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Abstract. At CRYPTO 2014, Abe, Groth, Ohkubo and Tibouchi presented generic-
signer structure-preserving signature schemes using Type 2 pairings. The schemes were
claimed to enjoy the smallest number of group elements in signatures and the fastest
signature verification. By properly accounting for the concrete structure of the underlying
group and subgroup membership testing of group elements in signatures, we show that the
schemes are not as efficient as claimed. We present natural Type 3 analogues of the Type 2
schemes, and show that the Type 3 schemes are superior to their Type 2 counterparts in
every aspect. We also formally establish that all Type 2 structure-preserving signature
schemes can be converted to the Type 3 setting without any penalty in security or efficiency,
and show that the converse is false.

1. Introduction

The term ‘structure-preserving signature scheme’ was coined in 2010 by Abe et al. [1]
but was first introduced by Groth [17]. These pairing-based signature schemes have the
property that verification keys, messages, and signatures are all group elements. Moreover,
signatures are verified by testing the equality of products of pairings of group elements;
each such equality is called a product-of-pairings equation (PPE). Structure-preserving
signature schemes have been used in the design of numerous cryptographic protocols; a list
of these protocols can be found in [4]. One of the primary reasons for the popularity of
structure-preserving signature schemes in protocol design is that they are fully compatible
with the breakthrough Groth-Sahai constructions of pairing-based non-interactive witness-
indistinguishable (NIWI) and non-interactive zero-knowledge (NIZK) proof systems [18].

In typical applications of structure-preserving signature schemes when used in conjunc-
tion with, say, Groth-Sahai proofs, a party has a signed message and wishes to convince a
second party (the verifier) that it possesses the (valid) signed message without revealing the
message or the signature1. Groth-Sahai NIWI and NIZK proofs allow a party (the prover) to
convince a second party (the verifier) that it possesses a solution to a collection of PPEs2.
The complexity of verifying a Groth-Sahai proof is heavily dependent on the number of
group elements in the signature and the number of PPEs in signature verification (see [10,
§3.4]). For such reasons, researchers have strived to design structure-preserving signature

Date: August 18, 2014; updated on September 26, 2014.
1We use the example of Groth-Sahai because many applications of structure-preserving signature schemes

are in conjunction with such non-interactive proof systems. However, structure-preserving signatures find
application in other contexts too – see the recent work of Hanser and Slamanig [19].

2Two examples of Groth-Sahai NIWI proofs for verifying that the prover possesses a solution (X,Y ) to
the equation e(A,X) · e(B, Y ) = t where e is a Type 2 or a Type 3 pairing are given in Appendix A.
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schemes with the smallest possible number of group elements in a signature and with the
smallest possible number of PPEs in signature verification.

At CRYPTO 2011, Abe et al. [2] presented a structure-preserving signature scheme using
Type 3 pairings. Verification has two PPEs, which was proven to be optimal in the sense
that any Type 3 structure-preserving signature scheme with verification having a single PPE
was shown to succumb to a random message attack. Moreover, signatures are comprised of
three group elements, which was also shown to be optimal. The scheme was proven to be
strongly secure against generic signers3.

At TCC 2014, Abe et al. [3] extended the aforementioned optimality results to the Type 1
setting, thereby unifying the Type 1 and Type 3 settings. They also proposed a selectively
randomizable structure-preserving signature scheme which is optimal in terms of signature
size and verification complexity in both Type 1 and Type 3 settings.

At CRYPTO 2014, Abe et al. [4] continued their investigation of structure-preserving
signature schemes in the Type 2 setting. They presented a strongly unforgeable structure-
preserving signature scheme and a randomizable structure-preserving signature scheme us-
ing Type 2 pairings. Both schemes are claimed to have signatures that are comprised of only
two group elements, have only one PPE in signature verification, and were proven secure
against generic signers. The authors conclude that their schemes enjoy the smallest signa-
ture size and fastest signature verification. Furthermore, they investigated lower bounds
on signature size and number of verification equations and showed that their constructions
in Type 2 are optimal. In light of the aforementioned lower bounds on the number of
group elements in signatures and the number of PPEs in signature verification for Type 3
structure-preserving signature schemes, they conclude that the Type 2 schemes have no
analogues in the Type 3 setting. According to the authors [4]: “This is significant from a
high level pairing-based cryptography perspective, as it provides a concrete example of a
property that can be obtained in the Type 2 setting but not in the other settings.” This is
contrary to the arguments presented in [12] that any cryptographic protocol that employs
Type 2 pairings has a natural counterpart in the Type 3 setting that does not suffer any
loss in functionality, security or efficiency.

We deconstruct the Abe et al. schemes in terms of the underlying elliptic curve group
structure in the Type 2 setting. We show that the analysis of the Type 2 generic-signer
structure-preserving signature schemes in [4] neglected to account for the concrete group
structure and subgroup membership testing of group elements in a signature, leading to
erroneous conclusions (see Table 1 of [4]). Incorporating these subgroup membership tests
into the signature verification increases the number of group elements in signatures and also
increases the number of PPEs in signature verification. We analyze the cost when these
structure-preserving signature schemes are composed with Groth-Sahai proofs and show
that not all these subgroup membership tests can be dispensed with when the signature
scheme is composed with such a proof system.

3A generic signer has access only to generic group operations in the bilinear pairing setting. This notion
was first introduced by Abe et al. in [2] to establish their lower bound results. The same model was used in [4]
where it was claimed that all existing structure-preserving signature schemes use generic signing algorithms
and “it would be a surprising result in itself to construct a structure-preserving signature with a non-generic
signer”. Hence, in this paper we focus on the case of generic signers.
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Furthermore, since Groth-Sahai proofs in the Type 2 setting are significantly more costly
than in the Type 3 setting, the Type 2 schemes are not as efficient as claimed in [4] either
in the stand-alone setting or when composed with Groth-Sahai proofs. We present natural
Type 3 analogues of the Type 2 schemes, and show that the Type 3 schemes are superior
to their Type 2 counterparts in all aspects.

Continuing the process of deconstruction, we formally establish that all Type 2 generic-
signer structure-preserving signature schemes can be converted to Type 3 without any
penalty in security and efficiency, but not all Type 3 schemes have a secure Type 2 coun-
terpart. Further, we exhibit the impossibility of having a single pairing-based verification
equation in the Type 2 setting even when messages are drawn from G2 and thereby put
the lower bound results of [4] in the correct perspective. Our results demonstrate that any
Type 2 structure-preserving signature scheme is merely an inefficient implementation of a
corresponding Type 3 scheme.

The remainder of the paper is organized as follows. In §2 we summarize the salient
differences between Type 2 and Type 3 pairings derived from elliptic curves having even
embedding degrees. In §3, we explain why the strongly unforgeable structure-preserving
signature scheme in [4] actually has signatures comprising of three group elements and has
two PPEs in signature verification. We present a natural analogue of the scheme in the
Type 3 setting, and show that it is more efficient than the Type 2 scheme. In §4, we present
our Type 3 analogue of the Type 2 randomizable structure-preserving signature scheme in
[4], and show that the Type 3 scheme is more efficient. In §5, we present our conversion
framework for generic-signer structure-preserving signature schemes from the Type 2 setting
to the Type 3 setting, the separation between Type 2 and Type 3, and the impossibility
of having a single pairing-based verification equation in the Type 2 setting. We draw our
conclusions in §6.

2. Asymmetric bilinear pairings

Let Fq be a finite field of characteristic p ≥ 5, and let E be an ordinary elliptic curve
defined over Fq. Let n be a prime divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the

embedding degree) be the smallest positive integer such that n | qk − 1. We will henceforth
assume that k is even, since then some important speedups in pairing computations are
applicable [7]. Some prominent families of elliptic curves with even embedding degree
include the MNT [22], BN [8], KSS [21], and BLS [6] curves.

Since k > 1, we have E[n] ⊆ E(Fqk) where E[n] denotes the n-torsion group of E. Let
G ∈ E(Fq)[n] be an Fq-rational point of order n, and define G1 = 〈G〉. Let GT denote the
order-n subgroup of the multiplicative subgroup of Fqk .

2.1. Type 3 pairings. Following [15], we denote by D the CM discriminant of E and set

(1) e =

 gcd(k, 6), if D = −3,
gcd(k, 4), if D = −4,
2, if D < −4,

and d = k/e. For example, BN curves have k = 12, e = 6 and d = 2, whereas MNT

curves have k = 6, e = 2 and d = 3. Now, E has a unique degree-e twist Ẽ defined
over Fqd such that n | #Ẽ(Fqd) [20]. Let Ĩ ∈ Ẽ(Fqd) be a point of order n, and let
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G̃3 = 〈Ĩ〉. Then there is a monomorphism φ : G̃3 −→ E(Fqk) such that I = φ(Ĩ) 6∈ G1. The
group G3 = 〈I〉 is the Trace-0 subgroup of E[n], so named because it consists of all points

P ∈ E[n] for which Tr(P ) =
∑k−1

i=0 π
i(P ) =∞, where π denotes the q-th power Frobenius.

The monomorphism φ can be defined so that φ : G̃3 −→ G3 can be efficiently computed in
both directions; therefore we can identify G̃3 and G3, and consequently G3 can be viewed
as having coordinates in Fqd (instead of in the larger field Fqk).

Non-degenerate bilinear pairings e3 : G1×G3 −→ GT are said to be of Type 3 because no
efficiently-computable isomorphisms from G1 to G3 or from G3 to G1 are known [15]. There
are several Type 3 pairings, of which the most efficient is Vercauteren’s optimal pairing [23].

2.2. Type 2 pairings. Let H ∈ E[n] with H 6∈ G1 and H 6∈ G3. Then G2 = 〈H〉 is an
order-n subgroup of E(Fqk) with G2 6= G1 and G2 6= G3. Non-degenerate bilinear pairings
e2 : G1×G2 −→ GT are said to be of Type 2 because the map Tr is an efficiently-computable
isomorphism from G2 to G1; note, however, that no efficiently-computable isomorphism from
G1 to G2 is known. These pairings have the property that hashing onto G2 is infeasible
(other than by multiplying H by a randomly selected integer).

The computation of e2 is efficiently reduced to the task of computing Type 3 pairing e3
[15]. Thus, the costs of computing e2 and e3 are approximately equal. To see this, define
the maps

(2) ψ : E[n] −→ G1, Q 7→ 1

k
Tr(Q)

and

(3) ρ : E[n] −→ G3, Q 7→ Q− ψ(Q).

Recall that e2 and e3 are restrictions of the (reduced) Tate pairing ê : E[n]×E[n] −→ GT .
Hence, for all P ∈ G1, Q ∈ G2, we have

(4) e2(P,Q) = ê(P,ψ(Q) + ρ(Q)) = ê(P,ψ(Q)) · ê(P, ρ(Q)) = ê(P, ρ(Q)) = e3(P, ρ(Q)).

2.3. Comparing the performance of Type 2 and Type 3 pairings. Since points in
G2 have coordinates in Fqk whereas points in G3 have coordinates in the proper subfield
Fqd , it would appear that the ratio of the bitlengths of points in G2 and G3 is k/d. Similarly,

the ratio of the costs of addition in G2 and G3 can be expected to be k2/d2 bit operations
(using naive methods for extension field arithmetic). These ratios are given in Table 3 of
[15]. However, as observed in [11], points in G2 have a shorter representation which we
describe next. We emphasize that this representation can be used for all order-n subgroups
G2 of E[n] different from G1 and G3.

Let H be an arbitrary point from E[n]\(G1∪G3), and set G2 = 〈H〉. Define G = 1
kTr(H)

so that the map ψ restricted to G2 is an efficiently-computable isomorphism from G2 to G1

with ψ(H) = G. Finally, set I = H −G. Then I ∈ G3 and the map ρ restricted to G2 is an
efficiently-computable isomorphism from G2 to G3 with ρ(H) = I.

Now, given a point Q ∈ G2, one can efficiently determine the unique points Q1 ∈ G1 and
Q2 ∈ G3 such that Q = Q1 +Q2; namely, Q1 = ψ(Q) and Q2 = ρ(Q) = Q−Q1. Writing

(5) D(Q) = (ψ(Q), ρ(Q)),
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and letting H2 ⊆ G1×G3 denote the range of D, we have an efficiently-computable isomor-
phism D : G2 −→ H2 whose inverse is also efficiently computable. Hence, without loss of
generality, points Q ∈ G2 can be represented by a pair of points (Q1, Q2) with Q1 ∈ G1 and
Q2 ∈ G3. Note that arithmetic in G2 with this representation is component-wise. Thus the
ratio of the bitlengths of points in G2 and G3 is in fact (d+ 1)/d, whereas the ratio of the
costs of addition in G2 and G3 is (d2 + 1)/d2.

Table 2 of [11] lists the costs of performing basic operations in G1, G2 and G3 for a
particular BN curve. The table confirms the expectation that basic operations in G2 are
only marginally more expensive than the operations in G3. One notable exception is that
testing membership in G2 is several times more expensive than testing membership in
G1 and G3. To see this, let us consider the case of BN curves E defined over Fq where
q and n = #E(Fq) are prime; recall that these curves have embedding degree k = 12
and d = 2. Testing membership of a point Q in G1 is very efficient, and simply entails
verifying that Q has coordinates in Fq and satisfies the equation that defines the curve, i.e.,
Q ∈ E(Fq). Testing membership of a point Q in G3 involves a fast check that φ−1(Q) is in

Ẽ(Fq2), followed by an exponentiation to verify that nQ = ∞. Testing membership in G2

is more costly since the known methods require two pairing computations. If the shorter
representation (as elements of G1 ×G3) is used for G2, then membership of (Q1, Q2) in G2

can be determined by first checking that Q1 ∈ G1 and Q2 ∈ G3, and then verifying that
e3(Q1, I) = e3(G,Q2) [13]. If the longer representation (as elements of E(Fq12)) is used for
G2, then membership of Q in G2 can be determined by first checking that Q ∈ E(Fq12) and
nQ =∞, and then verifying that e2(ψ(Q), H) = e2(G,Q).

In §3, §4 and §5, we will use multiplicative notation for elements of G1, G2 and G3.

3. Strongly unforgeable structure-preserving signatures

We present the Type 2 strongly unforgeable structure-preserving signature scheme from
[4] and our Type 3 analogue of it. The Type 3 scheme was obtained by following the general
recipe given in [12] for converting a protocol from the Type 2 setting to the Type 3 setting.

3.1. Type 2 strongly unforgeable structure-preserving signature scheme [4].

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G2, select t ∈R [1, n−1] and compute R = Ht−w

and S = Mv/tH1/t. The signature on M is (R,S).
(4) Signature verification. To verify a signed message (M, (R,S)), check that

(a) M,R, S ∈ G2; and
(b) e2(Wψ(R), S) = e2(V,M) · e2(G,H).
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In [4, Theorem 2], the Type 2 scheme is proven strongly secure4 against generic forgers.
Signatures are comprised of two G2 elements. Signature verification requires three G2

membership tests and one PPE verification.

3.2. Type 3 strongly unforgeable structure-preserving signature scheme.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To signM ∈ G3, select t ∈R [1, n−1] and computeR1 = Gt−w,

R2 = It−w, and S = Mv/tI1/t. The signature on M is (R1, R2, S).
(4) Signature verification. To verify a signed message (M, (R1, R2, S)), check that

(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(WR1, S) = e3(V,M) · e3(G, I).

Correctness of the Type 3 signature scheme is easily verified since

e3(WR1, S) = e3(G
w ·Gt−w,Mv/tI1/t)

= e3(G
t,Mv/tI1/t)

= e3(G,M
v · I)

= e3(G,M
v) · e3(G, I)

= e3(V,M) · e3(G, I).

The security proof given in [4, Theorem 2] that the Type 2 scheme is strongly secure
against generic forgers also applies (with minimal changes) to the Type 3 signature scheme.
The reason that the proof carries over with minimal changes is that we follow the strategy
of [12] in the conversion. The Type 3 scheme is obtained by first replacing all G2 elements
by the corresponding H2 elements and then discarding the redundant G1 elements that are
not used either in the construction or in security argument in the Type 2 setting.

Signatures for the Type 3 scheme are comprised of one G1 element and two G3 elements.
Signature verification requires one G1 membership test, three G3 membership tests, and
two PPE verifications.

We note that the verification step 4(b) of the Type 3 scheme cannot be omitted. In-
deed, if this step is omitted then the scheme succumbs to the following key-only attack:
(1, (W−1G, 1, I)) is a valid forgery. Moreover, even if the message M = 1 is disallowed,
the scheme succumbs to the following random message attack. The forger first obtains a
signed message (M, (R1, R2, S)). It then computes M ′ = MS−1 and R′1 = R1V

−1, thereby
obtaining a valid forgery (M ′, (R′1, R2, S)). We note that this attack is anticipated by the
proof of Theorem 2 in [2] which establishes that any Type 3 structure-preserving signature
scheme with a single verification equation is existentially forgeable under random message
attack.

4A signature scheme is said to be secure if it is existentially unforgeable under chosen-message attack.
If, in addition, it is infeasible to find a new signature for a message that has already been signed, then the
signature scheme is said to be strongly secure.
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3.3. Comparisons.

3.3.1. Signature size. Signatures in the Type 2 scheme are comprised of two G2 elements
or, equivalently, two G1 and two G3 elements. Thus, signatures in the Type 3 scheme are
smaller than signatures in the Type 2 scheme.

3.3.2. Signature generation cost. In signature generation, computing R = Ht−w for the
Type 2 scheme has exactly the same cost as computing R1 = Gt−w and R2 = It−w for
the Type 3 scheme. However, the computation of S = Mv/tH1/t in the Type 2 scheme
is significantly slower than in the Type 3 scheme since the computation takes place in G2

in the former and in G3 in the latter. Thus, signature generation is slower in the Type 2
scheme than in the Type 3 scheme.

3.3.3. Signature verification cost. Signature verification in the Type 2 scheme is significantly
slower than in the Type 3 scheme. This is because, as explained in the last paragraph of
§2.3, the subgroup membership tests M,R, S ∈ G2 required in the Type 2 scheme each
requires the verification of a PPE, whereas the subgroup memberships tests R1 ∈ G1 and
M,R2, S ∈ G3 in the Type 3 scheme are relatively inexpensive. Thus, signature verification
in the Type 2 scheme requires four PPE verifications, whereas only two are needed in the
Type 3 scheme. Note, however, that the high cost of PPE verifications can be mitigated by
batching [9, 14].

The costly subgroup membership tests in step 4(a) of the Type 2 scheme cannot be
omitted for two reasons. First, if these tests are omitted then the security proof given in [4]
is no longer applicable since the proof makes the assumption that M,R, S ∈ G2. Second,
and more importantly, there are attacks on the scheme if the membership tests are omitted.
For example, given a valid signed message (M, (R,S)), one can easily5 select a second point
R′ ∈ E[n] with R′ 6= R and ψ(R′) = ψ(R), thereby obtaining a second valid signed message
(M, (R′, S)). Similarly, given (M, (R,S)) one can obtain a second valid signed message
(M ′, (R,S)) or (M, (R,S′)) if membership tests for M or S are omitted.

3.3.4. Cost of signature verification with Groth-Sahai proofs. Structure-preserving signature
schemes were not designed to be used as stand-alone signature schemes, but rather in
conjunction with non-interactive proof systems like Groth-Sahai as explained in §1.

Consider first the Type 2 signature scheme in §3.1 when used in conjunction with a
Groth-Sahai proof. The prover wishes to convince a verifier that it possesses a valid signed
message (M, (R,S)) without revealing anything else about M , R or S. In other words, it
needs to convince the verifier that it possesses a solution to the following PPE:

(6) e2(Wψ(R), S) = e2(V,M) · e2(G,H).

In this equation, the group elements G, H, V and W are known to the verifier, whereas the
variables are M,R, S ∈ G2. However, since Groth-Sahai proofs do not have a mechanism
for incorporating the evaluation of ψ(R), the variables in (6) are actually M , ψ(R) and S.

5Given R ∈ G2, one computes R1 = ψ(R) and selects arbitrary R′2 ∈ G3 with R′2 6= R · R−1
1 . Then

R′ = R1 ·R′2 satisfies ψ(R′) = R1 and R′ 6= R.
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In other words, a Groth-Sahai proof for (6) only convinces a verifier that the prover knows
R1 ∈ G1 and M,S ∈ G2 that satisfy the following PPE:

(7) e2(WR1, S) = e2(V,M) · e2(G,H).

In particular, the proof does not establish that the prover knows R ∈ G2 such that R1 =
ψ(R), i.e., the subgroup membership test R ∈ G2 is not performed. As we have shown in
§3.3.3, if the subgroup membership test R ∈ G2 is omitted then the signature scheme is
insecure, i.e., not strongly unforgeable. Thus, the prover needs to convince the verifier that
it possesses a solution R1 ∈ G1, M,R, S ∈ G2 to the following collection of PPEs:

e2(WR1, S) = e2(V,M) · e2(G,H)(8)

e2(R1, H) = e2(G,R).(9)

When composed with Groth-Sahai proof systems, the verification now has two PPEs. This
is in contrast to the claim made in [4] that the Type 2 signature scheme of §3.1 has only
one PPE. Moreover, signatures are comprised of three group elements, namely R1 ∈ G1

and R,S ∈ G2.
Recall that the Type 3 signature scheme in §3.2 also has two PPEs and signatures that

are comprised of three group elements. Thus, it might appear at first glance that signa-
ture verification for the Type 2 and Type 3 schemes costs roughly the same when used
in conjunction with Groth-Sahai proofs. However, the Groth-Sahai proofs for the Type 2
setting are based on hardness of the decisional linear (DLIN) problem in G2 [16], whereas
Groth-Sahai proofs for the Type 3 setting can be based on hardness of the decisional Diffie-
Hellman (DDH) problem in G1 and G3 [18]. Now, DLIN-based Groth-Sahai proofs are
significantly more costly than DDH-based Groth-Sahai proofs in terms of commitment size,
proof size, and the total number of pairing computations in proof verification. For example,
one can see that the DLIN-based proof of knowledge of a solution (X,Y ) to the equation
e2(A,X) · e2(B, Y ) = t in Appendix A.1 is significantly more costly than the DDH-based
proof of knowledge of a solution (X,Y ) to the equation e3(A,X) · e3(B, Y ) = t in Ap-
pendix A.2; see also the performance estimates given in §3.4 of [10]. Thus, the Type 2
structure-preserving signature scheme will be significantly slower than its Type 3 counter-
part when combined with Groth-Sahai proofs.

3.3.5. Conclusions. The Type 3 strongly unforgeable structure-preserving signature scheme
is superior to its Type 2 counterpart with respect to signature size, signature generation
cost, and signature verification cost when the schemes are used as stand-alone signature
schemes and when used in conjunction with Groth-Sahai proofs. Moreover, the schemes
have similar security proofs against generic forgers. Thus, the Type 2 scheme offers no
advantages over the Type 3 scheme.

4. Randomizable structure-preserving signatures

We present the Type 2 randomizable structure-preserving signature scheme from [4] and
our Type 3 analogue of it. The Type 3 scheme was obtained by following the general recipe
given in [12] for converting a protocol from the Type 2 setting to the Type 3 setting.
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4.1. Type 2 randomizable structure-preserving signature scheme [4].

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G2, select r ∈R [1, n− 1] and compute R = Hr

and S = MvHr2+w. The signature on M is (R,S).
(4) Randomization. To randomize (M, (R,S)), select α ∈R [1, n − 1] and compute

R′ = RHα and S′ = SR2αHα2
. The randomized signature on M is (R′, S′).

(5) Signature verification. To verify a signed message (M, (R,S)), check that
(a) M,R, S ∈ G2; and
(b) e2(G,S) = e2(V,M) · e2(ψ(R), R) · e2(W,H).

In [4, Theorem 1], the Type 2 scheme is proven secure against generic forgers. Signatures
are comprised of two G2 elements. Signature verification requires three G2 membership
tests and one PPE verification.

4.2. Type 3 randomizable structure-preserving signature scheme.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G3, select r ∈R [1, n− 1] and compute R1 = Gr,

R2 = Ir and S = MvIr
2+w. The signature on M is (R1, R2, S).

(4) Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n− 1] and compute

R′1 = R1G
α, R′2 = R2I

α, and S′ = SR2α
2 Iα

2
. The randomized signature on M is

(R′1, R
′
2, S
′).

(5) Signature verification. To verify a signed message (M, (R1, R2, S)), check that
(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(G,S) = e3(V,M) · e3(R1, R2) · e3(W, I).

Correctness of the Type 3 signature scheme is easily verified since

e3(G,S) = e3(G,M
vIr

2+w)

= e3(G,M
v) · e3(G, Ir

2
) · e3(G, Iw)

= e3(G
v,M) · e3(Gr, Ir) · e3(Gw, I)

= e3(V,M) · e3(R1, R2) · e3(W, I).

Following the strategy outlined in §3.2, the security proof given in [4, Theorem 1] that the
Type 2 scheme is secure against generic forgers can be modified (with minimal changes) for
the Type 3 signature scheme.

Signatures for the Type 3 scheme are comprised of one G1 element and two G3 elements.
Signature verification requires one G1 membership test, three G3 membership tests, and
two PPE verifications.
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We note that the verification equation in step 5(b) of the Type 3 scheme cannot be
omitted. Indeed, if this step is omitted then the scheme succumbs to the following random
message attack. The forger first obtains a signed message (M, (R1, R2, S)). It then computes
M ′ = MR2 and R′1 = R1V

−1, thereby obtaining a valid forgery (M ′, (R′1, R2, S)). Indeed,
this attack is anticipated by the proof of Theorem 2 of [2].

4.3. Comparisons. The subgroup membership tests in step 5(a) of the Type 2 randomiz-
able structure-preserving signature scheme cannot be omitted. If they are, then an attacker
can proceed as follows. Having obtained a valid signature pair (M, (R,S)), she computes
M ′ = MR and R′ = RV −1. Note that ρ(R′) = ρ(R). Then (M ′, (R′, S)) is a valid signed
message since the term e2(V,M) · e2(ψ(R), R) in step 5(b) of signature verification remains
unchanged:

e2(V,M
′) · e2(ψ(R′), R′) = e2(V,MR) · e2(ψ(R) · ψ(V −1), R′)

= e2(V,M) · e2(V,R) · e2(ψ(R), R′) · e2(ψ(V ), R′)−1

= e2(V,M) · e3(V, ρ(R)) · e3(ψ(R), ρ(R)) · e3(V, ρ(R))−1

= e2(V,M) · e2(ψ(R), R).

The comparisons made between the Type 2 and Type 3 strongly unforgeable structure-
preserving signature schemes in §3.3 are also valid for the Type 2 and Type 3 randomizable
structure-preserving signature schemes in §4.1 and §4.2. Namely, the Type 3 scheme has
smaller signatures, faster signature generation, faster signature verification in stand-alone
applications (since it requires the verification of two PPEs instead of four PPEs for the
Type 2 scheme), and faster signature verification when used with Groth-Sahai proofs (since
both schemes have two PPEs and three group elements in signatures, but the Type 3 proofs
are DDH-based instead of DLIN-based).

As mentioned in [4], randomizable structure-preserving signature schemes are useful in
building anonymization protocols because the signature component that is uniformly dis-
tributed and independent of the message can be revealed without leaking any information
about the message or the original signature from which the randomized signature was de-
rived. In the Type 2 randomizable signature scheme of §4.1, the signature component R
can be made public. In that case, only the single PPE in step 5(b) of signature verification
needs to be transformed when used in conjunction with Groth-Sahai proofs (and the PPE
is of the form described in §A.1). Similarly, in the Type 3 randomizable signature scheme of
§4.2, the signature components R1 and R2 can be made public. In that case, only the single
PPE in step 5(c) of signature verification needs to be transformed when used in conjunction
with Groth-Sahai proofs (and the PPE is of the form described in §A.2).

In both situations, i.e., whether the message-independent signature components are made
public or not, the Type 3 scheme is superior in all respects to its Type 2 counterpart.

5. A closer look at Type 2 schemes

In this section we first establish that all Type 2 generic-signer structure-preserving sig-
nature schemes can be transformed to the Type 3 setting without any penalty in security
or efficiency. Next, we demonstrate the impossibility of having signature verification with
a single pairing-product equation in the Type 2 setting when messages are drawn from
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G2. Finally, we show a separation between the Type 2 and Type 3 settings by proposing a
Type 3 signature scheme that has no secure Type 2 counterpart.

Based on the claimed benefits of their concrete structure-preserving signature schemes
in terms of the number of group elements in signatures and verification complexity, Abe et
al. [4] asserted that the Type 2 setting “permits the construction of cryptographic schemes
with unique properties” and, thereby, settle the open question in [12] in the negative.
In contrast, the results of this section formally establish that all Type 2 generic-signer
structure-preserving signature schemes are merely Type 3 schemes in disguise and cannot
beat the established lower bound results even when messages are drawn from G2.

5.1. Conversion from Type 2 to Type 3. Recall the definition of structure-preserving
signatures (SPS) from [4, Definition 4]. Based on that definition, any generic-signer structure-
preserving signature scheme with message space G2 can be described as follows.

SPS-T2

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key contains elements u1, u2, . . . , v1, v2, . . . ∈R [1, n− 1].
The public key contains elements U1, U2, . . . ∈ G1, V1, V2, . . . ∈ G2, where Ui = Gui

and Vj = Hvj . Note that because the signer is generic, we can assume without loss
of generality that the signer knows the discrete logarithm of the Ui and the Vj .

(3) Signature generation. The message is M ∈ G2. However, unlike the public key, we
cannot assume that the signer knows the discrete logarithm of M = Hm. Since the
signing algorithm can only use generic group operations, a generic signer can only
construct signature elements of the form Si = ψ(M)αiGβi ∈ G1 and Tj = MγjHδj

where αi, βi, γj , δj ∈ [1, n− 1] are independent of m. Finally, the algorithm outputs
a signature containing elements (S1, S2, . . .) ∈ G1 and (T1, T2, . . .) ∈ G2.

(4) Signature verification. Given a message M and corresponding signature (S1, S2, . . . ,
T1, T2, . . .), the verifier does the following:
(a) check that S1, S2, . . . ∈ G1;
(b) check that M ∈ G2 and T1, T2, . . . ∈ G2;
(c) verify a collection of equations of the following form:∏

i

∏
j

e2(Si, Tj)
aqij ·

∏
i

∏
j

e2(Si, Vj)
bqij ·

∏
j

e2(ψ(M), Tj)
cqj ·

∏
j

e2(ψ(M), Vj)
dqj

·
∏
i

e2(Si,M)eqi ·
∏
i

e2(Ui,M)fqi ·
∏
i

∏
j

e2(Ui, Tj)
gqij · e2(ψ(M),M)hq = 1

Note: We use the augmented set S = {S1, S2, . . .}∪ {ψ(T1), ψ(T2), . . .} in the above
verification equation. However, there is no need to consider the elements ψ(Vj)
separately because they can, without loss of generality, be included in the public
key.

We now propose the following transformation to convert SPS-T2 from the Type 2 to
the Type 3 setting. The transformation utilizes the efficiently-computable isomorphism
D : G2 −→ H2 given by D(Q) = (ψ(Q), ρ(Q)) where H2 ⊆ G1×G3 (see §2). Our strategy is
very simple. We apply D so that all G2 elements in SPS-T2 are replaced by their “shorter
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representation” as elements of H2. This strategy, together with the observation that the
computation of a Type 2 pairing e2 is efficiently reduced to the task of computing a Type 3
pairing e3 (see equation (4)), immediately yields the following Type 3 structure-preserving
signature scheme.

SPS-T3

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. For each element Vj = Hvj in SPS-T2, compute Vj1 = Gvj and
Vj2 = Ivj . The secret key contains elements u1, u2, . . . , v1, v2, . . . ∈R [1, n − 1].
The public key contains elements U1, U2, . . . ∈ G1 (as in SPS-T2) and (V11 , V12),
(V21 , V22), . . . ∈ H2.

(3) Signature generation. The messageM = Hm in SPS-T2 can be written as (M1,M2) =
(Gm, Im) ∈ H2. Recall that using generic group operations, a generic signer in
SPS-T2 can only construct Si = Mαi

1 Gβi and Tj = MγjHδj where αi, βi, γj , δj are
independent of m. Representing Tj as an element of H2 we have Tj = (Tj1 , Tj2) =

(M
γj
1 Gδj ,M

γj
2 Iδj ) ∈ H2. It is easy to see that a generic signer can compute the signa-

ture element Tj ∈ G2 if and only if she can compute M
γj
1 Gδj ∈ G1 and M

γj
2 Iδj ∈ G3.

Using the above idea we can convert each signature element Tj ∈ G2 of SPS-T2 to
(Tj1 , Tj2) ∈ H2 and thereby obtain the corresponding signature elements in SPS-
T3. Finally, the algorithm outputs a signature of the form S1, S2, . . . ∈ G1 and
(T11 , T12), (T21 , T22), . . . ∈ H2.

(4) Signature verification. Given a message (M1,M2) and corresponding signature
(S1, S2, . . . , (T11 , T12), (T21 , T22), . . .), the verifier does the following:
(a) check that S1, S2, . . . ∈ G1;
(b) check that (M1,M2), (T11 , T12), (T21 , T22), . . . ∈ H2;
(c) verify a set of equations of the following form:∏

i

∏
j

e3(Si, Tj2)aqij ·
∏
i

∏
j

e3(Si, Vj2)bqij ·
∏
j

e3(M1, Tj2)cqj ·
∏
j

e3(M1, Vj2)dqj

·
∏
i

e3(Si,M2)
eqi ·

∏
i

e3(Ui,M2)
fqi ·

∏
i

∏
j

e3(Ui, Tj2)gqij · e3(M1,M2)
hq = 1

Note: We use the augmented set S = {S1, S2, . . .} ∪ {T11 , T21 , . . .} in the above
verification equation. As already observed in the context of SPS-T2, there is
no need to consider the public key elements V11 , V21 , . . . separately.

Next we show that the derived Type 3 scheme SPS-T3 is as secure as its original Type 2
counterpart SPS-T2 and maintains all the claimed benefits of SPS-T2.

Claim 1. SPS-T2 is X-secure if and only if SPS-T3 is X-secure, where X stands for any
standard security notion for signature schemes such as existential unforgeability under cho-
sen message attack (EUF-CMA).

Proof. Given an adversary against SPS-T3, we can easily construct an adversary against
SPS-T2 and vice versa. In the framework of the conversion described above, we have
consistently replaced all G2 elements in SPS-T2 by the corresponding H2 elements to derive
the corresponding algorithms of SPS-T3. The equivalence between SPS-T2 and SPS-T3
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follows from the facts that (i) D : G2 −→ H2 is an efficiently-computable isomorphism
whose inverse is also efficiently computable; and (ii) the task of computing e2 is efficiently
reduced to the task of computing e3. �

Remark 1. SPS-T3 does not have any efficiency gain (or loss) compared to SPS-T2. Fur-
ther optimizations for SPS-T3 are usually possible by removing some redundant group
elements after a careful scrutiny of the construction and its security argument as suggested
in [12]. For example, the Type 3 schemes described in §3 and §4 are optimized versions of
their Type 2 counterparts obtained by following the general recipe given above.

Remark 2. The subgroup membership tests described in step 4(b) of SPS-T2 and SPS-T3
involve pairing-based verification equations. We have observed in §3 and §4 that avoiding
subgroup membership tests can lead to a random message attack in both the Type 2 and
Type 3 settings. Apart from these pairing-based verifications of subgroup membership,
signature verification will involve at least one more pairing product equation. See the proof
of Theorem 2 below for further details.

5.2. Impossibility of single PPE in verification. In Theorem 2 of [2], Abe et al. showed
that there is no Type 3 structure-preserving signature scheme with a single pairing-based
verification equation that is existentially unforgeable under random message attack. The
original argument was for messages in G1, but can be easily extended when messages are
from G3. In Theorem 3 of [4], Abe et al. showed a similar impossibility result for Type 2
structure-preserving signature schemes with messages in G1.

We now generalize the above results to show that the impossibility holds even when
the messages are drawn from H2. As a corollary, one concludes that there is no Type 2
structure-preserving signature scheme with a single pairing-based verification equation that
is existentially unforgeable under random message attack.

Theorem 2. No structure-preserving signature scheme with a single pairing-product equa-
tion based signature verification is secure in the sense of existential unforgeability under
random message attack.

Proof. The case of messages in G1 in the Type 3 setting (resp. the Type 2 setting) is proved
in [2, Theorem 2] (resp. [4, Theorem 3]). The case of messages in G3 in the Type 3 setting
is analogous to the proof of Theorem 2 in [2]. The case of the Type 1 setting was settled in
[3, Theorem 4].

We now show the same impossibility for messages in G2. For ease of exposition, we
will use the structure of SPS-T3, which we have already shown equivalent to SPS-T2, and
the message space H2 (recall that H2 is isomorphic to G2, and that an element of H2 is
comprised of a pair in G1×G3 both components of which have the same discrete logarithm
with respect to the fixed generators G and I). Our argument closely follows the proof of
Theorem 2 from [2] but needs to take care of additional complications due to the structure
of H2.

Recall the signature verification for SPS-T3 where in step 4(c) we described the general
form of a verification equation. Our claim is that having a single verification equation of
the form 4(c) and omitting the subgroup membership test in step 4(b) lead to a random
message attack. For simplicity, we assume that the signature contains two elements of H2.
Note that Abe et al. claim that two group elements is the optimal signature size in Type 2
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– see Table 1 of [4]. However, it is easy to see that our result holds for the more general
case.

Consider a structure-preserving signature scheme for messages in H2 with verification key
containing group elements U1, U2, . . . ∈ G1, V1, V2, . . . ∈ G3, and Z ∈ GT .6 For simplicity, we
will assume there are two Ui’s and two Vi’s. A signature is of the form (S1, T1), (S2, T2) ∈ H2

and is verified by the following PPE:

e3(S1, T1)
a11 · e3(S1, T2)a12 · e3(S2, T1)a21 · e3(S2, T2)a22

·e3(S1, V1)b11 · e3(S1, V2)b12 · e3(S2, V1)b21 · e3(S2, V2)b22

·e3(M1, T1)
c11 · e3(M1, T2)

c12 · e3(M1, V1)
d11 · e3(M1, V2)

d12

·e3(S1,M2)
c21 · e3(S2,M2)

c22 · e3(U1,M2)
d21 · e3(U2,M2)

d22

·e3(U1, T1)
e11 · e3(U1, T2)

e12 · e3(U2, T1)
e21 · e3(U2, T2)

e22

·e3(M1,M2)
f = Z.

Note that terms like e3(Ui, Vj) can be incorporated in Z ∈ GT without loss of generality.
Given a signature (S1, T1), (S2, T2) ∈ H2 on a random message (M1,M2) ∈ H2, we isolate

S1, S2 and M2 in the verification equation to obtain:

A1 = T a111 T a122 V b11
1 V b12

2

A2 = T a211 T a222 V b21
1 V b22

2

B1 = Mf
1 S

c22
2 Ud211 Ud222

B2 = Mf
1 S

c21
1 Ud211 Ud222 .

Suppose that A1 6= M−c212 . We first rewrite the verification equation as

e3(S1,M2)
c21 · e3(S1, A1) · e3(B1,M2) · Ẑ = Z.

Note that Ẑ does not contain the terms S1 and M2. If c21 = 0, then we set S
′
1 = S1B

−1
1

and M
′
2 = M2A1. For the message (M1,M

′
2) we have a forged signature (S

′
1, T1), (S2, T2).

7

If c21 6= 0, then we set S
′
1 = S−11 B

−2/c21
1 and M

′
2 = M−12 A

−2/c21
1 and the corresponding

forgery is (S
′
1, T1), (S2, T2) for message (M1,M

′
2).

A similar attack works when A2 6= M−c222 .
Suppose now that A1M

c21
2 = 1 and A2M

c22
2 = 1. So both S1 and S2 are cancelled from

the verification equation and henceforth we will only consider the signature elements T1,
T2. Now, the verification equation will be of the form

e3(M1, T1)
c11 · e3(M1, T2)

c12 · e3(M1, V1)
d11 · e3(M1, V2)

d12

·e3(U1,M2)
d21 · e3(U2,M2)

d22

·e3(U1, T1)
e11 · e3(U1, T2)

e12 · e3(U2, T1)
e21 · e3(U2, T2)

e22

·e3(M1,M2)
f = Z.

6Here, as in [2], we have relaxed the original definition of structure-preserving signatures to allow the
public verification key to contain an arbitrary element Z from GT that appears in the verification equation.
As already observed in [2], the relaxation strengthens the impossibility result.

7The attack can be prevented by checking that (M1,M
′
2) and (S

′
1, T1) are elements of H2. However that

requires two additional pairing-product equations in signature verification.
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Proceeding as before, we isolate M1 and M2 to obtain

A3 = T c111 T c122 V d11
1 V d12

2

B3 = Ud211 Ud222 .

Suppose A3 6= M−f2 . The verification equation can be written as

e3(M1,M2)
f · e3(M1, A3) · e3(B3,M2) · Z ′ = Z.

Note that Z ′ does not contain the elements M1 and M2. If f = 0, then setting M
′
1 =

M1B
−1
3 and M

′
2 = M2A3 yields the forgery (T1, T2) for (M

′
1,M

′
2). If f 6= 0, then setting

M
′
1 = M−11 B

−2/f
3 and M

′
2 = M−12 A

−2/f
3 yields the forgery (T1, T2) for (M

′
1,M

′
2).

Suppose now that A3M
f
2 = 1; so the message element M1 is also cancelled from the

verification equation. Thus the signature verification is reduced to the form:

e3(U1,M2)
d21 · e3(U2,M2)

d22 · e3(U1, T1)
e11 · e3(U1, T2)

e12 · e3(U2, T1)
e21 · e3(U2, T2)

e22 = Z.

Producing a forgery is now trivial. The adversary obtains signatures (T1, T2) and (T
′
1, T

′
2)

on random messages (M1,M2) and (M
′
1,M

′
2). From these the adversary forms a signature

(T 2
1 /T

′
1, T

2
2 /T

′
2) on a new message (M2

1 /M
′
1,M

2
2 /M

′
2). �

5.3. Separation. We construct a Type 3 randomizable structure-preserving signature scheme
that has no secure counterpart in the Type 2 setting. The Type 3 scheme is a “dual” of
the scheme presented in §4.2 in the sense that the former has V,W ∈ G1 and M,S ∈ G3,
whereas the latter has V,W ∈ G3 and M,S ∈ G1.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Iv and W = Iw.

(3) Signature generation. To sign M ∈ G1, select r ∈R [1, n− 1] and compute R1 = Gr,

R2 = Ir and S = MvGr
2+w. The signature on M is (R1, R2, S).

(4) Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n− 1] and compute

R′1 = R1G
α, R′2 = R2I

α, and S′ = SR2α
1 Gα

2
. The randomized signature on M is

(R′1, R
′
2, S
′).

(5) Signature verification. To verify a signed message (M, (R1, R2, S)), check that
(a) M,R1, S ∈ G1 and R2 ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(S, I) = e3(M,V ) · e3(R1, R2) · e3(G,W ).

Because of the dual nature of the two schemes, the security proof against generic forgers
for the Type 3 scheme indicated in §4.2 carries over to the Type 3 scheme described here
when we swap the roles of the elements in G1 and G3.

However, the above Type 3 scheme does not have a secure and natural counterpart in the
Type 2 setting. The natural Type 2 variant has public key V = Hv, W = Hw, signatures

on a message M ∈ G1 comprising of R = Hr and S = MvGr
2+w, and verification that

checks M,S ∈ G1, R ∈ G2 and e2(S,H) = e2(M,V ) · e2(ψ(R), R) · e2(G,W ). Now, given
the public key (V,W ) an adversary can mount the following no-message attack. Select
arbitrary m, r ∈ [1, n− 1] and compute a forged signature on M = Gm as R = Hr and S =
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ψ(V )mψ(W )Gr
2

= MvGr
2+w. While the absence of an efficiently-computable isomorphism

from G3 to G1 allows us to construct the secure Type 3 scheme described above, the
availability of ψ in the Type 2 setting provides the adversary with the means to mount
the no-message attack.

5.4. Type 2: A designer’s artifact? In prime-order asymmetric pairing groups, a pro-
tocol designer has the choice of using elements from G1, G3 and H2 ⊆ G1 × G3. However,
the definition of a bilinear group generator in the Type 2 setting recognizes only G1, G2

and the isomorphism ψ : G2 −→ G1; see, for example, the definition of a generic bilinear
group generator G in §2.1 of [4]. The definition fails to take into account the existence of
the group G3 and an efficiently-computable isomorphism ρ : G2 −→ G3. This incomplete-
ness in the definition of bilinear group generators has a significant bearing on pairing-based
cryptographic protocols. As demonstrated in this paper, all the efficiency analysis and the
optimality claims for signature size and number of verification equations (see Table 1 of [4])
as well as the main lower bound result of [4]8 suffer from this incompleteness.

More generally, a designer desiring to use the map ψ in a cryptographic protocol or
the corresponding security argument unnecessarily restricts herself to G1 and G2 (i.e. H2).
This design artifact introduces (costly) redundancy in the cryptographic scheme without
any benefit in terms of functionality or security. This observation was first made in [12]
based on a careful analysis of existing Type 2 schemes. However, [12] did not attempt a
formal proof of the assertion that Type 2 pairings are “merely less efficient implementation
of Type 3 pairings”. Motivated by the erroneous claim of superiority of Type 2 over Type 3
in [4], in this paper we formally settle the relation between Type 2 and Type 3 settings in
the context of generic-signer structure-preserving signature.

6. Concluding remarks

We presented natural Type 3 analogues of the Type 2 strongly unforgeable and random-
izable structure-preserving signature schemes that were proposed in [4]. By properly ac-
counting for subgroup membership testing of group elements in signatures, we have shown
that the Type 3 schemes are superior to their Type 2 counterparts when the signature
schemes are used in a stand-alone setting, and when used in conjunction with Groth-Sahai
proofs. The Type 3 schemes are also the most efficient among all structure-preserving sig-
nature schemes. Finally, we show that all generic-signer Type 2 schemes are merely Type 3
schemes in disguise and cannot beat the existing lower bound results. On the other hand,
not all Type 3 schemes have a secure Type 2 counterpart. We conclude that the ques-
tion posed in [12] of the existence of a cryptographic protocol which necessarily has to be
restricted to Type 2 for implementation or security reasons is still open.
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Appendix A. Groth-Sahai proofs

In this section, we use additive notation for elements of G1, G2 and G3.

A.1. DLIN-based proofs. Let A,B ∈ G1 and t ∈ GT . We present a Groth-Sahai non-
interactive witness-indistinguishable proof of knowledge of X,Y ∈ G2 such that e2(A,X) ·
e2(B, Y ) = t. The NIWI proof is derived from the general description in §4.2 of [16]. It
can also be used with Type 3 pairings. Security is based on the decisional linear (DLIN)
assumption.

(1) Setup. Let e2 : G1 ×G2 −→ GT be a Type 2 pairing.
(2) Common reference string. Let H be a generator of G2. Let a, t, i, j ∈R [1, n−1], and

define U = aH, V = tH, I = iU , J = jV , K = (i + j)H. The common reference
string is (H,U, V, I, J,K).

(3) Commitment. Select s11, s12, s13, s21, s22, s23 ∈R [1, n−1] and compute d11 = s11U+
s13I, d12 = s12V + s13J , d13 = X + s11H + s12H + s13K, d21 = s21U + s23I,
d22 = s22V + s23J and d23 = Y + s21H + s22H + s23K. The commitment is
d = (d11, d12, d13, d21, d22, d23).

(4) Proof. Compute θ1 = s11A + s21B, θ2 = s12A + s22B and θ3 = s13A + s23B. The
proof is θ = (θ1, θ2, θ3).

(5) Verification. Check that θ1, θ2, θ3 ∈ G1, d11, d12, d13, d21, d22, d23 ∈ G2, and

e2(A, d11) · e2(B, d21) = e2(θ1, U) · e2(θ3, I)

e2(A, d12) · e2(B, d22) = e2(θ2, V ) · e2(θ3, J)

e2(A, d13) · e2(B, d23) = e2(θ1, H) · e2(θ2, H) · e2(θ3,K) · t.

A.2. DDH-based proofs. Let A,B ∈ G1 and t ∈ GT . We present a Groth-Sahai non-
interactive witness-indistinguishable proof of knowledge of X,Y ∈ G3 such that e3(A,X) ·
e3(B, Y ) = t. The NIWI proof is derived from the general description in §4.1 of [16].
Security is based on the decisional Diffie-Hellman (DDH) assumption in G3. Since the
decisional Diffie-Hellman problem is easy in G2, the NIWI proof has no counterpart with
Type 2 pairings.

(1) Setup. Let e3 : G1 ×G3 −→ GT be a Type 3 pairing.
(2) Common reference string. Let I be a generator of G3. Let a, t ∈R [1, n − 1], and

define U = aI, V = tI, J = tU . The common reference string is (I, U, V, J).
(3) Commitment. Select s11, s12, s21, s22 ∈R [1, n − 1] and compute d11 = s11I + s12V ,

d12 = X + s11U + s12J , d21 = s21I + s22V and d22 = Y + s21U + s22J . The
commitment is d = (d11, d12, d21, d22).

(4) Proof. Compute θ1 = s11A+ s21B and θ2 = s12A+ s22B. The proof is θ = (θ1, θ2).
(5) Verification. Check that θ1, θ2 ∈ G1, d11, d12, d21, d22 ∈ G3, and

e3(A, d11) · e3(B, d21) = e3(θ1, I) · e3(θ2, V )

e3(A, d12) · e3(B, d22) = e3(θ1, U) · e3(θ2, J) · t.
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