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Abstract

We introduce a formal model for order queries on lists in zero knowledge in the traditional
authenticated data structure model. We call this model Privacy-Preserving Authenticated List
(PPAL). In this model, the queries are performed on the list stored in the (untrusted) cloud
where data integrity and privacy have to be maintained. To realize an efficient authenticated
data structure, we first adapt consistent data query model. To this end we introduce a for-
mal model called Zero-Knowledge List (ZKL) scheme which generalizes consistent membership
queries in zero-knowledge to consistent membership and order queries on a totally ordered set
in zero knowledge. We present a construction of ZKL based on zero-knowledge set and homo-
morphic integer commitment scheme. Then we discuss why this construction is not as efficient
as desired in cloud applications and present an efficient construction of PPAL based on bilinear
accumulators and bilinear maps which is provably secure and zero-knowledge.

1 Introduction
Authentically releasing partial information while maintaining privacy is a well known requirement
in many practical scenarios where the data being dealt with is sensitive.

Consider, for example, the following medical case study presented in [BB12]. Each patient has a
personal health record (PHR) that contains the medication and vaccination history of the patient.
Entries are made against the dates when medicines are taken and vaccinations are performed.
Thus, the PHR is a chronologically sorted document signed by the medical provider and given to
the patient. Now the patient might need to authorize the release of a subset of the PHR with only
the relevant information to be sent to third parties on an as needed basis, without the medical
provider’s involvement. For example, let us say the patient wants to join a summer camp that
requires the vaccination record of the patient and the order in which the vaccinations were taken.
the patient wants to release the relevant information in a way such that the camp can verify that
the data came from a legitimate medical provider, but the camp cannot learn anything beyond the
authorized subset of relevant information, i.e., the vaccinations and their chronological order, but
not the exact date when they were taken.

Consider another example where there are multiple regional sales divisions of a company dis-
tributed across three neighboring states. A monthly sales report contains the number of products
sold by each of the divisions, arranged in non-decreasing order. Each monthly sales report is signed
by the authority and stored on a cloud server. By the company’s access control policy, each sales
division is allowed to learn how it did in comparison to the other units, but not anything else. That
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is, a division cannot learn the sales numbers of other divisions or their relative performance beyond
what it can infer by the comparisons with itself. Thus, the cloud would need to release the relevant
information in such a way that the querying division can verify the data came from the legitimate
source but not learn anything beyond the query result.

The above examples motivate the following model: a trusted owner generates an ordered set of
elements. Let us call this ordered set a list. The owner outsources the list to a (possibly untrusted)
party, let us call it server. There is another party involved who issues order queries on the list,
let us call this party client. The client only interacts with the server. So the server has to release
information in a way such that the client can verify the authenticity of the data it receives, i.e.,
that it is truly generated by the trusted owner. But the client should not be able to learn anything
beyond the answers to its queries.

This above model specifies an authenticated data structure with an additional privacy require-
ment. An authenticated data structure [Tam03] is a structured collection of data (e.g., a list, tree,
graph, or map) along with a set of query operations defined on it. Three parties are involved in an
authenticated data structure (ADS) scheme, namely, the data owner, the server and the client/user.
ADS framework allows the data owner to outsource data processing tasks to an untrusted server
without loss of data integrity for clients. This is achieved as follows. The (trusted) data owner
produces authentication information about the dataset (ordered list in our case) and a short digest
signature and sends a copy of the dataset along with the authentication information to the (un-
trusted) server and the digest signature to the client. The server responds to the (legitimate) client
queries about the dataset by returning the query answer and a compact proof of the answer. The
client uses the digest signature (obtained from the owner), the query answer and the proof obtained
from the server to verify the integrity of the answer.

Classic hash-based authenticated data structures were designed without taking into account
privacy goals and provide proofs that leak information about the dataset beyond the query answer.
For example, in a hash tree [Mer80, Mer89] for a set of n elements, the proof of the membership
of an element in the set has size log n, thus leaking information about the size of the set. Also, if
the elements are stored at the leaves in sorted order, the proof of membership of an element reveals
its rank. Similar information leaks occur in other hash-based authenticated data structures for
dictionaries and maps, such as authenticated skips lists [MTGS01]. As another example, consider an
approach for supporting non-membership proofs using an authenticated data structure that supports
membership proofs. This method involves storing intervals of consecutive elements (xi, xi+1) and
returning as a proof of non-membership of a query element x the interval (xi, xi+1) such that
xi < x < xi+1. Hence, the proof trivially reveals two elements of the set.

We define a privacy-preserving authenticated data structure as an ADS with an additional pri-
vacy property that ensures that the proof returned by the server to the client does not reveal any
information about the dataset beyond what can be learned from the current and previous answers
to queries to the dataset. In this paper we study one such data structure, a privacy-preserving
authenticated list (PPAL), for which we consider order queries.

A privacy-preserving authenticated list (PPAL) allows an owner to outsource to the server data
with different access control policies imposed on it. Hence, when the owner outsources it to the
server, clients can access only parts of it from the server and verify that it is indeed owner’s authentic
data but should not be allowed to learn about the data they do not have permission to access. Hence,
privacy policy should be also imposed on the proofs of authenticity of the data that the clients learn
(the property not supported by classical ADS). PPAL has several interesting applications as we have
already seen in the motivating examples. We also envision a PPAL list to be an important building
block for designing efficient hierarchical privacy-preserving data structures e.g., ordered trees that
store XML data.
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In this paper, we present an efficient solution for privacy-preserving authenticated lists that sup-
ports queries on the relative order of two (or more) elements of the list. This framework guarantees
integrity of the order queries through a compact proof returned to the client. The proof does not
reveal the actual ranks of the elements nor any order information between elements other that what
can be inferred from the current and previous answers by the rule of transitivity.

We first present a generic approach to this problem in the traditional consistent query model
[MRK03, CHL+05, ORS04, CFM08, LY10] where there are two parties involved: the prover,
Prover = (P1,P2) and the verifier, Verifier. P1 takes an ordered list as input and produces a
short commitment which is made public. Then Verifier generates membership and order queries on
the list and P2 responds with the answers and the proofs. Once Prover commits to a list, it cannot
give answers inconsistent with the commitment that will pass the verification test by Verifier. We
formalize this framework as Zero Knowledge List (ZKL) and give a construction in Section 3.

It is easy to see this model can be interpreted in the PPAL framework as follows. We can make
the owner run P1, the server run P2 and the client run Verifier. In fact in the ZKL model we get
stronger security guarantee as once the owner commits to a list, even a malicious one, it cannot
give inconsistent answers later. Moreover the ZKL framework supports both membership and order
queries in Zero Knowledge. However, as we discuss in Section 3.5, the construction is not very
practical for cloud computing scenario where the client can be a mobile device.

The ZKL model indeed gives stronger security guarantees, but in the privacy-preserving authen-
ticated list (PPAL) model, the owner is in fact a trusted party. We discuss the PPAL framework
in Section 4 and design an efficient PPAL scheme, exploiting the fact that the owner is an honest
party. In our scheme, for a source list of size n and a query of size m, neither the server nor the
owner runs in time more than O(n) or requires storage more that O(n). The running time for the
server can be brought down to O(m log n) with O(n) preprocessing time and the client requires time
and space proportional to O(m). We give the construction and discuss its efficiency in Section 5.

1.1 Problem Statement

In this section we define order queries, introduce our adversarial model and security properties, and
discuss our efficiency goals.

1.1.1 Query

Let L be a linearly ordered list of non-repeated elements. An order query on a list L of distinct
elements is defined as follows: given a pair of query elements (x, y) of L, the server returns the pair
with its elements rearranged according to their order in L together with proofs of membership of x
and y and a proof of the returned order. For example, if y precedes x in L, then the pair (y, x) is
returned as an answer.

For generality, the data structure also supports batch order query : Given a list of query elements
δ, the server returns a permutation of δ according to the ordering of the elements in L, together
with a proof of the membership of the elements and of their ordering in L.

The above model captures the query model of a privacy-preserving authenticated list. In com-
parison, zero knowledge list structure supports the same queries as well as non-membership queries.
Hence, as a response to a (non-)membership element query the prover returns a boolean value
indicating if the element is in the list and a corresponding proof of (non-)membership.

1.1.2 Adversarial model and security properties

In this section we present adversarial models and security properties of PPAL and ZKL.
Following the authenticated data structure model, list L plus authentication information about

it is created by a data owner and given to a server, who answers queries on L issued by a client, who
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verifies the answers and proofs returned by the server using the public key of the data owner. We
assume the data owner is trusted by the client, who has the public key of the data owner. However,
both the client and server can act as adversaries, as follows:

• The server is malicious and may try to forge proofs for incorrect answers to (ordering) queries.
For example, the server may try to prove an incorrect ordering of a pair of elements of L.

• The client tries to learn from the proofs additional information about list L beyond what it
has inferred from the answers. For example, if the client has performed two ordering queries
with answers x < y and x < z, it may want to find out whether y < z or z < y.

Note that in typical cloud database applications, the client is allowed to have only a restricted view
of the data structure and the server enforces an access control policy that prevents the client from
getting answers to unauthorized queries. This motivates the curious behavior by the client. The
client may behave maliciously and try to ask ill-formed queries or queries violating the access control
policy. But the server may just refuse to answer when the client asks illegal queries. So the client’s
legitimate behavior can be enforced by the server.

We wish to construct a privacy-preserving authenticated data structure for list L, i.e., a data
structure with the following security properties:
Completeness ensures that honestly generated proofs are always accepted by the client.
Soundness mandates that proofs forged by the server for incorrect answers to queries do not pass

the verification performed by the client.
Zero Knowledge means that each proof received by the client to a query reveals and verifies the

answer and nothing else. In other words, for any element xi ∈ {0, 1}∗, the simulator, given
oracle access to L, should be able to simulate proofs for order queries that are indistinguishable
from real proofs.

To understand the strength of the zero-knowledge property, let us illustrate to what extent the
proofs are non-revealing. One of the guarantees of this property is that receiving a response to a
query δ does not reveal where in L queried elements of δ are. In other words, no information about
L, other than what is queried for in δ is revealed. It is worth noting that in the context of leakage-free
redactable signature schemes, this property has been referred to as transparency [BBD+10, SPB+12]
and privacy [CLX09, KAB12]. Moreover, zero knowledge also provides security for the size of the
list L from the client.

Since we let the client ask multiple queries on a static list adaptively, in principle, it is possible
that even though the individual query responses and proofs do not leak any extraneous information
about the source list, when the responses and proofs are collected together, the client is able to infer
some structural information about the source list, which it had not explicitly queried for. Hence, we
need to ensure that the scheme is immune against any potential leakage of any structural information
that has not been explicitly asked for by the client. More concretely, in a linearly ordered list L, the
client should not be able to infer any relative order that is not inferable by the rule of transitivity
from the queried orders. This security guarantee also follows from the zero-knowledge property.

The adversarial model in ZKL is different from that of PPAL. The ZKL model considers only
two parties: the prover and the verifier. The prover initially computes a commitment to a list L and
makes this commitment public (i.e., the verifier also receives it). Later the verifier asks membership
and order queries on the list and the prover responds accordingly. In ZKL both the prover and the
verifier can be malicious as follows:

• The prover may try to give answers which are inconsistent with the initial commitment.
• The adversarial behavior of the verifier is the same as that of the client in the PPAL model.

The security properties of ZKL (Completeness, Soundness, Zero-Knowledge) guarantee security
against malicious prover and verifier. They are close to the ones of PPAL except for Soundness
which captures that the prover can try to create a forgery on a list of his choice. We discuss the
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security properties of ZKL in more detail in Section 3.2.

1.1.3 Efficiency

We characterize the efficiency of a privacy-preserving authenticated data structure for a list, L,
of n items by means of the following space and time complexity measures:

• Server storage: Space at the server for storing list L and the authentication information and
for processing queries. Ideally, the server storage is O(n), irrespective of the number of queries
answered.

• Proof size: Size of the proof returned by the server to the client. Ideally, the proof has size
proportional to the answer size.

• Setup time: Work performed by the data owner to create the authentication information that
is sent to the server. Ideally, this should be O(n).

• Query time: Work performed by the server to answer a query and produce its proof. Ideally,
this work is proportional to the answer size.

• Verification time: Work performed by the client to verify the answer to a query using the proof
provided by the server and the public key of the data owner. Ideally, this work is proportional
to the answer size.

1.2 Related Work

We discuss related literature in three sections. First, we discuss work on data structures that
answer queries in zero knowledge. This work is the closest to our work on zero knowledge lists.
We then discuss signature schemes that can be interpreted in the privacy-preserving authenticated
data structure model. Finally, we highlight the body of literature regarding leakage-free redactable
signature schemes for ordered lists in detail. The latter is the closest to the problem of privacy
preserving authenticated lists that we are addressing in this manuscript.

Zero Knowledge Data Structures Buldas et al. [BLL02] showed how to prove answers to dictio-
nary queries using an authenticated search tree-based construction, but did not consider privacy. For
a set of size n, the construction produces a proof of (non)membership of an element in the set that has
size O(k log n). Similar to other work on authenticated data structures [Mer80, Mer89, MTGS01],
the proof reveals information about the underlying set, e.g., its size and the location of the queried
entry w.r.t. other entries.

The model of a zero knowledge set (more generally, zero knowledge elementary database) was
first introduced by Micali et al. [MRK03]. This is a secure data structure which allows a prover
to commit to a finite set S in such a way that, later on, it will be able to efficiently (and non-
interactively) prove statements of the form x ∈ S or x /∈ S without leaking any information about
S beyond what has been queried for, not even the size of S. The security properties guarantee that
the prover should not be able to cheat and prove contradictory statements about an element. Later,
Chase et al. [CHL+05] abstracted away Micali et al.’s solution and described the exact properties a
commitment scheme should possess in order to allow a similar construction. This work introduced a
new commitment scheme, called mercurial commitment. A generalization of mercurial commitments
allowing for committing to an ordered sequence of messages (q-trapdoor mercurial commitment) was
proposed in [CFM08] and later improved in [LY10]. A q-trapdoor mercurial commitment allows a
committer to commit to an ordered sequence of message and later open messages with respect to
specific positions.

Th above zero knowledge set constructions [MRK03, CHL+05, CFM08, LY10] use an implicit
ordered q-way hash tree (q ≥ 2) built on the universe of all possible elements. The size of this tree is
exponential in the security parameter. However, only a portion of the tree of size polynomial in the
security parameter is explicitly stored in the data structure. Let N denote the universe size. Then
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the proof size for membership and non-membership for an individual element is O(logqN). Kate et
al. [KZG10] suggested a weaker primitive called nearly-zero knowledge set based on polynomial
commitment [KZG10]. In their construction the proof size for membership and non-membership for
every individual element is O(1), but the set size is not private.

A related notion of vector commitments was introduced by [CF13] where they show that a
(concise) q-trapdoor mercurial commitment can be obtained from a vector commitment and a
trapdoor mercurial commitment. A vector commitment scheme allows a committer to commit to
an ordered sequence of values (x1, . . . , xn) in such a way that the committer can later open the
commitment at specific positions (e.g., prove that xi is the i-th committed message).

Ostrovsky et al. [ORS04] generalized the idea of membership queries to support membership
and orthogonal range queries on a multidimensional dataset. [ORS04] describe constructions for
consistent database queries, which allow the prover to commit to a database, and then provide
query answers that are provably consistent with the commitment. They also consider the problem
of adding privacy to such protocols. However their construction requires interaction (which can be
avoided in the random oracle model) and requires the prover to keep a counter for the questions
asked so far. The use of NP-reductions and probabilistically checkable proofs makes their generic
construction expensive. The authors of [ORS04] also provide a simpler protocol based on explicit-
hash Merkle Tree. However, this construction does not hide the size of the database as the proof
size is O(dlog ne) where n is the upper bound on the size of the database.

Signature Schemes A collection of signature schemes, namely content extraction signature [SBZ01],
redactable signature [JMSW02] and digital document sanitizing scheme [MHI06] can be viewed in
a three-party model where the owner digitally signs a data document and the server discloses to
the client only part of the signed document along with a legitimately derived signature on it. The
server derives the signature without the owner’s involvement and the client verifies the authenticity
of the document it receives from the server by running the verification algorithm of the underlying
scheme. A related concept is that of transitive signature scheme, where given the signatures of two
edges (a, b) and (b, c) of a graph, it is possible to compute the signature for the edge (or path)
(a, c) without the signer’s secret key [MR02, Yi06, CH12]. However, these signature schemes are
not designed to preserve privacy of the signed object, which may include the content and/or the
structure in which the content is stored.

Ahn et al. [ABC+12] present a unified framework for computing on authenticated data via
the notion of slightly homomorphic or P -homomorphic signatures, which was later improved by
[Wan12]. This broad class of P -homomorphic signatures includes quotable, arithmetic, redactable,
homomorphic, sanitizable and transitive signatures. This framework allows a third party to derive
a signature on the object x′ from a signature on x as long as P (x, x′) = 1 for some predicate P that
captures the authenticatable relationship between x and x′. A derived signature reveals no extra
information about the parent x, referred to as strong context hiding. This work does not consider
predicates of a specific data structure.

The authors propose a general RSA-accumulator based scheme that is expensive in terms of
computation. In particular, the cost of signing depends on the predicate P and the size of the
message space and is O(n2) for a n-symbol message space. This privacy definition was recently
refined by [ALP12]. This line of work cannot be directly used for privacy preserving data structures
where efficiency is an important requirement and quadratic overhead may be prohibitive depending
on the application.

[CKLM13] gives definition and construction of malleable signature scheme. A signature scheme
is defined to be malleable if, given a signature σ on a message x, it is possible to efficiently derive
a signature σ′ on a message x′ such that x′ = T (x) for an allowable transformation T . Their
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definition of context hiding requires unlinkability and allows for adversarially-generated keys and
signatures. This definition is stronger than that of [ABC+12] as it allows for adversarially-generated
keys and signatures. Unlinkability implies the following: a quoted (or derived) signature should be
indistinguishable from a fresh signature.

A motivating example proposed in [ABC+12] deals with the impossibility of linking a quote to its
source document. However, in the framework of privacy preserving authenticated data structures,
it is important for the client to verify membership, i.e., given a quote from a document and a
signature on the quote, the client should be able to verify that the quote is indeed in the document.
Context-hiding definition in [CKLM13] also requires unlinkability.

Leakage-Free Signature Schemes for Ordered Lists A leakage-free redactable signature
scheme (LRSS) allows a third party to remove parts of a signed document without invalidating
its signature. This action, called redaction, does not require the signer’s involvement. As a result,
the verifier only sees the remaining redacted document and is able to verify that it is valid and
authentic. Moreover, the redacted document and its signature do not reveal anything about the
content or position of the removed parts. This problem can be easily interpreted in the privacy-
preserving authenticated data structure model, where the signer is the owner, the third party is the
server and the verifier is the client.

Kundu and Bertino [KB08] were first to introduce the idea of structural signatures for ordered
trees (subsuming ordered lists) which support public redaction of subtrees (by third-parties) while
retaining the integrity of the remaining parts. This was later extended to DAGs and graphs [KB13].
The notion was later formalized as LRSS for ordered trees in [BBD+10] and subsequently several
attacks on [KB08] were also proposed in [BBD+10, PSPDM12].

The authors of [CLX09] presented a leakage-free redactable signature scheme for strings (which
can be viewed as an ordered list) that hides the location of the redacted or deleted portions of the
list at the expense of quadratic verification cost.

The basic idea of the LRSS scheme presented in [BBD+10] is to sign all possible ordered pairs
of elements of an ordered list. So both the computation cost and the storage space are quadratic in
the number of elements of the list. Building on the work of [BBD+10], [SPB+12] proposed an LRSS
for lists that has quadratic time and space complexity. Poehls et al. [PSPDM12] presented a LRSS
scheme for a list that has linear time and space complexity but assumes an associative non-abelian
hash function, whose existence has not been formally proved. The authors of [KAB12], presented a
construction that uses quadratic space at the server and is not leakage-free. We discuss the attack
in Section 4.

1.3 Contributions and Organization of the Paper

The main contributions of this work are as follows:
• After reviewing preliminary concepts and the cryptographic primitives we use in this paper, in

Section 2, we introduce the Zero-Knowledge List (ZKL) model, present a construction, prove
its security and analyze its efficiency in Section 3.

• In Section 4, we introduce a formal model for a privacy-preserving authenticated list that
supports order queries on its elements.

• In Section 5, we present a construction of the above data structure based on bilinear maps
and we analyze its performance.

• Formal proofs for the security properties of our construction are given in Section 6.
In Table 1 we compare our constructions of a privacy-preserving authenticated list with previous

work in terms of performance, and assumptions. We also indicate which constructions satisfy the
zero-knowledge property. We include a construction based on our new primitive, ZKL, and our
direct construction of PPAL. We note that ZKL model is a two party model but can be adapted to
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This paper
[SBZ01] [JMSW02] [CLX09] [BBD+10] [SPB+12] [PSPDM12] [KAB12] ZKL PPAL

Zero-knowledge X X X X X
Setup time n logn n n n2 n2 n n n logN n

Server Space n n n n2 n2 n n2 n logN n

Query time m n logn n mn m n n m logN min(m logn, n)

Verification time m logn logm m logn n2 m2 m2 m m m logN m

Proof size m m logn n m2 m2 m n m logN m

Assumption RSA RSA
SRSA,
Divi-
sion

EUCMA ROH,
nEAE AnAHF ROH,

RSA

ROH,
FC,
SRSA

ROH,nBDHI

Table 1: Comparison of our constructions of a privacy-preserving authenticated list with previous work. ZKL
is a construction based on Zero-Knowledge lists from Section 3.3 and PPAL is a direct PPAL construction from
Section 5 . All the time and space complexities are asymptotic. Notation: n is the number of elements of the
list, m is the number of elements in the query, and N is the number of all possible l-bit strings from where list
elements can be drawn from. Acronyms for the assumptions: Strong RSA Assumption (SRSA); Existential
Unforgeability under Chosen Message Attack (EUCMA) of the underlying signature scheme; Random Oracle
Hypothesis (ROH); n-Element Aggregate Extraction Assumption (nEAE); Associative non-abelian hash
function (AnAHF); Factoring a composite (FC); n-Bilinear Diffie Hellman Inversion Assumption(nBDHI).

a three party model of PPAL (see Section 5 for details). Our PPAL construction outperforms all
previous work that is based on widely accepted assumptions [BBD+10, SPB+12].

2 Preliminaries

2.1 Data Type

We consider a linearly ordered list L as a data structure that the owner wishes to store with
the server. A list is an ordered set of elements L = {x1, x2, . . . , xn}, where each xi ∈ {0, 1}∗,
∀x1, x2 ∈ L, x1 6= x2 and either x1 < x2 or x2 < x1. Hence, < is a strict order on elements of L
that is irreflexive, asymmetric and transitive.

We denote the set of elements of the list L as Elements(L). A sublist of L, δ, is defined as:
δ = {x | x ∈ Elements(L)}. Note that the order of elements in δ may not follow the order of L. We
denote with πL(δ) the permutation of the elements of δ under the order of L.
L(xi) denotes the membership of element xi in L, i.e., L(xi) 6= ⊥ if xi ∈ L and L(xi) = ⊥ if

xi /∈ L. We interpret L(xi) as a boolean value, i.e., L(xi) 6= ⊥ is equivalent to L(xi) = true and
L(xi) = ⊥ is equivalent to L(xi) = false. For all xi such that L(xi) 6= ⊥, rank(L, xi) denotes the
rank of element xi in the list, L.
2.2 Cryptographic Primitives

We now describe a signature scheme that is used in our construction and cryptographic assumptions
that underly the security of our method. In particular, our zero knowledge list construction relies
on homomorphic integer commitments (Section 2.2.1), zero knowledge protocol to prove a number
is non-negative (Section 2.2.2) and zero knowledge sets (Section 2.2.3), while the construction for
privacy preserving lists relies on bilinear aggregate signatures and n-Bilinear Diffie Hellman Inversion
assumption (Section 2.3).

2.2.1 Homomorphic Integer Commitment Scheme

We use a homomorphic integer commitment scheme HomIntCom that is statistically hiding and com-
putationally binding [Bou00, DF02]. The later implies the existence of a trapdoor and, hence, can be
used to “equivocate” a commitment, that is open the original message of the commitment to another
message. The above commitment scheme is defined in terms of three algorithms HomIntCom =
{IntComSetup, IntCom, IntComOpen} and the corresponding trapdoor commitment (we call it a
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simulator) as: SimHomIntCom = {SimIntComSetup, SimIntCom, SimIntComOpen}. We describe
these algorithms in Figure 1. The homomorphism of HomIntCom is defined as IntCom(x + y) =
IntCom(x)× IntCom(y). For specific constructions of HomIntCom see Figure 8 in Appendix.

Figure 1: Homomorphic Integer Commitment Protocols.

HomIntCom = (IntComSetup, IntCom, IntComOpen)
PKC ← IntComSetup(1k): IntComSetup is a randomized algorithm that takes as input the

security parameter and generates a public key PKC

(c, r)← IntCom(PKC , x): IntCom is a randomized algorithm that takes as input the public
key, an integer x and generates a commitment,opening pair (c, r) with additive ho-
momorphic properties. c servers as the commitment value for m and r is the opening
value.

x← IntComOpen(PKC , c, r): IntComOpen takes as input the public key, a commitment c
and the corresponding opening information r and returns the committed integer x.

SimHomIntCom = (SimIntComSetup, SimIntCom, SimIntComOpen)
(PKC ,TKC)← SimIntComSetup(1k): SimIntComSetup takes as input the security param-

eter and returns a public key PKC and a trapdoor TKC .
(c, r)← SimIntCom(PKC , x): SimIntCom takes PKC and an integer x and returns a com-

mitment c and the opening information r.
x′ ← SimIntComOpen(PKC ,TKC , c, r): SimIntComOpen takes as input PKC ,TKC and a

commitment c and the corresponding opening information r and returns an arbitrary
integer x′, which might not be equal to x; c being the commitment to integer x.

2.2.2 Proving an integer is positive in zero-knowledge

We use following protocol between a prover and a verifier: the verifier holds prover’s commitment c
to an integer x and wishes to verify if this integer is positive, x > 0, without opening c. We denote
this protocol as Protocol(x, r : c = C(x; r) ∧ x > 0) (Figure 2). In our construction, we will use the
commitment scheme HomIntCom described in Figure 1 and use IntCom to compute c.

Figure 2: Protocol to prove non-negativity of an integer

Protocol(x, r : c = C(x; r)∧x ≥ 0) : We use this notation to concisely represent an (interactive)
protocol between two parties P and V: P sends a commitment c to a non-negative value x to V
and proves, without opening c, that x ≥ 0. The symbol c = C(x; r) denotes c is the commitment
to x and r is the corresponding opening information. Note that r is not sent to V.

As a concrete construction we extend the protocol of [Lip03] which allows one to prove that
x ≥ 0 to supply a prove that x− 1 ≥ 0. This proves x > 0. The protocol of [Lip03] is a Σ protocol,
which is honest verifier zero knowledge and can be made non-interactive general zero knowledge in
the Random Oracle model using Fiat-Shamir heuristic [FS86]. For details of the protocol refer to
Figure 10.
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Figure 3: Zero Knowledge Set (ZKS) model

ZKS = (ZKSSetup,ZKSProver = (ZKSP1,ZKSP2),ZKSVerifier)
PKD ← ZKSSetup(1k): The ZKSSetup algorithm takes the security parameter as input

and produces a public key PKD for the scheme. The prover and the verifier both
take as input the string PKD that can be a random string (in which case, the protocol
is in the common random string model) or have a specific structure (in which case
the protocol is in the trusted parameters model).

(com, state)← ZKSP1(1
k,PKD, D): ZKSP1 takes the security parameter, the public key,

PKD and the set D and produces a short digest commitment com for D.
(D(x), proofx)← ZKSP2(PKD, state, x): ZKSP2 takes a query x and produces the cor-

responding value, v = D(x) and the corresponding proof of membership/non-
membership, proofx.

b← ZKSVerifier(1k,PKD, com, x,D(x), proofx): Verifier takes the security parameter,
PK, com and a query x and an answer D(x) and a proof proofx and returns a bit b,
where b = ACCEPT/REJECT.

2.2.3 Zero Knowledge Set scheme

Let D be a set of of key value pairs. If (x, v) is a key, value pair of D, i.e, (x, v) ∈ D, then we write
D(x) = v to denote v is the value corresponding to the key x. For the keys that are not present in D,
x /∈ D, we write D(x) = ⊥. A Zero Knowledge Set scheme (ZKS) consists of three probabilistic
polynomial time algorithms - ZKS = (ZKSSetup,ZKSProver = (ZKSP1,ZKSP2),ZKSVerifier) and
queries are of the form “is key x in D?”. We describe the algorithms in Figure 3.

For our construction of zero knowledge lists we pick a ZKS construction of [CHL+05] that is
based on mercurial commitments and describe it in more details in Figure 11.

2.2.4 Bilinear Aggregate Signature Scheme

We use bilinear aggregate signature scheme developed by Boneh et al. [BGLS03] for our pri-
vacy preserving authenticated data structure scheme. Given n signatures on n distinct messages
M1,M2, . . . ,Mn from n distinct users u1, u2, . . . , un, it is possible to aggregate all these signatures
into a single short signature such that the single signature (and the n messages) will convince the
verifier that the n users indeed signed the n original messages (i.e., user i signed message Mi for
i = 1, . . . , n). Here we describe the scheme for the case of a single user signing n distinct messages
M1,M2, . . . ,Mn. The decryption of the generic case of n different users can be found at [BGLS03].
The following notation is used in the scheme:

• G,G1 are multiplicative cyclic groups of prime order p
• g is a generator of G
• e is computable bilinear nondegenerate map e : G×G→ G1

• H : {0, 1}∗ → G is a full domain hash function viewed as a random oracle that can be
instantiated with a cryptographic hash function.

Formally, a bilinear aggregate signature scheme is a 5 tuple of algorithm Key Generation, Sign-
ing, Verification, Aggregation, and Aggregate Verification. We discuss the construction in Figure 4.

Security Informally, the security requirement of an aggregate signature scheme guarantees that
the aggregate signature σ is valid if and only if the aggregator used all σi’s, for 1 ≤ i ≤ k, to
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Figure 4: Bilinear Aggregate Signature Scheme

Key Generation: The secret key v is a random element of Zp and the public key x is set
to gv.

Signing: The user signs the hash of each distinct message Mi ∈ {0, 1}∗ via σi ← H(Mi)
v.

Verification: Given the user’s public key x, a message Mi and its signature σi, accept if
e(σi, g) = e(H(Mi), x) holds.

Aggregation: This is a public algorithm which does not need the user’s secret key to aggregate
the individual signatures. Let σi be the signature on a distinct message Mi ∈ {0, 1}∗ by
the user, according to the Signing algorithm (i = 1, . . . , n). The aggregate signature σ for
a subset of k signatures, where k ≤ n, is produced via σ ←

∏k
i=1 σi.

Aggregate Verification: Given the aggregate signature σ, k original messages
M1,M2, . . . ,Mk and the public key x:
1. ensure that all messages Mi are distinct, and reject otherwise.
2. accept if e(σ, g) = e(

∏k
i=1H(Mi), x).

construct it. The formal model of security is called the aggregate chosen-key security model. The
security of aggregate signature schemes is expressed via a game where an adversary is challenged to
forge an aggregate signature:
Setup: The adversary A is provided with a public key PK of the aggregate signature scheme.
Query: A adaptively requests signatures on messages of his choice.
Response: Finally, A outputs k distinct messages M1,M2, . . . ,Mk and an aggregate signature σ.
A wins if the aggregate signature σ is a valid aggregate signature on messages M1,M2, . . . ,Mk

under PK, and σ is nontrivial, i.e., A did not request a signature on M1,M2, . . . ,Mk under PK. A
formal definition and a corresponding security proof of the scheme can be found in [BGLS03].

2.3 Hardness assumption

Let p be a large k-bit prime where k ∈ N is a security parameter. Let n ∈ N be polynomial in k,
n = poly(k). Let e : G × G → G1 be a bilinear map where G and G1 are groups of prime order p
and g be a random generator of G. We denote a probabilistic polynomial time (PPT) adversary A,
or sometimes B, as an adversary who is running in time poly(k). We use Aalg(input,...) to show that
an adversary A has an oracle access to an instantiation of an algorithm alg with first argument set
to input and . . . denoting that A can give arbitrary input for the rest of the arguments.

Definition 2.1 (n-Bilinear Diffie Hellman Inversion (n-BDHI) [BB04]) Let s be a random
element of Z∗p and n be a positive integer. Then, for every PPT adversary A there exists a negligible

function ν(.) such that: Pr[s $←− Z∗p, y ← G1 : A(〈g, gs, gs2 , . . . , gsn〉) : y = e(g, g)
1
s ] ≤ ν(k).

3 Zero Knowledge List (ZKL)
We generalize the idea of consistent set membership queries [MRK03, CHL+05] to support mem-
bership and order queries in zero knowledge on a list with no repeated elements. More specifically,
given a totally ordered list of unique elements L = {y1, y2, . . . , yn}, we want to support in zero
knowledge queries of the following form:

• Is yi ∈ L or yi /∈ L?
• For two elements yi, yj ∈ L, what is their relative order, i.e., yi < yj or yj < yi in L?
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We adopt the same adversarial model as in [MRK03, ORS04, CHL+05]. Thus, we require that proofs
reveal nothing beyond the query answer, not even the size of the list. There are two parties: the
prover and the verifier. The prover initially commits to a list of values and makes the commitment
(a short digest) public. Informally, the security properties can be stated as follows. Completeness
mandates that honestly generated proofs always satisfy the verification test. Soundness states that
the prover should not be able to come up with a query, and corresponding inconsistent (with the
initial commitment) answers and convincing proofs. Finally, zero-knowledge means that each proof
reveals the answer and nothing else. In other words, there must exist a simulator, that given only an
oracle access to L, can simulate proofs for membership and order queries that are indistinguishable
from real proofs. Next, we formally describe the model and the security properties.

3.1 Model

A Zero Knowledge List scheme (ZKL) consists of three probabilistic polynomial time algorithms -
(Setup,Prover = (P1,P2),Verifier) and the queries are of the form (δ, flag) where δ = {z1, . . . , zm},
zi ∈ {0, 1}∗, is a collection of elements, flag = 0 denotes a membership/non-membership query and
flag = 1 denotes an order query. In the following sections, we will use state to represent a variable
that saves the current state of the algorithm (when it finishes execution).

PK← Setup(1k)

The Setup algorithm takes the security parameter as input and produces a public key PK
for the scheme. The prover and the verifier both take as input the string PK that can be a
random string (in which case, the protocol is in the common random string model) or have a
specific structure (in which case the protocol is in the trusted parameters model).

(com, state)← P1(1
k,PK,L)

P1 takes the security parameter, the public key PK and the list L, and produces a short digest
commitment com for the list.

(member, proofM , order, proofO) ← P2(PK, state, δ, flag) where δ = {z1, . . . , zm} and flag denotes
the type of query. P2 produces the membership information of the queried elements, member =
{L(z1), . . . ,L(zm)} and the proof of membership (and non-membership), proofM . Then de-
pending on flag:

flag = 0: P2 sets order and proofO to ⊥ and returns (member, proofM ,⊥,⊥).

flag = 1: Let δ̃ = {zi | i ∈ [1,m] ∧ L(zi) 6= ⊥}. P2 produces the correct list order among the
elements of δ̃, order = πL(δ̃) and the proof of the order, proofO.

b← Verifier(1k,PK, com, δ, flag,member, proofM , order, proofO)

Verifier takes the security parameter, the public key PK, the commitment com and a query
(δ, flag) and member, proofM , order, proofO and returns a bit b, where b = ACCEPT/REJECT.

Example Let us illustrate the above functionality with a small example. Let L = {A,B,C} and
(δ, flag) = ({B,D,A}, 1) be the query. Then given this query P2 returns member = {L(B), L(D),
L(A)} = {true, false, true}, the corresponding proofs of membership and non-membership in proofM ,
order = {A,B} and the corresponding proof of order between A and B in proofO.
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3.2 Security Properties

Definition 3.1 (Completeness) For every list L, every sublist δ and every flag,

Pr[PK← Setup(1k);(com, state)← P1(1
k,PK,L);

(member, proofM , order, proofO)← P2(PK, state, δ, flag) :

Verifier(1k,PK, com, δ, flag,member, proofM , order, proofO)=ACCEPT] = 1

Definition 3.2 (Soundness) For every PPT malicious prover algorithm, Prover′, for every sub-
list δ and for every flag there exists a negligible function ν(.) such that:

Pr[PK← Setup(1k);

(com,member1, proof1M , order1, proof1O,member2, proof2M , order2, proof2O)← Prover′(1k,PK) :

Verifier(1k,PK, com, δ, flag,member1, proof1M , order1, proof1O) = ACCEPT∧
Verifier(1k,PK, com, δ, flag,member2, proof2M , order2, proof2O) = ACCEPT∧
((member1 6= member2) ∨ (order1 6= order2))] ≤ ν(k)

Definition 3.3 (Zero-Knowledge) There exists a PPT simulator Sim = (Sim1,Sim2, Sim3) such
that for every PPT malicious verifier Adv = (Adv1,Adv2), there exists a negligible function ν(.) such
that:

|Pr[PK← Setup(1k); (L, stateA)← Adv1(1
k,PK);(com, stateP )← P1(1

k,PK,L) :

Adv
P2(PK,stateP ,·)
2 (com, stateA) = 1]−

Pr[(PK, stateS)← Sim1(1
k); (L, stateA)← Adv1(1

k,PK);(com, stateS)← Sim2(1
k, stateS) :

Adv
SimL3 (1

k,stateS)
2 (com, stateA) = 1]| ≤ ν(k)

Here Sim3 has oracle access to L, that is, given a query (δ, flag), Sim3 can query the list L to
learn only the membership/non-membership of elements in δ and, if flag = 1, learn the list order of
the elements of δ in L.

3.3 Zero Knowledge List (ZKL) Construction

Intuition The construction uses zero knowledge set scheme, homomorphic integer commitment
scheme, zero-knowledge protocol to prove non-negativity of an integer and a collision resistant hash
function H : {0, 1}∗ → {0, 1}l, if the elements of the list L are larger that l bits. In particular,
given an input list L the prover creates a set D where for every element yj ∈ L it adds a (key,value)
pair (H(yj), C(j)) where H(yj) is a hash of yj and C(j) is a homomorphic integer commitment of
rank(L, yj) (assuming rank(L, yj) = j without loss of generality). The prover then sets up a zero
knowledge set on D using ZKSP1 from zero knowledge set construction in Figure 3. The output of
ZKSP1 is a commitment to D, com, that the prover sends to the verifier.

Membership and non-membership queries of the form (δ, 0) are replied in the same fashion as
in zero knowledge set, by invoking ZKSP2 on the hash of every element of sublist δ. Recall that
as a response to a membership query for a key, ZKSP2 returns the value against that key. In our
case, the queried key is H(yj) and the value returned by ZKSP2, D(H(yj)) is the commitment C(j)
where j is the rank of element yj in the list L, if yj ∈ L. If yj /∈ L, the value returned is ⊥. Hence,
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the verifier receives the commitments to ranks for queried member elements. These commitments
are never opened but are used as part of a proof for order queries.

For a given order query (δ, 1), for every adjacent pair of elements in the returned order, order,
the prover gives a proof of order. Recall that order contains the member elements of δ, arranged
according to their order in the list, L. To prove the order between two elements yi, yj , the prover does
the following. Let rank(L, yi) = i, rank(L, yj) = j, and C(i), C(j) the corresponding commitments
and wlog i < j. As noted above, C(i), C(j) are already returned by the prover as a part of
membership proof. Additionally, the prover augments the membership proof with a commitment
to 1, C(1), and its opening information ρ.

Then the verifier computes C(j − i − 1) := C(j)/(C(i)C(1)) using the homomorphic property
of the integer commitment scheme. The prover and the verifier then engage in Protocol(x, r : c =
C(x; r)∧ x ≥ 0) to convince the verifier that C(j − i− 1) is a commitment to value x = j − i− 1 ≥
0. Note that we use the non-interactive zero-knowledge version of the protocol as discussed in
Section 2.2.2.

It is important to understand why we require Verifier to verify that j − i − 1 ≥ 0 and not
j− i ≥ 0. By the soundness of the protocol Protocol(x, r : c = C(x; r)∧x ≥ 0), the probability that
a cheating prover Prover′ will be able to convince Verifier about the non-negativity of a negative
integer is negligibly small. However, since 0 is non-negative, a cheating prover can do the following:
instead of the rank of an element store the same arbitrary non-negative integer for every element
in the list. Then, C(j − i) and C(i − j) are commitments to 0 and Prover′ can always succeed in
proving an arbitrary order. To avoid this attack, we require the prove to hold for C(j − i− 1). An
honest prover can always prove the non-negativity of C(j − i− 1) as |j − i| ≥ 1 for any rank i, j of
the list.

Also, we note that the commitments to ranks can be replaced by commitments to a strictly
monotonic sequence as long as there is a 1:1 correspondence with the rank sequence. In this case,
the distance between two elements will also be positive and, hence, the above protocol still holds.

Construction Let HomIntCom = (IntComSetup, IntCom, IntComOpen) be the homomorphic in-
teger commitment scheme defined in Section 2.2.1 and ZKS = (ZKSSetup, ZKSProver = (ZKSP1,
ZKSP2),ZKSVerifier) be a ZKS scheme defined in Section 2.2.3. We denote the output of the prover
during the non-interactive statistical zero knowledge protocol Protocol(x, r : c = C(x; r)∧x ≥ 0) as
proofx≥0. The construction also uses a hash function, H : {0, 1}∗ → {0, 1}l. In Figure 5 we describe
in detail our ZKL construction on an input list L = {y1, . . . , yn}.
3.4 Security Proofs

Proof of Completeness Completeness of the ZKL construction in Section 3.3 directly follows
from the Completeness of Zero Knowledge Set and Completeness of the protocol Protocol(x, r : c =
C(x; r) ∧ x ≥ 0).

Proof of Soundness: To simplify the notation, first let us denote using E1 and E2 the following
two events:

E1 = [PK← Setup(1k);

(com,member1, proof1M , order1, proof1O,member2, proof2M , order2, proof2O)← Prover′(1k,PK) :

Verifier(1k,PK, com, δ, flag,member1, proof1M , order1, proof1O) = ACCEPT∧
Verifier(1k,PK, com, δ, flag,member2, proof2M , order2, proof2O) = ACCEPT∧
(member1 6= member2)]
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Figure 5: Zero Knowledge List (ZKL) Construction

PK← Setup(1k): The Setup algorithm takes the security parameter as input and runs PKC ←
IntComSetup(1k),PKD ← ZKSSetup(1k) and outputs PK = (PKC ,PKD).

(com, state)← P1(1k,PK,L): Wlog, let rank(L, yj) = j and C(j) denote an integer commitment
to j under public key PKC , i.e., (C(j), rj) = IntCom(PKC , j). Then, P1 proceeds as follows:

• For every yj ∈ L, compute H(yj) and C(j).
• Set D := {(H(yj), C(j)) | ∀yj ∈ L}.
• Run (com, state)← ZKSP1(1

k,PKD, D) and output (com, state).
(member, proofM , order, proofO)← P2(PK, state, δ, flag) where δ = {z1, . . . , zm}: Let S :=

{H(z1), . . . ,H(zm)}. For all x ∈ S do the following:
• Run (D(x), proofx)← ZKSP2(PKD, state, x).
• Set ∆x := (D(x), proofx).

Set member := {L(zj) | ∀zj ∈ δ} and proofM := {∆x | x ∈ S}.
If flag = 0 return (member, proofM ,⊥,⊥).
If flag = 1 do the following:
Let δ̃ = {zj | ∀j ∈ [1,m] ∧ L(zj) 6= ⊥} and πL(δ̃) = {w1, . . . , wm′} where m′ ≤ m.

• For all 1 ≤ j < m′, compute ∆wj<wj+1 = proofrank(L,wj+1)−rank(L,wj)−1≥0.
• Compute (C(1), ρ) = IntCom(PKC , 1).

Set order := πL(δ̃) and proofO = ({∆wj<wj+1 | (wj , wj+1) ∈ δ̃}, C(1), ρ) and return
(member, proofM , order, proofO).

b← Verifier(1k,PK, com, δ, flag,member, proofM , order, proofO) where δ = {z1, . . . , zm}: The
Verifier algorithm does the following:

• Compute S = {H(z1), . . . ,H(zm)}.
• Parse proofM as proofM := {∆x = (D(x), proofx) | x ∈ S}.
• For all x ∈ S, run b← ZKSVerifier(1k,PKD, x,D(x), proofx).

If flag = 0 and b = ACCEPT for all x ∈ S, output ACCEPT.
If flag = 1, perform the following additional verification steps:

• Let order = {w1, . . . , wm′}.
• Parse proofO as ({∆wj<wj+1 | (wj , wj+1) ∈ order}, C(1), ρ).
• Verify that IntComOpen(PKC , C(1), ρ) is 1.
• Compute D(H(wj+1))/(D(H(wj))× C(1)) = C(rank(L, wj+1)− rank(L, wj)− 1)
• Verify that rank(L, j + 1) − rank(L, j) > 0 using proofrank(L,j+1)−rank(L,j)−1≥0 using

Protocol(x, r : c = C(x; r) ∧ x ≥ 0) where x = rank(L, j + 1)− rank(L, j)− 1.
If all the verifications pass, only then return ACCEPT.

E2 = [PK← Setup(1k);

(com,member1, proof1M , order1, proof1O,member2, proof2M , order2, proof2O)← Prover′(1k,PK) :

Verifier(1k,PK, com, δ, flag,member1, proof1M , order1, proof1O) = ACCEPT∧
Verifier(1k,PK, com, δ, flag,member2, proof2M , order2, proof2O) = ACCEPT∧
(order1 6= order2)]
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Then, Definition 3.2 can be rewritten as

Pr[PK← Setup(1k);

(com,member1, proof1M , order1, proof1O,member2, proof2M , order2, proof2O)← Prover′(1k,PK) :

Verifier(1k,PK, com, δ, flag,member1, proof1M , order1, proof1O) = ACCEPT∧
Verifier(1k,PK, com, δ, flag,member2, proof2M , order2, proof2O) = ACCEPT∧
((member1 6= member2) ∨ (order1 6= order2))] = Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2]

Now, by the Soundness property of the ZKS in Section 2.2.3, Pr[E1] is negligible in k. Let
Pr[E1] = ν1(k).

Let us consider the event E2. If the malicious prover is successful in outputting two contradictory
orders for a collection of elements, then there must exist at least one inversion pair, i.e., a pair of
elements (xi, xj) ∈ δ such that xi < xj in order1 and xj < xi in order2. Let C(i) and C(j) be the
commitments used as values to prove the membership of xi and xj , correspondingly. Then by the
binding property of the integer commitment scheme of Section 2.2.1, Prover′ cannot equivocate C(i−
j) or C(j− i) (which is computed by Verifier in the protocol). (Note that by the soundness property
of ZKS, the probability that Prover′ can return two commitments C(i) and C(i′), C(i) 6= C(i′),
where C(i) and C(i′) are returned to prove membership of xi in proof1M and proof2M , respectively, is
negligible w.r.t. the same commitment, com.) Then according to the protocol, it must be the case
that Prover′ could convince Verifier that both C(i − j) and C(j − i) are commitments to positive
integers where i, j are two integers. However, due to the soundness of the protocol Protocol(x, r :
c = C(x; r) ∧ x ≥ 0), the probability is negligible in k. Let Pr[E2] = ν2(k).

Therefore we have, Pr[E1 ∨ E2] ≤ ν1(k) + ν2(k) ≤ ν(k), for some negligible function ν(.) Hence
the soundness error of the ZKL construction must be negligible in k.

Proof of Zero-Knowledge: Let SimHomIntCom = (SimIntComSetup, SimIntCom, SimIntComOpen)
be the simulator of HomIntCom defined in Figure 1. Let SimZKS = (SimZKSSetup,SimZKSProver =
(SimZKSP1, SimZKSP2), SimZKSVerifier) be the simulator for the ZKS in Figure 3.

Now let us define Sim = (Sim1, Sim2, Sim3), a simulator for ZKL (Definition 3.3), that has access
to the system parameter H.

• Sim1(1
k) runs (PKD,TKD) ← SimZKSSetup(1k) and (PKC ,TKC) ← SimIntComSetup(1k).

Sim1(1
k) outputs {PK = (PKD,PKC),TK = (TKD,TKC)}.

• Sim2 runs SimZKSP1 to generate commitment com.
• In response to membership queries (flag = 0), Sim3 does the following:

– Sim3 maintains a table of queried elements as tuples 〈xi, vi, ri〉 where xi is the queried
element and vi is the value that Sim3 has sent when xi was queried. We explain how ri
is computed next.

– For a queried element y, Sim3 checks the table. If y is not in the table and, hence, has
not been queried before, Sim3 makes an oracle access to L on y. If y ∈ L, Sim3 computes
a fresh commitment to 0, (C(0), r) := SimIntCom(0), and stores 〈y, C(0), r〉. If y /∈ L,
then Sim3 stores 〈y,⊥,⊥〉.

– Sim3 responds to membership queries by invoking SimZKSP2 on H(y) and returning the
same output.

• For order queries (flag = 1), Sim3 additionally does the following. Let δ be the queried sublist.
Sim3 makes an oracle access to L to get the correct list order of the elements of δ that are
present in L. Let order = {y1, . . . , ym} be the returned order.

• Sim3 computes (C(1), ρ) = SimIntCom(PKC , 1).
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• Let {〈y1, v1, r1〉, . . . , 〈ym, vm, rm〉} be the entries of Sim3’s table that correspond to elements
in δ. Then for every pair (yj , yj+1), Sim3 equivocates (vj+1/(vj × C(1))) using TKC to a
commitment to any arbitrary positive integer u. In other words, Sim3 equivocates the com-
mitment C(rank(L, yj+1)− rank(L, yj)− 1) to a commitment to an arbitrary positive integer
u. Finally, Sim3 computes proofu≥0 to prove the order between (yj , yj+1).

Sim3 achieves the following. For every newly queried element that is in the list, Sim3 generates
and stores a fresh commitment to 0, and sends it to the verifier. Hence, Sim3 sets rank = 0 to all
queried elements. By the hiding property of the integer commitment scheme, the commitments are
identically distributed to the commitments computed by the real prover, P1. Now, with the help of
TKC , Sim3 can equivocate a commitment to any value it wants. Hence, whenever he needs to prove
order yi < yj , Sim3 equivocates the commitment to rank(L, yj+1)− rank(L, yj)− 1 to any arbitrary
positive integer u and invokes the protocol Protocol(u, r : c = C(u; r)∧u ≥ 0) to compute proofu>0.

Since the protocol Protocol(u, r : c = C(u; r) ∧ u ≥ 0) is Zero Knowledge (Statistical), Sim =
(Sim1, Sim2, Sim3) simulates our ZKL scheme.

We note that the constructions with which we instantiate ZKL have the simulators assumed
above. In particular, for SimZKS we use the simulator of the ZKS construction of [CHL+05].
For SimHomIntCom we use the construction of [DF02] and for completeness define a simulator in
Figure 9.

3.5 Efficiency

The efficiency of our ZKL construction depends on the efficiency of the underlying constructions
that we use. We consider the the ZKS construction used in [CHL+05] based on Mercurial Commit-
ments, the homomorphic integer commitment of [DF02] and a protocol for non-negative proof of
a commitment from [Lip03]. Each of these constructions is described in more detail in Appendix.
Mercurial commitment was later generalized by [CFM08, LY10] but the basic ZKS construction
remains the same.

Recall that k is the security parameter of the scheme, l is the size of the output of the hash
function H, n is the number of elements in the list L and m is the number of elements in query δ.
Similarly to [CHL+05] we assume that l = k. For every element in L, P1 hashes the element
and computes a commitment to its rank, taking time O(1). It then computes n height-k paths to
compute the commitment com to a list, L, takes time O(kn), where |L| = n. For further details
please see Appendix C.

Membership (non-membership) proof of a single element consists of O(k) mercurial decommit-
ments. Using [LY10], we can have each mercurial decommitment constant size, i.e, O(1). The order
proof between two elements requires membership proofs for both elements and proofu−1≥0 where u
is the absolute difference between the rank of the corresponding elements. proofu−1≥0 is computed
using Protocol(x, r : c = C(x; r) ∧ x ≥ 0) which takes O(1) time. Hence, computing a membership
proof for a single element or an order proof for two elements takes time O(k). More generally, the
prover’s time for a query on sublist δ is O(mk), where m = |δ|.

The verifier needs to verify O(k) mercurial decommitments for every element in the query δ and
verify order between every adjacent pair of elements in δ using Protocol(u, r : c = C(u; r) ∧ u ≥ 0).
Therefore, the asymptotic run time of the verification is O(mk).

We summarize the properties and efficiency of our ZKL construction in Theorem 3.1.

Theorem 3.1 The zero-knowledge list (ZKL) construction of Figure 5 satisfies the security prop-
erties of completeness (Definition 3.1), soundness (Definition 3.2) and zero-knowledge (Defini-
tion 3.3). The construction has the following performance, where n is the list size, m is the query
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size, each element of the list is a k-bit1 string and N is the number of all possible k-bit strings.

• The prover executes the setup phase in O(n logN) time and space.

• In the query phase, the prover computes the proof of the answer to a query in O(m logN)
time.

• The verifier verifies the proof in O(m logN) time and space.

4 Privacy Preserving Authenticated List (PPAL)
In the previous section we presented a model and a construction for a new primitive called zero
knowledge lists. As we noticed earlier, ZKL model gives the desired functionality to verify order
queries on lists. However, the corresponding construction does not provide the efficiency one may
desire in cloud computing setting where the verifier (client) has limited memory resources. In this
section we address this setting and define a model for privacy preserving authenticated lists, PPAL,
that is executed between three parties. This model, arguably, fits cloud scenario better and as we
will see our construction is also more efficient. In particular, the size of a single proof in PPAL is
O(1) vs. O(k) in ZKL.

4.1 Model

PPAL is a tuple of three probabilistic polynomial time algorithms (Setup,Query,Verify) executed
between the owner of the data list L, the server who stores L and answers queries from the client
and the client who issues queries and verifies corresponding answers.

(digestC , digestS)← Setup(1k,L)

This algorithm takes the security parameter and the source list L as input and produces two
digests digestC and digestS for the list. This algorithm is run by the owner. digestC is sent to
the client and digestS is sent to the server.

(order, proof)← Query(digestS ,L, δ)
This algorithm takes the key generated by the owner, digestS , the source list, L and a queried
sublist, δ, as input, where a sublist of a list L is defined as: Elements(δ) ⊆ Elements(L). The
algorithm produces the list order of the elements of L, order = πL(δ), and a proof, proof, of
the answer. This algorithm is run by the server.

b← Verify(digestC , δ, order, proof)

This algorithm takes digestC , a queried sublist δ, order and proof and returns a bit b, where
b = ACCEPT iff Elements(δ) ⊆ Elements(L) and order = πL(δ). Otherwise, b = REJECT. This
algorithm is run by the client.

4.2 Security Properties

A PPAL has three important security properties. The first property is Completeness. This property
ensures that for any list L and for any sublist δ of L, if the digestC , digestS , order, proof are generated
honestly, i.e., the owner and the server honestly execute the protocol, then the client will be always
convinced about the correct list order of δ.

Definition 4.1 (Completeness) For all lists L and all sublists δ

Pr[(digestC , digestS)← Setup(1k,L); (order, proof)← Query(digestS ,L, δ) :

Verify(digestC , δ, order, proof) = ACCEPT] = 1

1If not, we can use a hash function to reduce every element to a k-bit string, as shown in the construction
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The second security property is Soundness. This property ensures that once an honest owner
generates a pair (digestC , digestS) for a given list L, even a malicious server will not be able to
convince the client of incorrect order of elements belonging to the list L. This property ensures
integrity of the scheme.

Definition 4.2 (Soundness) For all PPT malicious Query algorithms Query′, for all lists L and
all query sublists δ, there exists a negligible function ν(.) such that:

Pr[(digestC , digestS)← Setup(1k,L); (order1, proof1, order2, proof2)← Query′(digestS ,L) :

Verify(digestC , δ, order1, proof1) = ACCEPT∧
Verify(digestC , δ, order2, proof2) = ACCEPT∧

(order1 6= order2)] ≤ ν(k)

The last property is Zero-Knowledge. This property captures that even a malicious client cannot
learn anything about the list (and its size) beyond what the client has queried for. Informally, this
property involves showing that there exists a simulator such that even for adversarially chosen list L,
no adversarial client (verifier) can tell if it is talking to an honest owner and server pair who are
committed to L or to the simulator who only has oracle access to the list L.

Definition 4.3 (Zero-Knowledge) There exists a PPT simulator Sim = (Sim1,Sim2) such that
for all PPT malicious verifiers Adv = (Adv1,Adv2), there exists a negligible function ν(.) such that:

|Pr[(L, stateA)← Adv1(1
k);(digestC , digestS)← Setup(1k,L) :

Adv
Query(digestS ,L,.)
2 (digestC , stateA) = 1]−

Pr[(L, stateA)← Adv1(1
k);(digestC , stateS)← Sim1(1

k) :

Adv
SimL2 (1

k,stateS)
2 (digestC , stateA) = 1]| ≤ ν(k)

Here Sim2 has oracle access to L, that is given a sublist δ of L, Sim2 can query the list L to
learn only the correct list order of the sublist δ and cannot look at L.
Attack on [KAB12]’s scheme We observer that the scheme presented in [KAB12] does not
satisfy the zero knowledge property of PPAL for the following reason. The scheme of [KAB12]
generates a n′ bit secure name, where n′ ≥ n, for each element of the list of size n. A high level
idea of the scheme is as follows. The secure name of an element has dedicated bits, where each
bit corresponds to the pairwise order between this element and every other element in the list. To
prove the order between any two elements, the verifier needs to know secure names for both of
them. Then, given any two secure names, the verifier can easily compute the required bit. Two
order queries A < B and A < C, as per the scheme of [KAB12], reveal to the client the secure
names of all three elements A, B and C. Hence, given the secure names of B and C, the client can
easily compute the bit which preserves the order information between B and C and infer the order
between them. Therefore, it is impossible to write a simulator Sim for an adversarially generated
list such that the view of the adversary is indistinguishable as in Definition 4.3.

5 PPAL Construction
We present an implementation of a privacy preserving authenticated list in Figure 7. We provide
the intuition of our method followed by a more detailed description.
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Intuition Every element of the list is associated with a member witness where a member witness
is a randomized bilinear accumulator. This allows us to encode the rank of the element (i.e.,
accumulate it) inside of the member witness and then “blind” this rank information with randomness.
Every pair of (element, member witness) is signed by the owner and the signatures are aggregated
using bilinear aggregate signature scheme presented in Figure 4, to compute the list digest signature.
Signatures and digest are sent to the server, who can use them to prove authenticity when answering
client queries. The advantage of using an aggregate signature is for the the server to be able to
compute a valid digest signature for any sublist of the source list by exploiting the homomorphic
nature of aggregate signatures, that is without owner’s involvement. Moreover, the client can verify
the individual signatures in a single shot using aggregate signature verification.

The owner also sends linear (in the list size) number of random elements used in the encoding
of member witnesses. These random elements allow the server to compute the order witnesses
on queried elements, without the owner’s involvement. The order witness encodes the distance
between two elements, i.e., the difference between element ranks, without revealing anything about
it. Together with randomized accumulators as member witnesses, the client can later use bilinear
map to verify the order of the elements.

Construction Our construction for PPAL is presented in Figure 7. It is based on bilinear accumu-
lators and bilinear aggregate signature introduced in [BGLS03] and described here in Section 2.2.4.
We denote member witness for xi ∈ L as txi∈L. For two elements xi, xj ∈ L, such that xi < xj in
L , txi<xj is an order witness for the order between xi and xj .

The construction works as follows. In the Setup phase, the owner generates secret key (v, s)
and public key gv, where v is used for signatures. The owner picks a distinct random element ri
from the group Z∗p for each element xi in the list L, i ∈ [1, n]. The element ri is used to compute
the member witness txi∈L. Later in the protocol, together with rj , it is also used by the server to
compute the order witness txi<xj for xi and xj ∈ L where xi < xj in L. The owner also computes
individual signatures, σi’s, for each element and aggregates them into a digest signature σL for
the list. It returns the signatures and member witnesses for every element of L in ΣL and the set
of random numbers picked for each index to be used in order witnesses in ΩL. The owner sends
digestC = (gv, σL) to the client and digestS = (gv, σL , 〈g, gs, gs

2
, . . . , gs

n〉,ΣL,ΩL) and L to the
server.

Given a query δ, the server returns a response list order that contains elements of δ in the order
they appear in L. The server uses information in ΣL to build Σorder from member witnesses of
elements in δ, and compute the digest signature σδ for δ and its membership verification unit λL′
where L′ = L \ δ. The server uses information in ΩL to compute Ωorder. The client first checks that
all the returned elements are indeed signed by the owner using Σorder and then verifies the order of
the returned elements using Ωorder.

Preprocessing at the Server For a query δ on the list L of length m and n, respectively, the
Query algorithm in Figure 7 takes O(m) time to compute σδ and O(n −m) to compute λL′ . The
server can precompute and store some products to reduce the overall running time of this algorithm
to O(m log n) when m� n. The precomputation proceeds as follows.

Let ψi = H(txi∈L||xi) for every element in L = {x1, . . . , xn}. Then the precomputation proceeds
by computing a balanced binary tree over n leaves, where ith leave corresponds to xi and stores ψi.
Each internal node of the tree stores the product of its children. Therefore the root stores the
complete product

∏n
i=1ψi. (See Figure 6 for an illustration of the tree.) Computing each internal

node takes time O(1) since at each internal node product of at most two children is computed. Since
the tree has O(n) nodes, the precomputation takes time O(n) and requires O(n) storage.
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Figure 7: Privacy-Preserving Authenticated List (PPAL) Construction

Notation: k ∈ N is the security parameter of the scheme; G,G1 multiplicative cyclic groups of
prime order p where p is large k-bit prime; g: a random generator of G; e: computable bilinear
nondegenerate map e : G×G→ G1; H : {0, 1}∗ → G: full domain hash function (instantiated
with a cryptographic hash function); all arithmetic operations are performed using mod p. L is
the input list of size n = poly(k), where xi are distinct and rank(L, xi) = i. System parameters
are (p,G,G1, e, g,H).
(digestC , digestS)← Setup(1k,L), where

L is the input list of length n;
digestC = (gv, σL);
digestS = (gv, σL , 〈g, gs, gs

2
, . . . , gs

n〉,ΣL,ΩL) and
〈s $←− Z∗p, v

$←− Z∗p〉 is the secret key of the owner;
ΣL = 〈{txi∈L, σi}1≤i≤n,H(ω)〉 is member authentication information and ω is the

list nonce;
ΩL = 〈r1, r2, . . . , rn〉, ri 6= rj for i 6= j, is order authentication informations;
σL is the digest signature of the list L.

These elements are computed as follows:
For every element xi in L = {x1, . . . , xn}: Pick ri

$←− Z∗p. Compute member witness for
index i as txi∈L ← (gs

i
)ri and signature for element xi as σi ← H(txi∈L||xi)

v.
Pick the nonce, ω $←− {0, 1}∗, which should be unique for each list.
Set salt ← (H(ω))v. salt is treated as a list identifier which protects against mix-and-

match attack and also protects from the leakage that the queried result is the com-
plete list.

The list digest signature is computed as: σL ← salt×
∏

1≤i≤nσi.
(order, proof)← Query(digestS ,L, δ), where

δ = {z1, . . . , zm} s.t. zi ∈ L, ∀i ∈ [1,m], is the queried sublist;
order = πL(δ) = {y1, y2, . . . , ym};
proof = (Σorder,Ωorder):

Σorder = (σorder, T, λL′) where L′ = L \ δ;
T = {ty1∈L, . . . , tym∈L};
Ωorder = {ty1<y2 , ty2<y3 , . . . ,tym−1<ym}.

These elements are computed as follows:
The digest signature for the sublist: σorder ←

∏
yj∈orderσrank(L,yj).

The member verification unit: λL′ ← H(ω)×
∏
x∈L′H(txrank(L,x)∈L||x).

For every j ∈ [1,m − 1]: Let i′ = rank(L, yj) and i′′ = rank(L, yj+1), and r′ = ΩL[i′]−1

and r′′ = ΩL[i′′]. Compute tyj<yj+1 ← (gs
d
)
r′r′′

where d = |i′ − i′′|.
b← Verify(digestC , δ, order, proof) where digestC , δ, order, proof are defined as above.

The algorithm checks the following:
• Compute ξ ←

∏
yj∈δH(tyj∈L||yj) and check if e(σorder, g)

?
= e(ξ, gv)

• Check if e(σL, g)
?
= e(σorder, g)× e(λL′ , gv)

• For every j ∈ [1,m− 1], e(tyj∈L,tyj<yj+1)
?
= e(tyj+1∈L, g)

Return ACCEPT iff all the equalities of the three steps verify, REJECT otherwise.



Figure 6: Range tree showing the precomputed products where ψi = H(txi∈L||xi). Precomputed
products allow to speed up the computation time of Query algorithm in Figure 7 when m� n.

Now, computing λL′ will require computing the product of m + 1 partial products, i.e., the
intervals between elements in the query. Since each partial product can be computed using at most
O(log n) of the precomputed products (as the height of the tree is O(log n)), the total time required
to compute the product of m + 1 partial products is O((m + 1) log n) = O(m log n). Hence, the
precomputation is useful whenever m � n. Otherwise, when m = O(n), the server can run the
Query as mentioned in the scheme in Figure 7 in time O(n).

Efficiency We measure the time and space complexity of our scheme in terms of n, the length
of the list L, and m, the length of the queried sublist δ. We use |L| notation to denote the length
of a list L. Recall that Elements(δ) ⊆ Elements(L). We discuss and summarize the time and space
complexity for each party as follows:

Owner The Setup algorithm computes member and order witnesses for each element, along with
signatures for each element. Hence, the algorithm runs in time O(n) and requires O(n) space.

Server Computing λL′ that takes time O(n − m), as it touches |L \ δ| elements and computing
σδ takes time O(m). Hence, the overall runtime of computing λL′ and σδ is O(n). The
server can precompute and store some products of the signatures, as mentioned above, to
reduce the overall running time to O(min{m log n, n}). In addition the server calculates m−1
order witnesses each taking constant time, hence, O(m) in total. So the overall run time for
the server is O(min{m log n, n}). The server needs to store the list itself, digestS and the
precomputed products. Since each of these objects is of size O(n), the space requirement at
the server is O(n).

Client Verify computes a hash for each element in the query δ, and then checks the first two
equalities using bilinear map. This requires O(m) computation. In the last step Verify checks
O(m) bilinear map equalities which takes time O(m). Hence the overall verification time of
the client is O(m). During the query phase, the client requires O(m) space to store its query
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and its response with the proof for verification. The client also needs to store digestC which
requires O(1) space.

Efficiency of PPAL via ZKL We noted in the introduction that we can adapt zero knowledge
lists to implement a PPAL scheme. Recall that we can do this by making the owner run P1,
the server run P2 and the client run Verifier of ZKL (see Section 3.1 for the description of ZKL
algorithms). Here we estimate the efficiency of a PPAL construction based on the construction of
ZKL presented in Figure 5 and compare it with the PPAL construction presented in this section.

From the discussion of efficiency of the ZKL construction in Section 3.5, the time and space
complexity of each party in PPAL adaptation of ZKL readily follows below.
Owner The owner runs in time O(kn) and O(kn) space, where k is the security parameter.
Server To answer a query of size m, the server runs in time O(km). The space requirement at the

server is O(kn) since he has to store the O(kn) commitments produced by the owner.
Client The verification time of the client is O(km). During the query phase, the client requires

O(km) space to store its query and its response with the proof for verification.
Hence, the PPAL construction presented in Figure 7 is a factor of O(k) more efficient in space

and computation requirements as compared to an adaptation of the ZKL construction from Figure 5
in PPAL model.

Batch ordering query The client can learn the total order among m different elements of the
list using a basic ordering query on two elements. This requires O(m2) individual order queries,
where each verification takes one multiplication in group G and six bilinear map computations.
Since our construction supports a query of multiple elements, the client can optimize the process
and ask a singe batch ordering query for m elements. In this case, the verification will require only
m multiplications in the group G and 2m+ 2 bilinear map computations.

6 Security of the PPAL Construction
In this section we prove that the construction presented in Section 5 is PPAL construction according
to definitions of completeness, soundness and zero knowledge in Section 4.

6.1 Proof of Completeness

If all the parties are honest, all the equations in Verify evaluate to true. This is easy to see just by
expanding the equations as follows:
Equation e(σorder, g)

?
= e(ξ, gv) : Let order = {y1, . . . , ym} = πL(δ)

e(σorder, g) =e(
∏

yj∈order
σrank(L,yj), g) = e(

∏
yj∈order

H(tyj∈L||yi)
v, g) =

e(
∏

yj∈order
H(tyj∈L||yi), gv) = e(

∏
yj∈δ
H(tyj∈L||yi), gv) = e(ξ, gv).

Equation e(σL, g)
?
= e(σorder, g)× e(λL′ , gv): Let order = {y1, . . . , ym} = πL(δ) and L′ = L\δ. We

start with the right hand side.

e(σorder, g)× e(λL′ , gv) = e(
∏

yj∈order
H(tyj∈L||yi)

v, g)× e(H(ω)×
∏

x∈L′
H(txrank(L,x)∈L||x), gv)

= e(
∏

yj∈order
H(tyj∈L||yi), gv)× e(H(ω)×

∏
x∈L′
H(txrank(L,x)∈L||x), gv)

= e(H(ω)×
∏

x∈L
H(txrank(L,x)∈L||x), gv) = e(H(ω)v ×

∏
x∈L
H(txrank(L,x)∈L||x)v, g) = e(σL, g).
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Equation e(tyj∈L,tyj<yj+1)
?
= e(tyj+1∈L, g): Let i′ = rank(L, yj) and i′′ = rank(L, yj+1) and r′ =

ΩL[i′]−1 and r′′ = ΩL[i′′].

e(tyj∈L, tyj<yj+1) = e(gs
i′ (r′)−1

, gs
i′′−i′r′′r′) = e(g, g)s

i′′−i′+i′r′′r′(r′)−1

= e(g, g)s
i′′r′′ = e(gs

i′′r′′ , g) = e(tyj+1∈L, g).

6.2 Proof of Soundness

Soundness follows by reduction to the n-Bilinear Diffie Hellman assumption (see Definition 2.1
for details). To the contrary of the Soundness Definition 4.2, assume that given a list L, the
malicious server, Query′ produces two different orders order1 6= order2 for some sublist δ such that
corresponding order proofs are accepted by the client, i.e., by algorithm Verify in Figure 7. Let
δ = {x1, x2, . . . , xm}. Since order1 6= order2, then there exists at least one inversion pair (xi, xj)
such that xi < xj in order1 and xj < xi in order2, where i, j ∈ [1,m]. Moreover, it must be the case
that either xi < xj or xj < xi is the correct order in L, since both xi, xj ∈ L. (Note that, due to
the security of bilinear aggregate signature scheme, it must be the case that all the elements of δ
are indeed elements of L, i.e, x1, x2, . . . , xm ∈ L (except with negligible probability).)

Without loss of generality, let us assume xi < xj is the order in L and rank(L, xi) = u < v =
rank(L, xj). This implies xj < xi is the forged order for which Query′ has successfully generated a
valid proof, i.e., e(txj∈L, txj<xi) = e(txi∈L, g) has verified since Verify accepted the corresponding
proof. We show that by invoking Q′ and using its output, txj<xi , we construct a PPT adversary A
that successfully solves the n-BDHI Problem [BB04] thereby contradicting n-Bilinear Diffie Hellman
assumption. The formal reduction follows:

Theorem 6.1 If n-Bilinear Diffie Hellman assumption holds, then PPAL scheme satisfies Sound-
ness in Definition 4.2.

Proof We show that if there exists a malicious Query′ as discussed above, then we construct a PPT
adversary A that successfully solves the n-BDHI Problem [BB04]. Algorithm A is given the public
parameters (p,G,GT , e, g) and T = 〈g, gs, gs2 , . . . , gsn〉, where n = poly(k). A runs as follows:

1. Pick v $←− Z∗p a list L such that |L| = n.

Pick ΩL = {ri
$←− Z∗p}∀i∈[1,n] and compute txi∈L ← (gsi)ri ∀i ∈ [1, n].

Compute σi ← H(txi∈L||xi)
v, ∀xi ∈ L.

Pick the nonce, ω
$←− {0, 1}∗ and compute salt← (H(ω))v.

The list digest signature is computed as: σL ← salt×
∏

1≤i≤nσi.
Set digestS = {gv, σL, T ,ΣL,ΩL} where ΣL = 〈{txi∈L, σi}1≤i≤n,H(ω)〉.

2. Finally Query′ outputs two contradicting orders order1 6= order2 for some sublist, δ = {x1, x2, . . . , xm}.
As discussed above, let (xi, xj) be an inversion pair such that xi < xj is the order in L and
rank(L, xi) = u < v = rank(L, xi).
This implies xj < xi is the forged order for which Query′ has successfully generated a valid

proof txj<xi = (gs
(u−v)

)
r2r
−1
1 .

3. Now A outputs e(txj<xi , (gs
v−u−1

)
r2−1r1

) = e(g, g)
1
s .

A inherits success probability of Query′, therefore if Query′ succeeds with non-negligible advan-
tage, so does A. Hence, a contradiction.
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6.3 Proof of Zero-Knowledge

We define Zero Knowledge Simulator Sim = (Sim1,Sim2) from Definition 4.3 as follows. Sim has
access to the system parameters (p,G,G1, e, g,H) and executes the following steps:

• Sim1 picks a random element v $←− Z∗p and a random element g1
$←− G and publishes as

digestC = (gv, gv1) and keeps v as the secret key.
• Sim2 maintains a table of the elements already queried of tuples 〈xi, ri〉 where xi is the element

already queried and ri is the corresponding random element picked from Z∗p by Sim2.
For a query on sublist δ = {x1, x2, . . . , xm}, Sim2 makes an oracle access to list L to get the
list order of the elements. Let us call it order = πL(δ) = {y1, y2, . . . , ym}.
– For every i ∈ [1,m] Sim2 checks if yi is in the table. If it is, Sim2 uses the corresponding

random element from the table. Otherwise, Sim2 picks a random element ri
$←− Z∗p and

adds 〈yi, ri〉 to the table.
– Sim2 sets the member authentication unit as tyi∈L := gri and computes σi ← H(tyi∈L||yi)

v.
– Sim2 sets σorder :=

∏
yi∈orderσi and λL′ := g1∏

yi∈order
H(tyi∈L||yi)

.

– For every pair of elements yi, yi+1 in order, Sim2 computes tyi<yi+1 ← gri+1/ri .
– Finally, Sim2 returns order, proof, where proof = (Σorder,Ωorder), Σorder = (σorder, T, λL′),
T = {ty1∈L, . . . , tym∈L} and Ωorder = {ty1<y2 , ty2<y3 , . . . ,tym−1<ym}.

The simulator Sim = (Sim1,Sim2) produces outputs that are identically distributed to the dis-
tribution outputs of the true Setup and Query algorithms. In both cases v is picked randomly. Let
x, y, z ∈ Z∗p where x is a fixed element and z = xy. Then z is identically distributed to y in Z∗p. In
other words, if y is picked with probability γ, then so is z. The same argument holds for elements
in G and G1. Therefore all the units of Σorder and Ωorder are distributed identically in both cases.
Thus our PPAL scheme is simulatable and the Zero-Knowledge is perfect.

We summarize the properties and efficiency of our PPAL construction in Theorem 6.2.

Theorem 6.2 The privacy-preserving authenticated list (PPAL) construction of Figure 7 satis-
fies the security properties of completeness (Definition 4.1), soundness (Definition 4.2) and zero-
knowledge (Definition 4.3). Also, the construction has the following performance, where n denotes
the list size and m denotes the query size.

• The owner and server use O(n) space.

• The owner performs the setup phase in O(n) time.

• The server performs the preprocessing phase in O(n) time.

• The server computes the answer to a query and its proof in O(min{m log n, n}) time.

• The client verifies the proof in O(m) time and space.
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Appendix

A Homomorphic Integer Commitment Scheme [DF02] and its Simulator
We write the commitment scheme of [DF02], in the trusted parameter model, i.e., the public key
is generated by a trusted third party. However, in the original paper [DF02], the prover and the
verifier interactively set up the public parameters.

Figure 8: Homomorphic Integer Commitment Scheme [DF02].

HomIntCom = (IntComSetup, IntCom, IntComOpen)
PKC ← IntComSetup(1k): The IntComSetup algorithm, takes the security parameter as

input and generates the description of a finite Abelian group G, desc(G), and a
large integer F (k) such that it is feasible to factor numbers that are smaller than
F (k). A number having only prime factors at most F (k) are called F (k)-smooth
and a number having prime factors larger then F (k) are called F (k)-rough. The
algorithm then chooses a random element h $←− G (by group assumption, ord(h) is
F (k)-rough with overwhelming probability) and a random secret key s

$←− Zord(G)
and sets g := hs. IntComSetup outputs (desc(G), F (k), g, h) as the public key of the
commitment scheme, PKC .

(c, r)← IntCom(PKC , x): To commit to an integer x, the algorithm IntCom chooses a
random r, r $←− Z2B+k , and computes c = gxhr (where B is a reasonably close upper
bound on the order of the group G, i.e., 2B > ord(G), and given desc(G), B can be
computed efficiently). IntCom outputs (c, r).

x← IntComOpen(PKC , c, r): To open a commitment c, the committer must send the open-
ing information (x, r, b) to the verifier such that c = gxhrb and b2 = 1. An honest
committer can always set b := 1.

The above commitment scheme is homomorphic as

IntCom(PKC , x+ y) = IntCom(PKC , x)× IntCom(PKC , y).

In Figure 9 we present a simulator for HomIntCom. We note that the distribution of outputs from
the simulator algorithms is identical to the distribution of outputs from a true prover (committer):
in both cases desc(G), F (k), g, h and commitments are generated identically.

Efficiency Assuming group exponentiation take constant time, both IntCom and IntComOpen run
in asymptotic time O(1).
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Figure 9: Simulator for HomIntCom.

SimHomIntCom = (SimIntComSetup, SimIntCom, SimIntComOpen)
(PKC ,TKC)← SimIntComSetup(1k): SimIntComSetup works exactly as the IntComSetup

except that it saves s and the order of the group G, ord(G). SimICSetup sets TKC =
(ord(G), s) and outputs (PKC = (desc(G), F (k), g, h),TKC).

(c, r)← SimIntCom(PKC , x): SimIntCom behaves exactly as IntCom and outputs (c, r)

where c = gxhr, r $←− Z2B+k and B is as defined in Figure 8.
x′ ← SimIntComOpen(PKC ,TKC , c, r): To open a commitment c, originally committed

to some integer x, to any arbitrary integer x′ 6= x, send (x′, (r + sx − sx′)
mod ord(G), b = 1) to the verifier.
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B Proving an Integer is Non-negative [Lip03]
We present the Σ protocol presented in [Lip03] in Figure 10. This protocol is honest-verifier zero
knowledge with 3 rounds of interaction and can be converted to non-interactive general zero knowl-
edge in the Random Oracle model using Fiat-Shamir heuristic [FS86].

The protocol is essentially based on two facts: a negative number cannot be a sum of squares and
every non-negative integer is a sum of four squared integers. The representation of a non-negative
integer as the sum of four squares is called the Lagrange representation of a non-negative integer.
[Lip03] presents an efficient probabilistic time algorithm to compute the Lagrange representation of
a non-negative integer.

Theorem B.1 [Lip03] An integer x can be represented as x = ω2
1 + ω2

2 + ω2
3 + ω2

4, with integer ωi,
i ∈ [1, 4], iff x ≥ 0. Moreover, if x ≥ 0, then the corresponding representation (ω1, ω2, ω3, ω4) can
be computed efficiently.

Efficiency The algorithm to compute Lagrange’s representation of a non-negative integer is prob-
abilistic polynomial time [Lip03]. Assuming group exponentiation is done in constant time, both
the Prover and the Verifier in the protocol in Figure 10 run in asymptotic constant time, i.e., O(1).

Figure 10: Proving non-negativity of an integer [Lip03]: Protocol(x, r : c = C(x; r) ∧ x ≥ 0)

Step 1: The Prover commits to an integer x ∈ {−M,M} as c := IntCom(PKC , x) = gxhρ

where ρ ∈ Z2B+k and sends it to the Verifier. Now the Prover computes the following:
• represent x as x = ω2

1 + ω2
2 + ω2

3 + ω2
4

• for i ∈ [1, 4]: pick r1i
$←− Z2B+2k such that

∑
i r1i = ρ

• for i ∈ [1, 4]: pick r2i
$←− Z2B+2kF (k) and r3

$←− Z2B+2kF (k)
√
M

• for i ∈ [1, 4]: pick m1i
$←− Z2kF (k)

√
M

• for i ∈ [1, 4]: compute c1i ← gω1hr1i

• compute c2 ← g
∑

im1ih
∑

i r1i

• compute c3 ← (
∏
i c1i

m1i)hr3

The Prover sends (c11, c12, c13, c14, c2, c3) to the Verifier.
Step 2: The Verifier generates e $←− ZF (k) and sends it to the Prover.
Step 3: The Prover computes the following:

• for i ∈ [1, 4]: compute m2i ← m1i + eωi
• for i ∈ [1, 4]: compute r4i ← r2i + er1i
• compute r5 ← r3 + e

∑
i(1− ωi)r1i

The Prover sends (m21,m22,m23,m24, r41, r42, r43, r44, r5) to the Verifier.
Step 4: The Verifier checks the following:

• for i ∈ [1, 4]: check gm2ihr4ic1i
−e ?

= c2

• (
∏
i c1i

m2i)hr5c−e
?
= c3
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C Zero Knowledge Set (ZKS) Construction [CHL+05]
Here we give the construction of ZKS based on mercurial commitments and collision-resistant hash
functions. For the details, please refer to Section 3 of [CHL+05].

For a finite database D, the prover views each key x as an integer numbering of a leaf of a
height-l binary tree and places a commitment to the information v = D(x) into leaf number x. To
generate the commitment CD to the database D, the prover ProverD generates an incomplete binary
tree of commitments, resembling a Merkle tree as follows. Let Merc = {MercSetup,HardComm,
SoftComm, Tease, VerTease,MercOpen, VerOpen} be a Mercurial Commitment scheme and PKD be
the public key of the mercurial commitment scheme, i.e., PKD ← MercSetup(1k). Let rx denotes
the randomness used to produce the commitment (hard or soft) of x.

Before getting into the details of the ZKS construction using mercurial commitments in Fig-
ure 11, let us give an informal description of mercurial commitments. Mercurial commitments
slightly relax the binding property of commitments. Partial opening, which is called teasing, is not
truly binding: it is possible for the committer to come up with a commitment that can be teased
to any value of its choice. True opening, on the other hand, is binding in the traditional sense: it is
infeasible for the committer to come up with a commitment that it can open to two different values.
If the committer can open a commitment at all, then it can be teased to only one value. Thus, the
committer must choose, at the time of commitment, whether to soft-commit, so as to be able to
tease to multiple values but not open at all, or to hard-commit, so as to be able to tease and to open
to only one particular value. It is important to note that hard-commitments and soft-commitments
are computationally indistinguishable.

Efficiency Let us assume that the elements are hashed to k bit strings, so that l = k. Let us also
assume (as in [CHL+05]) that the collision resistant hash is built into the mercurial commitment
scheme, allowing to form k-bit commitments to pairs of k-bit strings. Therefore, computing the
commitment com takes time O(ln) = O(kn), where |D| = n.

The proofs of membership and non-membership consists of O(k) mercurial decommitments each
and the verifier needs to verify O(l) = O(k) mercurial decommitments to accept the proof’s validity.

A constant time speed-up can be achieved using the q-Trapdoor Mercurial Commitment (q-
TMC) scheme and collision resistant hash function as building blocks. q-TMC was introduced by
[CFM08] and later improved by [LY10]. The construction is similar to [CHL+05], except a q-ary tree
of height h is used (q >2) instead of a binary tree and each leaf is expressed in q-ary encoding. Using
q-TMC as a building block achieves significant improvement in ZKS implementation [CFM08, LY10]
though the improvement is not asymptotic.
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Figure 11: Zero Knowledge Set (ZKS) construction from Mercurial Commitments [CHL+05].

ZKS = (ZKSSetup,ZKSProver = (ZKSP1,ZKSP2),ZKSVerifier)
PKD ← ZKSSetup(1k): Run PKD ← MercSetup(1k) and output PKD.
(com, state)← ZKSP1(1

k,PKD, D): ZKSP1 runs as follows:
• For each x such that D(x) = v 6= ⊥, produce Cx = HardComm(PKD, v, rx).
• For each x such that D(x) = ⊥ but D(x′) 6= ⊥, where x′ denotes x with the last

bit flipped, produce Cx = SoftComm(PKD, rx).
• Define Cx = nil for all other x and build the tree in bottom up fashion. For each

level i from l−1 upto 0, and for each string σ of length i, define the commitment
Cσ as follows:
1. For all σ such that Cσ0 6= nil ∧ Cσ1 6= nil, let Cσ =

HardComm(PKD, (Cσ0, Cσ1), rσ).
2. For all σ such that Cσ′ have been defined in Step 1 (where σ′ denotes σ with

the last bit flipped) but Cσ has not, define Cσ = SoftComm(PKD, rσ).
3. For all other σ, define Cσ = nil.

• If the value of the root, Cε = nil, redefine Cε = SoftComm(PKD, rε). This
happens only when D = φ. Finally define CD = Cε = com.

(D(x),Πx)← ZKSP2(PKD, state, x): For a query x, ZKSP2 runs as follows:
x ∈ D, i.e., D(x) = v 6= ⊥: Let (x|i) denote the first i bits of the string x and (x|i)′

be (x|i) with the last bit flipped. Let proofx = MercOpen(PKD, D(x), rx, Cx)
and proof(x|i) = MercOpen(PKD, (C(x|i0), C(x|i1)), r(x|i), C(x|i)) for all 0 ≤ i < l,
where C(x|i) is a commitment to its two children C(x|i0) and C(x|i1).
Return (D(x),Πx = ({C(x|i), C(x|i)′}i∈[1,l], {proof(x|i)}i∈[0,l])).

x 6∈ D, i.e., D(x) = ⊥: If Cx = nil, let h be the largest value such that C(x|h) 6=
nil, let Cx = HardComm(PKD,⊥, rx) and build a path from x to C(x|h)
as follows: define C(x|i) = HardComm(PKD, (C(x|i0), C(x|i1)), r(x|i)), C(x|i)′ =
SoftComm(PKD, r(x|i)′) for all i ∈ [l−1, h+1]. Let τx = Tease(PKD, D(x), rx, Cx)
and τ(x|i) = Tease(PKD, (C(x|i0), C(x|i1)), r(x|i), C(x|i)) for all 0 ≤ i < l.
Return (⊥,Πx = ({C(x|i), C(x|i)′}i∈[1,l], {τ(x|i)}i∈[0,l]))

b← ZKSVerifier(1k,PKD, com, x,D(x),Πx):
x 6= ⊥: The verifier ZKSVerifier performs the following:

• VerOpen(PKD, C(x|i), (C(x|i0), C(x|i1)), proofx) for all 1 ≤ i < l
• VerOpen(PKD, CD, (C0, C1), proofε) and VerOpen(PKD, Cx, D(x), proofx).

x = ⊥: The verifier VerifierD performs the following:
• VerTease(PKD, C(x|i), (C(x|i0), C(x|i1)), τx) for all 1 ≤ i < l
• VerTease(PKD, CD, (C0, C1), τε) and VerTease(PKD, Cx,⊥, τx)
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