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Abstract

Given a list L with n elements, an order query on L asks whether a given element x ∈ L precedes or
follows another element y ∈ L . More generally, given a set of m elements from L , an order query asks
for the set ordered according to the positions of the elements in L . We introduce two formal models for
answering order queries on a list in a verifiable manner and in zero-knowledge. We also present efficient
constructions for these models.

Our first model, called zero-knowledge list (ZKL), generalizes membership queries on a set to order
queries on a list in zero-knowledge. We present a construction of ZKL based on zero-knowledge sets
and a homomorphic integer commitment scheme.

Our second model, privacy-preserving authenticated list (PPAL), extends authenticated data struc-
tures by adding a zero-knowledge privacy requirement. In this model, a list is outsourced by a trusted
owner to an untrusted cloud server, which answers order queries issued by clients. The server also re-
turns a proof of the answer, which is verified by the client using a digest of the list obtained from the
owner. PPAL supports the security properties of data integrity against a malicious server and privacy
protection against a malicious client. Though PPAL can be implemented using our ZKL construction,
this construction is not as efficient as desired in cloud applications. To this end, we present an efficient
PPAL construction based on blinded bilinear accumulators and bilinear maps, which is provably secure
and zero-knowledge (e.g., hiding even the size of the list). Our PPAL construction uses proofs of O(m)
size and allows the client to verify a proof in O(m) time. The owner executes the setup in O(n) time
and space. The server uses O(n) space to store the list and related authentication information, and takes
O(min(m logn,n)) time to answer a query and generate a proof. Both our ZKL and PPAL constructions
have one round of communication and are secure in the random oracle model.

Finally, we show that our ZKL and PPAL frameworks can be extended to support fundamental sta-
tistical queries (including maximum, minimum, median, threshold and top-t elements) efficiently and in
zero-knowledge.
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1 Introduction
Releasing verifiable partial information while maintaining privacy is a requirement in many practical sce-
narios where the data being dealt with is sensitive. A basic case is releasing a subset of a set and proving
its authenticity in a privacy-preserving way (referred to as zero-knowledge property) [MRK03, CHL+05,
CFM08, LY10]. However, in many other cases, the information is stored in data structures to support richer
type of queries. In this paper, we consider order queries on two or more elements of a list, where the answer
to the query returns the elements rearranged according to their order in the list. Order queries lie at the
heart of applications where the order between queried elements is revealed and proved but the rank of the
queried elements in the list and information about other elements in the list should be protected. We give
three practical examples below.

Consider an auction with a single winner (e.g., online ad auction for a single ad spot) where every
participant submits her secret bid to the auction organizer. After the top bidder is announced by the organizer,
a participant wishes to verify that her bid was inferior. The organizer would then provide a proof without
revealing the amount of the top bid, the rank of the participant’s bid, or any information about other bids.

Lenders often require an individual or a couple to prove eligibility for a loan by providing a current
bank statement and a pay stub. Such documents contain a lot of sensitive information beyond what the
lender is looking for: whether the bank account balance and salary are above given thresholds. A desirable
alternative would be to provide a proof from the bank and employer that these thresholds are met without
revealing exact figures and even hiding who of the two spouses earns more.

Consider yet another scenario where there are multiple regional sales divisions of a company distributed
across three neighboring states. A monthly sales report contains the number of products sold by each of the
divisions, arranged in non-decreasing order. Each monthly sales report is signed by the authority and stored
on a cloud server. By the company’s access control policy, each sales division is allowed to learn how it did
in comparison to the other units, but not anything else. That is, a division cannot learn the sales numbers of
other divisions or their relative performance beyond what it can infer by the comparisons with itself. Thus,
the cloud server would need to release the relevant information in such a way that the querying division can
verify that the data came from the legitimate source but not learn anything beyond the query result.

The above examples can be generalized using order queries on an ordered set, aka list, that return the
order of the queried elements as well as a proof of this order but without revealing anything more than the
answer itself. We address this problem by introducing two different models: zero knowledge lists (ZKL)
and privacy-preserving authenticated lists (PPAL).

ZKL considers two party model and extends zero knowledge sets [MRK03, CHL+05] to lists. In ZKL a
prover commits to a list and a verifier queries the prover to learn the order of a subset of list elements. The
verifier should be able to verify the answer but learn no information about the rest of the list, e.g., the size
of the list, the order of other elements of the list or the rank of the queried element(s). Here both the prover
and the verifier can act as malicious adversaries. While the prover may want to give answers inconsistent
with the initial list he committed to, the verifier may try to learn information beyond the query answer or
arbitrarily deviate from the protocol.

PPAL considers three parties: the owner of the list, the server who answers list queries on behalf of the
owner, and the client who queries the server. The privacy guarantee of PPAL is the same as in ZKL. For
authenticity, PPAL assumes that the owner is trusted while the server and the client could be malicious. This
trust model allows for a much more efficient construction than ZKL, as we will see later in the paper. PPAL
has direct applications to outsourced services where the server is modeling the cloud service that the owner
uses to interact with her clients.

We note that PPAL can be viewed as a privacy-preserving extension of authenticated data structures
(ADS) (see, e.g., [Mer80, Mer89, Tam03, MTGS01]), which also operate in a three party model: the server
stores the owner’s data and proves to the client the answer to a query. However, privacy properties have not
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been studied in this model and as a consequence, known ADS constructions leak information about the rest
of the data through their proofs of authenticity. For example, the classic Merkle hash tree [Mer80, Mer89] on
a set of n elements proves membership of an element via a proof of size logn, thus leaking information about
the size of the set. Also, if the elements are stored at the leaves in sorted order, the proof of membership of
an element reveals its rank.

In this paper, we define the security properties for ZKL and PPAL and provide efficient constructions
for them. The privacy property against the verifier in ZKL and the client in PPAL is zero knowledge.
That is, the answers and the proofs are indistinguishable from those that are generated by a simulator that
knows nothing except the previous and current queries and answers and, hence, cannot possibly leak any
information beyond that. While we show that PPAL can be implemented using our ZKL construction, we
also provide a direct PPAL construction that is considerably more efficient thanks to the trust that clients
put in the list owner. Let n be the size of the list and m be the size of the query, i.e., the number of list
elements whose order is sought. Our PPAL construction uses proofs of O(m) size and allows the client to
verify a proof in O(m) time. The owner executes the setup in O(n) time and space. The server uses O(n)
space to store the list and related authentication information, and takes O(min(m logn,n)) time to answer a
query and generate a proof. In contrast, in the ZKL construction, the time and storage requirements have an
overhead that linearly depends on the security parameter. Note that ZKL also supports (non-)membership
queries. The client in PPAL and the verifier in ZKL require only one round of communication for each query.
Our ZKL construction is based on zero knowledge sets and homomorphic integer commitments. Our PPAL
construction uses a novel technique of blinding of accumulators along with bilinear aggregate signatures.
Both constructions are secure in the random oracle model.

2 Problem Statement, Models, Related Work, and Contributions
In this section, we state our problem, outline our models, review related work, and summarize our contribu-
tions. Formal definitions, constructions, and security proofs are in the rest of the paper.

2.1 Problem Statement and Models

We start by defining order queries and its applications, introduce our adversarial model and security proper-
ties, and discuss our efficiency goals.

2.1.1 Query

Let L be a linearly ordered list of distinct elements. An order query on L is defined as follows: given a pair
of elements (x,y) of L , return the pair with its elements rearranged according to their order in L and a proof
of this order. For example, if y precedes x in L , then the pair (y,x) is returned as an answer. For generality,
we define a batch order query: given a list of query elements δ, each from L , return the permutation of δ

according to the ordering of the elements in L and a proof of the order. Both models we introduce, PPAL
and ZKL, support this query. ZKL, in addition to order queries, supports provable membership and non-
membership queries. As a response to a (non-)membership element query the prover returns a boolean value
indicating if the element is in the list and a corresponding proof of (non-)membership. Beside providing
authenticity, the proofs are required not to leak any information beyond the answer.

2.1.2 Adversarial model and security properties

In this section we present adversarial models and security properties of ZKL and PPAL.

ZKL The ZKL model considers two parties: prover and verifier. The prover initially computes a commit-
ment to a list L and makes this commitment public (i.e., the verifier also receives it). Later the verifier asks
membership and order queries on L and the prover responds with a proof. Both the prover and the verifier
can be malicious:

• The prover may try to give answers which are inconsistent with the initial commitment.
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• The verifier may try to learn from the proofs additional information about L beyond what he has
inferred from the answers. E.g., if the verifier has performed two order queries with answers x < y
and x < z, he may want to find out whether y < z or z < y. Here, x < y denotes that x appears before y
in L .

The security properties of ZKL, completeness, soundness and zero-knowledge, guarantee security against
malicious prover and verifier. Completeness mandates that honestly generated proofs always satisfy the ver-
ification test. Soundness states that the prover should not be able to come up with a query, and corresponding
inconsistent (with the initial commitment) answers and convincing proofs. Finally, zero-knowledge means
that each proof reveals the answer and nothing else. In other words, there must exist a simulator, that given
only oracle access to L , can simulate proofs for membership and order queries that are indistinguishable
from real proofs. We discuss the security properties of ZKL in more detail in Section 4.2.

PPAL The PPAL model considers, instead, three parties: owner, server and client. The owner generates
list L and outsources it to the server. The owner also sends (possibly different) digest information with
respect to L to the server and the client. Given an order query from the client, the server, using the server
digest, builds and returns to the client the answer and its proof, which is verified by the client using the client
digest. Both the server and the client can be malicious:

• The server may try to forge proofs for incorrect answers to (order) queries, e.g., prove an incorrect
ordering of a pair of elements of L .

• The client, similar to the verifier in ZKL, may try to learn from the proofs additional information
about list L beyond what he has inferred from the answers.

Note that in typical cloud database applications, the client is allowed to have only a restricted view of the
data structure and the server enforces an access control policy that prevents the client from getting answers
to unauthorized queries. This motivates the curious, possibly malicious, behavior from the client where he
tries to ask ill-formed queries or queries violating the access control policy. However, we assume that the
server enforces client’s legitimate behavior by refusing to answer illegal queries. Hence, the security model
for PPAL is defined as follows.

The properties of PPAL, Completeness, Soundness and Zero-Knowledge, guarantee security against ma-
licious server and client. They are close to the ones of ZKL except for soundness. For PPAL it enforces
that the client does not accept proofs forged by the server for incorrect answers w.r.t. owner’s list. PPAL’s
owner and server together can be thought of as a single party in ZKL, the prover. Hence, ZKL soundness
protects against the prover who tries to give answers inconsistent with her own initial commitment. In the
PPAL model, the owner and the server are separate parties where the owner is trusted and soundness protects
against a malicious server only. We discuss the security properties of PPAL in more detail in Section 5.2.

To understand the strength of the zero-knowledge property, let us illustrate to what extent the proofs
are non-revealing. This property guarantees that a client, who adaptively queries a static list, does not
learn anything about ranks of the queried elements, the distance between them or even the size of L . The
client is not able to infer any relative order information that is not inferable by the rule of transitivity from the
previously queried orders. It is worth noting that in the context of leakage-free redactable signature schemes,
privacy property has been defined using game-based definitions in transparency [BBD+10, SPB+12] and
privacy [CLX09, KAB12]. However, our definition of simulatability of the query responses, or the zero-
knowledge property, is a simpler and more intuitive way to capture the property of leakage-freeness.

2.1.3 Efficiency

We characterize the ideal efficiency goals of our models as follows, where L is a list of n items and m is the
query size:
Storage space The space for storing list L and the auxiliary information for generating proofs should

be O(n), irrespective of the number of queries answered.
Setup time The setup to preprocess list L should take O(n) time.
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Proof size The proof of the answer to a query should have O(m) size.
Query time Processing a query to generate the answer and its proof should take O(m) time.
Verification time Verifying the proof of an answer should take O(m) time.

2.1.4 Applications of order queries to order statistics

Our PPAL order queries can be used as a building block to answer efficiently and in zero knowledge (i.e., the
returned proofs should be simulatable) many interesting statistical queries about a list L with n elements.
Let a pair order proof denote the proof of the order of two elements from L . Then a PPAL client can
send the server a subset S of m list elements and request the server to return the maximum, minimum, or
the median element of S w.r.t. the order of the elements in the list. This can be done by providing m pair
order proofs. Order queries also can be extended to return the top t elements of S by means of t(m− t) pair
order proofs, or only m−1 pair order proofs if the order between the top t elements can be revealed, where
t < m. Finally, given an element a in L , the server can return the elements of S that are above (or below) the
threshold value a by means of m pair order proofs. It is important to note that neither of these queries reveal
anything more than the answer itself. Moreover, the size of the proof returned for each query is proportional
to the query size and is optimal for the threshold query where the proof size is proportional to the answer
size. We note that these statistical queries are also supported by ZKL and are defined formally in Section 8.

2.2 Related Work

We discuss related literature in three sections. First, we discuss work on data structures that answer queries
in zero knowledge. Our ZKL is the first extension of this work to lists and order queries. We then mention
signature schemes that can be used to instantiate outsourced data structures that require privacy and integrity
to be maintained. However, such instantiations are not efficient since they are based on different models of
usage and underlying data. Finally, we outline leakage-free redactable signature schemes for ordered lists
and other structured data. These signature schemes are are not as efficient as our construction and their
definitions are game-based as opposed to our intuitive zero-knowledge definition.

Zero Knowledge Data Structures Zero-knowledge dictionary and range queries have received consider-
able attention in literature [MRK03, CHL+05, CFM08, LY10, ORS04]. Our proposed ZKL model is the
first generalization of this line of work that supports order queries.

The model of zero knowledge set (ZKS) (more generally, zero knowledge elementary database) was
introduced by Micali et al. [MRK03] where a prover commits to a finite set S in such a way that, later on,
she will be able to efficiently (and non-interactively) prove statements of the form x ∈ S or x /∈ S without
leaking any information about S beyond what has been queried for, not even the size of S. The security
properties guarantee that the prover should not be able to cheat by proving contradictory statements about
an element. Chase et al. [CHL+05] abstracted the above solution and described the properties a commitment
scheme should possess in order to allow a similar construction. This work introduced a new commitment
scheme, called mercurial commitment, which was later generalized to q-trapdoor mercurial commitments
in [CFM08] and further improved in [LY10]. A q-trapdoor mercurial commitment allows a committer
to commit to an ordered sequence of message and later open messages with respect to specific positions.
A closely related notion of vector commitments was proposed in [CF13], where the authors show that a
(concise) q-trapdoor mercurial commitment can be obtained from a vector commitment and a trapdoor
mercurial commitment.

The above zero knowledge set constructions [MRK03, CHL+05, CFM08, LY10] use an implicit ordered
q-way hash tree (q ≥ 2) built on the universe of all N possible elements. and the proof size for (non-
)membership for an individual element is O(logq N). Kate et al. [KZG10] suggested a weaker primitive
called nearly-zero knowledge set based on polynomial commitment [KZG10] where the proof size for (non-
)membership for an individual element is O(1) but the set size is not private.

Ostrovsky et al. [ORS04] consider a prover who commits to a multidimensional dataset and later pro-
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vides answers range queries that are provably consistent with the commitment. They also consider adding
privacy to this protocol. However their construction uses interaction (which can be avoided in the random
oracle model) and requires the prover to keep a counter of past queries. Also, their use of NP-reductions and
probabilistically checkable proofs makes their generic construction expensive. The authors also provide a
simpler construction based on an explicit-hash Merkle Tree. However, this construction that does not hide
the size of the database since the proof size is O(logN) where N is the upper bound on the size of the dataset.

We note that a recent work on DNSSEC zone enumeration by Goldberg et al. [GNP+14] uses a model re-
lated to our PPAL model and is independently developed. The framework supports only set (non-)membership
queries and answers them in f -zero knowledge. This property ensures that the information leaked to the ver-
ifier is in terms of a function f on the set, e.g., f is the set size in [GNP+14]. The authors also propose a
weaker definition: selective membership security.

Signature Schemes A three party model where the owner digitally signs a data document and outsources it
to the server and the server discloses to the client only part of the signed document along with a legitimately
derived signature on it (without the owner’s involvement), can be instantiated with a collection of signature
schemes, namely, content extraction, quotable, arithmetic, redactable, homomorphic, sanitizable and tran-
sitive signatures [SBZ01, JMSW02, MHI06, MR02, Yi06, CH12]. Additionally, if the signatures reveal no
information about the parent document, then this approach can be used to add privacy to outsourced data
structure queries. However the generic instantiation, with signature schemes that do not specifically address
structured data, is inefficient for most practical purposes.

Ahn et al. [ABC+12] present a unified framework for computing on authenticated data via the notion
of slightly homomorphic or P-homomorphic signatures, which was later improved by [Wan12]. This broad
class of P-homomorphic signatures includes quotable, arithmetic, redactable, homomorphic, sanitizable
and transitive signatures. This framework allows a third party to derive a signature on an object x′ from a
signature on another parent object x as long as P(x,x′) = 1 for some predicate P that captures the authenti-
catable relationship between x and x′. A derived signature reveals no extra information about the parent x,
referred to as strong context hiding. This privacy definition was recently refined by [ALP12].

The authors propose a computationally expensive scheme based on the RSA accumulator. The cost
of signing depends on the predicate P and the size of the message space and is O(n2) for a n-symbol
message space. Computing a m-symbol quote from a n-symbol message requires time O(n(n−m)) and the
verification of a m-symbol quote takes time O(m2). Predicates for specific data structures are not considered.
Also, this line of work cannot be directly used for privacy preserving data structures where efficiency is an
important requirement and quadratic overhead may be prohibitive depending on the application.

Chase et al. [CKLM13] give a definition and construction of a malleable signature scheme, where given
a signature σ on a message x, it is possible to efficiently derive a signature σ′ on a message x′ such that
x′ = T (x) for an allowable transformation T without access to the secret key. Their definition of simulation
context hiding requires transformed signatures to be indistinguishable from freshly simulated signatures on
the transformed messages. This definition is stronger than that of [ABC+12] as it allows for adversarially-
generated keys and signatures.

A motivating example proposed in [ABC+12] deals with the impossibility of linking a quote to its
source document. Context-hiding definition in [CKLM13] also requires unlinkability. However, in our
PPAL model, it is important for the client to verify membership, i.e., given a quote from a document and a
proof of the quote, the client should be able to verify that the quote is indeed in the document. Also note
that the owner is a trusted party in our setting of privacy preserving authenticated lists and therefore the
stronger notion of simulation context hiding is not relevant in this framework. So a PPAL cannot be directly
instantiated using a malleable signature scheme and PPAL and malleable signature scheme have different
applications.
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Leakage-Free Signature Schemes for Structural Data A leakage-free redactable signature scheme
(LRSS) allows a third party to remove parts of a signed document without invalidating its signature. This
action, called redaction, does not require the signer’s involvement. As a result, the verifier only sees the
remaining redacted document and is able to verify that it is valid and authentic. Moreover, the leakage-
freeness property ensures that the redacted document and its signature do not reveal anything about the
content or position of the removed parts. In this section, we discuss the leakage-free redactable signature
schemes present in the literature that specifically looks at structural data and ordered lists in particular. We
will see that PPAL outperforms known LRSS constructions. Another, significant difference in our definition
of privacy. We require simulatability of the query responses, or the zero-knowledge property, as opposed
to the game based definitions in the LRSS literature [BBD+10, SPB+12]. Our definition is much more
intuitive and simple in capturing the leakage-freeness property.

Kundu and Bertino [KB08] introduced the idea of structural signatures for ordered trees (subsuming or-
dered lists) that support public redaction of subtrees by third-parties. This work was later extended to undi-
rected graphs and DAGs [KB13]. The notion was later formalized as LRSS for ordered trees in [BBD+10]
and subsequently several attacks on [KB08] were also proposed in [BBD+10, PSPDM12]. The basic idea
of the LRSS scheme presented in [BBD+10] is to sign all possible ordered pairs of elements of an ordered
list. So both the computation cost and the storage space are quadratic in the number of elements of the list.

Building on the work of [BBD+10], [SPB+12] proposed a LRSS for lists that has quadratic time and
space complexity. Poehls et al. [PSPDM12] presented a LRSS scheme for a list that has linear time and space
complexity but assumes an associative non-abelian hash function, whose existence has not been formally
proved. Kundu et al. [KAB12], presented a construction that uses quadratic space at the server and is not
leakage-free. We discuss the attack in Section 5.

Chang et al. [CLX09] presented a leakage-free redactable signature scheme for a string (which can be
viewed as a list) that hides the location of the redacted or deleted portions of the string at the expense of
quadratic verification cost.

2.3 Contributions and Organization of the Paper

Our contributions are novel models and efficient constructions. They are summarized below.
• After reviewing preliminary concepts and cryptographic primitives, in Section 3, we introduce the

zero-knowledge list (ZKL) model. We describe our ZKL construction, its security and efficiency in
Section 4.

• In Section 5, we introduce the privacy-preserving authenticated list (PPAL) model. An efficient PPAL
construction based on bilinear maps, its performance and security properties are given in Section 6
and the proof of security is given in Section 7. Finally, in Section 8, we extend order queries to support
many interesting statistical queries on a list in zero-knowledge.

In Table 1, we compare our ZKL and PPAL construction with previous work in terms of performance
and assumptions. We specifically indicate which constructions satisfy the zero-knowledge property. We
include a construction based on our new primitive, ZKL, and our direct construction of PPAL. We note
that ZKL model is a two party model but can be adapted to a three party model of PPAL (see Section 6 for
details). Our PPAL construction outperforms all previous work that is based on widely accepted assumptions
[BBD+10, SPB+12].

3 Preliminaries
3.1 Data Type

We consider a linearly ordered list L as a data structure that the owner wishes to store with the server. A list
is an ordered set of elements L = {x1,x2, . . . ,xn}, where each xi ∈ {0,1}∗, ∀x1,x2 ∈ L ,x1 6= x2 and either
x1 < x2 or x2 < x1. Hence, < is a strict order on elements of L that is irreflexive, asymmetric and transitive.
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We denote the set of elements of the list L as Elements(L). A sublist of L , δ, is defined as: δ = {x | x ∈
Elements(L)}. Note that the order of elements in δ may not follow the order of L . We denote with πL(δ)
the permutation of the elements of δ under the order of L .

L(xi) denotes the membership of element xi in L , i.e., L(xi) = true if xi ∈ L and L(xi) = false if xi /∈ L .
For all xi such that L(xi) = true, rank(L ,xi) denotes the rank of element xi in the list, L .

3.2 Cryptographic Primitives

We now describe a signature scheme that is used in our construction and cryptographic assumptions that
underlie the security of our method. In particular, our zero knowledge list construction relies on homo-
morphic integer commitments (Section 3.2.1), zero knowledge protocol to prove a number is non-negative
(Section 3.2.2) and zero knowledge sets (Section 3.2.3), while the construction for privacy preserving lists
relies on bilinear aggregate signatures and n-Bilinear Diffie Hellman Inversion assumption (Section 3.3).

3.2.1 Homomorphic Integer Commitment Scheme

We use a homomorphic integer commitment scheme HomIntCom that is statistically hiding and compu-
tationally binding [Bou00, DF02]. The latter implies the existence of a trapdoor and, hence, can be used
to “equivocate” a commitment (i.e., open the commitment to any message using the trapdoor). We de-
note a commitment to x as C(x;r) where r is the randomness used for the commitment. For simplicity,
we sometimes drop r from the notation and use C(x) to denote the commitment to x. Homomorphic in-
teger commitment scheme is defined in terms of three algorithms HomIntCom = {IntComSetup, IntCom,
IntComOpen} and the corresponding trapdoor commitment (we call it a simulator) as: SimHomIntCom =
{SimIntComSetup, SimIntCom, SimIntComOpen}. We describe these algorithms in Figure 1. The homo-
morphism of HomIntCom is defined as IntCom(x+y) = IntCom(x)× IntCom(y). For specific constructions
of HomIntCom see Figure 8 in Appendix.

3.2.2 Proving an integer is non-negative in zero-knowledge

We use the following (interactive) protocol between a prover and a verifier: the prover sends a commitment c
to an integer x ≥ 0 to the verifier and proves in zero-knowledge that the committed integer is non-negative,
without opening c. We denote this protocol as P↔ V(x,r : c =C(x;r)∧ x≥ 0) (Figure 2). In our construc-
tion, we will use the commitment scheme HomIntCom described in Figure 1 and use the algorithm IntCom
to compute c.

3.2.3 Zero Knowledge Set scheme

Let D be a set of of key value pairs. If (x,v) is a key, value pair of D, then we write D(x) = v to denote v
is the value corresponding to the key x. For the keys that are not present in D, x /∈ D, we write D(x) = ⊥.
A Zero Knowledge Set scheme (ZKS) [MRK03] consists of three probabilistic polynomial time algorithms,

This paper
[SBZ01] [JMSW02] [CLX09] [BBD+10] [SPB+12] [PSPDM12] [KAB12] ZKL PPAL

Zero-knowledge X X X X X
Setup time n logn n n n2 n2 n n n logN n
Storage Space n n n n2 n2 n n2 n logN n
Query time m n logn n mn m n n m logN min(m logn,n)
Verification time m logn logm m logn n2 m2 m2 m m m logN m
Proof size m m logn n m2 m2 m n m logN m

Assumption RSA RSA SRSA,
Division EUCMA ROM,

nEAE AnAHF ROM,
RSA

ROM, FC,
SRSA

ROM,
nBDHI

Table 1: Comparison of our ZKL and PPAL constructions with previous work. ZKL is a construction based on
Zero-Knowledge lists from Section 4.3 and PPAL is a direct PPAL construction from Section 6 . All the time and
space complexities are asymptotic. Notation: n is the list size, m is the query size, and N is the size of the universe
from which list elements are taken. Assumptions: Strong RSA Assumption (SRSA); Existential Unforgeability under
Chosen Message Attack (EUCMA) of the underlying signature scheme; Random Oracle Model (ROM); n-Element
Aggregate Extraction Assumption (nEAE); Associative non-abelian hash function (AnAHF); Factoring a composite
(FC); n-Bilinear Diffie Hellman Inversion Assumption(nBDHI).
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Figure 1: Homomorphic Integer Commitment Model.

HomIntCom = (IntComSetup, IntCom, IntComOpen)
PKC← IntComSetup(1k): IntComSetup is a randomized algorithm that takes as input the secu-

rity parameter and generates a public key PKC

(c,r)← IntCom(PKC,x): IntCom is a randomized algorithm that takes as input the public key,
an integer x and generates a commitment,opening pair (c,r) with additive homomorphic
properties. c serves as the commitment value for m and r is the opening value.

x← IntComOpen(PKC,c,r): IntComOpen takes as input the public key, a commitment c and
the corresponding opening information r and returns the committed integer x.

SimHomIntCom = (SimIntComSetup, SimIntCom, SimIntComOpen)
(PKC,TKC)← SimIntComSetup(1k): SimIntComSetup takes as input the security parameter

and returns a public key PKC and a trapdoor TKC.
(c,r)← SimIntCom(PKC,x): SimIntCom takes PKC and an integer x and returns a commitment

c and the opening information r.
x′← SimIntComOpen(PKC,TKC,c,r): SimIntComOpen takes as input PKC,TKC and a com-

mitment c and the corresponding opening information r and returns an arbitrary integer x′,
which might not be equal to x; c being the commitment to integer x.

Figure 2: Protocol to prove non-negativity of an integer

P↔ V(x,r : c =C(x;r)∧ x ≥ 0) : We use this notation to concisely represent an (interactive) protocol
between two parties P and V: P sends a commitment c to a non-negative value x to V and proves,
without opening c, that x ≥ 0. The symbol c = C(x;r) denotes c is the commitment to x and r is the
corresponding opening information. Note that r is not sent to V.

ZKS = (ZKSSetup,ZKSProver = (ZKSP1, ZKSP2), ZKSVerifier), and queries are of the form “is key x
in D?”. We describe the algorithms in Figure 3. For our construction of zero knowledge lists we pick a
ZKS construction of [CHL+05] that is based on mercurial commitments and describe it in more details in
Figure 11 in Appendix A.3.

3.2.4 Bilinear Aggregate Signature Scheme

We use bilinear aggregate signature scheme developed by Boneh et al. [BGLS03] for our PPAL scheme.
Given signatures σ1, . . . ,σn on distinct messages M1, . . . ,Mn from n distinct users u1, . . . ,un, it is possible
to aggregate these signatures into a single short signature σ such that it (and the n messages) convince the
verifier that the n users indeed signed the n original messages (i.e., user i signed message Mi). We use
the special case where a single user signs n distinct messages M1, . . . ,Mn. The security requirement of an
aggregate signature scheme guarantees that the aggregate signature σ is valid if and only if the aggregator
used all σi’s to construct it.

Bilinear Aggregate Signature Construction A bilinear aggregate signature scheme is a 5 tuple of al-
gorithm Key Generation, Signing, Verification, Aggregation, and Aggregate Verification. We discuss the
construction for the case of a single user signing n distinct messages M1,M2, . . . ,Mn in Figure 4. The de-
scription of the generic case of n different users can be found at [BGLS03]. The following notation is used
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Figure 3: Zero Knowledge Set (ZKS) model

ZKS = (ZKSSetup,ZKSProver = (ZKSP1,ZKSP2),ZKSVerifier)
PKD← ZKSSetup(1k): The ZKSSetup algorithm takes the security parameter as input and pro-

duces a public key PKD for the scheme. The prover and the verifier both take as input the
string PKD that can be a random string (in which case, the protocol is in the common ran-
dom string model) or have a specific structure (in which case the protocol is in the trusted
parameters model).

(com,state)← ZKSP1(1k,PKD,D): ZKSP1 takes the security parameter, the public key, PKD

and the set D and produces a short digest commitment com for D.
(D(x),proofx)← ZKSP2(PKD,state,x): ZKSP2 takes a query x and produces the corresponding

value, v = D(x) and the corresponding proof of membership/non-membership, proofx.
b← ZKSVerifier(1k,PKD,com,x,D(x),proofx): Verifier takes the security parameter, PK,com

and a query x and an answer D(x) and a proof proofx and returns a bit b, where b =
ACCEPT/REJECT.

in the scheme:
• G,G1 are multiplicative cyclic groups of prime order p
• g is a generator of G
• e is computable bilinear nondegenerate map e : G×G→ G1
• H : {0,1}∗→G is a full domain hash function viewed as a random oracle that can be instantiated with

a cryptographic hash function.

Figure 4: Bilinear Aggregate Signature Scheme

Key Generation: The secret key v is a random element of Zp and the public key x is set to gv.
Signing: The user signs the hash of each distinct message Mi ∈ {0,1}∗ via σi← H(Mi)

v.
Verification: Given the user’s public key x, a message Mi and its signature σi, accept if e(σi,g) =

e(H(Mi),x) holds.
Aggregation: This is a public algorithm which does not need the user’s secret key to aggregate the

individual signatures. Let σi be the signature on a distinct message Mi ∈ {0,1}∗ by the user,
according to the Signing algorithm (i = 1, . . . ,n). The aggregate signature σ for a subset of k
signatures, where k ≤ n, is produced via σ←∏

k
i=1 σi.

Aggregate Verification: Given the aggregate signature σ, k original messages M1,M2, . . . ,Mk and the
public key x:

1. ensure that all messages Mi are distinct, and reject otherwise.
2. accept if e(σ,g) = e(∏k

i=1 H(Mi),x).

Bilinear Aggregate Signature Security The formal model of security is called the aggregate chosen-key
security model. The security of aggregate signature schemes is expressed via the following game where an
adversary is challenged to forge an aggregate signature:

Setup: The adversary A is provided with a public key PK of the aggregate signature scheme.
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Query: A adaptively requests signatures on messages of his choice.
Response: Finally, A outputs k distinct messages M1,M2, . . . ,Mk and an aggregate signature σ.

A wins if the aggregate signature σ is a valid aggregate signature on messages M1,M2, . . . ,Mk under PK,
and σ is nontrivial, i.e., A did not request a signature on M1,M2, . . . ,Mk under PK. A formal definition and
a corresponding security proof of the scheme can be found in [BGLS03].

3.3 Hardness assumption

Let p be a large k-bit prime where k ∈N is a security parameter. Let n ∈N be polynomial in k, n = poly(k).
Let e : G×G→ G1 be a bilinear map where G and G1 are groups of prime order p and g be a random
generator of G. We denote a probabilistic polynomial time (PPT) adversary A as an adversary who is
running in time poly(k). We use Aalg(input,...) to show that an adversary A has an oracle access to an
instantiation of an algorithm alg with first argument set to input and . . . denoting that A can give arbitrary
input for the rest of the arguments.

Definition 3.1 (n-Bilinear Diffie Hellman Inversion (n-BDHI) [BB04]) Let s be a random element of Z∗p
and n be a positive integer. Then, for every PPT adversary A there exists a negligible function ν(.) such

that: Pr[s $←− Z∗p;y← A(〈g,gs,gs2
, . . . ,gsn〉) : y = e(g,g)

1
s ]≤ ν(k).

4 Zero Knowledge List (ZKL)
We generalize the idea of consistent set membership queries [MRK03, CHL+05] to support membership
and order queries in zero-knowledge on a list with no repeated elements. More specifically, given a to-
tally ordered list of unique elements L = {y1,y2, . . . ,yn}, we want to support non-interactively and in zero-
knowledge, (proofs reveal nothing beyond the query answer, not even the size of the list) queries of the
following form:

• Is yi ∈ L or yi /∈ L , i.e., L(yi) = true or L(yi) = false?
• For two elements yi,y j ∈ L , what is their relative order, i.e., yi < y j or y j < yi in L?

We adopt the same adversarial model as in [MRK03, ORS04, CHL+05]. There are two parties: the prover
and the verifier. The prover initially commits to a list of elements and makes the commitment (a short
digest) public. We now formally describe the model and the security properties.

4.1 Model

A Zero Knowledge List scheme (ZKL) consists of three probabilistic polynomial time algorithms: (Setup,Prover=
(P1,P2),Verifier). The queries are of the form (δ,flag) where δ = {z1, . . . ,zm}, zi ∈ {0,1}∗, is a collection
of elements, flag = 0 denotes a (non-)membership query and flag = 1 denotes an order query. In the follow-
ing sections, we will use state to represent a variable that saves the current state of the algorithm (when it
finishes execution).

PK← Setup(1k) The Setup algorithm takes the security parameter as input and produces a public key PK
for the scheme. The prover and the verifier both take as input the string PK that can be a random
string (in which case, the protocol is in the common random string model) or have a specific structure
(in which case the protocol is in the trusted parameters model).

(com,state)← P1(1k,PK,L) P1 takes the security parameter, the public key PK and the list L , and pro-
duces a short digest commitment com for the list.

(member,proofM,order,proofO)← P2(PK,state,δ,flag) where δ = {z1, . . . ,zm} and flag denotes the type
of query. P2 produces the membership information of the queried elements, member= {L(z1), . . . ,L(zm)}
and the proof of membership (and non-membership), proofM. proofO is set depending on flag:
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flag = 0: P2 sets order and proofO to ⊥ and returns (member,proofM,⊥,⊥).
flag = 1: Let δ̃= {zi | i∈ [1,m]∧L(zi)= true}. P2 produces the correct list order among the elements

of δ̃, order = πL(δ̃), and the proof of the order, proofO.

b← Verifier(1k,PK,com,δ,flag,member,proofM,order,proofO) Verifier takes the security parameter, the
public key PK, the commitment com and a query (δ,flag) and member, proofM, order, proofO and
returns a bit b, where b = ACCEPT/REJECT.

Example Let us illustrate the above functionality with a small example. Let L = {A,B,C} and (δ,flag) =
({B,D,A},1) be the query. Given this query P2 returns member= {L(B), L(D), L(A)}= {true, false, true},
the corresponding proofs of membership and non-membership in proofM, order = {A,B} and the corre-
sponding proof of order between A and B in proofO.

4.2 Security Properties

ZKL has three security properties. The first property, completeness, mandates that honestly generated proofs
always satisfy the verification test.

Definition 4.1 (Completeness) For every list L , every query δ and every flag,

Pr[PK← Setup(1k);(com,state)← P1(1k,PK,L);

(member,proofM,order,proofO)← P2(PK,state,δ,flag) :

Verifier(1k,PK,com,δ,flag,member,proofM,order,proofO)=ACCEPT] = 1

The second property, soundness, guarantees that the prover should not be able to come up with a query, and
corresponding inconsistent (with the initial commitment) answers and convincing proofs.

Definition 4.2 (Soundness) For every PPT malicious prover algorithm, Adv, for every query δ and for
every flag there exists a negligible function ν(.) such that:

Pr[PK← Setup(1k);

(com,member1,proof1
M,order1,proof1

O,member2,proof2
M,order2,proof2

O)← Adv(1k,PK) :

Verifier(1k,PK,com,δ,flag,member1,proof1
M,order1,proof1

O) = ACCEPT∧
Verifier(1k,PK,com,δ,flag,member2,proof2

M,order2,proof2
O) = ACCEPT∧

((member1 6= member2)∨ (order1 6= order2))]≤ ν(k)

Finally, zero-knowledge property ensures that each proof reveals the answer and nothing else. In other
words, there must exist a simulator, that given only an oracle access to L , can simulate proofs for member-
ship and order queries that are indistinguishable from real proofs.

Definition 4.3 (Zero-Knowledge) There exists a PPT simulator Sim = (Sim1,Sim2,Sim3) such that for
every PPT malicious verifier Adv = (Adv1,Adv2), there exists a negligible function ν(.) such that:

|Pr[PK← Setup(1k);(L ,stateA)← Adv1(1k,PK);(com,stateP)← P1(1k,PK,L) :

Adv
P2(PK,stateP,·)
2 (com,stateA) = 1]−

Pr[(PK,stateS)← Sim1(1k);(L ,stateA)← Adv1(1k,PK);(com,stateS)← Sim2(1k,stateS) :

Adv
SimL

3 (1
k,stateS)

2 (com,stateA) = 1]| ≤ ν(k),

where Sim3 has oracle access to L , that is, given a query (δ,flag), Sim3 can query the list L to learn only
the membership/non-membership of elements in δ and, if flag = 1, learn the list order of the elements of δ

in L .
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Intuition The construction uses zero knowledge set scheme, homomorphic integer commitment scheme,
zero-knowledge protocol to prove non-negativity of an integer and a collision resistant hash function H :
{0,1}∗→ {0,1}l , if the elements of the list L are larger that l bits. In particular, given an input list L the
prover P1 creates a set D where for every element y j ∈ L it adds a (key,value) pair (H(y j),C( j)). H(y j)
is a hash of y j and C( j) is a homomorphic integer commitment of rank(L ,y j) (assuming rank(L ,y j) = j,
wlog). P1 sets up a zero knowledge set on D using ZKSP1 from Figure 3. The output of ZKSP1 is a
commitment to D, com, that P1 sends to the verifier.

P2 operates as follows. Membership and non-membership queries of the form (δ,0) are replied in the
same fashion as in zero knowledge set, by invoking ZKSP2 on the hash of every element of sublist δ. Recall
that as a response to a membership query for a key, ZKSP2 returns the value corresponding to this key. In
our case, the queried key is H(y j) and the value returned by ZKSP2, D(H(y j)), is the commitment C( j)
where j is the rank of element y j in the list L , if y j ∈ L . If y j /∈ L , the value returned is ⊥. Hence, the
verifier receives the commitments to ranks for queried member elements. These commitments are never
opened but are used as part of order proofs for order queries.

For a given order query (δ,1), for every adjacent pair of elements in the returned order, order, P2 gives a
proof of order. Recall that order contains the member elements of δ, arranged according to their order in the
list L . P2 proves the order between two elements yi and y j as follows. Let rank(L ,yi) = i, rank(L ,y j) = j,
and C(i), C( j) be the corresponding commitments and, wlog, let i < j. As noted above, C(i) and C( j) are
already returned by P2 as part of the membership proof. Additionally, P2 returns a commitment to 1, C(1),
and its opening information ρ.

The verification of the query answer proceeds as follows. Verifier computes C( j−i−1) :=C( j)/(C(i)C(1))
using the homomorphic property of the integer commitment scheme. P2 uses the zero knowledge proto-
col P↔ V(x,r : c = C(x;r)∧ x ≥ 0) to convince Verifier that C( j− i− 1) is a commitment to value ≥ 0.
Note that we use the non-interactive general zero-knowledge version of the protocol as discussed in Sec-
tion 3.2.2. Hence, the query phase proceeds in a single round.

It is important to understand why we require Verifier to verify that j− i−1≥ 0 and not j− i≥ 0. By the
soundness of the protocol P↔V(x,r : c =C(x;r)∧x≥ 0), the probability that a cheating prover Adv will be
able to convince Verifier about the non-negativity of a negative integer is negligibly small. However, since
0 is non-negative, a cheating prover can do the following: instead of the rank of an element store the same
arbitrary non-negative integer for every element in the list. Then, C( j− i) and C(i− j) are commitments to
0 and Adv can always succeed in proving an arbitrary order. To avoid this attack, we require the prove to
hold for C( j− i−1). An honest prover can always prove the non-negativity of C( j− i−1) as | j− i| ≥ 1 for
any rank i, j of the list.

Also, we note that the commitments to ranks can be replaced by commitments to a strictly monotonic
sequence as long as there is a 1:1 correspondence with the rank sequence. In this case, the distance between
two elements will also be positive and, hence, the above protocol still holds.

4.3 ZKL Construction

Let HomIntCom=(IntComSetup, IntCom, IntComOpen) be the homomorphic integer commitment scheme
defined in Section 3.2.1 and ZKS = (ZKSSetup, ZKSProver = (ZKSP1, ZKSP2),ZKSVerifier) be a ZKS
scheme defined in Section 3.2.3. We denote the output of the prover during the non-interactive statistical
zero knowledge protocol P↔ V(x,r : c = C(x;r)∧ x ≥ 0) as proofx≥0. The construction also uses a hash
function, H : {0,1}∗ → {0,1}l . In Figure 5 we describe in detail our ZKL construction on an input list
L = {y1, . . . ,yn}.
4.4 ZKL Efficiency

The efficiency of our ZKL construction depends on the efficiency of the underlying constructions that we
use. We consider the the ZKS construction used in [CHL+05] based on mercurial commitments, the ho-
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Figure 5: Zero Knowledge List (ZKL) Construction

PK← Setup(1k): The Setup algorithm takes the security parameter as input and runs PKC ←
IntComSetup(1k),PKD← ZKSSetup(1k) and outputs PK = (PKC,PKD).

(com,state)← P1(1k,PK,L): Wlog, let rank(L ,y j) = j and C( j) denote an integer commitment to j
under public key PKC, i.e., (C( j),r j) = IntCom(PKC, j). Then, P1 proceeds as follows:

• For every y j ∈ L , compute H(y j) and C( j).
• Set D := {(H(y j),C( j)) | ∀y j ∈ L}.
• Run (com,state)← ZKSP1(1k,PKD,D) and output (com,state).

(member,proofM,order,proofO)← P2(PK,state,δ,flag) where δ = {z1, . . . ,zm}: Let S :=
{H(z1), . . . ,H(zm)}. For all x ∈ S do the following:

• Run (D(x),proofx)← ZKSP2(PKD,state,x).
• Set ∆x := (D(x),proofx).

Set member := {L(z j) | ∀z j ∈ δ} and proofM := {∆x | x ∈ S}. Note that L(z j) = true when
D(H(z j)) 6=⊥ and L(z j) = false when D(H(z j)) =⊥.
If flag = 0 return (member,proofM,⊥,⊥).
If flag = 1 do the following:
Let δ̃ = {z j | ∀ j ∈ [1,m]∧L(z j) = true} and πL(δ̃) = {w1, . . . ,wm′} where m′ ≤ m.

• For all 1≤ j < m′, compute ∆w j<w j+1 = proofrank(L ,w j+1)−rank(L ,w j)−1≥0.
• Compute (C(1),ρ) = IntCom(PKC,1).

Set order := πL(δ̃) and proofO = ({∆w j<w j+1 | (w j,w j+1) ∈ δ̃},C(1),ρ) and return
(member,proofM,order,proofO).

b← Verifier(1k,PK,com,δ,flag,member,proofM,order,proofO) where δ = {z1, . . . ,zm}: The
Verifier algorithm does the following:

• Compute S = {H(z1), . . . ,H(zm)}.
• Parse proofM as proofM := {∆x = (D(x),proofx) | x ∈ S}. Recall that L(H−1(x)) = true

when D(x) 6=⊥ and L(H−1(x)) = false when D(x) =⊥.
• For all x ∈ S, run b← ZKSVerifier(1k,PKD,x,D(x),proofx).

If flag = 0 and b = ACCEPT for all x ∈ S, output ACCEPT.
If flag = 1, perform the following additional verification steps:

• Let order = {w1, . . . ,wm′}.
• Parse proofO as ({∆w j<w j+1 | (w j,w j+1) ∈ order},C(1),ρ).
• Verify that IntComOpen(PKC,C(1),ρ) is 1.
• Compute D(H(w j+1))/(D(H(w j))×C(1)) =C(rank(L ,w j+1)− rank(L ,w j)−1)
• Verify that rank(L , j+ 1)− rank(L , j) > 0 using proofrank(L , j+1)−rank(L , j)−1≥0 and verifi-

cation steps of P↔ V(x,r : c =C(x;r)∧ x≥ 0) where x = rank(L , j+1)− rank(L , j)−1.
If all the verifications pass, only then return ACCEPT.

momorphic integer commitment of [DF02] and the non-interactive general zero-knowledge version of the
Σ-protocol to prove non-negativity in [Lip03] in the random oracle model. Each of these constructions is
described in detail in Appendix. Mercurial commitment was later generalized by [CFM08, LY10] but the
basic ZKS construction remains the same.

Recall that k is the security parameter of the scheme, l is the size of the output of the hash function H, n
is the number of elements in the list L and m is the number of elements in query δ. Similarly to [CHL+05]
we assume that l = k. For every element in L , P1 hashes the element and computes a commitment to its
rank, taking time O(1). It then computes n height-k paths to compute the commitment com to a list, L , takes
time O(kn), where |L |= n. For further details please see Appendix A.3.
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Membership (non-membership) proof of a single element consists of O(k) mercurial decommitments.
Using [LY10], we can have each mercurial decommitment constant size, i.e., O(1). The order proof be-
tween two elements requires membership proofs for both elements and proofu−1≥0 where u is the absolute
difference between the rank of the corresponding elements. proofu−1≥0 is computed using P↔ V(x,r :
c = C(x;r)∧ x ≥ 0) which takes O(log2 n) = O(log2(poly(k))) expected time, since n = poly(k). Hence,
computing a membership proof for a single element takes time O(k) and an order proof for two elements
takes time O(k + log2(poly(k))) = O(k). More generally, the prover’s time for a query on sublist δ is
O(mk+m log2(poly(k))) = O(mk), where m = |δ|.

The verifier needs to verify O(k) mercurial decommitments for every element in the query δ and verify
order between every adjacent pair of elements in δ using the verifications steps of P↔ V(u,r : c =C(u;r)∧
u≥ 0). Therefore, the asymptotic run time of the verification is O(mk).

4.5 ZKL Security Proofs

Proof of Completeness Completeness of the ZKL construction in Section 4.3 directly follows from the
Completeness of Zero Knowledge Set and Completeness of the protocol P↔ V(x,r : c = C(x;r)∧ x ≥ 0).

Proof of Soundness: To simplify the notation, first let us denote using E1 and E2 the following two events:

E1 = [PK← Setup(1k);

(com,member1,proof1
M,order1,proof1

O,member2,proof2
M,order2,proof2

O)← Adv(1k,PK) :

Verifier(1k,PK,com,δ,flag,member1,proof1
M,order1,proof1

O) = ACCEPT∧
Verifier(1k,PK,com,δ,flag,member2,proof2

M,order2,proof2
O) = ACCEPT∧

(member1 6= member2)]

E2 = [PK← Setup(1k);

(com,member1,proof1
M,order1,proof1

O,member2,proof2
M,order2,proof2

O)← Adv(1k,PK) :

Verifier(1k,PK,com,δ,flag,member1,proof1
M,order1,proof1

O) = ACCEPT∧
Verifier(1k,PK,com,δ,flag,member2,proof2

M,order2,proof2
O) = ACCEPT∧

(order1 6= order2)]

Then, Definition 4.2 can be rewritten as

Pr[PK← Setup(1k);

(com,member1,proof1
M,order1,proof1

O,member2,proof2
M,order2,proof2

O)← Adv(1k,PK) :

Verifier(1k,PK,com,δ,flag,member1,proof1
M,order1,proof1

O) = ACCEPT∧
Verifier(1k,PK,com,δ,flag,member2,proof2

M,order2,proof2
O) = ACCEPT∧

((member1 6= member2)∨ (order1 6= order2))] = Pr[E1∨E2]≤ Pr[E1]+Pr[E2]

Now, by the Soundness property of the ZKS in Section 3.2.3, Pr[E1] is negligible in k. Let Pr[E1] = ν1(k).
Let us consider the event E2. If the malicious prover is successful in outputting two contradictory

orders for a collection of elements, then there must exist at least one inversion pair, i.e., a pair of elements
(xi,x j) ∈ δ such that xi < x j in order1 and x j < xi in order2. Let C(i) and C( j) be the commitments used as
values to prove the membership of xi and x j, correspondingly. Then by the binding property of the integer
commitment scheme of Section 3.2.1, Adv cannot equivocate C(i− j) or C( j− i) (which is computed by
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Verifier in the protocol). (Note that by the soundness property of ZKS, the probability that Adv can return
two commitments C(i) and C(i′), C(i) 6= C(i′), where C(i) and C(i′) are returned to prove membership of
xi in proof1

M and proof2
M, respectively, is negligible w.r.t. the same commitment, com.) Then according

to the protocol, it must be the case that Adv could convince Verifier that both C(i− j) and C( j− i) are
commitments to positive integers where i, j are two integers. However, due to the soundness of the protocol
P↔ V(x,r : c =C(x;r)∧ x≥ 0), the probability is negligible in k. Let Pr[E2] = ν2(k).

Therefore we have, Pr[E1 ∨E2] ≤ ν1(k)+ ν2(k) ≤ ν(k), for some negligible function ν(.) Hence the
soundness error of the ZKL construction must be negligible in k.

Proof of Zero-Knowledge: Let SimHomIntCom = (SimIntComSetup, SimIntCom, SimIntComOpen)
be the simulator of HomIntCom defined in Figure 1. Let SimZKS = (SimZKSSetup,SimZKSProver =
(SimZKSP1, SimZKSP2), SimZKSVerifier) be the simulator for the ZKS in Figure 3.

Now let us define Sim = (Sim1,Sim2,Sim3), a simulator for ZKL (Definition 4.3), that has access to the
system parameter H.

• Sim1(1k) runs (PKD,TKD)←SimZKSSetup(1k) and (PKC,TKC)← SimIntComSetup(1k). Sim1(1k)
outputs {PK = (PKD,PKC),TK = (TKD,TKC)}.

• Sim2 runs SimZKSP1 to generate commitment com.
• In response to membership queries (flag = 0), Sim3 does the following:

– Sim3 maintains a table of queried elements as tuples 〈xi,vi,ri〉 where xi is the queried element
and vi is the value that Sim3 has sent when xi was queried. We explain how ri is computed next.

– For a queried element y, Sim3 checks the table. If y is not in the table and, hence, has not
been queried before, Sim3 makes an oracle access to L on y. If y ∈ L , Sim3 computes a fresh
commitment to 0, (C(0),r) := SimIntCom(0), and stores 〈y,C(0),r〉. If y /∈ L , then Sim3 stores
〈y,⊥,⊥〉.

– Sim3 responds to membership queries by invoking SimZKSP2 on H(y) and returning the same
output.

• For order queries (flag = 1), Sim3 additionally does the following. Let δ be the queried sublist. Sim3
makes an oracle access to L to get the correct list order of the elements of δ that are present in L . Let
order = {y1, . . . ,ym} be the returned order.

• Sim3 computes (C(1),ρ) = SimIntCom(PKC,1).
• Let {〈y1,v1,r1〉, . . . ,〈ym,vm,rm〉} be the entries of Sim3’s table that correspond to elements in δ. Then

for every pair (y j,y j+1), Sim3 equivocates (v j+1/(v j ×C(1))) using TKC to a commitment to any
arbitrary positive integer u. In other words, Sim3 equivocates the commitment C(rank(L ,y j+1)−
rank(L ,y j)−1) to a commitment to an arbitrary positive integer u. Finally, Sim3 computes proofu≥0
to prove the order between (y j,y j+1).

Sim3 achieves the following. For every newly queried element that is in the list, Sim3 generates and stores
a fresh commitment to 0, and sends it to the verifier. Hence, Sim3 sets rank = 0 to all queried elements.
By the (statistical) hiding property of the integer commitment scheme, the commitments are statistically
closely distributed to the commitments computed by the real prover, P1. Now, with the help of TKC, Sim3
can equivocate a commitment to any value it wants. Hence, whenever he needs to prove order yi < y j,
Sim3 equivocates the commitment to rank(L ,y j+1)− rank(L ,y j)−1 to any arbitrary positive integer u and
invokes the protocol P↔ V(u,r : c =C(u;r)∧u≥ 0) to compute proofu≥0. Since the protocol P↔ V(u,r :
c =C(u;r)∧u≥ 0) is Zero Knowledge (statistical), Sim = (Sim1,Sim2,Sim3) simulates our ZKL scheme.

We note that the constructions with which we instantiate ZKL have the simulators assumed above. In
particular, for SimZKS we use the simulator of the ZKS construction of [CHL+05]. For SimHomIntCom
we use the construction of [DF02] and for completeness define a simulator in Figure 9. We summarize the
properties and efficiency of our ZKL construction in Theorem 4.1.
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Theorem 4.1 The zero-knowledge list (ZKL) construction of Figure 5 satisfies the security properties of
completeness (Definition 4.1), soundness (Definition 4.2) and zero-knowledge (Definition 4.3) in the random
oracle model. The construction has the following performance, where n is the list size, m is the query size,
each element of the list is a k-bit1 string and N is the number of all possible k-bit strings:

• The prover executes the commitment phase in O(n logN) time and space.

• In the query phase, the prover computes the proof of the answer in O(m logN) time.

• The verifier verifies the proof in O(m logN) time and space.

5 Privacy Preserving Authenticated List (PPAL)
In the previous section we presented a model and a construction for a new primitive called zero knowledge
lists. As we noticed earlier, ZKL model gives the desired functionality to verify order queries on lists.
However, the corresponding construction does not provide the efficiency one may desire in cloud computing
setting where the verifier (client) has limited memory resources as we discuss in Section 5.3. In this section
we address this setting and define a model for privacy preserving authenticated lists, PPAL, that is executed
between three parties. This model, arguably, fits cloud scenario better and, as we will see, our construction
is also more efficient.

5.1 Model

PPAL is a tuple of three probabilistic polynomial time algorithms (Setup,Query,Verify) executed between
the owner of the data list L , the server who stores L and answers queries from the client and the client who is-
sues queries on the elements of the list and verifies corresponding answers. We note that this model assumes
that the query is on the member elements of the list, i.e., for any query, δ, Elements(δ)⊆ Elements(L). In
other words, this model does not support proofs of non-membership, similar to other data structures that sup-
port only positive membership proofs, e.g., [KB08, CLX09, CKS09, BBD+10, PSPDM12, KAB12, CF13].

(digestC,digestS)← Setup(1k,L) This algorithm takes the security parameter and the source list L as input
and produces two digests digestC and digestS for the list. This algorithm is run by the owner. digestC
is sent to the client and digestS is sent to the server.

(order,proof)← Query(digestS,L ,δ) This algorithm takes the server digest generated by the owner, digestS,
the source list, L , and a queried sublist, δ, as input, where a sublist of a list L is defined as:
Elements(δ) ⊆ Elements(L). The algorithm produces the list order of the elements of L , order =
πL(δ), and a proof, proof, of the answer. This algorithm is run by the server. Wlog, we assume
|δ|> 1. In the trivial case of |δ|= 1, the server returns an empty proof, i.e., (order = δ,proof =⊥).

b← Verify(digestC,δ,order,proof) This algorithm takes digestC, a queried sublist δ, order and proof and
returns a bit b, where b = ACCEPT iff Elements(δ) ⊆ Elements(L) and order = πL(δ). Otherwise,
b = REJECT. This algorithm is run by the client.

5.2 Security Properties

A PPAL has three important security properties. The first property is Completeness. This property ensures
that for any list L and for any sublist δ of L , if the digestC,digestS,order,proof are generated honestly, i.e.,
the owner and the server honestly execute the protocol, then the client will be always convinced about the
correct list order of δ.

1If not, we can use a hash function to reduce every element to a k-bit string, as shown in the construction.

16



Definition 5.1 (Completeness) For all lists L and all sublists δ of L

Pr[(digestC,digestS)← Setup(1k,L);(order,proof)← Query(digestS,L ,δ) :

Verify(digestC,δ,order,proof) = ACCEPT∧order = πL(δ)] = 1

The second security property is Soundness. This property ensures that once an honest owner generates a pair
(digestC,digestS) for a list L , even a malicious server will not be able to convince the client of an incorrect
order of elements belonging to the list L . This property ensures integrity of the scheme.

Definition 5.2 (Soundness) For all PPT malicious query algorithms Adv, for all lists L and all query
sublists δ of L , there exists a negligible function ν(.) such that:

Pr[(digestC,digestS)← Setup(1k,L);(order,proof)← Adv(digestS,L) :

Verify(digestC,δ,order,proof) = ACCEPT∧order 6= πL(δ)]≤ ν(k)

The last property is Zero-Knowledge. This property captures that even a malicious client cannot learn
anything about the list (and its size) beyond what the client has queried for. Informally, this property involves
showing that there exists a simulator such that even for adversarially chosen list L , no adversarial client
(verifier) can tell if it is talking to a honest owner and honest server who know L and answer w.r.t. L , or to
the simulator that only has oracle access to the list L .

Definition 5.3 (Zero-Knowledge) There exists a PPT simulator Sim = (Sim1,Sim2) such that for all PPT
malicious verifiers Adv = (Adv1,Adv2), there exists a negligible function ν(.) such that:

|Pr[(L ,stateA)← Adv1(1k);(digestC,digestS)← Setup(1k,L) :

Adv
Query(digestS,L ,.)
2 (digestC,stateA) = 1]−

Pr[(L ,stateA)← Adv1(1k);(digestC,stateS)← Sim1(1k) :

Adv
SimL

2 (1
k,stateS)

2 (digestC,stateA) = 1]| ≤ ν(k)

Here Sim2 has oracle access to L , that is given a sublist δ of L , Sim2 can query the list L to learn only the
correct list order of the sublist δ and cannot look at L .

Attack on [KAB12]’s scheme The scheme of [KAB12] generates a n′ bit secure name, where n′ ≥ n, for
each element of the list L of size n. The secure name of element x has one distinct bit that encodes the
pairwise order between x and every other element in L . To prove the order between two elements, the server
sends their secure names to the client, who can easily identify and compute the bit that encodes the order
between the corresponding elements. Hence non-transitive orders can be easily inferred as follows. Let
{A < B <C} be the list order. The client issues order queries for (A,B) and (A,C), which returns the secure
names for A,B,C. Now the client can find out the order between B and C, that was not queried for. Hence,
the scheme is not zero-knowledge.

5.3 Construction of PPAL via ZKL

We show how a PPAL can be instantiated via a ZKL in Theorem 5.1 and then discuss that the resulting
construction does not yield the desired efficiency.

Theorem 5.1 Given a ZKL scheme ZKL = (Setup,Prover = (P1,P2),Verifier), which supports queries of
the form (δ,flag) on a list L , we can instantiate a PPAL scheme for the list L , PPAL=(Setup,Query,Verify),
which supports queries of the form δ, where δ is a sublist of L , as follows:

PPAL.Setup(1k,L) can be instantiated as follows:
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1. Invoke ZKL.Setup(1k). Let ZKL.Setup(1k) = PK
2. Invoke ZKL.P1(1k,PK,L). Let ZKL.P1(1k,PK,L) = (com,state).
3. Set digestC = (PK,com),digestS = (PK,com,state) and output (digestC,digestS).

PPAL.Query(digestS,L ,δ) can be instantiated as follows:
1. Invoke ZKL.P2(PK,state,δ,1). Let ZKL.P2(PK,state,δ,1) = (member,proofM,order,proofO)
2. Output (order,proof = (proofM,proofO))

PPAL.Verify(digestC,δ,order,proofM,proofO) can be instantiated as follows:
1. Set member = {1,1, . . . ,1} such that |member| = |δ| = |order| (recall that in a PPAL scheme,

the query δ, is a sublist of L).
2. Invoke ZKL.Verifier(1k,PK,com,δ,1,member,proofM,order,proofO) (recall that digestC =(PK,com)).
3. Output bit b where ZKL.Verifier(1k,PK,com,δ,1,member,proofM,order,proofO) = b

Theorem 5.2 A PPAL scheme instantiated using a ZKL scheme, ZKL= (Setup,Prover = (P1,P2), Verifier)
has the following performance:

• The owner’s runtime and space are proportional to the runtime and space of ZKL.Setup and ZKL.P1,
respectively.

• The server’s runtime and space are proportional to the runtime and space of ZKL.P2.
• The client’s runtime and space are proportional to the runtime and space of ZKL.Verifier.

The correctness of Theorems 5.1 and 5.2 follow from the definition of PPAL and ZKL models.
We estimate the asymptotic efficiency of a PPAL construction based on the construction of ZKL pre-

sented inSection 4.3. From the discussion of efficiency of the ZKL construction in Theorem 4.1, the time
and space complexity of each party in PPAL adaptation of ZKL readily follows.
Owner The owner runs in time O(kn) and O(kn) space, assuming each element of the list is k-bits.
Server To answer a query of size m, the server runs in time O(km). The space requirement at the server

is O(kn) since he has to store the O(kn) commitments produced by the owner.
Client The verification time of the client is O(km). During the query phase, the client requires O(km) space

to store its query and its response with the proof for verification.
As we see, this generic construction is not very efficient due to the multiplicative factor O(k) and heavy
cryptographic primitives. In Section 6, we present a direct PPAL construction which is a factor of O(k)
more efficient in space and computation requirements as compared to an adaptation of the ZKL construction
from Figure 5.

6 PPAL Construction
We present an implementation of a privacy preserving authenticated list in Figure 7. We provide the intuition
of our method followed by a more detailed description.

Intuition Every element of the list is associated with a member witness where a member witness is a
blinded component of the bilinear accumulator public key. This allows us to encode the rank of the ele-
ment in the member witness and then “blind” rank information with randomness. Every pair of (element,
member witness) is signed by the owner and the signatures are aggregated using bilinear aggregate signa-
ture schemepresented in Figure 4, to compute the list digest signature. Signatures and digest are sent to the
server, who can use them to prove authenticity when answering client queries. The owner also sends the list
digest signature and the public key of the bilinear aggregate signature scheme to the client. The advantage
of using an aggregate signature is for the server to be able to compute a valid digest signature for any sublist
of the source list by exploiting the homomorphic nature of aggregate signatures, that is without owner’s
involvement. Moreover, the client can verify the individual signatures in a single invocation to aggregate
signature verification.
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The owner also sends to the server linear (in the list size) number of random elements used in the
encoding of member witnesses. These random elements allow the server to compute the order witnesses
on queried elements, without the owner’s involvement. The order witness encodes the distance between
two elements, i.e., the difference between element ranks, without revealing anything about it. Together with
member witnesses, the client can later use bilinear map to verify the order of the elements.
Construction Our construction for PPAL is presented in Figure 7. We denote member witness for xi ∈ L
as txi∈L . For two elements xi,x j ∈ L , such that xi < x j in L , txi<x j is an order witness for the order between
xi and x j. The construction works as follows.

In the Setup phase, the owner generates secret key (v,s) and public key gv, where v is used for signa-
tures. The owner picks a distinct random element ri from the group Z∗p for each element xi in the list L ,
i ∈ [1,n]. The element ri is used to compute the member witness txi∈L . Later in the protocol, together
with r j, it is also used by the server to compute the order witness txi<x j . The owner also computes individ-
ual signatures, σi’s, for each element and aggregates them into a digest signature σL for the list. It returns
the signatures and member witnesses for every element of L in ΣL and the set of random numbers picked
for each index to be used in order witnesses in ΩL . The owner sends digestC = (gv,σL) to the client and
digestS = (gv,σL ,〈g,gs,gs2

, . . . ,gsn〉,ΣL ,ΩL) and L to the server.
Given a query δ, the server returns a response list order that contains elements of δ in the order they

appear in L . The server uses information in ΣL to compute the digest signature for the sublist, σorder, and
its membership verification unit λL ′ which are part of the Σorder component of the proof. To compute the
Ωorder component of the proof, the server uses corresponding blinding values in ΩL and elements gsd

where
d’s correspond to distances between ranks of queried elements.

The client first checks that all the returned elements are indeed signed by the owner using Σorder and
then verifies the order of the returned elements using Ωorder. Hence, the client uses bilinear map for two
purposes: first as part of member verification and then to verify the order.

Preprocessing at the Server For a query δ on the list L , of length m and n, respectively, the Query al-
gorithm in Figure 7 takes O(m) time to compute σorder and O(n−m) to compute λL ′ . The server can
precompute and store some products to reduce the overall running time of this algorithm to O(m logn) when
m� n. The precomputation proceeds as follows.

Let ψi =H (txi∈L ||xi) for every element in L = {x1, . . . ,xn}. A balanced binary tree is built over n leaves,
where the ith leave corresponds to xi and stores ψi. Each internal node of the tree stores the product of the
values stored at its children. Therefore the root stores the complete product ∏

n
i=1ψi. (See Figure 6 for an

illustration of the tree.) Computing each internal node takes time O(1) since at each internal node product
of at most two children is computed. Since the tree has O(n) nodes, the precomputation takes time O(n) and
requires O(n) storage.
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Figure 7: Privacy-Preserving Authenticated List (PPAL) Construction

Notation: k ∈ N is the security parameter of the scheme; G,G1 multiplicative cyclic groups of prime
order p where p is large k-bit prime; g: a random generator of G; e: computable bilinear nondegenerate
map e : G×G→G1; H : {0,1}∗→G: full domain hash function (instantiated with a cryptographic hash
function); all arithmetic operations are performed using mod p. L is the input list of size n = poly(k),
where xi’s are distinct and rank(L ,xi) = i. System parameters are (p,G,G1,e,g,H ).
(digestC,digestS)← Setup(1k,L), where

L is the input list of length n;
digestC = (gv,σL);
digestS = (gv,σL ,〈g,gs,gs2

, . . . ,gsn〉,ΣL ,ΩL) and

〈s $←− Z∗p,v
$←− Z∗p〉 is the secret key of the owner;

ΣL = 〈{txi∈L ,σi}1≤i≤n,H (ω)〉 is member authentication information and ω is the list
nonce;

ΩL = 〈r1,r2, . . . ,rn〉,ri 6= r j for i 6= j, is order authentication information;
σL is the digest signature of the list L .

These elements are computed as follows:

For every element xi in L = {x1, . . . ,xn}: Pick ri
$←− Z∗p. Compute member witness for index i as

txi∈L ← (gsi
)ri and signature for element xi as σi←H (txi∈L ||xi)

v.

Pick the nonce, ω
$←− {0,1}∗, which should be unique for each list.

Set salt← (H (ω))v. salt is treated as a list identifier which protects against mix-and-match
attack and also protects from the leakage that the queried result is the complete list.

The list digest signature is computed as: σL ← salt×∏1≤i≤nσi.
(order,proof)← Query(digestS,L ,δ), where

δ = {z1, . . . ,zm} s.t. zi ∈ L , ∀i ∈ [1,m], is the queried sublist;
order = πL(δ) = {y1, . . . ,ym};
proof = (Σorder,Ωorder):

Σorder = (σorder,T,λL ′) where L ′ = L \δ;
T = {ty1∈L , . . . , tym∈L};
Ωorder = {ty1<y2 , ty2<y3 , . . . ,tym−1<ym}.

These elements are computed as follows:
The digest signature for the sublist: σorder←∏y j∈orderσrank(L ,y j).
The member verification unit: λL ′ ←H (ω)×∏x∈L ′H (txrank(L ,x)∈L ||x).
For every j ∈ [1,m− 1]: Let i′ = rank(L ,y j) and i′′ = rank(L ,y j+1), and r′ = ΩL [i′]−1 and

r′′ = ΩL [i′′]. Compute ty j<y j+1 ← (gsd
)

r′r′′
where d = |i′− i′′|.

b← Verify(digestC,δ,order,proof) where digestC,δ,order,proof are defined as above.
The algorithm checks the following:

• Compute ξ←∏y j∈δH (ty j∈L ||y j) and check if e(σorder,g)
?
= e(ξ,gv).

• Check if e(σL ,g)
?
= e(σorder,g)× e(λL ′ ,gv).

• For every j ∈ [1,m−1], e(ty j∈L ,ty j<y j+1)
?
= e(ty j+1∈L ,g).

Return ACCEPT iff all the equalities of the three steps verify, and REJECT, otherwise.



Figure 6: Range tree showing the precomputed products where ψi = H (txi∈L ||xi). Precomputed products
allow to speed up the computation time of Query algorithm in Figure 7 when m� n.

Now, computing λL ′ will require computing the product of m+ 1 partial products, i.e., the intervals
between elements in the query. Since each partial product can be computed using O(logn) precomputed
products (as the height of the tree is O(logn)), the total time required to compute the product of m+ 1
partial products is O((m+ 1) logn) = O(m logn). Hence, the precomputation is useful whenever m� n.
Otherwise, when m = O(n), the server can run the Query as mentioned in the scheme in Figure 7 in time
O(n).

Efficiency We measure the time and space complexity of our scheme in terms of n, the length of the list L ,
and m, the length of the queried sublist δ. We use |L | notation to denote the length of a list L . Recall that
Elements(δ) ⊆ Elements(L). We discuss and summarize the time and space complexity for each party as
follows:

Owner The Setup algorithm computes member witness for each element, along with signature for each
element. Hence, the algorithm runs in time O(n) and requires O(n) space.

Server Computing λL ′ takes time O(n−m), as it touches |L \δ| elements, and computing σorder takes time
O(m). Hence, the overall runtime of computing λL ′ and σorder is O(n). The server can precompute
and store some products, as mentioned in the preprocessing step, to reduce the overall running time to
O(min{m logn,n}). In addition the server calculates m−1 order witnesses each taking constant time,
hence, O(m) in total. So the overall run time for the server is O(min{m logn,n}). The server needs to
store the list itself, digestS, and the precomputed products. Since each of these objects is of size O(n),
the space requirement at the server is O(n).

Client Verify computes a hash for each element in the query δ, and then checks the first two equalities
using bilinear map. This requires O(m) computation. In the last step Verify checks O(m) bilinear map
equalities which takes time O(m). Hence the overall verification time of the client is O(m). During
the query phase, the client requires O(m) space to store its query and its response with the proof for
verification. The client also needs to store digestC which requires O(1) space.
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Batch ordering query The client can learn the total order among m different elements of the list using a
basic order query on two elements. This requires O(m2) individual order queries, where each verification
takes one multiplication in group G and six bilinear map computations. Since our construction supports a
query of multiple elements, the client can optimize the process and ask a singe batch ordering query for m
elements. In this case, the verification will require only m multiplications in the group G and 2m+2 bilinear
map computations.

7 Security of the PPAL Construction
In this section we prove that the construction presented in Section 6 is secure according to the definitions of
completeness, soundness and zero knowledge in Section 5.

7.1 Proof of Completeness

If all the parties are honest, all the equations in Verify evaluate to true. This is easy to see just by expanding
the equations as follows:
Equation e(σorder,g)

?
= e(ξ,gv) : Let order = {y1, . . . ,ym}= πL(δ)

e(σorder,g) =e(∏y j∈order
σrank(L ,y j),g) = e(∏y j∈order

H (ty j∈L ||yi)
v
,g) =

e(∏y j∈order
H (ty j∈L ||yi),gv) = e(∏y j∈δ

H (ty j∈L ||yi),gv) = e(ξ,gv).

Equation e(σL ,g)
?
= e(σorder,g)× e(λL ′ ,gv): Let order = {y1, . . . ,ym} = πL(δ) and L ′ = L \ δ. We start

with the right hand side.

e(σorder,g)× e(λL ′ ,gv) = e(∏y j∈order
H (ty j∈L ||yi)

v
,g)× e(H (ω)×∏x∈L ′H (txrank(L ,x)∈L ||x),gv)

= e(∏y j∈order
H (ty j∈L ||yi),gv)× e(H (ω)×∏x∈L ′H (txrank(L ,x)∈L ||x),gv)

= e(H (ω)×∏x∈L H (txrank(L ,x)∈L ||x),gv) = e(H (ω)v×∏x∈L H (txrank(L ,x)∈L ||x)v
,g) = e(σL ,g).

Equation e(ty j∈L ,ty j<y j+1)
?
= e(ty j+1∈L ,g): Let i′= rank(L ,y j) and i′′= rank(L ,y j+1) and r′=ΩL [i′]−1 and

r′′ = ΩL [i′′].

e(ty j∈L , ty j<y j+1) = e(gsi′ (r′)−1
,gsi′′−i′ r′′r′) = e(g,g)si′′−i′+i′ r′′r′(r′)−1

= e(g,g)si′′ r′′ = e(gsi′′ r′′ ,g) = e(ty j+1∈L ,g).

7.2 Proof of Soundness

Soundness follows by reduction from the n-Bilinear Diffie Hellman assumption (see Definition 3.1 for de-
tails). To the contrary of the Soundness Definition 5.2, assume that given a list L , the malicious server,
Adv produces a forged order order on a non-trivial sublist δ = {x1,x2, . . . ,xm}, where m ≥ 2, such that
order 6= πL(δ) and corresponding order proof is accepted by the client, i.e., by algorithm Verify in Figure 7.
By the security of the signature scheme [BGLS03], x1,x2, . . . ,xm ∈ L . Since |δ| > 1, there exists at least
one inversion pair (xi,x j) in order where i, j ∈ [1,m]. Let us assume, wlog, xi < x j is the order in L and
rank(L ,xi) = u < v = rank(L ,x j). This implies x j < xi is the forged order for which Adv has successfully
generated a valid proof, i.e., e(tx j∈L , tx j<xi) = e(txi∈L ,g) has verified since Verify accepted the corresponding
proof. We show that by invoking Adv and using its forged witness, tx j<xi , we construct a PPT adversary
A that successfully solves the n-BDHI Problem [BB04] thereby contradicting n-Bilinear Diffie Hellman
assumption. The formal reduction follows:

Theorem 7.1 If n-Bilinear Diffie Hellman assumption holds, then PPAL scheme satisfies Soundness in Def-
inition 5.2.
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Proof We show that if there exists a malicious Adv as discussed above, then we construct a PPT adver-
sary A that successfully solves the n-BDHI Problem [BB04]. Algorithm A is given the public parameters
(p,G,GT ,e,g) and T = 〈g,gs,gs2

, . . . ,gsn〉, where n = poly(k). A runs as follows:

1. Pick v $←− Z∗p a list L such that |L |= n.

Pick ΩL = {ri
$←− Z∗p}∀i∈[1,n] and compute txi∈L ← (gsi)ri ∀i ∈ [1,n].

Compute σi←H (txi∈L ||xi)
v, ∀xi ∈ L .

Pick the nonce ω
$←− {0,1}∗ and compute salt← (H (ω))v.

The list digest signature is computed as: σL ← salt×∏1≤i≤nσi.
Set digestS = {gv,σL ,T ,ΣL ,ΩL} where ΣL = 〈{txi∈L ,σi}1≤i≤n,H (ω)〉.

2. Finally Adv outputs a forged order order for some non-trivial sublist, δ = {x1,x2, . . . ,xm}.
As discussed above, let (xi,x j) be an inversion pair such that xi < x j is the order in L and rank(L ,xi) =
u < v = rank(L ,xi).
This implies x j < xi is the forged order for which Adv has successfully generated a valid proof tx j<xi =

(gs(u−v)
)

rur−1
v .

3. Now A outputs e(tx j<xi ,(g
sv−u−1

)
ru
−1rv

) = e(g,g)
1
s .

A inherits success probability of Adv, therefore if Adv succeeds with non-negligible advantage, so does A .
Hence, a contradiction.

7.3 Proof of Zero-Knowledge

We define Zero Knowledge Simulator Sim = (Sim1,Sim2) from Definition 5.3 as follows. Sim has access
to the system parameters (p,G,G1,e,g,H ) and executes the following steps:

• Sim1 picks a random element v $←− Z∗p and a random element g1
$←− G and publishes as digestC =

(gv,gv
1) and keeps v as the secret key.

• Sim2 maintains a table of the elements already queried in tuples 〈xi,ri〉 where xi is the element already
queried and ri is the corresponding random element picked from Z∗p by Sim2.
For a query on sublist δ = {x1,x2, . . . ,xm}, Sim2 makes an oracle access to list L to get the list order
of the elements. Let us call it order = πL(δ) = {y1,y2, . . . ,ym}.

– For every i ∈ [1,m] Sim2 checks if yi is in the table. If it is, Sim2 uses the corresponding random

element from the table. Otherwise, Sim2 picks a random element ri
$←− Z∗p and adds 〈yi,ri〉 to the

table.
– Sim2 sets the member authentication unit as tyi∈L := gri and computes σi←H (tyi∈L ||yi)

v.
– Sim2 sets σorder := ∏yi∈orderσi and λL ′ := g1

∏yi∈orderH (tyi∈L ||yi)
.

– For every pair of elements yi,yi+1 in order, Sim2 computes tyi<yi+1 ← gri+1/ri .
– Finally, Sim2 returns order,proof, where proof = (Σorder,Ωorder), Σorder = (σorder,T,λL ′), T =
{ty1∈L , . . . , tym∈L} and Ωorder = {ty1<y2 , ty2<y3 , . . . ,tym−1<ym}.

The simulator Sim=(Sim1,Sim2) produces outputs that are identically distributed to the distribution outputs
of the true Setup and Query algorithms. In both cases v is picked randomly. Let x,y,z ∈ Z∗p where x is a
fixed element and z = xy. Then z is identically distributed to y in Z∗p. In other words, if y is picked with
probability γ, then so is z. The same argument holds for elements in G and G1. Therefore all the units of
Σorder and Ωorder are distributed identically in both cases. Thus our PPAL scheme is simulatable and the
Zero-Knowledge is perfect.

We summarize the properties and efficiency of our PPAL construction in Theorem 7.2.

Theorem 7.2 The privacy-preserving authenticated list (PPAL) construction of Figure 7 satisfies the se-
curity properties of completeness (Definition 5.1), soundness (Definition 5.2) and zero-knowledge (Defini-
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tion 5.3) in the random oracle model and under the n-BDHI assumption (Definition 3.1). Also, the construc-
tion has the following performance, where n denotes the list size and m denotes the query size.

• The owner and the server use O(n) space.

• The owner performs the setup phase in O(n) time.

• The server performs the preprocessing phase in O(n) time.

• The server computes the answer to a query and its proof in O(min{m logn,n}) time.

• The client verifies the proof in O(m) time and space.

8 Applications of Zero Knowledge Order Queries
In this section we present queries that can be answered in zero knowledge using zero knowledge queries
defined in this paper. Let L be a list of n elements and order queries are defined w.r.t. L . Let S = {x1, . . . ,xm}
be a subset of L . We note that elements in S are not necessarily ordered according to their order in L . We
use the notation proofx<y to denote the (simulatable) proof that x precedes y in L . We note that order proofs
returned by ZKL and PPAL are simulatable. The queries below can be answered by both ZKL and PPAL.
However, as a specific instantiation, we use our PPAL construction in Figure 7, since it returns proofx<y
of constant size, i.e., |proofx<y| = O(1). The ZKL construction in Figure 5, on the other hand, returns
|proofx<y|= O(k), where k is the security parameter of the scheme.
Maximum, Minimum: We define the queries Max(S) and Min(S) with respect to L as follows: let S̃ be

the set S with the elements rearranged according to the total order induced by the list, i.e., S̃ = πL(S).
Max(S) and Min(S) return the highest ranked and the lowest ranked element of S̃ , respectively, along
with the corresponding proofs. Formally, (x,proofmax)←Max(S) where proofmax = {proofy<x | y ∈
S ∧y 6= x} and (x,proofmin)←Min(S) where proofmin = {proofx<y | y ∈ S ∧y 6= x}. We note that the
proof size, |proofmax| (or |proofmin|) is O(|S |).

Median: The query Median(S) returns the median element along with a proof of the answer, which proves
that the returned element precedes b|S |/2c elements and succeeds d|S |/2e elements in the list, and
reveals nothing more. Formally, (x,proofmedian)←Median(S), where x is the median element of S
and proofmedian = {left, right}with left= {proofy<x | y∈ S∧y 6= x}, right= {proofx<y | y∈ S∧y 6= x},
|left|= b|S |/2c, and |right|= d|S |/2e. We note that the proof size, |proofmedian|= O(|S |).

Top t: The query Top(t,S) returns the top t elements along with a proof of the answer, where 1≤ t ≤ |S |−1.
Formally, (St ,prooft)← Top(t,S) where St is the unordered set of the top t elements of S̃ , where
S̃ = πL(S). Let S ′ = S \ St . Then prooft = {proofx<y | x ∈ S ′ ∧ y ∈ St}. The size of prooft is
O(t · |S ′|) = O(|S |), since 1 ≤ t ≤ |S |−1. We note that Top(t,S) can be also implemented to return
the ordered set of the top t elements, S̃t , instead of St where S̃t = πL(St). Then prooft = {proofx<y |
∀ adjacent pairs (x,y) ∈ S̃t}∪{proofx<y | x ∈ S ′ and y is the last element in S̃t}. In this case also, the
size of prooft is O(|S |). Note that in the ordered set case, if t = |S |, then Top(t,S) reduces to an order
query on S and the proof size is O(|S |).

Threshold proof: Let a be a public element of L . We define the query Threshold(S ,a) to return a boolean
vector B = {b1, . . . ,bm} along with a proof that indicates whether elements are below or above
the threshold element a. B is defined as follows: bi = 1 if a < xi and bi = 0, otherwise. For-
mally, (B,proofthreshold)← Threshold(S ,a), where proofthreshold = {proofxi<a | xi ∈ S ∧ bi = 0} ∪
{proofa<xi

| xi ∈ S ∧bi = 1}. The size of proofthreshold is O(|S |).
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Appendix

A Preliminaries
A.1 Homomorphic Integer Commitment Scheme [DF02] and its Simulator

We write the commitment scheme of [DF02], in the trusted parameter model, i.e., the public key is generated
by a trusted third party. However, in the original paper [DF02], the prover and the verifier interactively set
up the public parameters. The construction of Homomorphic Integer Commitment Scheme [DF02] is given

Figure 8: Homomorphic Integer Commitment Scheme [DF02].

HomIntCom = (IntComSetup, IntCom, IntComOpen)
PKC← IntComSetup(1k): The IntComSetup algorithm, takes the security parameter as input

and generates the description of a finite Abelian group G , desc(G), and a large integer F(k)
such that it is feasible to factor numbers that are smaller than F(k). A number having only
prime factors at most F(k) are called F(k)-smooth and a number having prime factors larger

then F(k) are called F(k)-rough. The algorithm then chooses a random element h $←− G
(by group assumption, ord(h) is F(k)-rough with overwhelming probability) and a random

secret key s $←− Zord(G) and sets g := hs. IntComSetup outputs (desc(G),F(k),g,h) as the
public key of the commitment scheme, PKC.

(c,r)← IntCom(PKC,x): To commit to an integer x, the algorithm IntCom chooses a random

r, r $←− Z2B+k , and computes c = gxhr (where B is a reasonably close upper bound on the
order of the group G , i.e., 2B > ord(G), and given desc(G), B can be computed efficiently).
IntCom outputs (c,r).

x← IntComOpen(PKC,c,r): To open a commitment c, the committer must send the opening
information (x,r,b) to the verifier such that c = gxhrb and b2 = 1. An honest committer can
always set b := 1.

in Figure 8. This commitment scheme is homomorphic as

IntCom(PKC,x+ y) = IntCom(PKC,x)× IntCom(PKC,y).

In Figure 9 we present a simulator for HomIntCom. We note that the distribution of outputs from the
simulator algorithms is identical to the distribution of outputs from a true prover (committer): in both cases
desc(G),F(k),g,h and commitments are generated identically.

Efficiency Assuming group exponentiation take constant time, both IntCom and IntComOpen run in
asymptotic time O(1).
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Figure 9: Simulator for HomIntCom.

SimHomIntCom = (SimIntComSetup, SimIntCom, SimIntComOpen)
(PKC,TKC)← SimIntComSetup(1k): SimIntComSetup works exactly as the IntComSetup ex-

cept that it saves s and the order of the group G , ord(G). SimICSetup sets TKC =
(ord(G),s) and outputs (PKC = (desc(G),F(k),g,h),TKC).

(c,r)← SimIntCom(PKC,x): SimIntCom behaves exactly as IntCom and outputs (c,r) where

c = gxhr, r $←− Z2B+k and B is as defined in Figure 8.
x′← SimIntComOpen(PKC,TKC,c,r): To open a commitment c, originally committed to some

integer x, to any arbitrary integer x′ 6= x, send (x′,(r+ sx− sx′) mod ord(G),b = 1) to the
verifier.
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A.2 Proving an Integer is Non-negative [Lip03]

We present the Σ protocol [Lip03] implementing the above functionality in Figure 10. This protocol is
honest-verifier zero knowledge with 3 rounds of interaction and can be converted to non-interactive general
zero knowledge in the random oracle model using Fiat-Shamir heuristic [FS86].

At high level, the protocol is based on two facts: a negative number cannot be a sum of squares and
every non-negative integer is a sum of four squared integers. The representation of a non-negative integer
as the sum of four squares is called the Lagrange representation of a non-negative integer. [Lip03] presents
an efficient probabilistic time algorithm to compute the Lagrange representation of a non-negative integer.

Theorem A.1 [Lip03] An integer x can be represented as x = ω2
1 +ω2

2 +ω2
3 +ω2

4, with integer ωi, i ∈ [1,4],
iff x ≥ 0. Moreover, if x ≥ 0, then the corresponding representation (ω1,ω2,ω3,ω4) can be computed
efficiently.

Efficiency The algorithm to compute Lagrange’s representation of a non-negative integer is probabilistic
polynomial time [Lip03]. Assuming group exponentiation is done in constant time and the prover can
efficiently compute the Lagrange representation of a given integer x in expected time O(log2 x) [RS86], the
Prover runs in time O(log2 x) and the Verifier runs in asymptotic constant time, i.e., O(1) in the protocol in
Figure 10.

Figure 10: Proving non-negativity of an integer [Lip03]: P↔ V(x,r : c =C(x;r)∧ x≥ 0)

Step 1: The Prover P commits to an integer x ∈ {−M,M} as c := IntCom(PKC,x) = gxhρ where ρ ∈
Z2B+k and sends it to the Verifier. Now the Prover computes the following:

• represent x as x = ω2
1 +ω2

2 +ω2
3 +ω2

4

• for i ∈ [1,4]: pick r1i
$←− Z2B+2k such that ∑i r1i = ρ

• for i ∈ [1,4]: pick r2i
$←− Z2B+2kF(k) and r3

$←− Z2B+2kF(k)
√

M

• for i ∈ [1,4]: pick m1i
$←− Z2kF(k)

√
M

• for i ∈ [1,4]: compute c1i← gω1hr1i

• compute c2← g∑i m1ih∑i r1i

• compute c3← (∏i c1i
m1i)hr3

The Prover sends (c11,c12,c13,c14,c2,c3) to the Verifier.

Step 2: The Verifier V generates e $←− ZF(k) and sends it to the Prover.
Step 3: The Prover computes the following:

• for i ∈ [1,4]: compute m2i← m1i + eωi

• for i ∈ [1,4]: compute r4i← r2i + er1i

• compute r5← r3 + e∑i(1−ωi)r1i

The Prover sends (m21,m22,m23,m24,r41,r42,r43,r44,r5) to the Verifier.
Step 4: The Verifier checks the following:

• for i ∈ [1,4]: check gm2ihr4ic1i
−e ?

= c2

• (∏i c1i
m2i)hr5c−e ?

= c3
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A.3 Zero Knowledge Set (ZKS) Construction [CHL+05]

Here we give the construction of ZKS based on mercurial commitments and collision-resistant hash func-
tions. For the details, please refer to Section 3 of [CHL+05].

For a finite database D, the prover views each key x as an integer numbering of a leaf of a height-l binary
tree and places a commitment to the information v = D(x) into leaf number x. To generate the commitment
CD to the database D, the prover ProverD generates an incomplete binary tree of commitments, resembling
a Merkle tree as follows. Let Merc = {MercSetup,HardComm, SoftComm, Tease, VerTease,MercOpen,
VerOpen} be a Mercurial Commitment scheme and PKD be the public key of the mercurial commitment
scheme, i.e., PKD←MercSetup(1k). Let rx denote the randomness used to produce the commitment (hard
or soft) of x.

Before describing the details of the ZKS construction using mercurial commitments in Figure 11, let us
give an informal description of mercurial commitments. Mercurial commitments slightly relax the binding
property of commitments. Partial opening, which is called teasing, is not truly binding: it is possible for
the committer to come up with a commitment that can be teased to any value of its choice. True opening,
on the other hand, is binding in the traditional sense: it is infeasible for the committer to come up with a
commitment that it can open to two different values. If the committer can open a commitment at all, then
it can be teased to only one value. Thus, the committer must choose, at the time of commitment, whether
to soft-commit, so as to be able to tease to multiple values but not open at all, or to hard-commit, so as to
be able to tease and to open to only one particular value. It is important to note that hard-commitments and
soft-commitments are computationally indistinguishable.

Efficiency Let us assume that the elements are hashed to k bit strings, so that l = k. Let us also assume
(as in [CHL+05]) that the collision resistant hash is built into the mercurial commitment scheme, allowing
to form k-bit commitments to pairs of k-bit strings. Therefore, computing the commitment com takes time
O(ln) = O(kn), where |D|= n.

The proofs of membership and non-membership consists of O(k) mercurial decommitments each and
the verifier needs to verify O(l) = O(k) mercurial decommitments to accept the proof’s validity.

A constant time speed-up can be achieved using the q-Trapdoor Mercurial Commitment (q-TMC)
scheme and collision resistant hash function as building blocks. q-TMC was introduced by [CFM08] and
later improved by [LY10]. The construction is similar to [CHL+05], except a q-ary tree of height h is used
(q >2) instead of a binary tree and each leaf is expressed in q-ary encoding. Using q-TMC as a building
block achieves significant improvement in ZKS implementation [CFM08, LY10] though the improvement
is not asymptotic.
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Figure 11: Zero Knowledge Set (ZKS) construction from Mercurial Commitments [CHL+05].

ZKS = (ZKSSetup,ZKSProver = (ZKSP1,ZKSP2),ZKSVerifier)
PKD← ZKSSetup(1k): Run PKD←MercSetup(1k) and output PKD.
(com,state)← ZKSP1(1k,PKD,D): ZKSP1 runs as follows:

• For each x such that D(x) = v 6=⊥, produce Cx = HardComm(PKD,v,rx).
• For each x such that D(x) = ⊥ but D(x′) 6= ⊥, where x′ denotes x with the last bit

flipped, produce Cx = SoftComm(PKD,rx).
• Define Cx = nil for all other x and build the tree in bottom up fashion. For each level

i from l− 1 upto 0, and for each string σ of length i, define the commitment Cσ as
follows:
1. For all σ such that Cσ0 6= nil∧Cσ1 6= nil, let Cσ = HardComm(PKD,(Cσ0,Cσ1),rσ).
2. For all σ such that Cσ′ have been defined in Step 1 (where σ′ denotes σ with the

last bit flipped) but Cσ has not, define Cσ = SoftComm(PKD,rσ).
3. For all other σ, define Cσ = nil.

• If the value of the root, Cε = nil, redefine Cε = SoftComm(PKD,rε). This happens only
when D = φ. Finally define CD =Cε = com.

(D(x),Πx)← ZKSP2(PKD,state,x): For a query x, ZKSP2 runs as follows:
x ∈ D, i.e., D(x) = v 6=⊥: Let (x|i) denote the first i bits of the string x and (x|i)′ be (x|i)

with the last bit flipped. Let proofx = MercOpen(PKD,D(x),rx,Cx) and proof(x|i) =
MercOpen(PKD,(C(x|i0),C(x|i1)),r(x|i),C(x|i)) for all 0 ≤ i < l, where C(x|i) is a commit-
ment to its two children C(x|i0) and C(x|i1).
Return (D(x),Πx = ({C(x|i),C(x|i)′}i∈[1,l],{proof(x|i)}i∈[0,l])).

x 6∈ D, i.e., D(x) =⊥: If Cx = nil, let h be the largest value such that C(x|h) 6= nil, let
Cx = HardComm(PKD,⊥,rx) and build a path from x to C(x|h) as follows: de-
fine C(x|i) = HardComm(PKD,(C(x|i0),C(x|i1)),r(x|i)),C(x|i)′ = SoftComm(PKD,r(x|i)′)
for all i ∈ [l − 1,h + 1]. Let τx = Tease(PKD,D(x),rx,Cx) and τ(x|i) =
Tease(PKD,(C(x|i0),C(x|i1)),r(x|i),C(x|i)) for all 0≤ i < l.
Return (⊥,Πx = ({C(x|i),C(x|i)′}i∈[1,l],{τ(x|i)}i∈[0,l]))

b← ZKSVerifier(1k,PKD,com,x,D(x),Πx):
x 6=⊥: The verifier ZKSVerifier performs the following:

• VerOpen(PKD,C(x|i),(C(x|i0),C(x|i1)),proofx) for all 1≤ i < l
• VerOpen(PKD,CD,(C0,C1),proofε) and VerOpen(PKD,Cx,D(x),proofx).

x =⊥: The verifier VerifierD performs the following:
• VerTease(PKD,C(x|i),(C(x|i0),C(x|i1)),τx) for all 1≤ i < l
• VerTease(PKD,CD,(C0,C1),τε) and VerTease(PKD,Cx,⊥,τx)
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