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Abstract. Abe, Groth, Ohkubo and Tibouchi recently presented structure-preserving
signature schemes using Type 2 pairings. The schemes are claimed to enjoy the fastest
signature verification. By properly accounting for subgroup membership testing of group
elements in signatures, we show that the schemes are not as efficient as claimed. We present
natural Type 3 analogues of the Type 2 schemes, and show that the Type 3 schemes are
superior to their Type 2 counterparts.

1. Introduction

The term ‘structure-preserving signature scheme’ was coined in 2010 by Abe et al.
[1]. These pairing-based signature schemes have the property that verification keys, mes-
sages, and signatures are all group elements. Moreover, signatures are verified by test-
ing the equality of products of pairings of group elements; each such equality is called
a product-of-pairings equation (PPE). Structure-preserving signature schemes are fully
compatible with Groth-Sahai non-interactive witness-indistinguishable (NIWI) and non-
interactive zero-knowledge (NIZK) proof systems [16] and have been used in the design of
numerous cryptographic protocols; a list of these protocols can be found in [3].

In typical applications of structure-preserving signature schemes when used in conjunc-
tion with Groth-Sahai proofs, a party has a signed message and wishes to convince a second
party (the verifier) that it possesses the (valid) signed message without revealing the mes-
sage or the signature. Groth-Sahai NIWI and NIZK proofs allow a party (the prover) to
convince a second party (the verifier) that it possesses a solution to a collection of PPEs1.
The complexity of verifying a Groth-Sahai proof is heavily dependent on the number of
group elements in the signature and the number of PPEs in signature verification (see [9,
§3.4]). For this reason, researchers have strived to design structure-preserving signature
schemes with the smallest possible number of group elements in a signature and with the
smallest possible number of PPEs in signature verification.

At CRYPTO 2011, Abe et al. [2] presented a structure-preserving signature scheme using
Type 3 pairings. Verification has two PPEs, which was proven to be optimal in the sense
that any Type 3 structure-preserving signature scheme with verification having a single PPE
was shown to succumb to a random message attack. Moreover, signatures are comprised of
three group elements, which was also shown to be optimal. The scheme was proven to be
strongly secure against generic signers.

Date: August 18, 2014.
1Two examples of Groth-Sahai NIWI proofs for verifying that the prover possesses the solution Y to an

equation e(A,Y ) = t where e is a Type 2 or a Type 3 pairing are given in Appendix A.
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At CRYPTO 2014, Abe et al. [3] presented a strongly unforgeable structure-preserving
signature scheme and a randomizable structure-preserving signature scheme using Type 2
pairings. Both schemes are claimed to have signatures that are comprised of only two
group elements, have only one PPE in signature verification, and were proven secure against
generic signers. The authors conclude that their schemes enjoy the fastest signature ver-
ification. Moreover, in light of the aforementioned lower bounds on the number of group
elements in signatures and the number of PPEs in signature verification for Type 3 structure-
preserving signature schemes, they conclude that the Type 2 schemes have no analogues
in the Type 3 setting. This is contrary to the arguments presented in [11] that any cryp-
tographic protocol that employs Type 2 pairings has a natural counterpart in the Type 3
setting that does not suffer any loss in functionality, security or efficiency.

We observe that the analysis of the Type 2 structure-preserving signature schemes in [3]
neglected to account for subgroup membership testing of all group elements in a signature.
Incorporating these subgroup membership tests into Groth-Sahai proofs increases the num-
ber of group elements in signatures and also increases the number of PPEs in signature
verification. Consequently, the Type 2 schemes are not as efficient as claimed in [3]. We
present natural Type 3 analogues of the Type 2 schemes, and show that the Type 3 schemes
are superior to their Type 2 counterparts.

The remainder of the paper is organized as follows. In §2 we summarize the salient
differences between Type 2 and Type 3 pairings derived from elliptic curves having even
embedding degrees. In §3, we explain why the strongly unforgeable structure-preserving
signature scheme in [3] actually has signatures comprising of three group elements and has
two PPEs in signature verification. We present a natural analogue of the scheme in the
Type 3 setting, and show that it is more efficient than the Type 2 scheme. In §4, we present
our Type 3 analogue of the Type 2 randomizable structure-preserving signature scheme in
[3], and show that the Type 3 scheme is more efficient. We draw our conclusions in §5.

2. Asymmetric bilinear pairings

Let Fq be a finite field of characteristic p ≥ 5, and let E be an ordinary elliptic curve
defined over Fq. Let n be a prime divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the

embedding degree) be the smallest positive integer such that n | qk − 1. We will henceforth
assume that k is even, since then some important speedups in pairing computations are
applicable [6]. Some prominent families of elliptic curves with even embedding degree
include the MNT [19], BN [7], KSS [18], and BLS [5] curves.

Since k > 1, we have E[n] ⊆ E(Fqk) where E[n] denotes the n-torsion group of E. Let
G ∈ E(Fq)[n] be an Fq-rational point of order n, and define G1 = 〈G〉. Let GT denote
order-n subgroup of the multiplicative subgroup of Fqk .

2.1. Type 3 pairings. Following [14], we denote by D the CM discriminant of E and set

(1) e =







gcd(k, 6), if D = −3,
gcd(k, 4), if D = −4,
2, if D < −4,

and d = k/e. For example, BN curves have k = 12, e = 6 and d = 2, whereas MNT

curves have k = 6, e = 2 and d = 3. Now, E has a unique degree-e twist Ẽ defined
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over Fqd such that n | #Ẽ(Fqd) [17]. Let Ĩ ∈ Ẽ(Fqd) be a point of order n, and let

G̃3 = 〈Ĩ〉. Then there is a monomorphism φ : G̃3 −→ E(Fqk) such that I = φ(Ĩ) 6∈ G1. The
group G3 = 〈I〉 is the Trace-0 subgroup of E[n], so named because it consists of all points

P ∈ E[n] for which Tr(P ) =
∑k−1

i=0 π
i(P ) = ∞, where π denotes the q-th power Frobenius.

The monomorphism φ can be defined so that φ : G̃3 −→ G3 can be efficiently computed in
both directions; therefore we can identify G̃3 and G3, and consequently G3 can be viewed
as having coordinates in Fqd (instead of in the larger field Fqk).

Non-degenerate bilinear pairings e3 : G1×G3 −→ GT are said to be of Type 3 because no
efficiently-computable isomorphisms from G1 to G3 or from G3 to G1 are known [14]. There
are several Type 3 pairings, of which the most efficient is Vercauteren’s optimal pairing [20].

2.2. Type 2 pairings. Let H ∈ E[n] with H 6∈ G1 and H 6∈ G3. Then G2 = 〈H〉 is an
order-n subgroup of E(Fqk) with G2 6= G1 and G2 6= G3. Non-degenerate bilinear pairings
e2 : G1×G2 −→ GT are said to be of Type 2 because the map Tr is an efficiently-computable
isomorphism fromG2 toG1; note, however, that no efficiently-computable isomorphism from
G1 to G2 is known. These pairings have the property that hashing onto G2 is infeasible
(other than by multiplying H by a randomly selected integer).

The computation of e2 is efficiently reduced to the task of computing Type 3 pairing e3
[14]. Thus, the costs of computing e2 and e3 are approximately equal. To see this, define
the maps

(2) ψ : E[n] −→ G1, Q 7→
1

k
Tr(Q)

and

(3) ρ : E[n] −→ G3, Q 7→ Q− ψ(Q).

Recall that e2 and e3 are restrictions of the Tate pairing ê : E[n] × E[n] −→ GT . Hence,
for all P ∈ G1, Q ∈ G2, we have

(4) e2(P,Q) = ê(P,ψ(Q) + ρ(Q)) = ê(P,ψ(Q)) · ê(P, ρ(Q)) = ê(P, ρ(Q)) = e3(P, ρ(Q)).

2.3. Comparing the performance of Type 2 and Type 3 pairings. Since points in
G2 have coordinates in Fqk whereas points in G3 have coordinates in the proper subfield
Fqd , it would appear that the ratio of the bitlengths of points in G2 and G3 is k/d. Similarly,

the ratio of the costs of addition in G2 and G3 can be expected to be k2/d2 bit operations
(using naive methods for extension field arithmetic). These ratios are given in Table 3 of
[14]. However, as observed in [10], points in G2 have a shorter representation which we
describe next. We emphasize that this representation can be used for all order-n subgroups
G2 of E[n] different from G1 and G3.

Let H be an arbitrary point from E[n]\(G1∪G2), and set G2 = 〈H〉. Define G = 1
kTr(H)

so that the map ψ restricted to G2 is an efficiently-computable isomorphism from G2 to G1

with ψ(H) = G. Finally, set I = H −G. Then I ∈ G3 and the map ρ restricted to G2 is an
efficiently-computable isomorphism from G2 to G3 with ρ(H) = I.

Now, given a point Q ∈ G2, one can efficiently determine the unique points Q1 ∈ G1

and Q2 ∈ G3 such that Q = Q1 + Q2; namely, Q1 = ψ(Q) and Q2 = ρ(Q) = Q − Q1.
Writing D(Q) = (ψ(Q), ρ(Q)), and letting H2 ⊆ G1 × G3 denote the range of D, we
have an efficiently-computable isomorphism D : G2 −→ H2 whose inverse is also efficiently
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computable. Hence, without loss of generality, points Q ∈ G2 can be represented by a
pair of points (Q1, Q2) with Q1 ∈ G1 and Q2 ∈ G3. Note that arithmetic in G2 with this
representation is component-wise. Thus the ratio of the bitlengths of points in G2 and G3

is in fact (d+ 1)/d, whereas the ratio of the costs of addition in G2 and G3 is (d2 + 1)/d2.
Table 2 of [10] lists the costs of performing basic operations in G1, G2 and G3 for a

particular BN curve. The table confirms the expectation that basic operations in G2 are
only marginally more expensive than the operations in G3. One exception is that testing
membership in G2 is several times more expensive than testing membership in G1 and
G3. To see this, let us consider the case of BN curves E defined over Fq where q and
n = #E(Fq) are prime; recall that these curves have embedding degree k = 12 and d = 2.
Testing membership of a point Q in G1 is very efficient, and simply entails verifying that
Q has coordinates in Fq and satisfies the equation that defines the curve, i.e., Q ∈ E(Fq).

Testing membership of a point Q in G3 involves a fast check that φ−1(Q) is in Ẽ(Fq2),
followed by an exponentiation in G3 to verify that nQ = ∞. Testing membership in G2

is more costly since the known methods require two pairing computations. If the shorter
representation (as elements of G1 ×G3) is used for G2, then membership of (Q1, Q2) in G2

can be determined by first checking that Q1 ∈ G1 and Q2 ∈ G3, and then verifying that
e3(Q1, I) = e3(G,Q2) [12]. If the longer representation (as elements of E(Fq12)) is used for
G2, then membership of Q in G2 can be determined by first checking that Q ∈ E(Fq12) and
nQ = ∞, and then verifying that e2(ψ(Q),H) = e2(G,Q).

In the remainder of the paper, we will use multiplicative notation for elements of G1, G2

and G3.

3. Strongly unforgeable structure-preserving signatures

We present the Type 2 strongly unforgeable structure-preserving signature scheme from
[3] and our Type 3 analogue of it. The Type 3 scheme was obtained by following the general
recipe given in [11] for converting a protocol from the Type 2 setting to the Type 3 setting.

3.1. Type 2 strongly unforgeable structure-preserving signature scheme [3].

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key is v,w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To signM ∈ G2, select t ∈R [1, n−1] and compute R = Ht−w

and S =Mv/tH1/t. The signature on M is (R,S).
(4) Signature verification. To verify a signed message (M, (R,S)), check that

(a) M,R,S ∈ G2; and
(b) e2(Wψ(R), S) = e2(V,M) · e2(G,H).

In [3, Theorem 2], the Type 2 scheme is proven strongly secure2 against generic forgers.
Signatures are comprised of two G2 elements. Signature verification requires three G2

membership tests and one PPE verification.

2A signature scheme is said to be secure if it is existentially unforgeable under chosen-message attack.
If, in addition, it is infeasible to find a new signature for a message that has already been signed, then the
signature scheme is said to be strongly secure.
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3.2. Type 3 strongly unforgeable structure-preserving signature scheme.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v,w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To signM ∈ G3, select t ∈R [1, n−1] and computeR1 = Gt−w,

R2 = It−w, and S =Mv/tI1/t. The signature on M is (R1, R2, S).
(4) Signature verification. To verify a signed message (M, (R1, R2, S)), check that

(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(WR1, S) = e3(V,M) · e3(G, I).

Correctness of the Type 3 signature scheme is easily verified since

e3(WR1, S) = e3(G
w ·Gt−w,Mv/tI1/t)

= e3(G
t,Mv/tI1/t)

= e3(G,M
v · I)

= e3(G,M
v) · e3(G, I)

= e3(V,M) · e3(G, I).

The security proof given in [3, Theorem 2] that the Type 2 scheme is strongly secure
against generic forgers also applies (with minimal changes) to the Type 3 signature scheme.
The reason that the proof carries over with minimal changes is that it does not employ the
isomorphism ψ from G2 to G1.

Signatures for the Type 3 scheme are comprised of one G1 element and two G3 elements.
Signature verification requires one G1 membership test, three G3 membership tests, and
two PPE verifications.

We note that the verification step 4(b) of the Type 3 scheme cannot be omitted. In-
deed, if this step is omitted then the scheme succumbs to the following key-only attack:
(1, (W−1G, 1, I)) is a valid forgery. Moreover, even if the message M = 1 is disallowed,
the scheme succumbs to the following random message attack. The forger first obtains a
signed message (M, (R1, R2, S)). It then computes M ′ =MS−1 and R′

1 = R1V
−1, thereby

obtaining a valid forgery (M ′, (R′

1, R2, S)). We note that this attack is anticipated by the
proof of Theorem 2 in [2] which establishes that any Type 3 structure-preserving signature
scheme with a single verification equation is existentially forgeable under random message
attack.

3.3. Comparisons.

3.3.1. Signature size. Signatures in the Type 2 scheme are comprised of two G2 elements
or, equivalently, two G1 and two G3 elements. Thus, signatures in the Type 3 scheme are
smaller than signatures in the Type 2 scheme.

3.3.2. Signature generation cost. In signature generation, computing R = Ht−w for the
Type 2 scheme has exactly the same cost as computing R1 = Gt−w and R2 = It−w for the
Type 3 scheme. However, the computation of S =Mv/tH1/t in the Type 2 scheme is slower
than in the Type 3 scheme since the computation takes place in G2 in the former and in G3
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in the latter. Thus, signature generation is slower in the Type 2 scheme than in the Type 3
scheme.

3.3.3. Signature verification cost. Signature verification in the Type 2 scheme is slower
than in the Type 3 scheme. This is because, as explained in the last paragraph of §2.3, the
subgroup membership tests M,R,S ∈ G2 required in the Type 2 scheme each requires the
verification of a PPE, whereas the subgroup memberships tests R1 ∈ G1 andM,R2, S ∈ G3

in the Type 3 scheme are relatively inexpensive. Thus, signature verification in the Type 2
scheme requires four PPE verifications, whereas only two are needed in the Type 3 scheme.
The high cost of PPE verifications can be mitigated by batching [8, 13].

The costly subgroup membership tests in step 4(a) of the Type 2 scheme cannot be
omitted for two reasons. First, if these tests are omitted then the security proof given in [3]
is no longer applicable since the proof makes the assumption that M,R,S ∈ G2. Second,
there are attacks on the scheme if the membership tests are omitted. For example, given
a valid signed message (M, (R,S)), one can easily3 select a second point R′ ∈ E[n] with
R′ 6= R and ψ(R′) = ψ(R), thereby obtaining a second valid signed message (M, (R′, S)).

3.3.4. Cost of signature verification with Groth-Sahai proofs. Structure-preserving signature
schemes were not designed to be used as stand-alone signature schemes, but rather in
conjunction with Groth-Sahai NIWI and NIZK proofs as explained in §1.

Consider first the Type 2 signature scheme in §3.1 when used in conjunction with a
Groth-Sahai proof. The prover wishes to convince a verifier that it possesses a valid signed
message (M, (R,S)) without revealing anything else about R or S. In other words, it needs
to convince the verifier that it possesses a solution to the following PPE:

(5) e2(Wψ(R), S) = e2(V,M) · e2(G,H).

In this equation, the group elements W , V , M , G and H are known to the verifier, whereas
the variables are R, S ∈ G2. However, since Groth-Sahai proofs do not have a mechanism
for incorporating the evaluation of ψ(R), the variables in (5) are actually ψ(R) and S. In
other words, a Groth-Sahai proof for (5) only convinces a verifier that the prover knows
R1 ∈ G1 and S ∈ G2 that satisfy the following PPE:

(6) e2(W · R1, S) = e2(V,M) · e2(G,H).

In particular, the proof does not establish that the prover knows R ∈ G2 such that R1 =
ψ(R), i.e., the subgroup membership test R ∈ G2 is not performed. As we have shown in
§3.3.3, if the subgroup membership test R ∈ G2 is omitted then the signature scheme is
insecure, i.e., not strongly unforgeable. Thus, the prover needs to convince the verifier that
it possesses a solution R1 ∈ G1, R,S ∈ G2 to the following collection of PPEs:

e2(W · R1, S) = e2(V,M) · e2(G,H)(7)

e2(R1,H) · e2(G,R)
−1 = 1.(8)

The verification now has two PPEs. This is in contrast to the claim made in [3] that the
Type 2 signature scheme of §3.1 has only one PPE. Moreover, signatures are comprised of
three group elements, namely R1 ∈ G1 and R,S ∈ G2.

3Given R ∈ G2, one computes R1 = ψ(R) and selects arbitrary R′

2 ∈ G3 with R′

2 6= R − R1. Then
R′ = R1 +R′

2 satisfies ψ(R′) = R1 and R′ 6= R.
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Recall that the Type 3 signature scheme in §3.2 also has two PPEs and signatures that
are comprised of three group elements. Thus, it might appear at first glance that signature
verification for the Type 2 and Type 3 schemes costs roughly the same when used in con-
junction with Groth-Sahai proofs. However, the Groth-Sahai proofs for the Type 2 setting
are based on hardness of the decisional linear (DLIN) problem in G2 [15], whereas Groth-
Sahai proofs for the Type 3 setting can be based on hardness of the decisional Diffie-Hellman
(DDH) problem in G1 and G3 [16]. Now, DLIN-based Groth-Sahai proofs are significantly
more costly than DDH-based Groth-Sahai proofs in terms of commitment size, proof size,
and the total number of pairing computations in proof verification. For example, one can
see that the DLIN-based proof of knowledge of the solution Y to the equation e2(A,Y ) = t
in Appendix A.1 is significantly more costly than the DDH-based proof of knowledge of
the solution Y to the equation e3(A,Y ) = in Appendix A.2; see also the performance esti-
mates given in §3.4 of [9]. Thus, the Type 2 structure-preserving signature scheme will be
significantly slower than its Type 3 counterpart when combined with Groth-Sahai proofs.

3.3.5. Conclusions. The Type 3 strongly unforgeable structure-preserving signature scheme
is superior to its Type 2 counterpart with respect to signature size, signature generation
cost, and signature verification cost when the schemes are used as stand-alone signature
schemes and when used in conjunction with Groth-Sahai proofs. Moreover, the schemes
have similar security proofs against generic forgers. Thus, the Type 2 scheme offers no
advantages over the Type 3 scheme.

4. Randomizable structure-preserving signatures

We present the Type 2 randomizable structure-preserving signature scheme from [3] and
our Type 3 analogue of it. The Type 3 scheme was obtained by following the general recipe
given in [11] for converting a protocol from the Type 2 setting to the Type 3 setting.

4.1. Type 2 randomizable structure-preserving signature scheme [3].

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key is v,w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G2, select r ∈R [1, n − 1] and compute R = Hr

and S =MvHr2+w. The signature on M is (R,S).
(4) Randomization. To randomize (M, (R,S)), select α ∈R [1, n − 1] and compute

R′ = RHα and S′ = SR2αHα2

. The randomized signature on M is (R′, S′).
(5) Signature verification. To verify a signed message (M, (R,S)), check that

(a) M,R,S ∈ G2; and
(b) e2(G,S) = e2(V,M) · e2(ψ(R), R) · e2(W,H).

In [3, Theorem 1], the Type 2 scheme is proven secure against generic forgers. Signatures
are comprised of two G2 elements. Signature verification requires three G2 membership
tests and one PPE verification.
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4.2. Type 3 randomizable structure-preserving signature scheme.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v,w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G3, select r ∈R [1, n− 1] and compute R1 = Gr,

R2 = Ir and S =MvIr
2+w. The signature on M is (R1, R2, S).

(4) Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n − 1] and compute

R′

1 = R1G
α, R′

2 = R2I
α, and S′ = SR2α

2 Iα
2

. The randomized signature on M is
(R′

1, R
′

2, S
′).

(5) Signature verification. To verify a signed message (M, (R1, R2, S)), check that
(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(G,S) = e3(V,M) · e3(R1, R2) · e3(W, I).

Correctness of the Type 3 signature scheme is easily verified since

e3(G,S) = e3(G,M
vIr

2+w)

= e3(G,M
v) · e3(G, I

r2) · e3(G, I
w)

= e3(G
v ,M) · e3(G

r, Ir) · e3(G
w, I)

= e3(V,M) · e3(R1, R2) · e3(W, I).

The security proof given in [3, Theorem 1] that the Type 2 scheme is secure against generic
forgers also applies (with minimal changes) to the Type 3 signature scheme. We note that
the security proof in [3] does not use the isomorphism ψ.

Signatures for the Type 3 scheme are comprised of one G1 element and two G3 elements.
Signature verification requires one G1 membership test, three G3 membership tests, and
two PPE verifications.

We note that the verification equation in step 5(b) of the Type 3 scheme cannot be
omitted. Indeed, if this step is omitted then the scheme succumbs to the following random
message attack. The forger first obtains a signed message (M, (R1, R2, S)). It then computes
M ′ = MR2 and R′

1 = R1V
−1, thereby obtaining a valid forgery (M ′, (R′

1, R2, S)). Indeed,
this attack is anticipated by the proof of Theorem 2 of [2].

4.3. Comparisons. The subgroup membership tests in step 5(a) of the Type 2 randomiz-
able structure-preserving signature scheme cannot be omitted. If they are, then an attacker
can proceed as follows. Having obtained a valid signature pair (M, (R,S)), she computes
M ′ = MR and R′ = RV −1. Note that ρ(R′) = ρ(R). Then (M ′, (R′, S)) is a valid signed
message since the term e2(V,M) · e2(ψ(R), R) in step 5(b) of signature verification remains
unchanged:

e2(V,M
′) · e2(ψ(R

′), R′) = e2(V,MR) · e2(ψ(R) · ψ(V
−1), R′)

= e2(V,M) · e2(V,R) · e2(ψ(R), R
′) · e2(ψ(V ), R′)−1

= e2(V,M) · e3(V, ρ(R)) · e3(ψ(R), ρ(R)) · e3(V, ρ(R))
−1

= e2(V,M) · e2(ψ(R), R).
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The comparisons made between the Type 2 and Type 3 strongly unforgeable structure-
preserving signature schemes in §3.3 are also valid for the Type 2 and Type 3 randomizable
structure-preserving signature schemes in §4.1 and §4.2. Namely, the Type 3 scheme has
smaller signatures, faster signature generation, faster signature verification in stand-alone
applications (since it requires the verification of two PPEs instead of four PPEs for the
Type 2 scheme), and faster signature verification when used with Groth-Sahai proofs (since
both schemes have two PPEs and three group elements in signatures, but the Type 3 proofs
are DDH-based instead of DLIN-based).

As mentioned in [3], randomizable structure-preserving signature schemes are useful in
building anonymization protocols because the signature component that is uniformly dis-
tributed and independent of the message can be revealed without leaking any information
about the message or the original signature from which the randomized signature was de-
rived. In the Type 2 randomizable signature scheme of §4.1, the signature component R
can be made public. In that case, only the single PPE in step 5(b) of signature verification
needs to be transformed when used in conjunction with Groth-Sahai proofs (and the PPE
is of the form described in §A.1). Similarly, in the Type 3 randomizable signature scheme of
§4.2, the signature components R1 and R2 can be made public. In that case, only the single
PPE in step 5(c) of signature verification needs to be transformed when used in conjunction
with Groth-Sahai proofs (and the PPE is of the form described in §A.2).

In both situations, i.e., whether the message-independent signature components are made
public or not, the Type 3 scheme is superior in all respects to its Type 2 counterpart.

5. Concluding remarks

We presented natural Type 3 analogues of the Type 2 strongly unforgeable and randomiz-
able structure-preserving signature schemes that were proposed in [3]. By properly account-
ing for subgroup membership testing of group elements in signatures, we have shown that
the Type 3 schemes are superior to their Type 2 counterparts when the signature schemes
are used in a stand-alone setting, and when used in conjunction with Groth-Sahai proofs.
The Type 3 schemes are also the most efficient among all structure-preserving signature
schemes. We conclude that the question posed in [11] of the existence of a cryptographic
protocol which necessarily has to be restricted to Type 2 for implementation or security
reasons is still open.
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Appendix A. Groth-Sahai proofs

A.1. DLIN-based proofs. Let A ∈ G1 and t ∈ GT . We present a Groth-Sahai non-
interactive witness-indistinguishable proof of knowledge of Y ∈ G2 such that e2(A,Y ) = t.
The NIWI proof is derived from the general description in §4.2 of [15]. It can also be used
with Type 3 pairings. Security is based on the decisional linear (DLIN) assumption.

(1) Setup. Let e2 : G1 ×G2 −→ GT be a Type 2 pairing.
(2) Common reference string. Let H be a generator of G2. Let a, t, i, j ∈R [1, n − 1],

and define U = aH, V = tH, I = iU , J = jV , K = (i + j)H. The common string
is (H,U, V, I, J,K).

(3) Commitment. Select s1, s2, s3 ∈R [1, n − 1] and compute d1 = s1U + s3I, d2 =
s2V + s3J , d3 = Y + s1H + s2H + s3K. The commitment is d = (d1, d2, d3).

(4) Proof. Compute θ1 = s1A, θ2 = s2A and θ3 = s3A. The proof is θ = (θ1, θ2, θ3).
(5) Verification. Check that θ1, θ2, θ3 ∈ G1, d1, d2, d3 ∈ G2, and

e2(A, d1) = e2(θ1, U) · e2(θ3, I)

e2(A, d2) = e2(θ2, V ) · e2(θ3, J)

e2(A, d3) = e2(θ1,H) · e2(θ2,H) · e2(θ3,K) · t.
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A.2. DDH-based proofs. Let A ∈ G1 and t ∈ GT . We present a Groth-Sahai non-
interactive witness-indistinguishable proof of knowledge of Y ∈ G3 such that e3(A,Y ) = t.
The NIWI proof is derived from the general description in §4.1 of [15]. Security is based on
the decisional Diffie-Hellman (DDH) assumption in G3. Since the decisional Diffie-Hellman
problem is easy in G2, the NIWI proof has no counterpart with Type 2 pairings.

(1) Setup. Let e3 : G1 ×G3 −→ GT be a Type 3 pairing.
(2) Common reference string. Let I be a generator of G3. Let a, t ∈R [1, n − 1], and

define U = aI, V = tI, J = tU . The common string is (I, U, V, J).
(3) Commitment. Select s1, s2 ∈R [1, n − 1] and compute d1 = s1I + s2V and d2 =

Y + s1U + s2J . The commitment is d = (d1, d2).
(4) Proof. Compute θ1 = s1A and θ2 = s2A. The proof is θ = (θ1, θ2).
(5) Verification. Check that θ1, θ2 ∈ G1, d1, d2 ∈ G3, and

e3(A, d1) = e3(θ1, I) · e3(θ2, V )

e3(A, d2) = e3(θ1, U) · e3(θ2, J) · t.
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