
Constant-Round Leakage-Resilient Zero-Knowledge
Arguments of Knowledge for NP

Hongda Li, Qihua Niu, Guifang Huang

1 The Data Assurance and Communication Security Research Center
2 State Key Lab of Information Security, Institute of Information Engineering

Chinese Academy of Sciences, Beijing 100093, China

Abstract. Garg, Jain, and Sahai first consider zero knowledge proofs in the
presence of leakage on the local state of the prover, and present a leakage-
resilient-zero-knowledge proof system for HC (Hamiltonian Cycle) problem.
Their construction is called (1 + ε)-leakage-resilient zero-knowledge, for any
constant ε > 0, because the total length of the leakage the simulator needs is
(1 + ε) times as large as that of the leakage received by the verifier. In recent,
Pandey provides a constant-round leakage-resilient zero-knowledge argument
satisfying the ideal requirement of ε = 0. Whether there exist constant round
leakage-resilient zero-knowledge arguments of knowledge for all NP languages
is an interesting problem. This paper focuses on this problem and presents a
constant-round construction of leakage-resilient zero-knowledge arguments of
knowledge for the HC problem.

Key word: zero-knowledge proofs, proofs of knowledge, leakage-resilient, non-
black-box simulation, constant-round.

1 Introduction

The zero-knowledge proofs, first introduced by Goldwasser et al. in [4], allow the
prover to convince the verifier of the validity of a statement x ∈ L, while providing
no additional knowledge to the verifier apart from the fact that the statement is
indeed true. A fundamental variant, known as zero knowledge arguments, relaxed
the soundness condition only with respect to efficient provers. The zero-knowledge
property is formalized by requiring that for any probabilistic polynomial-time (PPT)
verifier V ∗ there exists a PPT simulator such that the view of V ∗ interaction with
the prover can be “indistinguishably simulated” by the simulator on input x.

The conventional zero knowledge property assume that the prover’s internal state,
including the witness and the random coins, is perfectly hidden from the verifier. The
verifier is given only black-box access to the honest prover’s algorithm during the
interaction. After a class of attack (known as side-channel attacks) is noticed, this
idealized assumption becomes unreasonable and is often hard to satisfy in many real
setting where an malicious verifier has the ability to obtain leakage of prover’s internal

0 Corresponding author e-mail: lihongda@iie.ac.cn

2

state by launching a side-channel attacks. In order to deal with this problem, Garg et.
al. [13] recently investigated zero knowledge proofs in such a leaking setting (known as
leakage-resilient zero-knowledge proof, LR-ZKP), where the malicious verifier is able
to learn an arbitrary amount of leakage on the internal state of the honest prover.
Such a leakage attack is modeled as leakage-queries in the execution of the protocol,
denoted as a series of polynomial-time computable functions f1, f2, There exist
several model to restrict leakage functions. The most general one requires that leakage
functions are hard-to-invert. Ideally, LR-ZKP require that no such malicious verifier
can learn anything beyond the validity of the assertion and the leakage. Concretely, it
is required that, for any malicious verifier V ∗, there exists a simulator which is given
access to a leakage oracle, such that the output of the simulator and the view of V ∗

are computationally indistinguishable. [13] defined λ-leakage-resilient zero knowledge,
which allows the simulator to obtain at most λ·l-bits leakage from the leakage oracle if
V ∗ obtains l-bit leakage. [13] provided super-constant-round (1 + ε)-leakage-resilient-
zero-knowledge proof for HC problem for any ε > 0. Very recently, Pandey in [20]
presented a constant-round leakage-resilient zero-knowledge argument satisfying the
ideal requirement of ε = 0.

If zero knowledge proofs or arguments are also “proof of knowledge”, it is known
as zero knowledge proofs or arguments of knowledge (ZKPoK or ZKAoK). In fact,
[13] discussed how to modify their protocol such that the modified protocol is a proof
of knowledge. The presented method needs a public-coin zero knowledge proof of
knowledge, in which the verifier proves to the prover that the previous commitment
is “valid”. Concretely, the verifier first commit to a random challenge ch. At a later
decommitment stage, the verifier prove, by a public-coin ZKPoK , that the committed
value is indeed ch. [7] first presented a simple construction of super-constant-round
LR-ZKPoK for HC problem. An interesting problem left by [13, 20, 7] is how to con-
struct constant-round leakage-resilient ZKPoK (or ZKAoK) for NP. In this paper, We
focus on how to construct constant-round LR-ZKAoK for NP and give a construction
for HC problem by means of non-black-box simulation techniques.

1.1 Related Works

In the past few years there have been a few works on leakage-resilient interactive
protocols. Bitansky et. al. [9] considered leakage-resilient protocols for general func-
tionality which are secure against semi-honest adversaries in the UC framework. Boyle
et. al. [11] studied leakage-resilient multi-party coin tossing protocol. Damgard et. al.
[12] considered leakage-resilient two-party secure protocols against semi-honest ad-
versary. Two types of leakage attack are considered in [12]: global leakage model (the
adversary use a leakage function on the input and the entire randomness of an hon-
est party) and local leakage model (the adversary chooses different leakage functions
at different points of time during the protocol execution). Very recently, Boyle et.
al. [10] constructed a general leakage-resilient multiparty computation (MPC) proto-
col with more strong security notion: an adversary obtaining leakage on the honest
party’s secret state is guaranteed to learn nothing beyond the input and output of
corrupted parties. Garg et. al. [13] first formulated leakage-resilient zero-knowledge
proofs and provided a super-constant-round construction for HC problem. Following

3

[13], [7] showed a construction of leakage-resilient zero-knowledge proofs of knowledge.
[20] presented a constant-round leakage-resilient zero-knowledge argument.

1.2 Our results

In this work, we adopt the basic model of [13] and present the first constant-round
construction of LR-ZKAoK protocol.

Main result: Assume that collision-resistant hash functions and pseudorandom
permutations exist, and DDH assumption holds. Then, there exists constant-round
LR-ZKAoK system for HC.

The key problem in constructing LR-ZK protocol is how to respond to leakage
queries in simulation such that the responses are consistent to the simulated view. To
solve this problem, [13] adds a preamble to Blum’s 3-round zero knowledge proof. In
the preamble, the verifier first commits to its random challenge ch and a random string
r′ using a extractable commitment scheme originally proposed by Prabhakaran et al.
in [21], and then the prover sends a random string r′′. In subsequent Blum’s protocol,
the prover uses r = r′ ⊕ r′′ as common random reference of Naor’s non-interactive
commitment scheme to compute its commitments. There are many challenge-response
slots in the extractable commitment scheme. This provides chances for the simulator
to learn ch and r′ by rewinding the verifier’s program. By Learning ch in advance
the simulator can prepare its commitment in Blum’s protocol according to ch and
then can answer this challenge correctly. By obtaining r′ the simulator can control
r and then have the ability to respond leakage queries under the help of the leakage
oracle. The construction in [20] use the same idea but the preamble use non-black-box
methods. In this approach, however, black-box knowledge extractors K cannot work
efficiently. Therefore, the protocols in [13, 20] are no longer a proof of knowledge.

To obtain LR-ZKAoK, we modified the construction in [20] such that the follow-
ing two condition hold: (1) the challenge ch is generated after the prover sends its
commitments, as in [15, 16]; (2) the simulator has chance to control over the gener-
ated challenge and the prover cannot. Thus, the simulator can simulate the prover’s
commitments according to a-priori randomly selected challenge and the prover cannot
break the soundness. On the other hand, black-box knowledge extractors K can work
efficiently. To this end, we use a jointly coin-flipping protocol to generate ch after the
prover sends its commitments. In order to let the simulator have ability to control
over ch, a preamble in which the simulator obtains the trapdoors is needed.

As in [20], we use Barak’s non-black-box techniques to construct such a preamble.
The difference is that we use a new variant of Barak’s relation to define a NP-relation
Rsim. In general Barak’s non-black-box simulation, the simulator needs the descrip-
tion of the verifier’s strategy, denoted as desc(V), to accomplish a task that the prover
cannot achieve no matter what it does. That is, the simulator’s advantage over the
prover is that it is given the verifier’s program.

To improve the simulator’s ability, we permit the simulator to receive leakage
queries apart from this advantage. We define a variant of Barak’s relation by simul-
taneously using desc(V) and the received leakage queries. The simulator can take ad-
vantage of knowing desc(V) and the leakage queries to obtain an instance σ ∈ LRsim

and a corresponding witness w such that Rsim(σ,w) = 1, and no prover can obtain

4

σ ∈ LRsim
. This advantage over the prover enables the simulator to control over ch

and r. In the jointly coin-flipping protocols, we use the modified Yao’s garbled-circuit
method, known as augmented garbled-circuit method, to achieve the conditional dis-
closure of a random secret selected by the verifier. Thus, the verifier needs not use a
zero-knowledge proof to convince the prover that the coin-flipping protocol is executed
honestly.

2 Preliminaries

In this paper, we use some standard notations. If A(·) is a probabilistic algorithm,
A(x) is the result of running A on input x and y = A(x) (or y ← A(x)) denote that
y is set to A(x). For a finite set S, we denote by y ∈R S that y is uniformly selected
from S. Ul denotes uniform distribution on {0, 1}l. We write [n] for any n ∈ N to
denote the set {1, · · · , n} and poly(·) to denote an unspecified polynomial.

We use the following standard definitions and tools.

2.1 Leakage-resilient zero-knowledge proof

We first recall the definitions of leakage-resilient zero-knowledge.
Let P and V be a pair of randomized interactive Turing machines, 〈P, V 〉(x) be a

random variable representing the local output of Turing machine V when interacting
with machine P on common input x, when the random input to each machine is
uniformly and independently chosen. Customarily, machine P is called the prover
and machine V is called the verifier. We denote by 〈P, V 〉(x) = 1 (〈P, V 〉(x) = 0) that
machine V accepts (rejects) the proofs given by machine P .

Definition 1. A pair of interactive Turing machines 〈P, V 〉 is called an interactive
proof system for a language L if machine V is polynomial-time and the following two
conditions hold:

– Completeness: there exists a negligible function c (known as completeness error)
such that for every x ∈ L,

Pr[〈P, V 〉(x) = 1] > 1− c(|x|)

– Soundness: there exists a negligible function s (known as soundness error) such
that for every x /∈ L and every interactive machine B,

Pr[〈B, V 〉(x) = 1] < s(|x|)

In the execution of interactive proofs, P has the ability to select a random coins ri
at the beginning of round i and uses it in round i. In the interaction P synchronously
update his current secret state. That is, let state denote P ’s secret state (initialized
to the private auxiliary input z), P updates state by setting state = state||ri in
round i. The cheating verifier V ∗ launches a leakage attack by means of any number
of arbitrary leakage queries throughout the interaction. Without loss of generality,
we assume that the cheating verifier launches one and only one leakage query after
receiving a message from the prover. The leakage query in round i is denoted as a

5

leakage function fi, to which the prover responds with fi(state). We denote by ` the
total number of leaking bits, i.e. ` =

∑
i |fi(state)|.

General zero knowledge is formalized by requiring that for any polynomial-time
verifier V ∗ there exists a polynomial-time algorithm S (a.k.a. the simulator) such that
the view of V ∗, which consists of the random tosses of V and the messages received
by V , can be simulated by S. Under the leakage attack setting, leakage information
fi(state) obtained by V ∗ cannot be simulated by any polynomial-time algorithm S
only upon common input x. To formulate leakage-resilient zero-knowledge, S is given
black-box access to an leakage oracle to respond the verifier’s leakage queries. The
leakage oracle, denoted by Lnz (·), is determined by the security parameter n and the
auxiliary input z (the witness). A query to the oracle is an efficiently computable
function f ′j(·), to which Lnz (·) responds with f ′j(z). We denote by `′ the number of
bits that S receives from the leakage oracle, i.e. `′ =

∑
j |f ′j(statej)|. The leakage

resilient zero-knowledge property essentially requires the condition `′ ≤ ` holds. [13]
defined (1 + ε)-LR-ZKP that require a relaxed condition, `′ ≤ (1 + ε)`, holds for
a-priori fixed ε > 0. This is reasonable and necessary for black-box zero knowledge.
Recently, [20] presented a non-black-box zero knowledge protocol that satisfies the
condition `′ ≤ `.

The leakage-resilient zero knowledge proofs require that no malicious verifier,
launching leakage attack, can learn anything beyond the validity of the assertion
and the leakage. This is formulated by requiring that for any polynomial-time verifier
V ∗ with any auxiliary input aux there exists a polynomial-time algorithm S such
that the output of SL

n
z (·)(x, aux) is indistinguishable from the view of V ∗. Since this

paper focuses on non-black-box zero knowledge, we refer to the definition of LR-ZKP
in [20].

Definition 2 (Leakage-Resilient Zero Knowledge). An interactive proof system
(P, V) for a language L with a witness relation R is said to be leakage-resilient
zero knowledge if for every PPT machine V ∗ that makes any arbitrary polynomial
number of leakage queries on P ’s state (in the manner as described above), there exists
a PPT algorithm S such that the following two conditions hold:

– For every (x, z) ∈ R, and every aux ∈ {0, 1}∗, {V iewV ∗(x, aux)}x∈L,aux∈{0,1}∗
and

{
SLn

z (·)(x, aux)
}
x∈L,aux∈{0,1}∗ are computationally indistinguishable.

– For every (x, z) ∈ R, every aux ∈ {0, 1}∗, and sufficiently long r ∈ {0, 1}∗, it
holds that `S,r(υ) ≤ `V ∗(υ), where `S,r(υ) is the number of bits that S receives
from Lnz when generating the view υ, `V ∗(υ) is total length of leakage answers that
V ∗ receives in the view υ.

2.2 Proof of knowledge

In a proof of knowledge for a relationship R, the prover, holding a secret input z
such that (x, z) ∈ R, and the verifier interact on a common input x. The goal of
the protocol is to convince the verifier that the prover indeed knows such z. This is
in contrast to a regular interactive proof, where the verifier is just convinced of the
validity of the statement.

6

The concept of “knowledge” for machines is formalized by saying that if the prover
can convince the verifier, then there exists an efficient procedure that can “extract”
a witness from this prover (thus the prover knows the witness because it could run
the extraction procedure on itself).

Definition 3. An interactive protocol 〈P, V 〉 is a system of proofs of knowledge for
a (poly-balanced) relation R with knowledge error κ if the following conditions hold:

– (efficiency): 〈P, V 〉 is polynomially bounded, and V is computable in probabilistic
polynomial time.

– (non-triviality): There exists an interactive machine P such that for every (x, z) ∈
R all possible interactions of V with P on common input x and auxiliary y are
accepting.

– (validity with knowledge error κ): Denote by p(x, y, r) the probability that the
interactive machine V accepts, on input x, when interacting with the prover spec-
ified by P ∗x,y,r (the prover’s strategy when fixing common x, auxiliary input y
and random tape r). There exists an expected polynomial-time oracle machine K
and a polynomial q such that if p(x, y, r) > κ, on input x and access to ora-
cle Px,y,r, KPx,y,r (x) outputs z, satisfying (x, z) ∈ R, with probability of at least
(p(x, y, r)− κ(|x|))/q(|x|)

2.3 Universal arguments

The notion of universal arguments, introduced by Barak and Goldreich in [3], is used
to present interactive proofs for language

LU = {(M,x, t) : non-deterministic machine M accepts x within t steps}

The corresponding relation is denoted by RU , that is, RU ((M,x, t), w) = 1 if and
only if M (viewed here as a two-input deterministic machine) accepts (x,w) within t
steps. We can handle all NP language by a universal argument for LU , because every
language in NP is linear time reducible to LU .

For a super-polynomial function T : N → N , define the relation RTU as follows:
RTU (y, w) = 1 if RU (y, w) = 1 and t ≤ T (|y|), where y = (M,x, t). The corresponding
language is denoted by LTU .

Definition 4. (Universal arguments)[3]. A universal-argument system for Ntime(T (n))
is a pair of strategies, denoted 〈P, V 〉, that satisfies the following properties:

– Efficient verification: There exists a polynomial p such that for any y = (M,x, t),
the total time spent by the (probabilistic) verifier strategy V , on common input y,
is at most p(|y|). In particular, all messages exchanged in the protocol have length
smaller than p(|y|). (Here, |y| is assumed polynomial bounded).

– Completeness by a relatively-efficient prover: For every ((M,x, t), w) in
RTU ,

Pr[〈P (w), V 〉(M,x, t) = 1] = 1

Furthermore, there exists a polynomial p such that the total time spent by P (w),
on common input (M,x, t), is at most p(TM (x,w)) ≤ p(t), where TM (x,w) denote
the number of steps made by M on input (x,w).

7

– Computational Soundness: For every polynomial-size circuit family {P̃n}n∈N ,
and every (M,x, t) ∈ {0, 1}n − LU ,

Pr[〈P̃n, V 〉(M,x, t) = 1] < neg(n)

– Weak Proof of Knowledge Property: There exists a probabilistic T (n)O(1)-
time oracle machine E such that the following holds: For every polynomial-size
circuit family {P̃n}n∈N , and every sufficiently long y = (M,x, t) ∈ {0, 1}n

Pr[EP̃n(y) ∈ LTU] ≥ Pr
[
〈P̃n(y), V (y)〉 = 1

]
− neg(n)

The oracle machine E is called a (knowledge) extractor.

2.4 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit
itself to a value while keeping it secret from another party, called the receiver. This
property is called hiding. Furthermore, the commitment is binding, and thus at a later
stage when the commitment is opened, it is guaranteed that the “opening” can yield
only a single value determined in the committing phase. We sketch the two properties.
General definitions can be found in [5].

– Statistically binding commitments: the binding property holds against un-
bounded senders, while the hiding property only holds against computationally
bounded receivers.

– Statistically hiding commitments: the hiding property holds against un-
bounded receivers, while the binding property only holds against computationally
bounded senders.

In this paper, we use two types of commitment schemes. One is Naor’s statistically
binding commitment scheme[18], denoted by Commsb. This scheme is constructed
from pseudorandom generator g : {0, 1}n → {0, 1}3n. Recall that in the commitment
phase of this scheme, the receiver first selects τ ∈R {0, 1}3n and sends it to the sender.
To commit to bit b, the sender selects s ∈R {0, 1}n, and then sends to the receiver
c = g(s) if b = 0, or c = τ ⊕ g(s) otherwise. In the decommitment phase, the sender
reveals b and s.

Obviously, when τ ∈ {g(s0) ⊕ g(s1) : s0, s1 ∈ {0, 1}n}, the commitment to b by
sending g(s0) to the receiver can be decommited to two different values. Concretely,
the commitment c can decommit to 0 by revealing (0, s0), or to 1 by revealing (1, s1).
For convenience, we denote by Commτ

sb(v; r) the commitment to v with the random
coin r when the receiver’s message is τ . To commit to a string r = r1 · · · rk ∈ {0, 1}k,
the sender and the receiver run k instances of this scheme in parallel. Concretely
speaking, the receiver sends τ = τ1 · · · τk ∈ {0, 1}k·3n, and the sender computes and
sends ci = Commτi

sb(ri; si) to the receiver, where si ∈ {0, 1}n, i = 1, · · · , k. Similarly,
we denote by Commτ

sb(r; s = s1 · · · sk) the commitment to r = r1 · · · rk ∈ {0, 1}k.
The other is a two-round statistically hiding commitment scheme Commsh(·; ·). In

such a scheme, the first message denoted by m is from the receiver, and a correspond-
ing commitment algorithm is denoted by Commm

sh(·; ·). In particular, thisscheme can
be constructed based on claw-free collections[14].

8

3 Tools

3.1 Barak’s non-black-box preamble

Barak’s non-black-box simulation method enable the simulator to have access to
“trapdoor” without using rewinding technique. By this “trapdoor”, the simulator can
simulate the real interaction. Concretely, the simulator take the advantage of holding
the description of the verifier’s strategy desc(V) to generate such a “trapdoor” by
means of “generation protocol” and then it can work efficiently. The actual prover
without desc(V), however, cannot generate any “trapdoor”, and then the soundness
of the protocol holds.

In the leaking setting, except fore interacting with P according to the protocol, V ∗

has the ability to obtain additional information f(state) (where state consists of the
witness and all used random value so far) by launching a leakage attack. The prover,
however, is not aware of the leakage attack. The leakage query f(·) is a part of the
strategy of V ∗, and so the messages sent by the verifier may depend on the leaking
information f(state). Therefore, to show leakage-resilient zero knowledge property, the
simulator should “correctly” respond V ∗’s leakage queries. However, owing to without
any witness, the simulator does not have the ability to reply directly to any leakage
queries by itself. In order to solve this problem, [13] introduced the leakage-oblivious
simulation, in which the simulator directly receives V ∗’s leakage queries and responds
each leakage query f(·) under the help of the leakage oracle holding the auxiliary
input of P (a witness for x ∈ L). More precisely, after receiving a leakage query
f(·), the simulator constructs a new function f ′(·) only on the witness, and query the
leakage oracle with f ′(·). Finally, V ∗ receives f ′(z) directly from the leakage oracle.
Notice that, the simulator in leakage-oblivious simulation is authorized to receive the
leakage query, and so it obtains an advantage over the prover who is not aware of the
existence of the leakage attack. To use such the advantage, we consider a new variant
of Barak’s relation.

For any x ∈ L, let Ψ be the verifier’s interactive strategy. Let {Hn} be a family of
hash functions, where h ∈ Hn : {0, 1}∗ → {0, 1}n. Let Tn be a family of pseudorandom
permutations on {0, 1}n. Define relation R as follows (depicted in Figure 1).

Instance: (h, t, τ, c, d) ∈ Hn × Tn × {0, 1}2n·3n × {0, 1}2n·3n × {0, 1}6n
2

.
Witness: (Ψ, u, ζ, s), where Ψ is an interactive program , u ∈ {0, 1}n,

ζ ∈ {0, 1}∗, s ∈ {0, 1}2n·n.
Relation: R((h, t, τ, c, d), (Ψ, u, ζ, s)) = 1 if and only if

1. c = Commτ
sb(η; s), where η = (t(h(Ψ)⊕ u), u).

2. Ψ(c) outputs a computable leakage function, denoted by fΨ ,
such that ζ = fΨ (z, η, s), where z ∈ {0, 1}∗ is a witness for
x ∈ L.

3. Ψ(c, ζ) = d within T (n) = nlog logn steps.

Figure 1: Relation R

Denote by LR the language corresponding to the variant of Barak’s relation R.
Notice that R is dependent on a given instance x ∈ L. Next, we present an instance

9

generation protocol, denoted by Φ, for LR (depicted in Figure 2). It is similar to
Barak’s generation protocol.

Instance generation protocol Φ:
– V selects h ∈R Hn, t ∈R Tn, τ ∈R {0, 1}2n·3n, and then sends (h, t, τ) to P .

– P selects η ∈R {0, 1}2n; s ∈R {0, 1}2n
2

and sends c = Commτ
sb(η; s) to V .

– V selects d ∈R {0, 1}6n
2

and sends it to P .

Figure 2: Generation protocol Φ

The generation protocol Φ is sound if V honestly executes the protocol.

Lemma 1. For any T (n)O(1)-size P , let σ = (h, t, τ, c, d) be the transcript of execu-
tion of Φ. If V is honest, then the probability that P outputs w such that R(σ,w) = 1
is negligible.

Proof. Define the event E to be “P outputs a witness for σ ∈ LR”, and let ε =
Pr[E]. Suppose Hset = {(h, t, τ) : Pr[E|(h, t, τ)] ≥ ε/2}. That is, for any (h, t, τ) ∈
Hset, it holds that Pr[E|(h, t, τ)] ≥ ε/2. Then, the probability that V randomly se-
lects (h, t, τ) such that (h, t, τ) ∈ Hset is at least ε/2. Without loss of generality, we
can assume that P is deterministic. Thus, for any fixed (h, t, τ), c and z (a witness
for x) are also fixed. It follows that V ’s leakage query f is determined if it exists.
By the assumption that P obtains a witness for σ with probability ε, we have that
P ∗, with probability ε2/4, obtains two witness respectively for σ = (h, t, τ, c, d) and
σ′ = (h, t, τ, c, d′), where d 6= d′. This means that P ∗ can find two different programs
Ψ, Ψ ′ and random values η, η′ ∈ {0, 1}n, such that

η = (t(h(Ψ)⊕ u), u), η′ = (t(h(Ψ ′)⊕ u′), u′)
Commτ

sb(η; s) = Commτ
sb(η

′; s′)
By the statistically binding property of Commsb(·), we have that Pr[η 6= η′] is negligi-
ble. This means that Pr[t(h(Ψ)⊕u) 6= t(h(Ψ ′)⊕u′)] and Pr[u 6= u′] all are negligible.
It follows that Pr[h(Ψ) 6= h(Ψ ′)] is negligible since t is a permutation. Therefore, P ∗

can find a collision for h with a non-negligible probability if ε is non-negligible. This
contradicts with the assumption for Hn. �

In a leaking setting where V carries out leakage attacks, P is not ware of any
leakage attacks. If the simulator is allowed to see V ’s leakage queries, it will get an
extra advantage than P . In other words,

Lemma 2. For any V ∗ that possibly launches leakage attack, there exists an oracle
PPT algorithm SV ∗ , on inputting the description of V ∗ and being allowed to obtain
V ∗’s leakage queries, outputs (v, w) such that the following conditions hold:

– v is indistinguishable from the view of V ∗ interacting with an honest P .
– Let σ be the transcript that is contained in v. w is a witness for σ ∈ LR.

Proof. For any V ∗, let Ψ denote the description of V ∗. Define SV ∗ , which has black-
box access to the leakage oracle, as follows:

– Uniformly select random coins RV ∗ for V ∗.

10

– Obtain (h, t, τ) by invoking V ∗.

– Randomly select u ∈ {0, 1}n and s ∈ {0, 1}2n·n, compute c = Commτ
sb(η; s),

where η = (t(h(Ψ)⊕ u), u).

– Execute Ψ(c) and then obtain leakage query fΨ = Ψ(c). (If V ∗ does not launch
leakage query, fΨ is the empty.)

– Query the leakage oracle with fΨ (·, η, s) (if fΨ is not empty) and obtain ζ =
fΨ (z, η, s).

– Invoke V ∗ with (c, ζ) and it returns d.

– Output v = ((h, τ, c, d, RV ∗), w = (Ψ, ζ, s).

It follows from the hiding property of Commsb that v is indistinguishable from the
view of V ∗. Obviously, (h, t, τ, c, d) ∈ LR and the corresponding witness is w =
(Ψ, u, ζ, s). �

Remark: Since the auxiliary input z (witness for x ∈ L) is not given to Sv∗ ,
SV ∗ cannot compute fΨ (z, η, s) by itself even if SV ∗ has obtained fΨ (·). Fortunately,
SV ∗ here is given access to the leakage oracle. After obtaining fΨ (·), SV ∗ queries the
leakage oracle with fΨ (·, η, s) and then receives fΨ (z, η, s) from the leakage oracle.

The hardness condition of R holds against T (n)O(1)-size adversaries. Barak in [3]
used an error correcting code (ECC)to relax the assumption such that the hardness
condition holds under the existence of the standard collusion-resisted hash functions.
Let ECC be a polynomial-time computable function with polynomial-time encoding
and with constant distance. If one replaces the condition η = (t(h(Ψ) ⊕ u), u) with
η = (t(h(ECC(Ψ))⊕u), u), the conclusion of lemma 1 holds for polynomial sized P ∗.

3.2 A new preamble

The fact that R can be verified in T (n) = nlog logn under the help of the leakage oracle
implies that LR does not lie in NP. Therefore, all the traditional proof systems for NP
cannot deal with LR. Barak and Goldreich in [3] introduced universal arguments for
the languages Ntime(T (n)) and presented a 4-round public-coin protocol, denoted by
〈Pua, Vua〉, for such languages. Their construction is as follows:

Common input: (h, t, τ, c, d). Security parameter 1n.

• Vua sends its first random massage α to Pua.

• Pua computes the response, denoted by β, and sends it to Vau. Let l1 = |β|.
• Vua sends its second random massage γ to Vua.

• Pua computes the response, denoted by δ, and sends it to Vau. Let l2 = |δ|.

The above system 〈Pua, Vua〉 can be used to deal with LR although the verification
of the relation R needs access to the leakage oracle. Suppose that Comm(·; ·) is a non-
interactive statistically binding commitment scheme. By combining Comm(·; ·) with
universal argument 〈Pua, Vua〉, one can construct an “encrypted” universal argument,

denoted by 〈P̃ua, Ṽua〉 for LR (Figure 3).

11

‘Encrypted” universal argument 〈P̃ua, Ṽua〉 for the statement that
(h, τ, c, d) ∈ LR.

– Ṽua executes Vua and sends α to P̃ua.
– P̃ua executes Pua to computes β, and then sends β̃ = (tβ , Comm(tβ(β); rβ))

to Ṽua, where tβ ∈R Tl1 , rβ ∈R {0, 1}∗.
– Ṽua executes Vua and then sends γ to P̃ua.
– P̃ua executes Pua to computes δ and then sends δ̃ = (tδ, Comm(tδ(δ); rδ)) to

Ṽua, where tδ ∈R Tl2 , rδ ∈R {0, 1}∗.

Figure 3: “Encrypted” universal argument 〈P̃ua, Ṽua〉

Next, we define the following relation Rsim corresponding to 〈P̃ua, Ṽua〉 (depicted
in Figure 4).

Instance: σ = ((h, t, τ, c, d), (α, β̃ = (tβ , β̃1), γ, δ̃ = (tδ, δ̃1))).
Witness: (β, rβ , δ, rδ).
Relation: Rsim(σ, (β, rβ , δ, rδ)) = 1 if and only if the following conditions hold.

1. β̃1 = Comm(tβ(β); rβ).

2. δ̃1 = Comm(tδ(δ); rδ).
3. Vua((h, τ, c, d), (α, β, γ, δ)) = 1.

Figure 4: Relation Rsim
Note that Vua is efficient. It follows thatRsim is an NP-relation. The corresponding

language is denoted LRsim ∈ NP . We construct the following preamble Σ for LRsim

(depicted in Figure 5).

Preamble Σ:
– P and V run Φ. Let σ′ = (h, t, τ, c, d) be the transcript.

– P and V run 〈P̃au, Ṽau〉 for σ′.
• V sends Vua’s first massage α to P .
• P sends β̃ = (tβ , Comm(β; rβ)) to V , where β ∈R {0, 1}l1 , tβ ∈R Tl1 ,
rβ ∈R {0, 1}∗.

• V sends Vua’s second massage γ to P .
• P sends δ̃ = (tδ, Comm(δ; rδ)) to V , where δ ∈R {0, 1}l2 , tδ ∈R Tl2 ,
rδ ∈R {0, 1}∗.

The transcript is denoted by σ′′ = (α, β̃, γ, δ̃).

Figure 5: Preamble Σ

The preamble Σ is sound for LRsim
. For any P ∗ interacting with V , let σ be

the transcript of the protocol, then the probability that P ∗ obtains a witness for
σ ∈ LRsim is negligible.
Lemma 3. No matter how P ∗ does, the probability that P ∗ obtains a witness w such
that Rsim(σ,w) = 1 is negligible when V executes the protocol honestly, where σ is
the transcript of protocols.

Proof. Let σ = (σ′, σ′′), where σ′ and σ′′ are the transcript Φ and 〈P̃ua, Ṽua〉, re-
spectively. Assume the probability that, at the end of Σ, P ∗ obtains w such that
Rsim(σ,w) = 1 is non-negligible. Notice that w = (β, rβ , δ, rδ), meeting with

12

– β̃ = (tβ , Comm(β; rβ)), δ̃ = (tδ, Comm(δ; rδ)), σ
′′ = (α, β̃, γ, δ̃).

– Vua(σ′, (α, β, γ, δ)) = 1
It is easy to construct a prover of 〈Pua, Vua〉 from P ∗, denoted by P ∗au, such that
Pr[〈P ∗ua, Vua〉(σ′) = 1] is non-negligible. Therefore, from the proof of knowledge prop-
erty of 〈Pua, Vua〉, there exist a probabilistic T (n)-time oracle machine E such that
Pr[EP

∗
au(σ′) ∈ LTU] is non-negligible. It follows that P ∗ can obtain w′ at the end

of Φ such that R(σ′, w′) = 1 with a non-negligible probability. By lemma 1, this is
impossible. �

3.3 Augmented garbled-circuit

Garbled circuit method allows two parties, P0 and P1, to evaluate an arbitrary func-
tion f(x, y) on their respective inputs x = x1 · · ·xn and y = y1 · · · yn, without leaking
any information about their inputs beyond what is implied by f(x, y).

Let C be a acyclic boolean circuit such that C(x, y) = f(x, y) for any x, y. The ba-

sic idea of garbled-circuits is that one party generates an “garbled-circuit” Ĉ of C, the
second party then obliviously computes the output without learning any intermediate
values.

Suppose that e = poly(n) is the number of wires (including input wires of C and
output wires of every gate in the circuit C). All the wires are labeled by W1, · · · ,We,
where (W1, · · · ,Wn) and (Wn+1, · · · ,W2n) correspond to x and y respectively. Let
OUT = {We−k+1, · · · ,We} be all the output wires and Cg be all gates in C. Let
(G,E,D) be a symmetric encryption scheme that has indistinguishable encryptions
under chosen-plaintext attacks. In addition, assume that (G,E,D) has elusive and
efficiently verifiable range. Such a encryption scheme can be constructed from a family
of pseudorandom functions. One party garbles the circuit C as follows:

1. For each wire Wi, choose two independent keys (k0i , k
1
i) by a algorithm G(1n).

2. Given these keys, the four garbled values of each gate g, with input wires Wi,Wj

and output wire Wm, are computed as follows:

ca,b = Ekai (Ekbj (k
g(a,b)
m), a = 0, 1; b = 0, 1

where the inputs of Wi and Wj are a and b respectively, the output of g is g(a, b).
Let Tg = (c0,0, c0,1, c1,0, c1,1).

3. For each Tg, randomly choose a permutation πg and set T ∗g = πg(Tg)
4
= (c0, c1, c2, c3).

Let T ∗ = {T ∗g }g∈Cg .

4. Construct decryption tables Tdec = {(0, k0i ; 1, k1i)}i=ei=e−k+1, and define garbled-

circuit Ĉ = (T ∗, Tdec).

Garbled circuit method is formally denoted by two PPT algorithms (Garble, Eval).
On inputting 1n and C, algorithm Garble first executes the above process and then
outputs (Ĉ,K0,K1), where K0 =

{
k00,i, k

1
0,i

}n
i=1

is the keys of the input wires of x,

K1 =
{
k01,i, k

1
1,i

}n
i=1

is the keys of the input wires of y. Let Kx =
{
kxi
0,i

}n
i=1

, Ky ={
kyi1,i
}2n
i=n+1

. Algorithm Eval, on inputting Kx,Ky and Ĉ , outputs C(x, y) = f(x, y).

Roughly speaking, for every gate g in C with input wires Wi,Wj and output wire
Wm, Eval uses the keys Ka

i and Kb
j respectively corresponding Wi,Wj to decrypt

13

T ∗g = πg(Tg) = (c0, c1, c2, c3). If more than one decryption or no decryption succeed,

then fails and stops. Otherwise, obtain a key K
g(a,b)
m corresponding Wm. Using Kx,Ky

and starting from the input gates, Eval can obtain the keys of all the output wires
and return C(x, y) by requiring the decryption tables.

Notice that if πg is omitted in garbling C, that is, T ∗g = (c0,0, c0,1, c1,0, c1,1), the

keys Ka
i and Kb

j (corresponding the inputs wires of the gate g) in fact will reveal the
real inputs a and b, since the subscript of the cipher that can be decrypted is (a, b).

Here, assumed that |x| = |y| for simplicity. In fact, this condition is unnecessary.

Garbled circuit method presents an approach for secure two-party computation.
Let OT be 2-round 1-out-of-2 oblivious transfer protocol. Yao’s two-party protocol is
described as follows:

Yao’s protocol Πcd

Common input: C(x, y) = f(x, y), security parameter n and m of Commm
sh().

Private inputs: P0’s input: x; P1’s input: y.

– P0 prepares a garbled-circuit (Ĉ,K0,K1) by (Ĉ,K0,K1) ← Garble(C, 1n)

for the C(x) as above. Then P0 sends Ĉ and Kx to P1.
– P0 and P1 execute OT such that P1 obtains Ky.
• P1 computes v = (v1, · · · , vn), where vi is the first message of OT protocol

using the input yi and fresh randomness ri for i ∈ [n]. It then sends v.
• P0 prepares v′ = (v′1, · · · , v′n), where v′i is the second message of OT

when taking (k01,i, k
1
1,i) as sender’s input and vi as receiver’s first message.

Finally, P0 sends v′.
• P1 computes Ky from v, v′.

– P1 obtains f(x, y) by computing Eval(Ĉ,Kx,Ky).

The construction of LR-ZKA in [20] used Yao’s protocol to compute a conditional
disclosure function such that the verifier reveals a random string only if the prover
holds some special “witness”. In order to force the verifier to compute conditional
disclosure function honestly, a public-coin statistical ZKAoK, in which the verifier
plays the role of a prover, follows this conditional disclosure.

Let Rsim be as above and σ ∈ {0, 1}∗ be the transcript of Σ. As in [20], we use
Yao’s protocol Πcd to compute the following conditional disclosure function:

fσ,Rsim
(r, w) =

{
r, Rsim(σ,w) = 1
0|r|, others

The common input to P0 and P1 is the description of the function fσ,Rsim
or a circuit

C computing fσ,Rsim
.

P0 (known as a sender, denoted by Scd) randomly selects input r ∈ {0, 1}poly(n)
and want to disclose r to P1 (known as a receiver, denoted by Rcd). The receiver
holding w obtains r∗ after the computation has been performed. If R(σ,w) = 1 then
r∗ = r, otherwise r∗ = 0|r|. That is, the sender discloses r to the receiver if and only
if Rsim(σ,w) = 1. Here, we will use Naor’s 2-round OT protocol (presented in [19],
denoted as OTNP) in Πcd. OTNP is secure if the DDH assumption holds. In addition,
OTNP holds the following properties: 1) the sender’s security is statistical; and 2)

14

the receiver’s first message is indistinguishable from one selected uniformly from the
specific message space. It follows from [17] that Πcd securely computes the conditional
disclosure function fσ,Rsim(r, w). Specially, the receiver taking w as the input does not
obtain any information about the sender’s input r except for fσ,Rsim(r, w). Therefore,
the receiver can only obtain 0|r| when w is not a witness for σ ∈ LRsim

.
The computation of the conditional disclosure function fσ,Rsim

(r, w) in our con-
struction of LR-ZKAoK, in fact, is a commitment stage, where the verifier acts as
a sender to commit to a random value r′. If the prover does not have any witness
for σ ∈ LRsim , it only obtains 0|r

′| at the end of this commitment stage. So, the
hiding property holds when the prover does not have any witness. In later stage when
receiving a random value r′′ from the prover, the verifier will reveal r′. Finally, the
prover and the verifier obtain a common random value r = r′ ⊕ r′′. Obviously, After
receiving the revealment to r′ from the verifier the prover cannot verify whether it is
correct. That is, the binding property is in doubt.

The binding property is unnecessary to real interaction, since the prover com-
pletely ignores the computation of fσ,Rsim

(r′, w) and accepts any r′ revealed by the
verifier. In simulation, however, simulator needs to learn r′ by computing fσ,Rsim

(r′, w)
such that r′ ⊕ r′′ equals a specified value by selecting a special r′′. Therefore, if the
verifier does not correctly reveal r′, the simulator will fail even though the prover
does not abort in that case. In order to ensure that the simulator fails if and only if
the prover aborts in real interaction, the prover needs to check weather the verifier
correctly reveal r′ and aborts when the verifier does not. Therefore, we need to modify
the algorithm Garble by replacing the step 3 of garbling circuit with the following
process.

3’. For each Tg, choose randomly permutation πg, and computes CTg
= Commm

sh(πg)

and T ∗g = πg(Tg)
4
= (c0, c1, c2, c3). Let T ∗ = {T ∗g }g∈Cg

and CT = {CTg
}g∈Cg

.

The augmented garbled-circuit is Ĉ = (T ∗, CT , Tdec). It is easy to see that the
modified garbled-circuit can be evaluated by the algorithm Eval when given Kx,Ky.

Therefore, Yao’s protocol Πcd works well in the context of Ĉ = (T ∗, CT , Tdec) and the
proved security has not been impacted.

On the other hand, CT in Ĉ = (T ∗, CT , Tdec) contains the commitments of all πg’s
and can be used to verify the computation of C(x, y). Recall that the receiver com-

putes the garbled-circuit Ĉ of C by executing Eval(Ĉ,Kx,Ky). Starting from Kx,Ky,
every gate in C can be “decrypted” correctly. Concretely, for every gate g Eval uses
the keys corresponding the input wires of g to decrypt T ∗g = πg(Tg) = (c0, c1, c2, c3)
and then obtain the key corresponding the output wires of g. Notice πg is a permu-

tation over Tg = (c0,0, c0,1, c1,0, c1,1), where ca,b = Ekai (Ekbj (k
g(a,b)
m). Therefore, if the

receiver obtains πg, it can recover Tg = (c0,0, c0,1, c1,0, c1,1) by computing π−1g (T ∗g).
By requiring which one of Tg can be decrypted correctly, the receiver can obtain the
inputs of g. Therefore, if the sender opens correctly all πg’s, the receiver can verifies
the sender’s input x and C(x, y).

In our construction, the prover and the verifier (playing the role of sender) jointly
compute fσ,Rsim

(r′, w) by the augmented garbling circuit. This sub-protocol, in sub-
stance, is a commitment scheme in which the verifier commits to a random value r′.

15

In subsequent opening phase, the verifier is required to reveal r′ and all the commit-
ments to πg’s. Since by πg’s the prover can verify weather the sender correctly reveal
r′, the binding property holds since Commm

sh is computationally binding.

4 Constant-round LR-ZKAoK for HC

Let HC be all directed graphs containing Hamiltonian cycles. Our goal in this section
is to construct LR-ZKAoK for NP-relation RHC . Recall Blum’s protocol for HC.

Common input: G = (V ,E) ∈ HC (containing a Hamiltonian cycle H), |V | = n.
– Prover’s first step(P1): The prover selects a random permutation π over V , and

sends the commitmentsto the adjacency of Gi = π(G) to the verifier.
– Verifier’s first step(V1): The verifier uniformly selects a challenge ch ∈R {0, 1}

and sends it to the prover.
– Prover’s second step(P2): If ch = 1, the prover reveals some commitments corre-

sponding to the edges of the Hamiltonian cycle π(H). If ch = 0 then the prover
reveals all the commitments and π.

– Verifier’s second step(V2): The verifier V checks P ’s revealment.

Garg et al. in [13] first presented a LR-ZKP system for NP by adding a preamble
to the paralleled Blum’s protocol. In the preamble, the verifier first commits to its
random challenge ch and a random string r′ using a extractable commitment scheme,
and then the prover sends a random string r′′. In subsequent Blum’s protocol, the
prover uses r = r′ ⊕ r′′ as the first random message of Naor’s commitment scheme
to compute its commitments. From the extractability of the commitment scheme,
the simulator can learn ch and r′ in advance by rewinding the verifier’s strategy.
Therefore, the simulator can answer this challenge correctly and has the ability to
respond leakage queries under the help of the leakage oracle. More precisely, their
construction consist of three stages. In Stage 1, V commits to its challenge ch and a
random string r′ using a public-coin statistically hiding commitment scheme, followed
by many challenge-response slots. In Stage 2, P selects a random string r′′ and V
reveals r′. And then, P and V compute r = r′ ⊕ r′′. Finally, in Stage 3, P and V run
n parallel repetitions of Blum’s protocol. In the first round, P uses Naor’s two-round
commitment scheme, using r as the first message, to commit to the adjacency of the
permuted graphs. In the second round, V reveals the commitment to its challenge ch.
Finally, P responds to this challenge and V verifies the response. The construction of
[13] is a black-box LR-ZKP, since the simulator needs to rewind the verifier’s program
V ∗ such that it can extract the challenge ch and force r to a special distribution.

In the model of [13], cheating verifiers are allowed to launch a leakage query every
time the prover sends its message. To obtain ch and r′, the (black-box) simulator needs
to rewind the challenge-response many times. In each rewinding, the simulator must
inquire the leakage oracle again. Therefore, rewinding will increase the number of bits
that the simulator receives from the leakage oracle. In order to allow the simulator to
obtain ch and r′ with minimal increase of the number of bits from the leakage oracle,
the number of challenge-response slots in Stage 1 is not a constant. This results in
the presented construction is super-constant-round.

16

The LR-ZK property requires that for any V ∗ there exists a simulator (with a
leakage oracle) that can simulate the view of V ∗, while proofs of knowledge require
that there exists a (black-box) knowledge extractor K to extract a witness from P ∗ if
P ∗’s proof is accepted. In the protocol of [13], V commit to its challenges ch before
P sends its commitment. This implies that the permutation that P use to compute
its commitments may depend on the challenge selected by V . This results in that the
black-box knowledge extractors cannot work efficiently. Therefore, the protocol in [13]
is no longer a proof of knowledge. The approach of requiring the verifier to commit to
its challenges ch in advance can ensure LR-ZK property, but then seemingly destroy
the proof of knowledge property.

Recently, [20] presented a constant round leakage-resilient zero-knowledge proof for
HC by combining the idea of [13] with Barak’s non-black-box simulation technique.
Roughly speaking, the protocol of [20] replaced the stage 1 of the protocol of [13]
with a constant round preamble consisting of four stage such that the simulator can
extract the challenge ch and force r to a special distribution of its choice without
rewinding the verifier’s algorithm V ∗. Unfortunately, the protocol of [20] is not a
proof of knowledge because of the same reason as mentioned above.

The key problem in constructing LR-ZKP is how to respond leakage queries in
simulation such that the responses are consistent to the simulated view. To obtain LR-
ZKAoK, we modified the construction in [20] such that the following two conditions
hold: (1) the challenge ch is generated after the prover sends its commitments, as in
[15, 16]; (2) the simulator have chance to control over the generated challenge and the
prover cannot. Thus, the simulator can simulate the prover’s commitments according
to a-priori randomly selected challenge. On the other hand, black-box knowledge
extractors K can work efficiently. To this end, we use a jointly coin-flipping protocol
to generate ch after the prover sends its commitments. In addition, we also need
a preamble in which the simulator obtains “trapdoors”. As in [20], we use Barak’s
non-black-box techniques to construct such a preamble. The difference between this
preamble and that in [20] is that it use a new variant of Barak’s relation to define a NP-
relation Rsim. In general Barak’s non-black-box simulation, the simulator needs the
description of the verifier’s strategy to accomplish a task that the prover cannot. That
is, the simulator’s advantage over the prover is that it is given the verifier’s program.
Notice that apart from the description of the verifier strategy is allowed to see the
verifier’s leakage queries. We define a variant of Barak’s relation by simultaneously
using the description of the verifier’s strategy and leakage queries. The simulator
can take advantage of knowing the description of the verifier’s strategy and leakage
queries to obtain an instance σ ∈ LRsim

and a corresponding witness w such that
Rsim(σ,w) = 1, and no prover can obtain σ ∈ LRsim

. Therefore, the protocol is sound
and meanwhile the simulator have the ability to control over ch and r.

Our protocol, denoted by Π, consists of 5 stages (depicted in Figure 6). In Stage
0, P and V run preamble Σ. Stage 1 is a coin-flipping protocol to produce a random
string r = r′ ⊕ r′′, where r′ and r′′ are randomly picked by P and V respectively.
In this stage, V first commits to a random string r′ by means of computing the
conditional disclosure function fσ,Rsim

(r′, w). Here, the augmented garbled-circuit

Ĉ = (T ∗, CT , Tdec) is used to achieve the conditional disclosure of a random secret r′.

17

Subsequently, P sends a random string r′′, and then V sets r = r′ ⊕ r′′ and reveals
r′ along with and the all permutations committed in CT . If r′ pass the verification,
P compute r = r′ ⊕ r′′. In Stage 2, the prover commits n random permuted graphes
using Naor’s commitment scheme with r as the first message. Stage 3 is another
coin-flipping protocol to produce a random challenge ch. Similarly as in Stage 1, the
augmented garbled-circuit method is used to achieve the conditional disclosure of a
random secret chV selected by V . And then, P randomly selects chP and V reveals
chV . If chV is passed the verification, the two parties obtain a common random string
ch = chP ⊕ chV . In Stage 4, P uses ch as challenge to execute prover’s second step of
Blum’s protocol P2. Then, V executes verifier’s second step of Blum’s V2 with ch.

Π: LR-ZKAoK for HC

Common input: G = (V,E) ∈ HC, |V | = n. Let t = 3n4.
Auxiliary input to the prover: A Hamilton cycle H in G.
– Stage 0: Preamble.
• P and V run Σ. The transcript is denoted by σ = (σ′, σ′′).

– Stage 1: Jointly coin-tossing.
• P sends the first random message m to V . (The first message of the

statistically hiding commitment scheme Commm
sh(·)).

• V (the sender) selects r′ ∈ {0, 1}t, and run Πcd with P to compute
fσ,Rsim(r′, ρ), where ρ is selected by P . Finally, P obtains r∗

• P selects and sends r′′ ∈R {0, 1}t to V .
• V opens r′ and the commitments in CT computed in Πcd. V sets r =
r′ ⊕ r′′.
• P verifies r′ (verifying the decommitment to CT and that r′ is V ’s input

in Πcd) and aborts if the verification fails. Otherwise, P sets r = r′⊕ r′′.
– Stage 2: The prover’s commitment.
• Suppose r = r1 · · · rn, where ri = ri,1 · · · ri,n2 satisfying |ri,j | = 3n for
i ∈ [n] and j ∈ [n2]. For every i ∈ [n], P picks a random permutation
πi and computes Ci = Commri

sb(πi(G); θi) (Naor’s commitment scheme
with ri as the first message), and sends C = (C1, · · · , Cn) to V .

– Stage 3: Jointly coin-tossing:
• V (the sender) selects chV ∈ {0, 1}n and and run Πcd with P (the re-

ceiver) to compute fσ,Rsim
(chV , ρ), where ρ is selected by P . Finally, P

obtains ch′V
• P selects and sends chP ∈R {0, 1}n to V .
• V opens chV and the commitments in CT . V sets ch = chP ⊕ chV .
• P verifies chV (as the verification of r′ in Stage 1) and aborts if the

verification fails. Otherwise, P sets ch = chP ⊕ chV
∆
= ch1 · · · chn.

– Stage 4: P responds to the challenge ch, and V verifies this response.
• P reveals some commitments in Ci corresponding to the edges of the

Hamiltonian cycle πi(H) if chi = 1, or reveals all the commitments in Ci
and πi if chi = 0.
• V verifies the decommitments according to ch.

Figure 6: LR-ZKAoK

18

The presented protocol uses non-black-box techniques such that the total of the
leakage information received by the simulator is as much as the verifier. Concretely,
since the simulator holds the description of the verifier’s strategy V ∗ and is allowed
to receive leakage queries from V ∗, it can obtain a witness for σ ∈ LRsim , where σ is
the transcript of running Σ. By this witness, the simulator has the ability to force r
to a special distribution in Stage 1 and ensure ch equal to a-priori randomly selected
value. This results in that the simulator can interact with V ∗ in later stages as an
honest prover and correctly respond to V ∗’s leakage queries.

Theorem 1. Let H be a family of collision-resistant pseudorandom hash function
and T be a family of pseudorandom permutation. Assume that DDH assumption holds.
Protocol Π is a LR-ZKAoK for HC with knowledge error κ = 2−n, if Commsb(·; ·) is a
Naor’s 2-round statistically binding commitment scheme and Commsh(·; ·) is 2-round
statistically hiding commitment scheme.

Proof. Completeness: Completeness is obvious.
Soundness: Suppose G /∈ HC. For any P ∗, let ε∗ be the probability that P ∗

successfully cheats V . By Lemma 3, we have that for any P ∗ the probability that P ∗

holds a witness for σ ∈ LRsim
at the end of Stage 0 is negligible. Next, we need to

show that the jointly coin-tossing sub-protocol in Stage 1 is secure.
To show this, define

B = {r : ∃s0, s1 ∈ {0, 1}n, such that r = g(s0)⊕ g(s1)}
for g : {0, 1}n → {0, 1}3n (pseudorandom generator used in Naor’s commitment). Let
r′′ be a string that P ∗ sends to V in Stage 1. Then, after V open r′, P ∗ obtains
r = r′⊕ r′′ = r1,1 · · · rn,n2 at the end of Stage 1. We show the following lemma holds.

Lemma 4. No matter what P ∗ does, the probability that there exist i ∈ [n] and
j ∈ [n2] such that ri,j ∈ B is negligible, if V honestly executes the protocol.

Proof. Denote by E1 the event that there exist i ∈ [n] and j ∈ [n2] such that ri,j ∈ B.
Denote by E2 the event that P ∗ holds a witness for σ ∈ LRsim

at the end of Stage 0.

Pr[E1] = Pr[E1 ∧ E2] + Pr[E1 ∧ E2] ≤ Pr[E2] + Pr[E1|E2]

First, it follows from Lemma 3 that Pr[E2] is negligible. Next, under the condition
that P ∗ does not obtain a witness for σ ∈ LRsim

in Stage 0, P ∗ only obtains 0t

by means of executing Πcd and cannot learn r′ before sending r′′ to V . Therefore,
r = r′ ⊕ r′′ is uniformly distributed on {0, 1}t except for a negligible probability if V
is honest. It follows that Pr[E1|E2] is negligible. Therefore, Pr[E1] is negligible. �

By the same reason as above, the following lemma holds.

Lemma 5. For any priori fixed ch′ ∈ {0, 1}n, the probability that P ∗ successfully
selects chP∗ such that ch = ch′ at the end of Stage 3 is negligible, if V honestly
executes the protocol.

By Lemma 4, r generated in Stage 1 is uniformly distributed except for a negligible
probability. So, the commitment scheme Naor’s Commr

sb(·; ·) is statistically binding.
If G /∈ HC, by the binding property of Commr

sb(·; ·), we have that, except for a

19

negligible probability, there is only one ch′ ∈ {0, 1}n such that C = (C1, · · · , Cn)
can be successfully opened according ch′ no matter what P ∗ does. P ∗ computes the
commitments C = (C1, · · · , Cn) before the challenge ch is generated. Therefore, if V
is convinced of G ∈ HC with a noticeable probability, then P ∗ is able to select chP∗

such that chP∗ ⊕ chV = ch′ in Stage 3. By Lemma 5, this is impossible. And then we
have that ε∗ is negligible.

Leakage-resilient zero knowledge: To prove leakage-resilient zero knowledge
property, we need to construct a simulator which not only output a simulated tran-
script but also responds V ∗’s leakage query. The key problem is that the leakage must
conform to the simulated transcript.

We first show how the simulator answers the verifier’s leakage queries. The sim-
ulator is permitted to directly receive leakage query f(state) from V ∗, where state
consists of the witness and all used random value so far. Without holding any witness,
however, the simulator cannot respond to leakage query f directly. It is just well that
the simulator has access to a leakage oracle Lnz that holds the witness z. To respond
to a leakage query f , the simulator construct a new function f ′ such that f ′(z) is
indistinguishable from f(state), and then sends f ′ to the leakage oracle Lnz . The leak-
age oracle Lnz leaks f ′(z) directly to verifier V ∗, and does not leak any information
to the simulator.

Notice that leakage query f takes the form of f(z,R), where z is the prover’s
witness (a Hamiltonian cycle H in G), R = R(z) is a function that, on inputting the
prover’s witness z, outputs the prover’s random coins. To create a new query f ′ after
receiving a query f(z,R(z)) from the verifier, the simulator first selects an appropriate

random coins R̂, and then presents a strategy based on z to select R′ from R̂ such
that f(z,R′) is indistinguishable from f(z,R). Finally, define f ′(z) = f(z,R′).

Non-black-box simulator: given desc(V ∗) and permitted to receive V ∗’s leak-
age query, the non-black-box simulation is very straightforward. Roughly speaking,
the simulator S plays the role of prover to interact with V ∗ and then outputs a sim-
ulated transcript. Concretely, in Stage 0, S can obtain a instance σ = (σ′, σ′′) and

a corresponding witness w = (β, rβ , δ, rδ), where σ′ = (h, τ, t, c, d), σ′′ = (α, β̃, γ, δ̃),
σ = (σ′, σ′′) ∈ LRsim

. In Stage 1, S and V ∗ jointly generate r, which will be used as
the first message of Naor’s commitment scheme used in Stage 2. Using the witness
w, S is able to select a special r in Stage 1, such that all the commitments generated
in Stage 2 can be opened in two different manner. In Stage 2 and Stage 4, S acts as
an honest prover. S completes Stage 3 using the same strategy as that in Stage 1,
such that the generated challenge ch is equal to a specified one which depend on S’s
response to the leakage query in Stage 2. The reason for this is that, in Stage 2, S
must determine all random value of Naor’s commitment scheme in order to response
V ∗’s leakage query. This results in that S must specify the challenge ch in advance.

Let t = 3n4. We denote by S ← V ∗ that S receives a message from V ∗, by S → V ∗

that S sends a message to V ∗. For simplicity, we use S � V ∗ to denote a interactive
process between S and V ∗. The process that V ∗ carries out a leakage query and
obtains the response to it is denoted as S ↔ V ∗.

20

On inputting common n-vertex graph G and the description of the code of the
strategy of V ∗ (denoted by desc(V ∗)), the simulator SLn

z (desc(V ∗), G, aux) (where
aux is V ∗’s axuiliary. We omit aux sometimes) first selects uniformly random string
RV ∗ for V ∗ and then proceeds as follows.

If V ∗ aborts at any point, S outputs V ∗’s current View and stops.

Simulating Stage 0: SLn
z (desc(V ∗), G) deals with V ∗’s leakage queries as follows.

Initially, let R0 = ∅ be the empty bit string. At any point, S resets R0 = R0||R′,
where R′ is the random coins used in the current process. When receiving a leakage

query f(·, ·) from V ∗, SLn
z (desc(V ∗), G) sets f ′(z)

4
= f(z,R0), and then queries Lnz (·)

with f ′(·). Finally, V ∗ obtains f ′(z). It is easy to see that the leakage information,
f ′(z) = f(z;R0), is indistinguishable from one obtained by V ∗ in the real execution.

1. S � V ∗: S runs Φ with V ∗: S first invokes V ∗ and receives (h, t, τ). Thus, S
randomly selects u ∈ {0, 1}n, s ∈ {0, 1}2n2

and computes
c = Commτ

sb(η; s), where η = (t(h(desc(V ∗))⊕ u), u)
Finally, S invoke V ∗ with c.

2. S ↔ V ∗: After receiving a new query f , S sets R0 = t(h(desc(V ∗)) ⊕ u)||u.

Thus, S queries Lnz (·) with f ′(·) 4= f(·, R). Finally, V ∗ obtains
ζ = f ′(z) returned from Lnz (·).
Remark 1: Notice that R = t(h(desc(V ∗))⊕ u)||u is indistinguish-
able from θ||u (corresponding random value generated in real inter-
action), where θ ∈R {0, 1}n. It follows that ζ = f ′(z) is indistin-
guishable from the leakage query in real interaction.

3. S ← V ∗: S receives d from V ∗.
4. S � V ∗: S executes P̃au of 〈P̃au, Ṽau〉 with the witness (desc(V ∗), u, ζ, s).

First, after receiving α from V ∗, S computes β as an honest Pua.
Then, sends β̃ = (tβ , β̃1) to V ∗, where β̃1 = Comm(tβ(β); rβ),
tβ ∈R Tl1 , rβ ∈R {0, 1}∗.

5. S ↔ V ∗: After receiving a new query f from V ∗, S prepares random string
R0 = R0||tβ ||tβ(β)||rβ . Then, S queries the leakage oracle Lnz (·) with

f ′(·) 4= f(·, R), and Lnz (·) returns ζ = f ′(z) to V ∗.
Remark 2: In real interaction, the prover uses tβ ||β′||rβ as random
value to response leakage query, where β′ ∈R {0, 1}l1. Obviously, it
is indistinguishable from tβ ||tβ(β)||rβ used by S.

6. S � V ∗: S receives γ from V ∗, and then computes δ as an honest Pau. Finally,
S sends δ̃ = (tδ, δ̃1) to V ∗, where δ̃1 = Comm(tδ(δ); rδ), tδ ∈R
Tl2 , rδ ∈R {0, 1}∗.

7. S ↔ V ∗: After receiving a new leakage query f from V ∗, S sets R0 =

R0||tδ||tδ(δ)||rδ. Then, S queries Lnz (·) with f ′(·) 4= f(·, R). Finally,
Lnz (·) returns ζ = f ′(z) to V ∗.
Remark 3: Similar to Remark 2.

Let σ be the simulated transcript of Stage 0, fake = (β, rβ , δ, rδ).

Simulating Stage 1: SLn
z (desc(V ∗), G) deals with V ∗’s leakage queries as in

simulating Stage 0. Initially, let R1 = R0. At any point, S resets R1 = R1||R′, where

21

R′ is the random coins used in the current process. To respond to V ∗’s query f ,

SLn
z (desc(V ∗), G) defines f ′(·) 4= f(·, R1) and then queries the leakage oracle Lnz (·)

with f ′(·). Finally, V ∗ obtains f ′(z) from Lnz (·). The details are as follows.

1. S → V ∗: S sends a random value m to V ∗.
2. S ↔ V ∗: After receiving a leakage query f from V ∗, S sets R1 = R1||m. Thus,

S queries Lnz (·) with f ′(·) ∆= f(·, R). Thus, V ∗ obtains f ′(z) returned
from Lnz (·).

3. S
 V ∗: S honestly executes Πcd taking fake = (β, rβ , δ, rδ) as the input. S
first receives Ĉ = (T ∗, CT , Tdec) and Kr′ . Then, S prepares the first
message v1 = (v1,1, · · · , v1,t) of OTNP and sends it to V ∗.

4. S ↔ V ∗: After receiving a leakage query f from V ∗, S sets R1 = R1||R′, where
R′ is random coins used in preparing v. Thus, S queries Lnz (·) with

f ′(·) 4= f(·, R1). Thus, V ∗ obtains f ′(z) returned from Lnz (·).
5. S ← V ∗: After receiving V ∗’s response v′1 = (v′1,1, · · · , v′1,t), S first computes

Kfake from v, v′. Finally, S computes Eval(C,Kfake,Kr′) and then
obtains r∗.

6. S → V ∗: Assume r∗ = r′1 · · · r′n, where r′i = r′i,1 · · · r′i,n2 and |r′i,j | = 3n. For

i ∈ [n], j ∈ [n2], S selects z0i,j , z
1
i,j ∈ {0, 1}n and sets

r′′i,j = r′i,j ⊕ g(z0i,j)⊕ g(z1i,j), r
′′
i = r′′i,1 · · · r′′i,n2

Then, S sends r′′ = r′′1 · · · r′′n to V ∗ and receives r′ along with the
decommitments to all CTg ’s committed in CT from V ∗.

7. Output: S verifies r′ as an honest prover. If the verification fails, S outputs
(RV ∗ ; c, β̃, δ̃, v1, r

′′) and then aborts. Otherwise, S sets r = r′′ ⊕ r∗
and proceeds the next step.

Simulating Stage 2: Assume r = r1 · · · rn , where ri = ri,1 · · · ri,n2 and
|ri,j | = 3n. Obviously, ri,j = g(z0i,j) ⊕ g(z1i,j) for (i, j) ∈ [n] × [n2] if S does not

abort. In this stage, SLn
z (desc(V ∗), G) completes the commitments as follows.

1. S → V ∗: For every i ∈ [n], S picks a random permutation πi and sets Gi =
πi(G). Then, S sends to V ∗ the commitments to the adjacency of
Gi using Naor’s commitment scheme with ri as the first message,

i ∈ [n]. Accurately, S sets Ci = {g(z0i,j)}
j=n2

j=1 for i ∈ [n], and sends
C = (C1, · · · , Cn) to V ∗.

2. S ↔ V ∗: S uses Lnz (·) to answer the leakage queries. The detail is as follows.

Response to query leakage in simulating Stage 2: It is not easy to deal with
leakage queries in this stage although S acts seemingly as the same as an honest
prover. The witness for x ∈ L is a Hamiltonian cycle H in G. For simplicity, we
replace z with H in what follows. After receiving V ∗’s leakage query f(·), S needs to
construct a new leakage query f ′ such that f ′(H) is indistinguishable from f(state).

To this end, S selects random permutation π′i and θ̃i ∈ {0, 1}n, i = 1, · · · , n, such
that the following two conditions hold.

1) Ci = Commri
sb(π

′
i(G); θ̃i).

22

2) S is able to answer the challenge in Stage 4.

It is easy to see that if S has selected such (π′1, θ̃1), · · · , (π′n, θ̃n) and θ̃i ∈ {0, 1}n, it

can construct f ′ by letting f ′(·) = f(·, R1||π′1||θ̃1|| · · · ||π′n||θ̃n).

The condition 1) is easy to meet. But the condition 2), which is related to the
witness H, is not easy to meet owing to lack of the witness. To solve this problem, S
specifies in advance the challenge ch to respond to in Stage 4, and then define a random
function, denoted as Select(H, {z0i,j , z1i,j}), to determine π′i and θ̃i (i = 1, · · · , n) from

ch and the witness H. Select(H, {z0i,j , z1i,j}) proceeds as follows:

– Randomly select a challenge ch = ch1 · · · chn ∈ {0, 1}n.

– For every i ∈ [n]

• If chi = 0, define ρ(0, H) and ϕ(0, H, {z0i,j , z1i,j}) as follows:

(1) ρ(0, H) returns the permutation π′i = πi selected by S in Stage 2. Let
{gi,j}j∈[n2] be the adjacency matrix of Gi = πi(G).

(2) ϕ(0, H, {z0i,j , z1i,j}) returns θ̃i = yi,1|| · · · ||yi,n2 , where yi,j = zbi,j if gi,j = b

for each j ∈ [n2].

Remark: When chi = 0, S will ask to reveal πi and decommit Ci to πi(G)
in Stage 4. ϕ(0, H, {z0i,j , z1i,j}) returns θi = yi,1|| · · · ||yi,n2 such that Ci =
Commri

sb(πi(G); θi).

• If chi = 1, select a random cycle Hi, and define two functions ρ(1, H,Hi) and
ϕ(1, H,Hi, {z0i,j , z1i,j}) as follows:

(1) ρ(1, H,Hi) first selects a permutation π such that Hi = πi(πi(H)). Thus,
ρ(1, H,Hi) returns π′i = πi ◦ πi.

(2) ϕ(1, H,Hi, {z0i,j , z1i,j}) computes π′i such that Hi = π′i(H). Let {g′i,j}j∈[n2]

be the adjacency matrix of Gi = π′i(G). ϕ(1, H,Hi, {z0i,j , z1i,j}) returns

θi = yi,1|| · · · ||yi,n2 , where yi,j = zbi,j if g′i,j = b for each j ∈ [n2].

Remark: When chi = 1, S will ask to reveal a random hamiltonian cycle
committed in Ci in Stage 4. S first selects randomly Hi and then the leakage
oracle can determine a permutation π′i such that Hi = π′i(H) by executing

ρ(1, ·, Hi) with H, and compute θ̃i such that Ci = Commri
sb(π

′(G); θ̃i) by
executing ϕ(1, ·, Hi, {z0i,j , z1i,j}) with H.

– Output R′ = π′||θ̃1|| · · · ||π′n||θ̃n.

After receiving V ∗’s query f(·), S defines a new leakage query
f ′(H) = f(H,R1||Select(H, {z0i,j , z1i,j}))

Then, S queries Lnz (·) with f ′(·) and V ∗ obtains f ′(H) from Lnz (·). It is easy to see that
f ′(H) is the same as one leaked from P . Finally, letR2(H) = R1||Select(H, {z0i,j , z1i,j}).

Simulating Stage 3: S honestly executes Πcd taking fake as the inputs of
the garbled-circuit. S handles leakage queries as in simulating Stage 1. Initially, let
R3 = R2(H).

23

1. S
 V ∗: S honestly executes Πcd taking fake as the inputs of the garbled-
circuit. S first receives Ĉ = (T ∗, CT , Tdec) and KchV

(keys cor-
responding chV ∗). Then, S prepares the first message v2 =
(v2,1, · · · , v2,t) of OTNP and sends it to V ∗.

2. S ↔ V ∗: After receiving a leakage query f from V ∗, S sets R3 = R3(H)||R′,
where R′ is random coins used in preparing v. Thus, S queries Lnz (·)
with f ′(·) 4= f(·, R). Thus, V ∗ obtains f ′(z) returned from Lnz (·).

3. S ← V ∗: After receiving V ∗’s response v′2 = (v′2,1, · · · , v′2,t), S first computes
Kfake from v, v′. Finally, S computes Eval(C,Kfake,KchV

) and then
obtains chV ∗ .

4. S → V ∗: S sets chP = ch⊕ chV ∗ and sendschP to V ∗. V ∗ returns the decom-
mitments to CTg

to S.
5. Output: S verifies chV ∗ as an honest prover. If the verification fails, S outputs

the view (RV ∗ ; c, β̃, δ̃, v1, r
′′,
−→
C , v2, chP) and then aborts. Otherwise,

S sets ch = chP ⊕ chV ∗ and proceeds the next step.

Simulating Stage 4:

1. S → V ∗: S reveals πi and all the commitments of Ci when chi = 0, or reveals
some commitments of Ci corresponding to the edges to Hi when
chi = 1, for every i ∈ [n]. Formally, S sets

Ansi =

{(
πi, {z

g′i,j
i,j }n

2

j=1

)
, chi = 0{

z1i,j : h′i,j = 1, 1 ≤ j ≤ n2
}
, chi = 1

where {g′i,j}n
2

j=1 and {h′i,j}n
2

j=1 are the adjacencies of Gi = π(G) and
Hi, respectively. S sends Ans = (Ans1, · · · , Ansn) to V ∗.

Outputting : Finally, S outputs (RV ∗ ; c, β̃, δ̃, v1, r
′′,
−→
C , v2, chP , Ans) and stops.

Simulator’s output distribution: Next, we use the hybrid argument method
to prove that

{
SLn

z (·)(G, desc(V ∗), aux)
}
x∈L,aux∈{0,1}∗ is indistinguishable from the

real view {V iewV ∗(G, aux)}x∈L,aux∈{0,1}∗ .

For simplicity, we will omit V ∗’s auxiliary aux in what follows.

First, the prover may abort in real interaction when V ∗ fails in revealing r′ cor-
rectly in Stage 1(or chV ∗ in Stage 3). Notice that S aborts in simulating Stage 1
(or Stage 3) under the same condition, and meanwhile outputs the current simulated
view. For simplicity, we assume S does not abort in simulating Stage 1 or Stage 3 in
what follows.

Suppose there is a hybrid simulator Ŝ which receives a Hamiltonian cycle H ⊆ G
as the input. We define hybrid experiments as follows:

Exp0: Ŝ holding a hamiltonian cycle H, executes the protocol with V ∗ just like the
honest prover.

24

Exp1: This experiment is the same as Exp0 except that in Stage 0 Ŝ interacts with
V ∗ as S. Specially, Ŝ computes c = Commτ

sb(η; s) after receiving (h, t, τ) from
V ∗, where u ∈R {0, 1}n, η = t(h(desc(V ∗)) ⊕ u, u), and then sends c to V ∗.

After receiving a leakage query f from V ∗, Ŝ computes the leakage information
ζ = f(H,R). Finally, Ŝ can compute β̃, δ̃ as an honest P̃ua.

Exp2: This experiment is the same as Exp1 except that in Stage 1 Ŝ interacts with
V ∗ and responds to leakage queries as S.

Exp3: This experiment is the same as Exp2 except in Stage 2 and Stage 4. In Stage

2, Ŝ interact with V ∗ as S to commit to πi(G) by Ci = {g(z0i,j)}
j=n2

j=1 for a

randomly selected πi. Let ch = ch1 · · · chn be the challenge selected by S̃ in
Stage 2, ch′ = ch′1 · · · ch′n be the challenge generated in Stage 3. The probability

that ch = ch′ is negligible since Ŝ proceeds as the honest prover in Stage 3.
Therefore, Ŝ should use a special strategy to answer the challenge ch′. More
precisely, Ŝ proceeds in Stage 4 as follows.

• When chi = 0 ∧ ch′i = 0, Ŝ simply reveals πi and {zg
′
i,j

i,j }n
2

j=1 to show Ci is
the commitments to πi(G) = (g′i,j).

• When chi = 0 ∧ ch′i = 1, using H and πi (selected in Stage 2), Ŝ can
open some commitments of Ci according to the Hamiltonian cycle πi(H)

in Stage 4. (Because Ŝ replies to the leakage query in Stage 2 as an honest

prover (chi = 0), Ŝ’s respond to ch′i is coincident with its leakage answer
in Stage 2.)

• When chi = 1 ∧ ch′i = 0, Ŝ first invokes ρ(1, H,Hi) and
ϕ(1, H,Hi, {z0i,j , z1i,j}) with H and Hi (selected by S in Stage 2) to de-

termine π′i and the random coins z
g′i,j
i,j for each j ∈ [n2], where {g′i,j}j∈[n2]

be the adjacency matrix of Gi = π′i(G), and then reveals πi and {zg
′
i,j

i,j }n
2

j=1

to show that Ci is the commitment to Gi. (Here, Ŝ uses the same strategy

as in Stage 2 to determine π′i and the random coins z
g′i,j
i,j .)

• if chi = 1, ch′i = 1, Ŝ opens some commitments of Ci according to the
Hamiltonian cycle Hi (the Hamiltonian cycle picked in Stage 2).

Exp4: This experiment is the same as Exp3 except that in Stage 3 Ŝ interact with
V ∗ and responds to leakage queries as S.

Exp5: This experiment is the same as Exp4 except that Ŝ interact with V ∗ like S in
Stage 4. That is, Ŝ in Exp5 is the same as S .

Let Di be the output of Ŝ in Expi (i = 0, 1, 2, 3, 4, 5). In Expi, V
∗’s leakage queries

are dealt with as S from Stage 0 to Stage i−1. It is easy to see that D0 = V iewV ∗(G)
and D5 = SLn

z (·)(G, desc(V ∗)).
Notice the differences between Exp0 and Exp1 are that the values committed by

c, β̂1, δ̂1 respectively are different. Thus, it follows from the hiding property of the
commitment schemes that D0 and D1 are indistinguishable.

Exp2 is different from Exp1 in two aspects: (1) the input to Πcd in Stage 1,

and (2) the distribution of r′′ (and then r). More precisely, Ŝ computes Πcd with a
random input in Exp1, whereas with a witness of σ ∈ LRsim

in Exp2. Additionally,

25

instead of selecting uniformly r′′ in Exp1, Ŝ randomly selects z0i,j , z
1
i,j ∈R {0, 1}n

and then constructs r′′ such that r = r′ ⊕ r′′ = r1 · · · rn = r1,1 · · · rn,n2 meeting
with ri,j = g(z0i,j) ⊕ g(z1i,j) for every i ∈ [n], j ∈ [n2], where r′ be the output of Πcd

received by Ŝ. Therefore, the fact that D2 and D1 are indistinguishable is implied by
the receiver’s security of OTNP and the pseudo-randomness of g.

The differences between Exp3 and Exp2 are in two aspects. One is Ŝ computes
Ci = Commri

sb(πi(G); θi) (the commitment to {g′i,j}n
2

j=1, the adjacency of Gi = πi(G)
for a randomly selected πi) using different θi = θi,1 · · · θi,n2 . In Exp2, πi is uniformly
selected is Stage 2 and θi,j ∈R {0, 1}n is independent with zbi,j (b = 0, 1), whereas
in Exp3, πi is determined from H and Hi (a random Hamiltonian cycle selected in

Stage 2), θi,j = z0i,j if g′i,j = 0 or z1i,j if g′i,j = 1. So, Ci = {g(z0i,j)}n
2

j=1 in Exp3.

The other is the approach of replying to the challenge ch′ = ch′1 · · · ch′n generated

in Stage 3. In Exp2, Ŝ honestly replies ch′ in Stage 4. In Exp3, Ŝ (in Stage 4) first

determines πi from H and Hi by requiring Hi = πi(H). Next, Ŝ sets θi,j = z
g′i,j
i,j ,

j = 1, · · · , n2. After then, Ŝ reply ch′i as in Exp2. Ŝ needs the witness H in Stage 4.

Notice πi is also uniformly distributed in Exp3 although it is determined from H
and Hi. It is easy to see that the difference between D3 and D2 results only from
Ci’s. D3 and D2 are distinguishable means g(z1i,j) and g(θi,j) ⊕ g(z0i,j) ⊕ g(z1i,j) (the

commitments to 1 in Exp3 and Exp2, respectively) are distinguishable for zbi,j , θi,j ∈R
{0, 1}n. This is contradict with the pseudo-randomness of g. It follows that D3 and
D2 are computationally indistinguishable.

The difference between Exp4 and Exp3 lies in Stage 3. Notice that Stage 3 is
aimed at generating a uniform challenge ch′. In Exp4, Ŝ first randomly selects ch in
Stage 2, and then take fake = (β, rβ , δ, rδ) (the witness of σ ∈ Lsim) as the input
to run Πcd in Stage 3, such that the generated challenge ch′ = chP ⊕ chV ∗ = ch. In
Exp3, however, Ŝ honestly executes Stage 3 and generates an uniformly independent
ch′ = chP ⊕ chV ∗ . Obviously, the difference between Exp4 and Exp3 in essential is
that Ŝ computes Πcd with the different inputs. Therefore, the fact that D4 and D3

are indistinguishable is implied by the receiver’s security of OTNP .

Because of ch = ch′ in Exp4. it is not hard to see that Epx5 is the same as Exp4.
So, D5 and D4 are identical.

Overall, D5 and D0 are indistinguishable. That is,
{
SLn

z (·)(G, desc(V ∗))
}
x∈L is

indistinguishable from {V iewV ∗(G)}x∈L.

Proof of Knowledge: By Definition 3, we need to construct a knowledge extrac-
tor K with knowledge error κ, such that K, given access to the prover-strategy oracle
P ∗, can output a witness at least with the probability p′ = p − κ if P ∗ is accepted
with the probability p > κ. Here, κ = 2−n.

On input G, KP∗ first interacts with P ∗ to execute the protocol as an honest
verifier. Let ch the challenge generated in Stage 3. If the proof of P ∗ is rejected,
KP∗ output ⊥ and aborts. Otherwise, K rewinds P ∗ to the beginning of Stage 3
to rerun the residual protocol with a random ch′V . KP∗ repeats this until another
acceptable proof occurs. Assume the second accepting proof occurs in jth iteration
and the corresponding challenge is denoted by ch′. Thus, for the same commitments

26

C = (C1, · · · , Cn), KP∗ obtains two accepting proofs corresponding to ch and ch′

respectively . If ch = ch′, KP∗ outputs ⊥ and aborts. Otherwise, there exists j ∈ [n],
such that chj 6= ch′j , and KP∗ obtains πi and Hamiltonian cycle Hi of Gi = πi(G).

Finally, KP∗ outputs H = π−1(Hi) and stops. The details are in Figure 7.

Next, we show that KP∗ runs in the expected polynomial time.

In fact, Let p the probability that the proof of the first execution of the protocol
is accepted by V , p′ be the probability that P ∗ successfully responds to the query
in Stage 4. From that fact that the ch, ch′ are uniformly distributed if V is honest,
it is easy to see that P correctly responds to ch and ch′ with the same probability.
Therefore, it follows that p′ ≥ p. (Because the fact the proof is accepted means that
P ∗ correctly replies ch.). Notice that KP∗ clearly runs in strict polynomial time when
p = 0. So we assume that p > 0 in what follows. Therefore, the expected running time
of KP∗ is given by

(1− p) · poly(n) + p · 1
p′ · poly(n) = poly(n)

That is, KP∗ an expected polynomial-time algorithm.

Step 1 K, playing the role of the honest verifier, interacts with P ∗ to perform
the first three stages. Then, K obtains the commitment Ci to the
adjacency of Gi (i ∈ [n]) from P ∗.

Step 2 K honestly executes Stage 3. Concretly, K first randomly selects
chV ∈R {0, 1}n) to run Πcd. After receiving chP from P ∗, S com-
putes ch = chP ⊕ chV .

Step 3 K honestly executes Stage 4 with P ∗. After receiving the response
to ch from P ∗, K verifies the response. If the verification fails, K
outputs ⊥ and aborts. Otherwise, K proceeds next step.

Step 4 K rewinds P ∗ to run Stage 3, and obtains ch′ at the end of Stage 3.
Step 5 K executes Stage 4 with P ∗. After receiving the response to ch′ from

P ∗, K verifies this response. If the verification fails, K returns to the
point of the beginning of Step 4. Otherwise, K proceeds next step.

Step 6 If ch = ch′, K outputs ⊥ and aborts. Otherwise, let i be such that
chi 6= ch′i, K obtains two accepting response corresponding to two
different queries chi and ch′i respectively, e. g. chi = 0, ch′i = 1. Thus,
for given commitment Ci, K obtains a Hamiltonian cycle Hiof Gi
from the response to chi and a permutation πi meeting Gi = πi(G)
fron the response to ch′i. Finally, K outputs H = π−1(Hi) and stops.

Figure 7: Knowledge extractor

Next, we show that the probability for K to output a Hamiltonian cycle is at least
p− 2−n when p > 2−n.

Let ErrorFail be the event that the first proof is reject. Then, we have
p = Pr[¬ErrorFail] = 1− Pr[ErrorFail]

Let CollisionFail denote the event that KP∗ outputs ⊥ becasue of ch = ch′ in Step
6. Thus, KP∗ fails if ErrorFail or CollisionFail takes palce. We have

27

Pr[KP∗(G) = ⊥] = Pr[ErrorFail] + Pr[¬ErrorFail ∨ CollisionFail]
We denote by CollisionFailj the event that KP∗ outputs ⊥ at jth repetition, that
is, P ∗ fails to reply the correponding challenge in the first j − 1 times repetition and
correctly responds to ch′in jth iteration but ch = ch′. Thus, using Pr[ch = ch′] = 2−n,
we have the following

Pr[¬ErrorFail ∨ CollisionFail] = Pr[¬ErrorFail ∨ (∨j=1CollisionFailj)]
= Pr[¬ErrorFail] Pr[(∨j=1CollisionFailj)|¬ErrorFail]
= Pr[¬ErrorFail]

∑
j=1 Pr[CollisionFailj |¬ErrorFail]

= p
∑
j=1(1− p′)j−1 · 2−n

= 2−np · 1
p′ ≤ 2−n

Therefore, the probability that KP∗ succeeds in computing a Hamiltonian cycle of G is

Pr[KP∗(G) = H : (G,H) ∈ RHC] = 1− Pr[¬ErrorFail ∨ Collision]
= 1− Pr[ErrorFail]− Pr[¬ErroFail ∨ CollisionFail]
≥ p− 2−n

The proof is completed. �

Acknowledgements
This work was partially supported the National Natural Science Foundation of China
(Grant No. 60970139,61003276), Strategic Priority Program of Chinese Academy of
Sciences (Grant No. XDA06010702).

References

1. M. Bellare, O. Goldreich. On defining proofs of knowledge. Advances in Cryptology-
CRYPT’92, LNCS, vol.740, Springer-Verlag,1992, pages 390-420.

2. M. Bellare, O. Goldreich. On probabilistic versus deterministic provers in the definition
of proofs of knowledge. Electronic Colloquium on Computational Complexity Report
TR06-136.

3. Barak B., Goldreich O., Universal arguments and their applications. In Proc. of 17th
IEEE Annual Conference on Computational Complexity, 2002, page 162-171.

4. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on computing, 1989, 18(16):186-208.

5. O. Goldreich. Foundations of Cryptography - Basic Tools. Cambridge University Press,
2001.

6. S. Halevi, S. Micali. More on proofs of knowledge. http://eprint.iacr.org/1998/015.
7. Hongda Li, Qihua Niu, Bei Liang. Leakage-Resilient Zero-Knowledge Proofs of Knowl-

edge for NP. (to appear)
8. Itoh Toshiya, Sakurai Kouichi. On the Complexity of Constant Round ZKIP of Pos-

session of Knowledge. IEICE TRANS. FUNDAMENTALS, 1993, VOL. E76-A, NO,
1:31-39.

9. Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage tolerant interactive protocols. Cryp-
tology ePrint Archive, Report 2011/204, 2011.

10. E.Boyle, S. Goldwasser, A. Jain and Yael T. Kalai. Multiparty computation secure
against continual memory leakage. In proceedings of the 44th symposium on Theory
of Computing, STOC ’12, Pages 1235-1254.

28

11. Elette Boyle, Shafi Goldwasser, and Yael Tauman Kalai. Leakage-resilient coin tossing.
In DISC, 2011.

12. Ivan Damgard, Carmit Hazay, and Arpita Patra. Leakage resilient two-party computa-
tion. Cryptology ePrint Archive, Report 2011/256, 2011.

13. Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
CRYPTO, pages 297-315, 2011.

14. O. Goldreich, A. Kahan. How to construct constant-round zero-knowledge proof system
for NP. Journal of Cryptology, 1996,9(3):167-189.

15. Li Hongda, Feng Dengguo, Li Bao, Xu Haixia. Round-optimal zero-knowledge proofs of
knowledge for NP. Science China: Information Science, 2012, 55(11):2417-2662.

16. Y. Lindell. Constant-Round Zero-Knowledge Proofs of Knowledge.
http://eprint.iacr.org/2010/656.

17. Y. Lindell, B.Pinkas. A proof of security of Yao’s protocol for two-party compuation.
Journal of Cryptology, 22(2):161-188, 2009.

18. Moni Naor. Bit commitment using pseudo-randomness (extended abstract). In
CRYPTO, pages 128-136, 1989.

19. Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448C457, 2001.

20. Omkant Pandey. Achieving constant round leakage-resilient zero knowledge.
eprint.iacr.org/2012/362.pdf.

21. Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, 2002.

