley 2007], which means these passwords are drawn from a rather small dictionary
and thus are prone to offline/online guessing attacks.

To mitigate this notorious “security-usability” dilemma, various password creation
policies have been proposed, e.g., random generation [Yan et al. 2004], rule-based [Bishop
and V Klein 1995; Schechter et al. 2010], entropy-based [Burr et al. 2006; Burr et al. 2013]
and cracking-based [Houshmand and Aggarwal 2012; Castelluccia et al. 2012]. They force
newly created passwords to adhere to some rules and to achieve an acceptable strength.
The diversity of password strength meters and rules brings about an enormous variety
of requirements between different websites, resulting in highly conflicting strength out-
comes for the same password. For example, the password password$1 is deemed “Very
Weak” by Dropbox, “Fair” by Google and “Very Strong” by Yahoo!

The above contradictory outcomes of password strength (for more concrete examples,
see [de Carnavalet and Mannan 2014]) are a direct result of the inconsistent password
strength meters employed among different websites, which may in part be further ex-
plained by the diverse interests of each website. It is generally believed that stricter
policies might make passwords harder to crack, but the side effect is that users may
feel harder to create and to remember passwords and thus usability is reduced [Ur et al.
2012]. The work by [Adams and Sasse 1999; Inglesant and Sasse 2010] also reported that,
inappropriate password policies in a specific context of use can increase both mental and
cognitive workload on users and impact negatively on their productivity, and ultimately
they will try every means to circumvent such un-friendly policies.

As a result, different types of application systems typically have quite different favors.
For e-commerce sites like eBay, portals like Yahoo! and order accepting sites like Kasper-
sky, usability is very crucial because every login event is a revenue opportunity. Anything
that undermines user experience impairs the success of the business. So they tend to
have less restrictive password policies [Florêncio and Herley 2010]. On the other hand,
it is of great importance to prevent attackers from illicitly accessing valuable resources
on security-critical sites, e.g., cloud storage sites (e.g., Dropbox) that maintain sensitive
documents and university sites that manage course grades. So they may require that user-
selected passwords are subject to more complex constraints (e.g., inclusion of mixed-case,
digits and special characters, and rejection of popular passwords like pa$$word123).

As different systems favor varied password policies, a number of critical issues arise:
how can the password policy designers evaluate their policies? How can the administra-
tors select the right policy for their systems? In addition, usually the users of a system (as
well as its services) may dynamically change as time goes on, which highly leads to large
variations in the password dataset after some period of time (e.g., one year) even though
the password policy1 stays the same, especially true for Internet-scale service providers.
In this situation, the security administrators shall quantify the strength of passwords
and may need to adjust the password policy. Either failing to notice the changes in the
password dataset or conducting improper countermeasures may give rise to great (but
subtle) security and usability problems as shown above. So a proper assessment of the
strength of password dataset is essential, without which the security administrator is
unable to determine the following important question: How shall the password policy be
adjusted? Or equally, shall the password policy be enhanced to improve security, kept
unchanged or even relaxed a bit to get usability in return? In a nutshell, the core crux

1In this work, the terms “password policy” and “password creation policy” will be used interchangeably, while
policies regarding lockout and expiration [Chiasson and van Oorschot 2015] are out of the scope of this paper.
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of designing and selecting an appropriate password policy or properly adjusting it lies in
how to accurately assess the strength of password datasets created under it. Note that, in
this work we presume that each existing authentication system has already adopt some
password policy (e.g., [Houshmand and Aggarwal 2012; Castelluccia et al. 2012]), and its
adjustment mainly involves changing some rules and the password strength threshold.

1.1. Motivations
Surprisingly, as far as we know, existing literature has not provided a satisfactory answer
to the above question of how to accurately measure the strength of a given password
dataset. The two most commonly used approaches to assess the strength of a password
dataset are theoretically measuring its information entropy (e.g., [Burr et al. 2006]) and
empirically estimating its “guessability” (e.g., [Kelley et al. 2012; Mazurek et al. 2013]).
The former, however, is not based on empirical data and has been shown inaccurate
[Weir et al. 2010], while the latter, which largely depends on the choices of the cracking
algorithms, parameters, and input dictionaries [Ma et al. 2014; Dell’Amico et al. 2010], has
too many uncertainties to accurately characterize the strength of a given dataset. Later
on, Bonneau [2012b] introduced an ingenious statistical-based metric Gα(·) (named α-
guesswork) which is parameterized on an attacker’s desired success rate α. This metric is
accurate, yet it is intrinsically non-deterministic. For instance, the relationship of G0.50(A)
> G0.50(B) can never ensure that G0.49(A) > G0.49(B), where A and B are two password
datasets. This means no definite conclusions can be reached unless an entire α-guesswork
curve (with x-axis ranging from [0,α]) is computed. Failing to catch this subtlety may
cause great misconceptions as it did in the case of [Li et al. 2014]. This non-deterministic
nature undermines the simplicity of α-guesswork. Fortunately, in this work we develop a
simple, accurate and deterministic (in two of four cases) statistical metric.

Inevitably, the accomplishment of accurately assessing the strength of a password
dataset would entail the settlement of a more fundamental question: How to precisely
characterize a given password dataset? Or equally, what’s the distribution that real-life
user-generated passwords follow? Despite more than thirty years of intensive research
efforts, textual passwords are still enveloped in mysterious veils and this same old
question is asked year in year out, which may well explain why most of today’s password
authenticated key exchange (PAKE) protocols with provable security (in thousands, some
notable ones include [Chen et al. 2014; Canetti et al. 2012] in the random oracle model and
[Katz and Vaikuntanathan 2013; Halevi and Krawczyk 1999] in the standard model) still
rely on a simple but inconceivable assumption: Passwords follow a uniform distribution.

To the best of knowledge, the work by Malone and Maher [2012] may be the most
relevant to what we will discuss in this paper. They made an initial attempt to investigate
the distribution of passwords and reached the conclusion that their password datasets
are “unlikely to actually be Zipf distributed”. Such a conclusion is right contrary to
what we will show in the current work. Malone and Maher [2012] also concluded that
“Zipf distribution is a relatively good match for the frequencies with which users choose
passwords”. A bit self-contradictory? The key is that, they use an inherently flawed
method to attempt to model password distribution with Zipf (naturally, they fail), and they
compare their model with an uniform model, and their comparison results show that their
model is “a relatively good match”. Since nearly any model would outperform a uniform
model, the conclusion that their model is “relatively good” is of little, actually no, sense.
This confusing, unsatisfactory situation motivates this work.

1.2. Our contributions
In this work, we bring the understanding of real-life passwords and the evaluation of
password datasets onto a sound scientific footing by adapting statistical techniques, and
seek to provide compelling answers regarding the above-mentioned two fundamental
questions: (1) What’s the underlying distribution of (user-generated) passwords? and (2)
How to accurately measure the security strength of a given password dataset?
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As our primary contribution, we adopt techniques from computational statistics to show
that Zipf ’s law perfectly exists in real-life passwords, inspired by the applicability of Zipf ’s
law to describe surprisingly diverse natural and social phenomena, such as the Internet
topology [Faloutsos et al. 1999] and US firm sizes [Axtell 2001]. We prune the least
frequent passwords, rank the frequency of each remaining unique password in decreasing
order and investigate the mathematical relationships between the frequency and the rank
by using linear regression. Extensive experiments on a massive corpus of twelve password
datasets (vastly different in terms of service, size, how leaked, localization and language)
show that, our Zipf model is able to accurately characterize the distribution of real-life
passwords. In other words, each password dataset is a specific sample drawn from the
underlying password population which perfectly follows the Zipf ’s law. This invalidates
the claim made in [Malone and Maher 2012] that user passwords are “unlikely to actually
be Zipf distributed”. Particularly, we show it is the front head of passwords natively follow
the Zipf ’s law, but not “the long tail of password choices” as reported in their work.
Then, we figure out why such diametrically opposite observations are made and why our
methodology is essential. Furthermore, we demonstrate the general applicability of our
observation, highlight its fundamental implications for password policies and password-
based cryptographic protocols and suggest a reasonable answer to the open problem left
by Wang et al. [2014]. This constitutes a compelling answer to the first question.

Our second contribution is a novel metric that utilizes the concrete knowledge of
the password distribution function, and thus it overcomes various problems in existing
metrics (e.g., uncertainties in cracking-based approaches [Kelley et al. 2012] and non-
deterministic nature in α-guesswork [Bonneau 2012b]). Our metric facilitates the pass-
word policy designers and security administrators to have a concise grasp of the strength
of their password datasets (either in plain-text or hashed form) in a mathematically
rigorous manner, and enable them to precisely evaluate the security property of password
policies under examination. This suggests the settlement of the second question.

Another contribution of this paper is to show the effectiveness of our metric for mea-
suring the strength of password datasets through empirical evidence. Firstly, we simulate
optimal guessing attacks on the collected real-life password datasets. Then, we take a
step forward to employ the state-of-the-art cracking algorithm (i.e., Markov-based [Ma
et al. 2014]) to approximate optimal password cracking attack. Of independent interest
may be our observation that, in some cases, Markov-based cracking success rates are
much lower as compared to optimal cracking results, implying that the state-of-the-art
cracking algorithm is far from an optimal one and there leaves much room for future
improvement. Additionally, we report an inherent flaw in the strength conversion of α-
guesswork [Bonneau 2012b] and manage to figure out how to fix it.
Roadmap. In Section 2, we survey related works. Then, we show Zipf ’s law exists in
passwords in Section 3. Some fundamental implications of our observations are discussed
in Section 4. The password dataset strength metric is presented, proved, and empirically
established in Section 5, and Section 6 conclues the paper.
2. RELATED WORK
In this section, we briefly review some related works on password creation policies and
password cracking techniques to provide some background for later discussions.
2.1. Password creation policies
In 1990, Klein proposed the concept of proactive password checker, which enables users to
create passwords and checks, a priori, whether the new password is “safe” [Klein 1990].
The criteria can be divided into two types. One type is the exact rules for what constitutes
an acceptable password, such as minimum length and character type requirements. The
other type is using a reject function based on estimated password strength. An example
of this is a blacklist of “weak” passwords that are not allowed. Although the author calls
the technique “proactive password checking”, it is indeed the same as password creation
policies we know today, and thus in this work we use the two terms interchangeably.
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Since Klein’s seminal work, there have been proposed a number of proactive password
checkers that aim to reduce the time and space of matching newly-created passwords
with a blacklist of “weak” passwords, such as Opus [Spafford 1992b] and ProCheck
[Bergadano et al. 1998]. There have also been attempts to design tuneable rules on a
per-site basis to shape password creation, among which is the influential NIST Electronic
Authentication Guideline SP-800-63 [Burr et al. 2006]. However, by modeling the success
rates of current password cracking techniques against real-life user passwords created
under different rules, Weir et al. [2010] showed that merely rule-based policies perform
poorly for ensuring a desirable level of security. On the basis of Weir et al.’s work,
Houshmand and Aggarwal [2012] proposed a novel policy that first analyzes whether
a user selected password is weak or strong according to the empirical cracking-based
results, and then modifies the password slightly if it is weak to create a strengthened
password. This policy facilitates measuring the strength of individual passwords more
accurately and in addition, it can be adjusted more flexibly than previous policies due to
the fact that its adjustment only involves tuning the threshold within a continuous range.

Perhaps the most relevant policy related to our strength metric for assessing password
datasets (see Section 5) is suggested by Schechter et al. [2010]. Their intriguing idea
is to use a popularity oracle to replace traditional password creation policies, and thus
passwords with high popularity are rejected. This policy is particularly effective at thwart-
ing statistical-based guessing attacks against Internet-scale authentication systems with
millions of user accounts. If this policy is in place, our proposed metric would be largely
unnecessary. However, how to prevent an attacker from using their oracle to guess
passwords is an open question. Moreover, this policy rejects passwords that occur at a
probability exceeding a threshold T (e.g., T = 1

106 as exampled in [Schechter et al. 2010]),
yet whether it would greatly reduce usability has not been evaluated thoroughly (e.g.,
no actual user case studies are reported). As an immediate consequence of this policy, it
might frequently annoy users by forbidding them to use their intended passwords that
are typically popular. For instance, about 34.89% of users in www.tianya.cn use passwords
that are more frequent than T = 1

106 , which indicates that more than one third of the
users have an equal potential to be annoyed to select and maintain a new password.
Nevertheless, such a policy would be very promising if these issues can be addressed.

2.2. Password cracking
Password-based systems are prone to various attacks, such as on-line guessing, offline
guessing, keylogging, shoulder surfing and social engineering [Long 2011; Herley 2013].
Here we only consider the on-line and offline guessing attacks, other attacks are unrelated
to password strength or password dataset strength and therefore outside the scope of
this work. While online guessing can be well thwarted by non-cryptographic techniques,
such as locking an account after a threshold number of failed logins or using more
flexible lockout strategies [Van Oorschot and Stubblebine 2006; Alsaleh et al. 2012], offline
guessing attacks are performed on local hardware that the attacker controls and thus
she can make as many guesses as possible given enough time and computational power.
Florêncio et al. [2014] discussed scenarios where offline guessing constitutes a real threat
and identified a great “chasm” between a password’s guessing-resistance against these two
types of guessing. They found that in this “chasm”, incrementally increasing the strength
of passwords delivers little security benefit, and thus they called in question the common
practice of nudging users towards stronger passwords beyond online guessing resistance.
Yet, it is not difficult to see that such a “chasm” would be largely eliminated (and so is the
corresponding doubt), if one considers the cases where passwords (e.g., in salted-hash) has
been leaked yet this leakage is detected (and coped with) only after some period of time
(e.g., a few days), during which offline guessing indeed poses a realistic threat.

Consequently, it is essential for password-based authentication systems to properly
evaluate their resilience to offline guessing attacks. In the literature, this is generally
done by comparing the search space size (i.e., the number of guesses) against the percentage
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of hashed passwords that would be offline recovered. This measure only depends on the
attacking technique and the way users choose their passwords, and it is neither related
to the particular nature of the authentication system (e.g., which type of hash function is
used, PBKDF2 or SHA-1?) nor affected by the attacker capabilities. The nature of the
system and attacker capabilities will instead define the cost that the attacker has to
pay for each single guess [Dell’Amico et al. 2010]. For example, system countermeasures
against offline attacks, such as salting to defeat pre-computation techniques (e.g., Rainbow
tables [Oechslin 2003]) or key strengthening [Dürmuth 2013] to make guessing attacks
more costly, only constitute a key parameter when evaluating the resilience of a password
system to offline attacks. By combining this cost with a measure of the search space, it
becomes possible to attain a concrete cost-benefit analysis for offline attacks. This kind of
measure is also followed by our work.

Password search space essentially depends on how the users choose their passwords. It
is a well known fact that users tend to choose passwords (e.g., words from dictionaries like
the famous “dict-0294” [Outpost9.com’s Lab 2014] or something related to their daily lives)
that are easily rememberable [Shay et al. 2010; Florencio and Herley 2007]. However,
users rarely use unmodified elements from such lists, for instance, because password
creation policies prevent this practice, and instead users modify the words in such a
way that they can still recall them easily. For example, the popular password pa$$word
is generated by leeting two letters of the easily guessable string password.

To model this password generation practice, researchers utilize various heuristic man-
gling rules to produce variants of words from an input dictionary like “dict-0294” [Out-
post9.com’s Lab 2014], and this sort of techniques has emerged as early as 1979 in Morris-
Thompson’s analysis of 3,000 passwords [Morris and Thompson 1979]. This initial work
has been followed by independent works by Klein [1990] and Spafford [1992a]. Later on,
some dedicated software tools like John the Ripper [Designer 1996] appeared. Subsequent
studies (e.g., [Kuo et al. 2006; Dell’Amico et al. 2010]) have often utilized these software
tools to perform dictionary attacks as a secondary goal.

It was not until very recently that password cracking began to deviate from art to
science. Narayanan and Shmatikov [2005] developed an advanced cracking algorithm that
uses Markov chain instead of ad hoc mangling rules to model user password creation
patterns. This algorithm generates passwords that are phonetically similar to words.
It is tested on a dataset of 142 hashed passwords and 96 (67.6%) passwords were
successfully broken. Yet, their algorithm is not a standard dictionary-based attack, for it
can only produce linguistically likely passwords. Moreover, the test dataset is too limited
to convincingly show its effectiveness.

In 2009, on the basis of probabilistic context- free grammars (PCFG), Weir et al. [2009]
suggested a novel technique for automatically deriving word-mangling rules, and they
further employed large real-life datasets to test its effectiveness. In this technique, a
password is considered as a combination of alphabet symbols (denoted by L), digits (D) and
special characters (S). For instance, pa$$word123 is denoted by L2S2L4D3. Then, a set of
word-mangling rules is obtained from a training set of clear-text passwords. To simulate
the optimal attack, this algorithm generates guesses in decreasing order of probability,
and it is able to crack 28% to 129% more passwords than John the Ripper [Designer 1996].
In 2014, Ma et al. [2014] found that, when tuned with the right order and employing some
ways to deal with the problems of data sparsity and normalization, Markov-chain based
cracking algorithms would perform better than PCFG-based cracking algorithms. Hence,
in this work we follow Ma et al.’s Markov-based algorithms to crack the collected datastets
and make comparisons based on the proposed metric.

3. THE ZIPF’S LAW IN REAL-LIFE PASSWORDS
In this section, we first give some background on the statistical technique—linear regres-
sion, and then describe the collected datasets. Further, we provide a foundational under-
standing of passwords and show that Zipf ’s law perfectly exists in real-life passwords.
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3.1. Linear regression
In statistics, linear regression is an approach for modeling the relationship between two
variables by fitting a linear equation to the observed data. One variable is considered to
be an explanatory variable, and the other one is considered to be a dependent variable.
Usually, linear regression refers to a model in which, given the value of x, the conditional
mean of y is an affine function of x: y = a + b · x, where x is the explanatory variable and
y is the dependent variable. The slope of the line is b, and a is the intercept.

The most common method for fitting a regression line is by using least-squares. This
method computes the best-fitting line for the observed data by minimizing the sum of the
squares of the vertical deviations from each data point to the line. For example, if a point
lies on the fitting line exactly, then its vertical deviation is 0. More specifically, from the
experiments we collect a bunch of data: (xi, yi), 1 ≤ i ≤ N . We expect y = a+b ·x+ε, where
a, b are constants and ε is the error. If we choose b =

∑N
i=1(xi−x̄)(yi−ȳ)∑N

i=1(xi−x̄)2
and a = ȳ− bx̄, where

x̄ is the arithmetical mean of xi, and similarly for ȳ. Then the sum of the squares of the
errors

∑N
i=1(yi − a − b · xi)

2 is minimized. In regression, the coefficient of determination
(denoted by R2 and ranging from 0 to 1) is a statistical measure of how well the regression
line approximates the real data points: the closer to 1 the better. A R2 value of 1 indicates
that all data points perfectly dwell on the regression line.

3.2. Description of the password datasets
In our work we collect twelve large-scale real-life password lists different in terms of
service, size, how leaked, user localization, language and culture (faith) background,
showing that our model is able to accurately characterize the distribution of real-life
passwords. All twelve datasets, as summarized in Table I, were compromised by hack-
ers or leaked by anonymous insiders, and were subsequently disclosed publicly on the
Internet. Some of them have also been used by a number of scientific works that study
passwords (e.g., [Weir et al. 2010; Komanduri et al. 2014; Ma et al. 2014]). We realize
that while publicly available, these datasets contain private data such as emails, user
names and passwords. Therefore, we treat all user names as confidential and only report
the aggregation information about passwords such that using them in our research does
not increase the harm to the victims. Furthermore, attackers are likely to exploit these
accounts as training sets or cracking dictionaries, while our study of them are of practical
relevance to security administrators and common users to secure their accounts.

Table I. Basic information about the twelve datasets (“PWs” stands for passwords)

Dataset Application Location Language When leaked How leaked Total PWs Unique PWs
Tianya Social forum China Chinese Dec. 4, 2011 Hacker breached 30,233,633 12,614,676

Dodonew Gaming& China Chinese Dec. 3, 2011 Hacker breached 16,231,271 11,236,220Ecommerce
CSDN Programming China Chinese Dec. 2, 2011 Hacker breached 6,428,287 4,037,610

Duowan Gaming China Chinese Dec. 1, 2011 Insider disclosed 4,982,740 3,119,070
Myspace Social forum USA English Oct. 1, 2006 Phishing attack 41,545 37,144

Single.org Dating USA English Oct. 1, 2010 Query string injection 16,250 12,234
Faithwriters Writer forum USA English Mar. 1, 2009 SQL injection 9,709 8,347

Hack5 Hacker forum USA English July 1, 2009 Hacker breached 2,987 2,351
Rockyou Gaming USA English Dec. 07, 2009 Hacker breached 32,603,388 14,341,564

Yahoo Web portal USA English July 12, 2012 SQL injection 453,492 342,515
Mail.ru Email Russia Russian Sep. 09, 2014 Phishing&malware 4,938,663 2,954,907

Yandex.ru Search engine Russia Russian Sep. 09, 2014 Phishing&malware 1,261,810 717,203

The first four datasets, namely Tianya, Dodonew, CSDN and Duowan, are all from
Chinese websites. We name each password dataset according to the corresponding web-
site’s domain name (e.g. the “Tianya” dataset is from www.tianya.cn). They are all publicly
available on the Internet due to several security breaches that happened in China in
December, 2011 [Martin 2012] and we collected them at that time. CSDN is the largest
community website of Chinese programmers; Tianya is an influential Chinese BBS;
Duowan is a popular game forum; Dodonew is also a popular game forum and it enables
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monetary transactions. All the passwords except part of the Duowan dataset are in plain-
text. Duowan contains both hashed (MD5) and plain-text passwords, and we limit our
analysis to the 4.98 million plain-text ones.

The fifth dataset is the “Myspace” which was originally published in October 2006.
Myspace is a famous social networking website in the United States and its passwords
were compromised by an attacker who set up a fake Myspace login page and then
conducted a standard social engineering (i.e., phishing) attack against the users. While
several versions of the Myspace dataset exist, owing to the fact that different researchers
downloaded the list at different times, we get one version from [Bowes 2011] which con-
tained 41,545 plain text passwords. The following two datasets are the “Singles.org” and
the “Faithwriters”. They both are composed of people almost exclusively of the Christian
faith: www.singles.org is a dating site ostensibly for Christians and www.faithwriters.com is
an online writing community for Christians. The former was broken into via query string
injection and 16250 passwords were leaked, while the latter was compromised by an SQL
injection attack which disclosed 9,709 passwords.

The eighth dataset is from www.hak5.org and it was compromised by a group called
ZF0 (Zero for 0wned) [Constantin 2009]. This dataset is only a small portion of the
entire www.hak5.org dataset. Surprisingly, though Hak5 is claimed to be “a cocktail mix
of comedy, technolust, hacks, homebrew, forensics, and network security”, its dataset is
amongst the weakest ones (see Section 5.1) of all the datasets. In this work, we use this
dataset as a counterexample for representatives of real-life password distributions.

Besides the above eight datasets, we additionally employ four datasets (i.e., Rockyou,
Yahoo, Yandex.ru and Mail.ru) to show the generalizability of our findings of Zipf ’s law
in Section 3.4 and 3.5, and due to space constraints, they will not be analyzed elsewhere.
The Rockyou dataset includes 32M passwords leaked from the gaming forum Rockyou
in Dec. 2009 [Allan 2009]; The 450K Yahoo passwords was made online by the hacker
group named D33Ds in July 2012; The last two deatasets (i.e., 4.9M Mail.ru and 1.3M
Yandex.ru) were leaked by Russian hackers in Sep. 2014, and about 90% of them are
active [Mick 2014], and it is said that these credentials are collected not by hacking the
sites but through phishing and other forms of hacking attacks on users (e.g., key-loggers).

3.3. Statistics about the password datasets
In this subsection, we report some statistical information about the collected datasets.
Firstly, the character composition information is summarized in Table II. It is interesting
to note that Chinese users are more likely to use only digits to construct their passwords,
while English users prefer using letters to construct their passwords. A plausible explana-
tion may be that Chinese users, who usually use hieroglyphics and are less familiar with
English letters on keyboards. Another interesting observation is that, Myspace users tend
to generate their passwords by adding the digit “1” to a sequence of lower-case letters.

Table II. Character composition information about each password dataset

Dataset [a-z]+ [A-Z]+ [A-Za-z]+ [0-9]+ [a-zA- [a-z]+ [a-z]+1 [a-zA-Z]+ [0-9]+ [0-9]+
Z0-9]+ [0-9]+ [0-9]+ [a-zA-Z]+ [a-z]+

Tianya 9.96% 0.18% 10.29% 63.77% 98.05% 14.63% 0.12% 15.64% 4.37% 4.11%
Dodonew 8.79% 0.27% 9.37% 20.49% 82.88% 40.81% 1.39% 42.94% 7.31% 6.95%
CSDN 11.64% 0.47% 12.35% 45.01% 96.31% 26.14% 0.24% 28.45% 6.46% 5.88%
Duowan 10.30% 0.09% 10.52% 52.84% 97.59% 23.97% 0.37% 24.84% 6.04% 5.83%
Myspace 7.18% 0.31% 7.66% 0.71% 89.95% 65.66% 18.24% 69.77% 6.02% 5.66%
Singles.org 60.20% 1.92% 65.82% 9.58% 99.78% 17.77% 2.73% 19.68% 1.92% 1.77%
Faithwriters 54.40% 1.16% 59.04% 6.35% 99.57% 22.82% 4.13% 25.45% 2.73% 2.37%
Hak5 18.61% 0.27% 20.39% 5.56% 92.13% 16.57% 2.01% 31.80% 1.44% 1.21%

Table III shows the length distributions of each dataset. We can see that the most
popular password lengths are between 6 and 10, which on average accounts for 85.01%
of the whole dataset. Few users choose passwords that are longer than 12, with Dodonew
being an exception. One plausible reason may be that, www.dodonew.com is a website that
enables monetary transactions and its users perceive their accounts as being important,
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and thus longer passwords are selected. Of particular interest to our observations is
that the CSDN dateset has much fewer passwords of length 6 and 7 as compared to
other datasets. This may be due to the fact that www.csdn.net (as well as many other
websites) started with a loose password policy and later on a strict policy was enforced
(e.g., requiring the passwords to be of a minimum-8 length). We also note that passwords
from www.christian-singles.org are all no longer than 8 characters, which may be due to
a policy that prevents users from choosing passwords longer than 8 characters. Such a
policy still exits in many financial companies [Johnston 2013], and a plausible reason may
be that the shift to longer allowed password lengths is a non-trivial issue.

Table III. Length distribution information of each dataset
Length 1-3 4 5 6 7 8 9 10 11 12 13-16 17-30 30+ All
Tianya 0.61% 0.65% 0.55% 33.77% 13.92% 18.10% 9.59% 10.28% 5.53% 2.88% 4.05% 0.07% 0.00% 100%

Dodonew 0.36% 0.70% 0.78% 9.71% 13.45% 18.49% 20.29% 14.69% 3.10% 1.34% 10.24% 6.79% 0.04% 100%
CSDN 0.01% 0.10% 0.51% 1.29% 0.26% 36.38% 24.15% 14.48% 9.78% 5.75% 6.96% 0.32% 0.00% 100%

Duowan 0.02% 0.13% 0.12% 20.62% 17.68% 22.49% 15.12% 11.55% 5.30% 2.72% 4.13% 0.12% 0.00% 100%
Myspace 0.25% 0.51% 0.79% 15.67% 23.40% 22.78% 17.20% 13.65% 2.83% 1.13% 1.15% 0.48% 0.17% 100%

Singles.org 0.68% 4.74% 7.68% 32.05% 23.20% 31.65% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100%
Faithwriters 0.04% 0.14% 0.99% 31.97% 20.95% 22.71% 10.35% 5.98% 3.24% 1.87% 1.53% 0.20% 0.01% 100%

Hak5 0.10% 0.64% 0.97% 12.96% 8.50% 20.89% 8.94% 30.83% 3.58% 3.08% 6.90% 2.44% 0.17% 100%
Average 0.26% 0.95% 1.55% 19.75% 15.17% 24.19% 13.20% 12.68% 4.17% 2.35% 4.37% 1.30% 0.05% 100%

In the 1980s, it was revealed that the most popular password at that time was 12345;
thirty years later, as can be seen from Table IV, 123456 takes the lead. It is a long-standing
problem that a significant fraction of users prefer the same passwords as if by prior
agreement, which is in part due to the inherent limitations of human cognition. Note
that, this situation can not be fundamentally altered by simply banning such popular
passwords. For example, if password is banned, then password1 will be popular (see the
most popular passwords of Myspace); if password1 is banned, then pa$$word1 will be
popular. It is hoped that the adaptive password meters (e.g., [Castelluccia et al. 2012])
will ultimately eliminate this issue. Most of the top 10 Chinese passwords are sole digits,
while most of the top 10 English passwords are sole letters.

Table IV. Top 10 most popular passwords of each dataset
Rank Tianya Dodonew CSDN Duowan Myspace Singles.org Faithwriters Hak5

1 123456 123456 123456789 123456 password1 123456 123456 QsEfTh22
2 111111 a123456 12345678 111111 abc123 jesus writer ——
3 000000 123456789 11111111 123456789 fuckyou password jesus1 timosha

Top 3 (%) 5.58% 1.49% 8.15% 5.01% 0.40% 2.10% 1.03% 4.62%
4 123456789 111111 dearbook 123123 monkey1 12345678 christ ike02banaA
5 123123 5201314 00000000 000000 iloveyou1 christ blessed 123456
6 123321 123123 123123123 5201314 myspace1 love john316 zxczxc
7 5201314 a321654 1234567890 123321 fuckyou1 princess jesuschrist 123456789
8 12345678 12345 88888888 a123456 number1 jesus1 password westside
9 666666 000000 111111111 suibian football1 sunshine heaven ZVjmHgC355

10 111222tianya 123456a 147258369 12345678 nicole1 1234567 faithwriters Kj7Gt65F
Top 10 (%) 7.42% 3.28% 10.44% 6.78% 0.78% 3.40% 2.17% 7.20%

What’s interesting is that “love” is also the eternal theme of passwords: five datasets
have a most popular password related to “love”. For instance, the password 5201314,
which sounds as “I love you forever and ever” in Chinese, ranks the 5th and 7th most
popular password in Dodonew and Tianya, respectively. Faith also has a role in shaping
user passwords. For example, the password jesus1 emerges in the top-10 lists of both
Sigle.org and Faithwriters (which are sites for Christians). Startlingly, for several datasets
a mere of top 3 most popular passwords account for more than 5% of all the passwords.
This indicates that, to break into these corresponding sites, an online (trawling) guessing
attacker will succeed every one in twenty attempts. Also, as a side note, even though
popular passwords in Hak5 look rather complex (diversified) and actually about 66.18%
of its passwords are composed of a mixture of lower/upper-case letters and numbers, this
dataset is still very concentrated and as we will show later in Section 5.1, it is among the
weakest ones. This means that seemingly complex passwords may not be difficult to crack
and actually may be rather weak, which further suggests the necessity and importance of
a foundational understanding of passwords.

ACM Transactions on Information and System Security, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:10 D. Wang et al.

tianya

y =
640 505.

x0.905773

1 10 100 1000 104
105

10

100

1000

104

105

106

Rank of password

Fr
eq

ue
nc

y
of

pa
ss

w
or

d

Fig. 1. Zipf ’s law in Tianya (R2 = 0.994)
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Fig. 2. Zipf ’s law in Dodonew (R2 = 0.996)

3.4. Zipf’s law in passwords
Initially, PCFG is a machine learning technique used in natural language processing
(NLP), yet Weir et al. [2009] managed to exploit it to automatically build password
mangling rules. Very recently, NLP techniques have also been shown useful in evaluating
the effect of grammar on the vulnerability of long passwords and passphrases by Rao et al.
[2013] and in dealing with the sparsity problem in passwords by Ma et al. [2014].

Inspired by these earlier works, in this study for the first time we attempt to investigate
whether the Zipf ’s law,2 which resides in natural languages, also exists in passwords. The
Zipf ’s law was first formulated as a rank-frequency relationship to quantify the relative
commonness of words in natural languages by Zipf [1949]. It states that given some corpus
of natural language utterances, the frequency of any word in it is inversely proportional
to its rank in the frequency table. More specifically, for a natural language corpus listed
in decreasing order of frequency, the rank r of a word and its frequency fr are inversely
proportional, i.e. fr = C

r , where C is a constant depending on the particular corpus. This
means that the most frequent word will occur about two times as often as the second
most frequent word, three times as often as the third most frequent word, and so on.
Recently, Zipf ’s law has been shown to account remarkably well for the Internet topology
[Faloutsos et al. 1999], US firm sizes [Axtell 2001] and distribution of Linux software
packages [Maillart et al. 2008].

Interestingly, by excluding the least popular passwords from the datasets (i.e., pass-
words with less than three or five counts in this work) and using linear regression, we find
that the distribution of real-life passwords obeys a similar law: For a password dataset DS,
the rank r of a password and its frequency fr follow the equation

fr =
C

rs
, (1)

where C and s are constants depending on the chosen dataset, and as we will discuss
later, they are essentially determined by the underlying password policy adopted by the
authentication system. Zipf ’s law can be more easily observed by plotting the data on a log-
log graph (base 10 in this work), with the axes being log(rank order) and log(frequency).
In other words, log(fr) is linear with log(r):

logfr = logC − s · logr. (2)

As can be seen from Fig. 1, 30.23 million passwords from the website www.tianya.cn
conform to Zipf ’s law to such an extent that the coefficient of determination (denoted by
R2) is 0.994204954, which approximately equals 1. This indicates that the regression line
logy= 5.806522− 0.905773∗logx perfectly fits the data from Tianya. As illustrated in Fig. 2
and the miniatures in Fig. 3, passwords from the other ten datasets also invariably adhere

2Zipf ’s law distributions are also called Pareto or power-law distributions, and they are different ways of looking
at the same thing—all can be derived from each other [Adamic 2014].
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to Zipf ’s law and the regression lines well represent the data points from corresponding
datasets. Due to space constraints and the aforementioned imperfect nature of Hak5
dataset, we do not present its related Zipf curve here, though actually its fitting line also
has a high coefficient of determination (i.e., R2 = 0.923).

More precisely, as summarized by the “Coefficient of determination” column in Table V,
every linear regression (except for Hak5) is with its R2 larger than 0.965, which closely
approaches to 1 and thus indicates a remarkably sound fitting. As for “Hak5”, its R2 is
about 0.923, which is, though acceptable, not as good as that of other datasets. A plausible
reason may be that it only contains less than three thousand passwords and probably
can not represent the real distribution of the entire password dataset of www.hak5.org. It
should also be noted that, how the datasets leak may have a direct effect on R2. As can be
confirmed by Table V, datasets leaked by phishing attacks are likely to have a lower R2 as
compared to those of datasets leaked by website breaches, because phishing attacks are
unlikely to obtain the entire dataset of a website, while website breaches, once succeed,
all (or at least an overwhelming part of) passwords of the website will be harvested.
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Fig. 3. Zipf ’s law in real-life passwords plotted on a log-log scale

The reason why we need to prune the least frequent passwords will be elaborated in
Section 3.5. The selection of a specific small value (e.g., 3 or 5) as the threshold of least
frequency (LF ) is essentially based on the findings in statistics that (see Fig. 3 of [Clauset
et al. 2009]): when the sample size is smaller than the sample space, the regression first
improves greatly as LF progressively increases until reaching the best point p̂, after which
the regression deteriorates (because of dwindling the sample size) extremely slowly as
LF increases. We have performed a series of experiments to identify the exact LF that
enables the regression to reach p̂, and find that, as a rule of thumb, for large datasets
with millions of passwords, one can set LF = 5, otherwise set LF = 3. More complex ways
(see pp.12 of [Clauset et al. 2009]) might be employed to estimate this threshold and to
more accurately determine the distribution parameters, yet they are out of the focus of
this work. Nonetheless, the regression results in Table V demonstrate that our selection
of the least frequency threshold is satisfactory: every regression attains a R2 close to 1.

Two other critical parameters involved in the regression process are N and s, which
stand for the number of unique passwords used in regression and the absolute value of
the slope of regression line, respectively. While there is no obvious relationships between
N and s, we find there is a close linking between s and the fraction of passwords (or
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equally, total passwords) used in regression: the larger s is, the larger the latter will be.
Once again, the dataset Hak5 is an exception and the reasons have been stated earlier.

We emphasize that, the exclusion of these least frequent passwords is inherently due to
the limited sizes of the samples available: though the password population (i.e., the entire
human-chosen passwords) perfectly follow a Zipf-distribution, the million-sized samples
(e.g., 30M Tianya and 32M Rockyou) are still too small to wholly exhibit this intrinsic
feature. This will be justified in Section 3.5. We also conjecture that it is only these popular
passwords that will affect (reduce) the strength of a dataset, which will be established by
both rigorous proofs and extensive empirical experiments in Section 5. In addition, to
qualify as a proper description of a dataset, a distribution function f(x) shall hold within
a range xmin ≤ f(x) ≤ xmax of at least 2 ∼ 3 orders of magnitude (i.e., xmax/xmin ≥ 102∼3)
[Maillart et al. 2008]. Except for Hack5, this condition is satisfied by all our regressions.

Table V. Linear regression (LR) results of twelve password datasets (“PWs” stands for passwords)

Dataset Totoal Least Fraction of Unique PWs Absolute value Zipf regression Coefficient of de-
PWs freq. PWs in LR in LR (N ) of the slope (s) line (logy) termination(R2)

Tianya 30,233,633 5 0.50443286 486,118 0.905773 5.806523− 0.905773∗logx 0.994204954
Dodonew 16,231,271 5 0.21640911 187,901 0.753771 4.618284− 0.753771∗logx 0.995530686
CSDN 6,428,287 5 0.29841262 57,715 0.894307 4.886747− 0.894307∗logx 0.985106832
Duowan 4,982,740 5 0.28653592 51,797 0.841926 4.666012− 0.841926∗logx 0.976258449
Myspace 41,545 3 0.08094836 706 0.459808 1.722674− 0.459808∗logx 0.965861431
Singles.org 16,250 3 0.22135384 658 0.518096 1.875405− 0.518096∗logx 0.970277755
Faithwriters 9,709 3 0.12472963 242 0.486348 1.583425− 0.486348∗logx 0.974175889
Hak5 2,987 3 0.15400067 76 0.643896 1.579116− 0.643896∗logx 0.922662999
Rockyou 32,603,388 5 0.49600581 563,074 0.912453 5.913362− 0.912453∗logx 0.997298647
Yahoo 453,492 3 0.22668537 12,608 0.675910 3.176150− 0.675910∗logx 0.983232690
Mail.ru 4,938,663 5 0.33034872 83,914 0.732600 4.332851− 0.732599∗logx 0.970047769
Yandex.ru 1,261,810 5 0.34210777 26,003 0.620519 3.394671− 0.620519∗logx 0.972507203

3.5. Justification for our methodology
We note that Malone and Maher [2012] have also attempted to investigate the distribu-
tions of real-life passwords. Yet contrary to our findings that user-generated passwords
are Zipf distributed and that it is the popular passwords (i.e., the front head of the
whole passwords) that natively follow the Zipf ’s law, they concluded that their datasets
(including 32M Rockyou) are “unlikely to actually be Zipf distributed” and that “while
a Zipf distribution does not fully describe our data, it provides a reasonable model,
particularly of the long tail of password choices.” We figure out the primary cause of their
different observation — they fitted all the passwords of a dataset to the Zipf model.

More specifically, unpopular passwords (e.g., with fr < 3) are extremely common (see
Table V) and constitute the long tail (see Fig. 1 of [Malone and Maher 2012] for a concrete
grasp) or the so-called the “noisy tail” [Newman 2005] in the statistical domain, yet they
fail to reflect their true popularity due to the veiled fact that all datasets available are
not sufficiently large enough, even though some datasets are in millions. For example,
www.csdn.net adopts a policy that allows passwords consisting of letters and numbers and
with a length between 8-16, which means that a user’s password (denoted by a stochastic
variable X) will have about |X|=6216 − 628≈4.8∗1029 possible (distinct) values under this
policy. But we have only got 6.42∗106 CSDN passwords from the leakage, a very small
sample relative to |X|. Even though the variable X perfectly obeys Zipf ’s law, a small
sample without proper data processing is highly unlikely to reflect this nature. It follows
that, when fitting all the passwords of such relatively small datasets, the regression
process will be negatively affected by those unpopular passwords and no marked rule
can be observed even if the front head of passwords exhibits a good Zipf property.

We emphasize that, though these least frequent passwords do not natively show the
Zipf behavior, this fact does not contradict our assertion that the password population
perfectly follows a Zipf distribution. Table V shows that, generally, the larger the dataset
is, the larger the fraction of popular passwords (i.e., passwords used in regression) will be.
Based on this trend, one can expect that, had the dataset been sufficiently large, whether
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excluding these unpopular passwords or not would have little impact on the goodness
of the fitting. That is, the entire dataset will exhibit a Zipf property. Fortunately, one
of our follow-up work (see http://wangdingg.weebly.com/uploads/2/0/3/6/20366987/pin zipf.
pdf) on the distribution of human-chosen PINs, a special kind of passwords, well confirm
this inference. One can see that, most of the examined 4-digit PIN datasets can be wholly
fitted into a Zipf model — even if PINs with fr < 10 are excluded, there are still over 94%
of the datasets left in the regression and they perfectly follow the Zipf ’s law (R2 > 0.97).

To further justify our assertion and the need for excluding the unfrequent passwords
(even if the password population perfectly obeys Zipf ’s law), we explore three parameters,
i.e., exact distribution (3 kinds), sample size (7 kinds) and the least frequency concerned
(5 kinds), that might influence a regression and thus perform a series of 105(=3·5·7) ex-
periments. More specifically, suppose that the stochastic variable X follows the Zipf ’s law
and there are N=103 possible values {x1,x2,· · · ,x103} for X. Without loss of generality, the
distribution law is defined to be {p(x1)= C/1s∑N

i=1
C
is

= 1/1s∑N
i=1

1
is

, p(x2)= 1/2s∑N
i=1

1
is

,· · · ,p(xN ) = 1/Ns∑N
i=1

1
is
},

where the sample space N and the slope s define the exact Zipf distribution function. To
be robust, each experiment is run 103 times; For better comparison, each experiment is
with only one parameter varying. Due to space constraints, Table VI only includes 35
experiments where N is fixed to 103 and s to 0.9, the sample size varies from 102 to 104

and LF increases progressively from 1 to 5. Readers are referred to all 105 experimental
results in [Wang et al. 2015]. Note that some integral statistics (e.g., the fitted N ) in Table
VI are with decimals, because they are averaged over 1000 repeated experiments.

Table VI. Effects of sample size and least frequency (LF) on linear regression when simulating a Zipf distribution

Zipf Zipf Z Sample LF # of Unique Passwords used Passwords used Fitted Fitted
R2

N s Z size passwords in regression in regression(%) N sZ1000 0.9 Z 100 1 71.197 100.000 100.00% 71.197 0.429486 0.754566
1000 0.9 Z 100 2 71.262 41.099 41.10% 12.361 0.641264 0.884263
1000 0.9 Z 100 3 70.963 27.201 27.20% 5.307 0.719897 0.894042
1000 0.9 Z 100 4 71.068 20.585 20.59% 3.173 0.683547 0.916477
1000 0.9 Z 100 5 70.765 17.010 17.01% 2.215 0.622484 0.953243
1000 0.9 Z 200 1 123.933 200.000 100.00% 123.933 0.516278 0.822066
1000 0.9 Z 200 2 124.103 102.971 51.49% 27.074 0.688394 0.923847
1000 0.9 Z 200 3 123.795 73.429 36.71% 12.145 0.761613 0.935451
1000 0.9 Z 200 4 124.121 59.139 29.57% 7.392 0.785336 0.930795
1000 0.9 Z 200 5 123.954 50.151 25.08% 5.242 0.784747 0.921241
1000 0.9 Z 500 1 245.459 500.000 100.00% 245.459 0.633549 0.895852
1000 0.9 Z 500 2 246.040 326.859 65.37% 72.899 0.724630 0.951529
1000 0.9 Z 500 3 245.482 250.498 50.10% 34.245 0.796940 0.969880
1000 0.9 Z 500 4 245.697 211.680 42.34% 21.499 0.819386 0.970288
1000 0.9 Z 500 5 245.586 187.536 37.51% 15.372 0.834885 0.966581
1000 0.9 Z 1000 1 389.360 1000.000 100.00% 389.36 0.730031 0.937941
1000 0.9 Z 1000 2 388.014 760.039 76.00% 148.053 0.756649 0.965318
1000 0.9 Z 1000 3 388.733 611.795 61.18% 74.478 0.807381 0.979783
1000 0.9 Z 1000 4 388.774 530.803 53.08% 47.184 0.833071 0.983395
1000 0.9 Z 1000 5 388.839 476.921 47.69% 33.829 0.847137 0.983550
1000 0.9 Z 2000 1 573.821 2000.000 100.00% 573.821 0.835995 0.964407
1000 0.9 Z 2000 2 573.607 1712.451 85.62% 286.058 0.790817 0.977339
1000 0.9 Z 2000 3 574.446 1455.076 72.75% 158.041 0.818059 0.985691
1000 0.9 Z 2000 4 574.011 1287.865 64.39% 102.03 0.840089 0.989460
1000 0.9 Z 2000 5 574.229 1173.160 58.66% 73.534 0.854452 0.990812
1000 0.9 Z 5000 1 828.243 5000.000 100.00% 828.243 0.963949 0.963691
1000 0.9 Z 5000 2 828.466 4760.094 95.20% 588.56 0.861714 0.989008
1000 0.9 Z 5000 3 827.675 4379.226 87.58% 397.276 0.842637 0.991843
1000 0.9 Z 5000 4 828.601 4014.673 80.29% 276.308 0.849865 0.993588
1000 0.9 Z 5000 5 828.281 3724.258 74.49% 203.349 0.859765 0.994832
1000 0.9 Z 10000 1 953.483 10000.000 100.00% 953.483 1.013698 0.943442
1000 0.9 Z 10000 2 953.545 9884.596 98.85% 838.141 0.929787 0.985080
1000 0.9 Z 10000 3 953.125 9582.080 95.82% 686.791 0.884120 0.994655
1000 0.9 Z 10000 4 953.483 9146.947 91.47% 541.471 0.867965 0.996179
1000 0.9 Z 10000 5 953.365 8683.549 86.84% 425.614 0.866388 0.996641
Note: For more detailed results, readers are referred to the supplemental material [Wang et al. 2015] of this work.
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Our results on these 105 experiments show that, given a Zipf distribution (i.e., when the
parameters N and s are fixed), no matter the size of sampled data is smaller than, equal
to or larger than N , larger LF preferred will lead to a better regression (i.e., the fitted s
is closer to the Zipf s, and R2 is closer to 1) at the beginning, but will worsen the situation
as LF further increases. More specifically, when the size of sampled data is smaller than
N , the fitted s first increases and then decreases as LF increases progressively; When the
size of sampled data is larger than N , on the contrary, the fitted s first decreases and then
increases as LF increases progressively; When the size of sampled data is much larger
than N , popular passwords (i.e., with fr ≥ 3) invariably account for over 95% of each
entire dataset and perfectly follow the Zipf ’s law (R2 ≥ 0.99). Since the sizes of real-life
password datasets (e.g., in tens of millions) are generally much smaller than the password
sample space (e.g., |Xcsdn| ≈ 4.8 · 1029), it is reasonable and necessary to prune these least
frequent passwords when performing regression. This well explicates why diametrically
opposed conclusions are drawn between [Malone and Maher 2012] and this work.
3.6. General applicability of our observations
In the regressions in previous sections, we only considered datasets that are generated
under loose password creation policies. Table II∼IV show that quite short and letter-only
passwords appear in every dataset, which suggests that there is no evident length or
composition requirement for generating passwords in any site. We believe a more precise
and reasonable explanation for this phenomenon is that most of these passwords are
created under a mixture of unknown policies: Initially, there is no rule (policy); Later
on, some stricter (or looser) rule(s) is applied; Sometime later, the sites were hacked.

However, this is not true in some cases, especially for security-critical services which
may implement strict policies at the very beginning. To further establish the applicability
of our findings, two special kinds of datasets created under more constrained (yet quite
realistic) password policies are considered: (1) Datasets with password lengths satisfying
some minimum length (e.g., at least length-8); and (2) Datasets with each password being
a mix of letters and numbers (e.g., at least one letter and one number).

Since we did not have exact examples of passwords exactly generated under some
specific creation policies with a length or composition requirement (as far as we know,
there is no such ideal data publicly available), we attempted to model such policies by
further dividing these datasets based on the minimum length or composition requirement.
However, we were cautioned that simply dividing an existing dataset according to some
artificial policy may be meaningless, for user behaviors will be largely skewed in this
process. A collateral evidence of this caution is the observation that, passwords created
under an explicit policy “cannot be characterized correctly simply by selecting a subset of
conforming passwords from a larger corpus” and “such a subset is unlikely to be represen-
tative of passwords created under the policy in question” [Ur et al. 2012]. Mazurek et al.
[2013] have also reported a similar observation. Fortunately, after careful examination of
our twelve datasets (see Table II and Table III), we find that:
(1) Only 2.17% passwords in CSDN are shorter than eight characters long. These short

passwords are highly due to the initial loose policy and the other remaining 97.83%
long passwords are due to the later enhanced password policy. This transition in
password policies has been confirmed;

(2) As high as 75.79%(=69.77%+6.02%) passwords in Myspace are composed of both
letters and numbers, and more than 18.24% users select passwords with a sequence
of letters concatenated with the number “1”. This highly suggests that there was a
transition in composition requirements at sometime before the hacking happened,
though by no means can we confirm this transition.

Consequently, these two datasets constitute useful subsets that are representative of
passwords complying with the above two constrained password policies, respectively. More
specifically, 97.83% long passwords from CSDN constitute a dataset created under a policy
that requires passwords to be at least eight characters long, and 75.79% passwords from
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Myspace constitute a dataset created under a policy that requires passwords to be at
least one letter and one number. And we call them “csdn-lc” and “myspace-cc” for short,
where “lc” stands for “length constrained”, and “cc” stands for “character constrained”.
The linear regression results on these two refined datasets are depicted in Fig. 4(a) and
4(b), respectively. We can see that, the coefficients of determination (R2) of these two
regressions are 0.966 or higher, indicating a sound fitting. This suggests that Zipf ’s law
can also be applied to passwords created under very constrained policies.

To investigate whether subsets of a dataset that obeys Zipf ’s law also comply with
this law, we further conduct linear regressions on subsets randomly selected from the
twelve datasets. As expected, there are no significant differences in fitting effect between
any of the subsets and their parent dataset (Fisher’s exact test, p-value≥0.05). Due to
space constraints, only four randomly selected subsets (each with a size of 1 million) from
Duowan are depicted in Fig. 4(c) ∼ Fig. 4(f). As R2 of these four regressions are all 0.977
and very close to 1, it indicates Zipf ’s law fits well in these subsets. This implies that if we
can obtain a sufficiently large subset of passwords of an authentication system, then the
distribution of the whole passwords can be (precisely) determined by conduction a linear
regression and fitting them to a Zipf ’s law. Nevertheless, how much fraction of a dataset
can be deemed “sufficiently large”? How about one sixth, one tenth, or one hundredth?
This suggests a natural direction for future research.
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Fig. 4. Zipf ’s law in passwords created under constrained policies and in passwords randomly sampled from a
real-life dataset (using Duowan as a typical example) plotted on a log-log scale

At this stage, a natural question arises: Can our observations be generalized to
user-generated passwords in most cases? Or equally this question may be expressed as:
Whether the datasets used in this work can be representative of most of the datasets?
The answer is highly affirmative. On the one hand, the datasets used in this work are so
far the most diversified (in terms of service, size, how leaked, locality, language and
culture/faith) and among the largest ones (in terms of both the total number of
passwords and the number of datasets), and thus they are of sound representativeness.
In previous researches on passwords, to the best of knowledge, the most diversified
datasets (i.e., three from US and three from China, and with each from different services)
have been reported in [Ma et al. 2014] and the largest datasets (i.e., seven datasets with
a total of 114 million passwords) have been used in [Li et al. 2014], while in our work we
employ twelve diversified datasets with a total of 97.2 million passwords. Admittedly, our
datasets (as well as the length-constrained and character-constrained ones) cannot
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represent all sorts of real-life datasets, for instance, none of them represent credentials
with great importance (e.g., e-banking). Nevertheless, these datasets still represent a
significant number of diversified user-generated passwords and can be employed to
investigate general password distributions, and their identified striking property is
unlikely to be a coincidence due to the high coefficients of determination.

On the other hand, rigorously speaking, there is no (or never will be) definite answer
to the appropriateness of a generalization like ours. Physicians aim at understanding
how the physical world works can never know for sure if their theories (e.g., Newton’s
laws) are the right ones, instead they can only tell whether their theories are consistent
with state-of-the-art experiments. Similarly, we aim at understanding how the real-
life passwords distribute, but can never know for sure whether our theory is definitely
correct; With adequate data and right tools, we can only develop models to characterize
password distributions more and more accurately, and this might be a never-ending work
in progress. We frankly admit more efforts need to be devoted to this interesting subject.

Overall, although our data is not ideal, we believe that our findings do provide a much
better understanding of the distributions of user-generated passwords and can be widely
applicable. While so little is known about this important topic, even relatively limited
exploration constitutes progress, let alone a fundamental investigation.

4. SOME FOUNDATIONAL IMPLICATIONS
In this section, we show two foundational implications of our Zipf theory. We believe this
theory is also of interest in other domains, and it lays the foundation for their further
theoretical development and practical application (see “GenoGuard” [Huang et al. 2015]).
4.1. Implications for password policies
Recently, many works on password policy (e.g., [Schechter et al. 2010; Castelluccia et al.
2012]) have suggested disallowing users from choosing dangerously-popular passwords
(e.g., 123456 and password123) which occur with probabilities greater than a predefined
threshold T (e.g., T = 1/106). Surprisingly, their motivation is mainly based on the
empirical observation that some users employ undesirably popular passwords and such
passwords are particularly prone to statistic attacks, a form of dictionary attack (maybe
either online or offline) in which an attacker sorts her dictionary by popularity and
guesses the most popular passwords first. So far, little underlying rationale has been
given and many foundational questions remain to be addressed. For example, what’s the
fundamental tendency of growth of the fraction of users that will be affected by decreasing
the popularity threshold T ? What proportion of users choose popular passwords under a
given threshold? What proportion of users will be affected if we restrict the top 0.0001%
most popular passwords? How about restricting the top 0.01% most popular passwords?

We are now ready to answer these questions. In Section 3, we have shown that in most
cases, user-generated passwords obey the Zipf ’s law, which states that the rank r of a
password and its frequency fr follow the equation fr = C

rs , where C is a constant that is
typically slightly smaller than the frequency of the most popular password (denoted by
F1), i.e., C = f1 ≤ F1. For illustrative purpose, assume the frequency of user password
X is a continuous real variable, and the corresponding probability of taking a value in
the interval from x to x + dx is denoted by p(X = x)dx. According to [Adamic 2014], now
p(X = x) obeys a power law distribution. More specifically,

p(X = x) = C ′ · x−α, (3)
where α = 1 + 1/s, s is as defined in Eq.1. As for C ′, it is given by the normalization
requirement that

1 =

∫ ∞

xmin

p(X = x) dx = C ′ ·
∫ ∞

xmin

x−α dx =
C ′

1− α
[x−α+1]∞xmin

, (4)

where xmin, in practical situations, is defined not to be the smallest value of x measured
but to be the smallest for which the power-law behaviour holds. As α = 1+1/s > 1, we get

C ′ = (α− 1)xmin
α−1. (5)
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Consequently, the probability that the frequency of a particular password will be greater
than x (x ≥ xmin) is given by

P (X > x) =

∫ ∞

x

p(X = x′) dx′ =
C ′

α− 1
x−α+1 = (

x

xmin
)−α+1. (6)

Note that by definition, P (X > x) can also be seen as the cumulative password popularity
distribution function. Based on Eq.4 and Eq.5 as well as the fact that α = 1+ 1/s > 2 (see
s in Table V), the largest frequency xT allowed under a threshold T can be determined

xT = T ·
∫ ∞

xmin

xp(X = x) dx = T · C ′ ·
∫ ∞

xmin

x−α+1 dx = T · α− 1

α− 2
xmin. (7)

We denote the exact fraction of user accounts (with password frequencies exceeding xT )
that will be potentially and actually affected by the threshold T to be Wp(X > xT ) and
Wa(X > xT ),3 respectively, where

Wp(X > xT ) =

∫∞
xT

x′p(X = x′) dx′∫∞
xmin

x′p(X = x′) dx′ = (
xT

xmin
)−α+2. (8)

Wa(X > xT ) =

∫∞
xT

(x′ − xT )p(X = x′) dx′∫∞
xmin

x′p(X = x′) dx′ =
1

α− 1
· ( xT

xmin
)−α+2. (9)

Using Eqs.6∼9, we can get the fraction of user accounts with each of its password lies
in the most popular part P (X > xT ):

Wp(X > xT ) = (P (X > xT ))
(−α+2)/(−α+1). (10)

Since α = 1 + 1/s, Eq.10 can be re-written as
Wp(X > xT ) = (P (X > xT ))

(1− 1
s )/(−

1
s ) = (P (X > xT ))

1−s. (11)
Similarly, Eq.9 can be re-written as

Wa(X > xT ) =
1

α− 1
· (P (X > xT ))

(1− 1
s )/(−

1
s ) = s · (P (X > xT ))

1−s. (12)

This suggests that the two reduced-usability indicators Wp(X > xT ) and Wa(X > xT )
follow a Pareto’s law with a positive exponent 1 − s, regarding the cumulative password
popularity distribution function P (X > xT ). For a better comprehension, in Fig. 5 we
depict the form of the curves of Wp(X > xT ) and Wa(X > xT ) against P (X > xT ) for
various values of s as listed in Table V.

The steep increase of Wp and Wa at the very beginning of their curves (see Fig. 5)
explicitly reveal that, popular passwords are overly popular and a non-negligible fraction
of users will be inconvenienced even if only a marginal proportion of popular passwords
are checked. For example, according to Eq.12, Wa=2.51% users will be annoyed when
s = 0.7538, T = 1/1024 and P = 0.0001%. To see whether our theory accords with the
reality, we also summarize the statistical results from eight real-life password datasets in
Table VII. One can confirm that, the theoretical Wa exceeds the empirical Wa by a factor
of 1 ∼ 3. The main reason why the results obtained from our theoretical model are larger
than the experimental statistical results is that, there is a large proportion of passwords
that are not frequent (i.e., their frequencies are below xmin), which is generally called the
“noisy tail” [Newman 2005] in the statistical domain. In addition, for simplicity we have
modelled the frequency of a user password, which is a discrete integer, to be a continuous
real variable, and this will inevitably introduce some deviations.

3Note that, Wp(X > xT ) and Wa(X > xT ) are indeed two independent and useful indicators to measure the
extent to which usability will be affected. For instance, now if www.dodonew.com enforces a popularity-based
policy with T = 1/1024, then there will be Wp(X > xT )=3.33% accounts with passwords more popular than
T = 1/1024, which means each of these 3.33% accounts has an equal potential to be required to change a new
password. However, there will only be Wa(X > xT )=2.51% accounts that will actually be required to choose
a different password for the reason that, after Wa(X > xT )=2.51% accounts have already been changed, the
remaining Wp(X > xT )−Wa(X > xT )=0.82% accounts will be with passwords less popular than T = 1/1024.
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(b) Users that will be actually affected with P (X > xT )

Fig. 5. The fraction of users that will be potentially/actually affected by a popularity-based policy, if passwords
are distributed following a Zipf law with exponent s as listed in Table V.

Table VII. Effects of password popularity threshold T on the fraction of passwords with undesirable popularity
(i.e., P ) and on the fraction of user accounts that will be actually affected (i.e., Wa)

Password T =1/1024 T =1/10000 T =1/16384 T =1/1000000

Dataset P Wa P Wa P Wa P Wa

Tianya 0.0001% 6.6023% 0.0015% 10.7586% 0.0023% 11.6473% 0.4416% 30.9110%
Dodonew 0.0001% 1.3926% 0.0009% 3.1556% 0.0014% 3.6298% 0.2958% 11.2351%

CSDN 0.0002% 9.4648% 0.0029% 12.2806% 0.0049% 12.8732% 0.8441% 24.6874%
Duowan 0.0004% 5.8130% 0.0048% 8.8648% 0.0079% 9.6064% 1.6607% 24.4955%
Myspace 0.0054% 0.1228% 0.5358% 2.1952% 1.9007% 4.6961% – –

Singles.org 0.1553% 2.6154% 14.1818% 24.7138% – – – –
Faithwriters 0.1917% 1.3390% – – – – – –

Hak5 3.2327% 10.3113% – – – – – –

Note: A dash “–” stands for “not applicable”, due to the mere fact that 1/T is larger than the size of corresponding dataset.

Though the above theoretical model is not perfectly accurate, as far as we know, it for
the first time does reveal the fundamental tendency of the fraction of users that will be
affected by a popularity threshold and provides insightful, concise and practical indicators
that facilitate policy designers and security administrators to offer a more acceptable
trade-off between usability and security. For example, under our theory it is not difficult to
see that it might be unreasonable to set T = 1/106 for Internet-scale sites, for more than
60% users will be potentially annoyed. However, Schechter et al. [2010] and Florêncio
et al. [2014] just explicitly (or implicitly) suggested such a value for T . On the other
hand, the Zipf ’s law revealed in Section 3.4 suggests that the frequencies of the most
popular passwords descend at an approximately logarithmic rate, and thus only a limited
proportion of passwords are overly popular. Consequently, we only need to prevent these
overly passwords and set an appropriate popularity threshold T . For instance, less than
13% users of most systems will be annoyed when T is set to the moderate value 1/16384
complying with a Level 2 certification [Burr et al. 2013], which suggests that T = 1/16384
would be more acceptable for most Internet-scale e-commerce sites. This, for the first time,
provides a sound rationale (foundation) that explicates the necessity and feasibility (as
well as precautions) for popularity-based password policies. We also emphasize that the
picture we draw here is an elementary, plausible (rather than conclusive) evaluation of
the policy usability, and thorough field studies are still intrinsically necessary.

4.2. Implications for password-based authentication
Another foundational implication of our observation is for thousands of provably secure
authentication protocols that involve passwords, like password-only single-factor schemes
(e.g., two-party [Katz et al. 2009] and multi-party [Chen et al. 2014]) and password-based
multi-factor schemes (e.g., two-factor [Wang et al. 2014] and three-factor [Huang et al.
2014]). Here we first show the implication for password-only schemes, also called PAKE
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protocols. In most provably secure PAKE protocols (e.g., [Bellare et al. 2000; Canetti et al.
2012; Pointcheval 2012; Chen et al. 2014] in the random oracle model and [Halevi and
Krawczyk 1999; Katz et al. 2009; Katz and Vaikuntanathan 2013; Yi et al. 2014] in the
standard model), it is typically assumed that “password pwC (for each client C) is chosen
independently and uniformly at random from a dictionary D of size |D|, where |D| is a fixed
constant independent of the security parameter k”, then a security model is described, and
finally a “standard” definition of security as the one in [Katz et al. 2009] is given:

“· · · · · · Protocol P is a secure protocol for password-only authenticated key-
exchange if, for all [password] dictionary sizes |D| and for all ppt[probabilistic
polynomial time] adversaries A making at most Q(k) on-line attacks, there exists
a negligible function ϵ(·) such that:

AdvA,P(k) ≤ Q(k)/|D|+ ϵ(k), (13)

where AdvA,P(k) is the advantage of A in attacking P.”4

According to [Bonneau 2012b], user-generated passwords generally offer about 20 ∼ 21
bits of actual security against an optimal offline dictionary attack, which means the effec-
tive password space D is of size about 220∼221. This indicates that a system which employs
a PAKE protocol achieving the security goal of Eq.13 can assure that one online guessing
attempt will attain a success rate no larger than 1/220∼1/221, which is apparently not
the case and actually may be somewhat misleading in practice. For instance, the actual
advantage of A against the gaming&e-commerce site www.dodonew.com reaches 1.49%
when Q(k)=3 and 3.28% when Q(k)=10, which are far beyond the theoretic results given
by Eq.13. Predictably, the advantages of A against most of the real-world sites will be
largely underestimated, and an overly optimistic sense of security might be conveyed to
common users and security administrators.

As a prudent side note, some of these works (e.g., [Katz and Vaikuntanathan 2013; Katz
et al. 2009; Halevi and Krawczyk 1999]) complement that the assumption of a uniform
distribution of passwords with a constant-size dictionary is made for simplicity only, and
their security proofs can be extended to handle more complex cases where passwords
do not distribute uniformly, different distributions for different clients, or the password
dictionary size depends on the security parameter. However, such a complement only
serves to obscure their security statements and undermine the readers’ (e.g., people in
industry, government, and academia) understanding of to exactly what extent they can
have confidence in the authentication protocol used to protect systems, for no one knows
what the distribution would be if “user-chosen passwords do not distribute uniformly”.
This defeats the purpose of constructing provably secure protocols which “explicitly
capture the inherently quantitative nature of security, via a concrete or exact treatment
of security” and “offer quantitative security guarantee” [Bellare 1999] in the first place.

According to our theory, now it is fundamentally unnecessary (unrealistic) to make
an assumption of uniform distribution of passwords, instead one may directly make the
Zipf assumption about password distributions. Since system assigned random passwords
are hardly usable [Shay et al. 2012], most systems allow users to generate their own
passwords, which would highly lead to the passwords complying with the Zipf distribution
as we have shown in Section 3.4. However, under the Zipf assumption, it is highly likely
that AdvA,P(k) =

C/1s∑|D|
i=1

C
is

+ C/2s∑|D|
i=1

C
is

+ · · ·+ C/ks∑|D|
i=1

C
is

=
∑k

j=1
1
js∑|D|

i=1
1
is

will be alarmingly large (due to

the approaching-logarithm-function nature of harmonic numbers [Paule and Schneider
2003]) and thus, the system will be in serious danger even if k is rather small. For
instance, this value reaches 1.49% when making only 3 on-line attacks for the website

4We remark that some PAKE protocols (e.g., [Chen et al. 2014; Bellare et al. 2000]) relax this definition of
security to AdvA,P (k) ≤ c ·Q(k)/|D|+ ϵ(k), where c is a constant positive integer, indicating A now is allowed
to guess c passwords per on-line attempt. However, this does not necessarily mean that the corresponding
protocol P is actually subject to the threat that A can guess more than one password per on-line attempt,
for this relaxation may be due to some technical reasons in reductionist proofs but not an inherent defect of P.
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www.dodonew.com which enables monetary transactions. As can be seen in Table IV, seven
of eight websites have a chance of more than 3.28% of accounts being breached by an
attacker who makes merely ten online impersonation attempts.

From Eq.12 (or Fig. 5(a)) we can also see that, a rather small fraction of the most popular
passwords (denote by P ) can account for a non-negligible proportion of user accounts
(denote by Wp), which suggests that an online guessing attacker can succeed with a
chance Wp just by trying P ·|D| different passwords. That is, even if the authentication
protocol employed is provably secure, secure user identification still cannot be reached if
the passwords of the system obey Zipf ’s law. This once again highlights that cryptographic
methods should be compounded with systematic solutions to assure system security.
To this end, the passwords shall not follow a Zipf distribution. This indicates that
some necessary countermeasures (e.g., exploiting policies that restrict the overly popular
passwords) shall be taken, which may lead to passwords with a skewed Zipf distribution.

While the uniform distribution assumption made about passwords is unrealistic, the
Zipf distribution is insecure and the skewed Zipf distribution seems hardly possible to
be rigorously characterized, we are stuck in a conundrum to formulate the definition of
security results like Eq.13. Inspired by the essential notion of security that a secure PAKE
protocol can provide – only online impersonation attacks are helpful to the adversary in
breaking the security of the protocol [Halevi and Krawczyk 1999], we manage to get out of
the problem by giving up the idea of firstly characterizing the distribution of password and
then formulating the definition of security. And instead, we provide a tight upper bound
for the adversary’s advantage. More specifically, Eq.13 now is amended as follows:

AdvA,P(k) ≤ F1 ·Q(k)/|DS|+ ϵ(k), (14)
where F1, as said earlier, is the frequency of the most popular password in the dataset
DS, |DS| is the (expected) number of user accounts of the target authentication system,
and the other notations are the same with those of Eq.13. Note that, dictionary D is the
password sample space and it is a set, while dataset DS is a (specific) password sample and
it is a multiset. Therefore, the value of F1/|DS| is exactly the threshold probability T (e.g.,
T =1/16384) that the underlying password policy maintains. For a system to reach a Level
1 certification [Burr et al. 2013], the success chance of an online guessing attacker should
be no larger than 1 in 1024, which indicates F1/|DS| ≤ 1/1024; Similarly, for a Level 2
certification, the system shall ensure F1/|DS| ≤ 1/16384. For example, for the gaming and
e-commerce website www.dodonew.com to achieve a Level 2 security, F1 should have been
no larger than 991(≈ 16231271/16384).

Also note that, Eq.13 is actually a special case of Eq.14, where F1 = 1 and |DS| =
|D|. Moreover, Eq.14 can be also used to roughly formulate the formal security results in
situations where user passwords perfectly follow Zipf ’s law. Though not precisely accurate,
Eq.14 (e.g., let F1/|DS| = 1/1024) is still more reasonable (and realistic) than the ones like
Eq.13 that are currently widely used in the cryptographic protocol community (e.g., [Katz
et al. 2009; Pointcheval 2012; Chen et al. 2014; Yi et al. 2014]).

We happen to find that a series of PAKE protocols proposed by Abdalla et al. [2015] uses
a different formulation of security from traditional ones:

AdvA,P(k) ≤ Q(k)/2m + ϵ(k), (15)
where m is the min-entropy of the passwords.5 Actually, it is not difficult to see that this
kind of formulation (i.e., Eq.15) is in essential the same with Eq.14, for one can derive
that m = −log2(F1/|DS|) [Bonneau 2012b]. By contrast, our formulation is much more
concrete and intelligible. What’s more, no rationale or justification for preferring Eq.15
but not Eq.13 is given in [Abdalla et al. 2015]. Fortunately, in Section 3.4 we have at last
settled this fundamental issue: Are passwords likely to be of a uniform distribution or not?
And, if not, then what should be the right distribution?

5We note that, in Sections 5.2∼5.4 of [Abdalla et al. 2015], m is re-defined to be the entropy of passwords. This
inconsistence would lead to great differences in security guarantees. We conjecture typos have occurred there.
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One can also see that, if m is defined to be the entropy of passwords, then Eq.15 is
virtually equal to Eq.13 and it provides a mean value for the online guessing difficulty,
for one can derive that m =

∑|D|
r=1 −pilog2pi, where pi is the probability of the ith most

frequent password in D (e.g., p1 = F1/|DS|). This well explicates why Benhamouda et al.
(see Section 6.1 of [Benhamouda et al. 2013]) state that “equivalently the advantage of
any adversary can be bounded” by either Eq.13 or Eq.15. However, as we have shown, if
m is defined as the min-entropy of passwords (which is the right definition in most cases),
Eq.13 and Eq.15 (or equally, Eq.14) will be significantly different from each other.

Unlike PAKE protocols where users have to interact with the server to register their
passwords, most multi-factor schemes provide a property, which is termed “DA2-Local-
Secure” [Wang et al. 2014], to facilitate users change their passwords freely and locally
(i.e., without interacting with the server). Since there is no interaction with the server,
popularity-based password policy cannot be enforced, user passwords will almost definitely
follow a Zipf distribution. However, when evaluating whether “truly multi-factor security”
can be provided, these schemes typically perform a reductionist security proof and obtain
a security result like Eq.13 (see Definition 1 of [Yang et al. 2008]), under the assumption
that the other factor(s) except the password factor has been compromised. As discussed
above, our theory discourages such simple but unrealistic, actually misleading (i.e., a
false sense of security) form of formulation. A formulation like our proposed Eq.14
is more accurate and appropriate for such cases. This further suggests the necessity
of abandoning the property “DA2-Local-Secure” and requiring users to change their
passwords by interacting with the server (i.e., preferring the property “DA2-Interactive”
[Wang et al. 2014]), providing an answer to the open problem raised in [Wang et al. 2014]:
as an ideal scheme that achieves all the criteria (including ten desirable properties and
nine security goals) is beyond attainment, then which criterion should be abandoned?

To the best of our knowledge, we, for the first time, pay attention to the joint between
passwords and password-based authentication protocols. With the knowledge of the exact
distribution of passwords, we manage to develop a more accurate, realistic and versatile
formulation to characterize the formal security result for password-based authentication
protocols. Here we have mainly taken password-based authentication as a case study, and
one can easily find that our results revealed herein also can be readily applied to other
kinds of password-based cryptographic protocols whose security formulation essentially
relies on the explicit assumption of the distribution of passwords, such as password-based
encryption (e.g., [Juels and Ristenpart 2014]), password-based signatures (e.g., [Gjosteen
and Thuen 2012]) and password-protected secret sharing (e.g., [Bagherzandi et al. 2011]).
5. STRENGTH METRIC FOR PASSWORD DATASET
In this section, we address the question as to how to accurately measure the strength of
a given password dataset. As one practical application of our Zipf theory, an elegant and
accurate statistical-based metric on the strength of password datasets is suggested.
5.1. Our metric
Normally, a smart offline guessing attacker,6 would always attempt to try the most
probable password first and then the second most probable password and so on in
decreasing order of probability until the target password is matched. In the extreme
case, if the attacker has also obtained the entire password dataset in plain-text and thus,
she can obtain the right order of the passwords, this attack is called an optimal attack
[Dell’Amico et al. 2010; Bonneau 2012b].7 Accordingly, we can use the cracking result
λ∗(n) to be the strength metric of a given password dataset:

6The attacks mentioned in this Section are all offline attacks, for our purpose is to measure the strength of
an entire dataset, which is generally characterized by how much percentage of passwords in salted-hash (or
unsalted-hash) could be successfully recovered (see Section 2.2).
7Note that, the optimal attack is of theoretic value (i.e., providing the upper bound) to characterize the best
attacking strategy that an attacker can adopt. In practice, if an attacker has already obtained all the plain-text
passwords, there is no need for her to order these passwords to crack themselves.
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λ∗(n) =
1

|DS|

n∑
r=1

fr, (16)

where |DS| is the size of the password dataset and n is the number of guessing.
In Section 3, we have shown that the distribution of passwords obeys Zipf ’s law, i.e.,

fr = C
rs . Consequently, λ∗(n) is essentially determined by N and s (Note that N is the

number of unique passwords, and s is the absolute value of the slope of the fitting line):

λ∗(n) ≈ λ(n) =

∑n
r=1

C
rs∑N

r=1
C
rs

=

∑n
r=1

1
rs∑N

r=1
1
rs

. (17)

It should be noted that, in Eq.17, λ∗(n) is not exactly equal to the value of the rightmost
hand even though our regression line complies with the actual data very well. We plot
λ∗(n) as a function of n according to Eq.16 and λ(n) as a function of n according to Eq.17,
and put these two curves together to see how they agree with each other. In Fig. 6(a), we
depict λ∗(n) and λ(n) for 30.23 million passwords from the Tianya dataset and obtain
an average deviation of 1.32% (i.e., a sound fitting) for the two curves. Due to space
constraints, here we cannot illustrate the related pictures for the other datasets like that
of Tianya and Myspace, yet we summarize the average deviation between the two curves
λ∗(n) and λ(n) (1 ≤ n ≤ |DS|) for each dataset in Table VIII.
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Fig. 6. Consistence of optimal attack with our metric on two example datasets (Dodonew and Mysapce)

As evident from Table VIII, the λ∗(n) curve well overlaps with the λ(n) curve for each
dataset. Specifically, except for Hak5, the average deviations are all below 2% (i.e., from
0.54% to 1.93%), suggesting sound consistence of λ(n) with the optimal attacking result
λ∗(n). As with Fig. 6, the two curves for each dataset first deviate slightly when n is small
and then gradually merge into each other as n increases. This is mainly caused by the
deviation of the first few high-frequency passwords from the Zipf fitting line (see Fig. 3).

Table VIII. The average deviation between λ∗(n) and λ(n) (1 ≤ n ≤ |DS|) for each dataset

Tianya Dodonew CSDN Duowan Myspace Singles.org Faithwriters Hak5

Average Deviation 1.32% 1.76% 1.93% 0.86% 0.88% 1.43% 0.54% 3.05%

Now that the optimal attack can be well approximated by λ(n), it is natural to propose
the pair (NA, sA) to be the metric for measuring the strength of password dataset A,
where NA is the number of unique passwords used in regression and sA is the absolute
value of the slope of the fitting line. Note that, essentially, measuring a password dataset
is equivalent to measuring the policy under which this dataset is created. In the following,
we propose a theorem and a corollary, and show that our metric not only is able to
determine whether the strength of a website’s password dataset becomes weak after a
period of time, but also can be used to compare the strength of datasets from different
websites. This feature is rather appealing, for the confidence of security only comes after
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comparison–having a comparison with other similar websites, the security administrators
now have a clearer picture about what level of strength their datasets can provide.
The recent litany of catastrophic leakages of web accounts (see [Katalov 2013] for an
incomplete list) provides wonderful materials to facilitate such comparisons.

THEOREM 5.1. Suppose NA ≥ NB , sA ≤ sB . Then
λA(n) ≤ λB(n),

where 0 ≤ n ≤ NA (if n > NB , define λB(n) = 1). If either inequalities of the above two
conditions are strict, then λA(n) < λB(n), where 0 < n < NA.

The theorem will be proved in Section 5.2, and in Section 5.4 its compliance with
cracking results will be shown by the simulated optimal attack and the state-of-the-art
cracking algorithm (i.e., Markov-based [Ma et al. 2014]), respectively.

COROLLARY 5.2. Suppose NA ≤ NB, sA ≥ sB . Then

λA(n) ≥ λB(n),

where 0 ≤ n ≤ NB (if n > NA, define λA(n) = 1). If either inequalities of the above two
conditions are strict, then λA(n) > λB(n), 0 < n < NB .

This corollary holds due to the evident fact that it is exactly the converse-negative
proposition of Theorem 5.1.

The above theorem and corollary indicate that, given two password datasets A and B,
we can first use liner regression to obtain their fitting lines (i.e., NA, sA, NB and sB),
and then compare NA with NB , sA with sA, respectively. This gives rise to four cases: (1)
If NA ≥ NB and sA ≤ sB , dataset A is stronger than dataset B; (2) If NA ≤ NB and
sA ≥ sB , A is weaker than B; (3) For the remaining two cases where NA ≥ NB, sA ≥ sB
or NA ≤ NB, sA ≤ sB , the relationship between λA(n) and λB(n) is parameterized on
the discrete variable n, and thus it is non-deterministic (i.e., unable to reach a direct
conclusion). In such cases, we may have to draw the cure (search space n VS. success rate)
with n ranging from 1 to N , similar to other methods such as the cracking-based approach
(e.g., PCFG-based and markov-based [Ma et al. 2014]). Note that, in all four cases the
statistical-based α-guesswork [Bonneau 2012b] is non-deterministic, i.e., it is inherently
parameterized on the success rate α (e.g., a relationship of G0.49(A) > G0.49(B) can never
ensure that G0.50(A) ≥ G0.50(B)). In this light, our metric is more simple.
Some Remarks. Note that, as with the entropy metric recommended in the NIST SP800-
63-2 document [Burr et al. 2013] and the α-guesswork proposed in [Bonneau 2012b], our
metric is mainly effective on password datasets that are in clear-text or un-salted hash
and cannot be applicable to passwords in salted-hash. This is an inherent limitation of all
statistic-based metrics (e.g., [Burr et al. 2013; Bonneau 2012b] and ours). For salted-hash
passwords, one needs to resort to attacking-based approaches (e.g., [Kelley et al. 2012;
Ma et al. 2014]), albeit at the cost of reduced accuracy (as we will show in Section 5.4,
attacking-based approaches in their current form have too many uncertainties and are
far from ideal). It is also worth noting that, there could be weak policies that result in
a good metric, like requiring users to type their usernames as the start of a password.
Obviously, this would make all passwords more unique and leads to a better metric, but it
wouldn’t at all increase the resistance of passwords if the attacker knows the underlying
policy. This constitutes another limitation of statistic-based metrics. In this case, one also
needs to resort to attacking-based approaches.

Nevertheless, these and other limitations do not affect much the applicability of our
metric for several reasons. Firstly, our metric can rely on a subset of the entire dataset
and only involves offline operations to be performed after a relatively long period of time
(e.g., a year), and thus the website can implement salted passwords, which are online,
to authenticate users and maintain a subset of passwords in un-salted hash, which are
physically offline and well protected, to facilitate our measurement. Secondly, recent
breaches clearly signal that Internet-scale sites with un-salted password storage are far
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from being rare exceptions. The most convincing evidence lies in the fact that most of
the previously leaked datasets from prominent IT firms or leading organizations (such
as Facebook, LinkedIn, Adobe, Dropbox, IEEE, to name just a few [Katalov 2013]) are
still in un-salted form. Now, it is time for these legacy sites to take actions, an important
part of which is to access the security provisions of its password policy. And our metric
is the right choice. Thirdly, it is well known that the authorities in many countries (e.g.,
NSA of U.S.) have been asking Internet providers and websites to provide user password
datasets (in plain-text) to them [McCullagh 2013]. In this case, these websites shall also
maintain a copy of un-salted passwords to ensure compliance with the regulations. Last
but not least, even if no plain-text (or unsalted-hash) passwords from real-life websites
are available, field experiments (e.g., [Egelman et al. 2013]) can be used to collect user
generated passwords. With these field passwords, our metric can be used to help password
policy designers and security administrators assess the goodness of a given password
policy in terms of security before it is put into any practical use.

In a nutshell, despite its limitations, our metric is practical in many realistic scenarios.
In addition, as said earlier, in two of four cases (i.e., when two password datasets, denoted
by A and B, satisfy that {NA ≥ NB , sA ≤ sB} or that {NA ≤ NB , sA ≥ sB}), our
metric has unparalleled advantage due to its deterministic feature than the state-of-the-
art metrics (e.g., the attacking-based [Ma et al. 2014] and the statistic-based α-guesswork
[Bonneau 2012b]). Yet, it is non-deterministic in the remaining two cases where we have
to draw entire curves of λA(n) and λB(n), with n ranging from 1 to max{NA, NB}, which is
quite similar to the attacking-based approach [Ma et al. 2014] and α-guesswork [Bonneau
2012b]. We emphasize that, our metric is only workable and superior to these existing
metrics when the underlying distribution obeys Zipf ’s law, while in other cases (where
password distribution deviates from Zipf) these existing metrics just come in handy.
5.2. Proof of the theorem
Obviously the theorem holds when NA = NB, sA = sB. First we prove the theorem under
the condition sA = sB = s, NA > NB . Recall that fr = C

rs , we denote the probability of
a password with rank r be pr(=

fr
sum = C

rs·sum ). Then
∑NA

r=1
CA

rs = 1,
∑NB

r=1
CB

rs = 1, and
CA = 1∑NA

r=1
1
rs

< 1∑NB
r=1

1
rs

= CB. So when 1 ≤ n ≤ NB , we have

λA(n)− λB(n) = (CA − CB)(

n∑
r=1

1

rs
) < 0.

When NB + 1 ≤ n ≤ NA − 1, we can get

λA(n)− λB(n) < 1− 1 = 0.

Next we prove the theorem under the conditions NA = NB = N, sA < sB ,

0 < CA =
1∑N

r=1
1

rsA

<
1∑N

r=1
1

rsB

= CB.

When 1 ≤ n ≤ N − 1,

λA(n)− λB(n) =
N∑
r=1

CA

rsA
−

N∑
r=1

CB

rsB
= CACB(

N∑
r1=1

1

rsB1

n∑
r2=1

1
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−

N∑
r1=1

1

rsA1

n∑
r2=1

1

rsB2
)

=CACB(

n∑
r1=1

1

rsB1

n∑
r2=1

1

rsA2
+

N∑
r1=n+1

1

rsB1

n∑
r2=1

1

rsA2
−

n∑
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1

rsA1

n∑
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1

rsB2

−
N∑

r1=n+1

1
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1

rsB2
) = CACB(

∑
1≤r2≤n<r1≤N

(
1

rsB1 rsA2
− 1
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=CACB(
∑

1≤r2≤n<r1≤N

1
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((
r1
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)sA−sB − 1)).
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For r1 > r2, sA < sB , so ( rAr2 )
sA−sB < 1. Further, we have

λA(n)− λB(n) < 0.

Now the only left situation is NA > NB , sA < sB. We choose a password dataset C
satisfying the conditions NC = NA, sC = sB , then

λA(n) < λC(n) 1 ≤ n ≤ NA − 1
λC(n) < λB(n) 1 ≤ n ≤ NA − 1

Thus λA(n) < λB(n). This completes the proof.
5.3. Finding and Fixing an inherent flaw in the strength conversion of α-guesswork
To overcome the various problems (e.g., incomparability, inaccuracy and un-repeatability)
in existing password strength metrics, Bonneau [2012b] proposed the α-guesswork that
relies on the statistical distribution of passwords and is parameterized on an attacker’s
desired success rate α. It well captures the reality that a practical attacker A is generally
satisfied with cracking the weak fraction of accounts. This metric has been widely used in
academia [Chatterjee et al. 2015; Li et al. 2014; Bailey et al. 2014] and also won the NSA
2013 annual award for “Science of Security Competition” [NSA Press Release 2013]. Here
we report an inherent flaw in its strength conversion and further manage to fix it.

For better comprehension, here we follow the notations in [Bonneau 2012b] as closely
as possible. The probability distribution is denoted by X , each password xi is randomly
drawn from X with a probability pi, such
that

∑
pi=1. Without loss of generality, as-

sume p1≥ p2 ≥ · · · ≥ pN , where N is the
the total number of possible events in X . For
0¡α≤1, µα(X ) = min

{
j|
∑j

i=1 pi ≥ α
}

mea-
sures the minimal number of fixed guesses
per account that A needs to crack at least a
fraction α of total passwords, and λβ(X ) =∑β

i=1 pi denotes the expected success for A
limited to β guesses per account. Thus, λµα

measures A’s actual success when given µα

guesses per account and λµα ≥ α. With these
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Fig. 7: How Gα(UN ) and µα(UN ) vary with α
terminologies, α-guesswork is defined as:

Gα(X ) = (1− λµα) · µα +

µα∑
i=1

pi · i, (18)

Gα(X ) characterizes the expected number of guesses per account to reach a success rate
α. The intuition of Eq.18 is that: (1) against every account not in A’s dictionary she will
make µα guesses, giving rise to the first term; and (2) against all accounts that are in A’s
dictionary, she proceeds in optimal order and the expected number of guesses required
constitutes the second term. Gα(X ) well models the reality of real-world attackers, who
care about cost-effectiveness, to stop cracking against the most strong accounts.

For easier comparison with other existing metrics and for better comprehension of
programmers and cryptographers, Bonneau [2012b] further converted Gα(X ) into units
of bits (i.e., G̃α(X )) by computing “the logarithmic size of a discrete uniform distribution
UN (with pi = 1/N for all 1 ≤ i ≤ N ) that has the same value of the guessing metric”. Since
an attacker A who desires to break a proportion α of accounts will attain one successful
guess per Gα/α guesses, A will “break an account every (N + 1)/2 guesses” against UN .
This gives the formula (see pp.49 of [Bonneau 2012a] for a more detailed explanation):

Gα(X )

λµα(X )
=

N + 1

2
⇒ G̃α(X ) = lgN = lg

[2 ·Gα(X )

λµα

− 1
]

(19)

G̃α(X ) should have been constant for any uniform distribution UN , but Bonneau [2012b]
found it was not the case. So, he added the “correction factor” lg 1

2−λµα
to G̃α(X ), giving:
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G̃α(X ) = lg
[2 ·Gα(X )

λµα

− 1
]
+ lg

1

2− λµα

(20)

However, we find that the equation on the left side of Eq.19 is inherently flawed. As
can be seen from Fig.2(a) in [Bonneau 2012b], it was believed that Gα(UN ) = µα(UN ).
Quite the contrary, our Fig. 7 well serves as a concrete counter-example that Gα(U104) ̸=
µα(U104). Essentially, according to Eq.18, one can get

Gα(UN ) =

µα∑
i=1

i · 1

N
+ (1− λµα) · µα =

(1 + µα)µα

2
· 1

N
+ (1− λµα) · µα (21)

On the other hand, according to the definition of µα and λβ in [Bonneau 2012b], we get
µα(UN ) = N · λµα(UN ) (22)

Based on Eq.22, Eq.21 can be rewritten as

Gα(UN ) =
(1 +N · λµα) · Nλµα

2N
+ (1− λµα) · N · λµα =

λµα

2
+

1

2
(2− λµα) · N · λµα (23)

From Eq.22 and Eq.23, it is evident that Gα(UN ) ̸= µα(UN ). Based on Eq.23, for UN and
X to be of equivalent security, we get

Gα(UN ) = Gα(X )
Eq.23
=⇒ N =

2Gα(X )− λµα(UN )

(2− λµα(UN ))λµα(UN )
(24)

Using Eq.24 and based on the relationship that λµα(UN ) ≈ α ≈ λµα(X ), the “effective
key-length” (i.e., bit-strength) of Gα(X ) can be formulated as

G̃α(X ) = lgN = lg
2Gα(X )− λµα

(2− λµα)λµα

= lg
[2 ·Gα(X )

λµα

− 1
]
+ lg

1

2− λµα

(25)

As expected, there is no need to add a factitious “correction factor” as it did in [Bonneau
2012a; Bonneau 2012b]. While the effective key-length metric G̃α(X ) is overwhelmingly
favored over Gα(X ) (e.g., [Chatterjee et al. 2015; Bailey et al. 2014; Li et al. 2014]) and it
is widely hold that Gα(UN ) = µα(UN ), our above contribution lies not only in identifying
and fixing an inherent flaw in the derivation of G̃α(X ), but also, equally importantly, in
revealing a counter-intuitive relationship: Gα(UN ) ̸= µα(UN ).
5.4. Experimental results
In this subsection, we further use the simulated optimal attack and the state-of-the-art
password attacking algorithm on real-life passwords to show that our metric in Section 5.1
is practically effective. Since Markov-based cracking algorithms generally perform better
than PCFG-based ones [Ma et al. 2014], here we prefer Markov-based algorithms.

As the optimal attack is of theoretical importance to serve as the ultimate goal of
any real attacks, it can by no means be seen as a realistic attack, for it assumes that
the attacker is with all the plain-text passwords of the target authentication system.
To see whether our metric is consistent with realistic attacks, we relax this assumption
a bit and suppose that the attacker has obtained a quarter of the plain-text accounts
(passwords) of the target system and use them to guess one-third of the remaining user
accounts (which is another quarter of the total accounts) in any form (salted-hash or
unsalted-hash). Note that this new assumption is much more realistic, because most of the
compromised websites mentioned in this work have leaked a large part of their accounts
in plain-text. And thus this new attacking scenario is rather practical and we call it
“simulated optimal attack”. For better presentation, we divide the eight main datasets
into two groups:8 Group one with dataset sizes all larger than one million and group two
smaller than one million. Simulated optimal attacking results on group one are illustrated
in Fig. 8(a), and results on group two are illustrated in Fig. 8(b). It is not difficult to

8As said earlier, due to space constraints the four auxiliary datasets (see Table I) are only shown to be Zipf-
distributed, and actually, all the other general properties revealed in this work are also hold by them.
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(a) Simulated optimal attack on four Chinese datasets (i.e.,
Tianya, Dodonew, Duowan and CSDN)
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(b) Simulated optimal attack on English sets (1/4 training set
against 1/4 test set)
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(c) Markov-based attacks on Chinese datasets (CSDN as the
training set, backoff smoothing and end-symbol normalization)
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(d) Markov-based attacks on English datasets (Myspace as
training set, backoff smoothing and end-symbol normalization)

Fig. 8. Simulated optimal attacks and Markov-based attacks on different groups of datasets

see that, for any two datasets in the same group, the attacking results comply with our
metric results listed in Table V. For instance, from Fig. 8(a) we know that, for any search
space size (i.e., every n), dataset Tianya is weaker than dataset Duowan, which implies
Ntianya > Nduowan, stianya < sduowan. This implication accords with the statistics in Table V.

Furthermore, we perform more realistic guessing attacks (i.e. Markov-based attacks)
to assess the effectiveness of our metric. As in simulated optimal attacks, we divide
the eight main datasets into two groups according to their sizes and languages. For the
Chinese group, we use CSDN as the Markov training set; For the English group, we use
Myspace as the Markov training set. As shown in [Ma et al. 2014], there are mainly three
smoothing techniques (i.e., Laplace, Good-Turing and backoff) to address the data sparsity
problem and two normalization techniques (i.e., distribution-based and end-symbol-based)
to address the unbalanced password-length distribution problem. Ma et al. found that
the attacking scenario that combines the backoff smoothing with the end-symbol based
normalization performs the best, and thus we adopt this scenario. The cracking results
for these two groups passwords are depicted in Fig. 8(c) and Fig. 8(d), respectively.

The test shows that the Markov-based attacking results on most of the datasets are
consistent with our metric, and the only exception that violates our metric is on dataset
Hak5. According to Table V, NHak5 is smaller than that of any other datasets and
sHak5 is larger than that of any other datasets in the same group, which means Hak5
is the weakest one. However, Fig. 8(b) shows that, under the Markov-based guessing
attack, Hak5 is the strongest among the three English test sets. This inconsistence may
be because of its non-representative nature of a real password dataset, or due to the
inappropriateness of our selected training set for the Markov-based guessing attack.
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Of particular interest may be our observation that Markov-based attacks seem to be
much less effective than simulated optimal attacks. For example, at 105 guesses, Markov-
based attacks on Chinese datasets achieve success rates 14.5%∼28.1%, lower than those of
simulated optimal attacks. This gap is more pronounced for English datasets. It shouldn’t
come as a surprise, for the gap in success rates is due to the inherent weaknesses
of cracking algorithms – their performance relies largely on the choices of training
set, smoothing/normalization techniques and maybe external input dictionaries, while
such choices are subject to too many uncertainties. This explains why we, in order to
reach better success rates, divide our datasets into two groups according to populations,
use different training sets and specially choose smoothing/normalization techniques in
our Markov-based experiments. This also highlights the intrinsic limitations of using
empirical attacking results (e.g., [Weir et al. 2010; Kelley et al. 2012; Castelluccia et al.
2012]) as a strength measurement of password dataset, suggesting the necessity of our
metric. In a nutshell, there is still room for developing more practical attacking algorithms
that have fewer uncertainties yet are more effective.

6. CONCLUSION
In this work, we have provided a novel prospective of the distributions of user-generated
passwords. By adopting techniques from computational statistics, we for the first time
show that Zipf ’s law describes concisely skewed distributions of passwords. We have
further investigated the general applicability of our observations and discussed multiple
benefits from understanding the distribution of passwords. Particularly, most of the
existing PAKE protocols (in thousands, some notable ones include [Chen et al. 2014;
Canetti et al. 2012; Katz et al. 2009; Bellare et al. 2000]) have been proven secure under
the hypothesis that passwords are uniformly distributed, yet we have shown that their
formulations of security results fail to capture the actual advantages of real-life attackers
and may have some unintended consequences. Accordingly, we suggest an amendment to
more accurately characterize the formal security results of PAKE protocols.

Apart from its theoretical interest, we show a practical application of our Zipf theory by
proposing a new statistic-based metric on the strength of password datasets. Our metric
outperforms most of the existing statistic-based metrics in accuracy (e.g., [Burr et al.
2013]) and in two of four cases, even in simplicity (e.g., [Bonneau 2012b]). Of great interest
is its deterministic nature of measurement of the dataset strength, which facilitates more
simple and precise strength comparisons among different datasets. We have formally
proved our metric in a mathematically rigorous manner and also fixed an inherent flaw in
the strength conversion of α-guesswork [Bonneau 2012b]. We have taken a step further to
evaluate the effectiveness of our metric by performing extensive cracking experiments on
our large-scale corpus and demonstrated its practicality. We believe that the unveiling of
this law is also of interest in other domains and that this work lays the foundation for their
further theoretical development and practical application (e.g., the recent “GenoGuard”
[Huang et al. 2015] relies on both our theoretical law and numerical results).

More work remains to be done on this interesting, important yet challenging topic. For
example, what is the underlying mechanism that leads to the emergence of Zipf ’s law
in a chaotic process like the user generation of authentication credentials? How will the
password distribution of a system change (evolve) as time goes on? Do extremely high
value accounts (e.g., e-banking passwords) obey Zipf ’s law? It is a mixed blessing that, the
chances for such investigations to be conducted in the future are only increasing as more
sites of high values are breached and more datasets are made publicly available.

There are also many other issues raised by the findings of this work, and they may
entail comprehensive field studies. For instance, as we provide a sound rationale for the
necessity of employing some popularity-based password policy, how should we set the
popularity threshold? And, for a specific threshold, to what extent usability will be affected
in practice? Is it necessary for multi-factor authentication protocols to give up the feature
of supporting users in changing their passwords without interacting with the server?
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By applying the machinery of machine learning (e.g., linear regression), the Zipf theory
promises to impart mathematical rigor to password use in system security (see Sec. 4.1).
Meanwhile, the Zipf theory introduces the creative defensive tactic of popularity-based
password policies, traditionally the purview of system security, into cryptography (see
Sec. 4.2). This, thereby, will trigger discussions about the important implications that the
progresses in password research (e.g., security, usability and management) would have for
the areas of password-based cryptography (e.g., authentication, encryption and signature).
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