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Abstract. At CRYPTO 2014, Abe et al. presented generic-signer structure-preserving
signature schemes using Type 2 pairings. According to the authors, the proposed construc-
tions are optimal with only two group elements in each signature and just one verification
equation. The schemes beat the known lower bounds in the Type 3 setting and thereby es-
tablish that the Type 2 setting permits construction of cryptographic schemes with unique
properties not achievable in Type 3.

In this paper we undertake a concrete analysis of the Abe et al. claims. By properly
accounting for the actual structure of the underlying groups and subgroup membership
testing of group elements in signatures, we show that the schemes are not as efficient as
claimed. We present natural Type 3 analogues of the Type 2 schemes, and show that the
Type 3 schemes are superior to their Type 2 counterparts in every aspect. We also formally
establish that in the concrete mathematical structure of asymmetric pairing, all Type 2
structure-preserving signature schemes can be converted to the Type 3 setting without any
penalty in security or efficiency, and show that the converse is false. Furthermore, we prove
that the Type 2 setting does not allow one to circumvent the known lower bound result for
the Type 3 setting. Our analysis puts the optimality claims for Type 2 structure-preserving
signature in a concrete perspective and indicates an incompleteness in the definition of a
generic bilinear group in the Type 2 setting.

1. Introduction

The terms ‘Type 2’ and ‘Type 3’ pairings were introduced by Galbraith, Paterson and
Smart [16]. A bilinear map e : G1 × G2 −→ GT defined over prime-order groups is called
Type 2 or Type 3 depending on whether or not an efficiently computable isomorphism from
G2 to G1 is known. Their aptly titled paper “Pairings for cryptographers” begins with the
observation that many research papers treat pairings as a “black box” and then develop
schemes that “may not be realizable in practice, or may not be as efficient as the authors
assume”. A similar concern constitutes the central focus of the current work.

The term ‘structure-preserving signature’ (SPS) was coined in 2010 by Abe et al. [1] but
such constructions existed even before (see, e.g., Groth [18]). These pairing-based signature
schemes have the property that verification keys, messages, and signatures are all group
elements. Moreover, signatures are verified by testing the equality of products of pairings
of group elements; each such equality is called a product-of-pairings equation (PPE).

Unlike a standard digital signature, the raison d’etre for an SPS is not as a stand-alone
scheme, but rather in the modular design of cryptographic protocols. They have been used
in numerous cryptographic protocols (see [4] for a list). One of the primary reasons for
the popularity of SPS schemes in protocol design is that they are fully compatible with
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the well-known Groth-Sahai (GS) constructions of pairing-based non-interactive witness-
indistinguishable (NIWI) and non-interactive zero-knowledge (NIZK) proof systems [19].

In typical applications of structure-preserving signature schemes when used in conjunc-
tion with, say, GS proofs, a party has a signed message and wishes to convince a second party
(the verifier) that it possesses the (valid) signed message without revealing the message or
the signature.1 Groth-Sahai NIWI and NIZK proofs allow a party (the prover) to convince
a second party (the verifier) that it possesses a solution to a collection of PPEs. The com-
plexity of verifying a GS proof is heavily dependent on the number of group elements in the
signature and the number of PPEs in signature verification (see [11, §3.4]).

It is important to keep the above perspective in mind when investigating optimal con-
structions of structure-preserving signatures. In other words, having an optimal construc-
tion in terms of signature size (number of group elements) and verification complexity
(number of PPEs and pairings) is useful for a protocol designer who cares for the concrete
efficiency of a protocol designed on top of a structure-preserving signature. In contrast, if
(at all) a structure-preserving signature finds application as a stand-alone primitive, then
the high cost of pairing-based verifications can be easily mitigated by batching [10, 15].
As can be expected, we have witnessed significant research to design structure-preserving
signature schemes with the smallest possible number of group elements in a signature and
with the smallest possible number of PPEs in signature verification (and recently, with the
smallest possible number of pairings [9]).

Previous work. At CRYPTO 2011, Abe et al. [2] presented a strongly secure SPS using
Type 3 pairings. Verification has two PPEs, which was proven to be optimal in the sense
that any Type 3 structure-preserving signature scheme with verification having a single PPE
was shown to succumb to a random message attack. Moreover, signatures are comprised
of three group elements, which was also shown to be optimal. In their lower bound results
Abe et al. [2] used the notion of a ‘generic signer’. A generic signer has access only to
generic group operations and the same notion was used in later works including [4, 9] to
prove lower bound results.

At TCC 2014, Abe et al. [3] extended the aforementioned optimality results to the Type 1
setting, thereby unifying the Type 1 and 3 settings. They also proposed a selectively
randomizable SPS which is optimal in terms of signature size and verification complexity
in both Type 1 and 3 settings.

At CRYPTO 2014, Abe et al. [4] continued their investigation of structure-preserving
signature schemes in the Type 2 setting. They presented a strongly unforgeable structure-
preserving signature scheme and a randomizable structure-preserving signature scheme us-
ing Type 2 pairings. Both schemes are claimed to have signatures that are comprised of only
two group elements, have only one PPE in signature verification, and were proven secure
in the generic group model for Type 2 pairings. The authors conclude that their schemes
enjoy the smallest signature (in terms of number of group elements) and fastest signature
verification. Furthermore, they claimed that their constructions in Type 2 are optimal in
terms of signature size, number of verification equations and verification key (see Table 1

1We use the example of GS because many applications of structure-preserving signature schemes are in
conjunction with such non-interactive proof systems. However, structure-preserving signatures are combined
with other primitives too – see the work of Hanser and Slamanig [20].
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of [4]). In light of the aforementioned lower bounds on the number of group elements in
signatures and the number of PPEs in signature verification for Type 3 structure-preserving
signature schemes, they conclude that the Type 2 schemes have no analogues in the Type 3
setting. According to the authors [4]: “This is significant from a high level pairing-based
cryptography perspective, as it provides a concrete example of a property that can be ob-
tained in the Type 2 setting but not in the other settings.” This is contrary to the arguments
presented in [13] that any cryptographic protocol that employs Type 2 pairings has a natu-
ral counterpart in the Type 3 setting that does not suffer any loss in functionality, security
or efficiency.

In a follow-up work, Barthe et al. [9] establish lower bounds on the number of pairings
in the Type 2 setting. Using an automated tool they devise structure-preserving signatures
that are ‘strongly-optimal’ – having one verification equation and minimum number of
pairings in the Type 2 setting.

Concrete differences between Type 2 and Type 3 pairings. Abe et al. [4] use the notion of
‘generic algorithms’ in their results that establish the claimed superiority of Type 2 setting
for SPS. A bilinear group generator G is abstractly defined which takes input a security
parameter and returns the descriptions of G1,G2,GT , a bilinear pairing e : G1×G2 −→ GT

along with an efficiently-computable isomorphism ψ : G2 −→ G1. In their abstraction all
the relevant operations over G1,G2,GT such as subgroup membership, computing group
operations, and evaluating the maps ψ and e are treated as “black-box”. Such an ab-
straction is useful provided it is able to capture all the essential properties of the concrete
mathematical structure over which a Type 2 pairing is defined.

Type 2 and Type 3 pairings are concretely defined over certain elliptic curve groups [16].
As first pointed out in [16] and elaborated further in [13], each setting is constrained by the
underlying mathematical structure. For example, no efficient method is known for hashing
onto G2 in Type 2, whereas the isomorphism ψ, even though it exists in a mathemati-
cal sense, is not known to be efficiently computable in the Type 3 setting. Similarly, the
structure of G2 in the Type 2 setting requires the evaluation of two pairings in subgroup
membership tests for G2. All these are deemed to be necessary assumptions in the asym-
metric pairing setting that a protocol designer needs to keep in mind if s/he is concerned
with concrete instantiation of protocols in the real world.

Our contributions. To critically evaluate the claimed advantages of Type 2 structure-preser-
ving signature schemes, we deconstruct the Abe et al. proposals [4] in terms of the underlying
concrete group structures. We show that the analysis of the Type 2 generic-signer structure-
preserving signature schemes in [4] neglected to account for the concrete group structure
and subgroup membership testing of group elements in a signature, leading to erroneous
conclusions. Incorporating these subgroup membership tests into the signature verification
increases the number of group elements in signatures and also increases the number of PPEs
in signature verification. Next we examine whether the pairing-based subgroup membership
tests can be discounted as verification equations when the signature scheme is composed
with the Groth-Sahai proof system. Recall that such a modular composition is the primary
motivation for structure-preserving signatures. Our analysis establishes that not all these
pairing-based verifications can be dispensed with when the signature scheme is composed
with such a proof system.



4 SANJIT CHATTERJEE AND ALFRED MENEZES

Furthermore, since GS proofs in the Type 2 setting are more costly than in the Type 3
setting, the Type 2 schemes are not as efficient as claimed in [4] in the stand-alone setting
and significantly slower when composed with GS proofs. In support of this claim, two
examples of Groth-Sahai NIWI proofs for verifying that the prover possesses a solution
(X,Y ) to the equation e(A,X) · e(B, Y ) = t where e is a Type 2 or a Type 3 pairing are
given in Appendix A. We present natural Type 3 analogues of the Type 2 schemes, and
show that the Type 3 schemes are superior to their Type 2 counterparts in all aspects.

Continuing the process of deconstruction, we formally show that all Type 2 generic-signer
structure-preserving signature schemes can be converted to Type 3 without any penalty
in security and efficiency, but not all Type 3 schemes have a secure Type 2 counterpart.
Further, we exhibit the impossibility of having a single pairing-based verification equation in
the Type 2 setting even when messages are drawn from G2 and thereby put the lower bound
results of [4] in the correct perspective. Our results demonstrate that any Type 2 structure-
preserving signature scheme is merely an inefficient implementation of a corresponding
Type 3 scheme. The claim of superiority of the Type 2 setting over Type 3 stems from an
incomplete abstraction of the Type 2 setting in [4].

Organization. The remainder of the paper is organized as follows. In §2 we summarize
the salient differences between Type 2 and Type 3 pairings derived from elliptic curves
having even embedding degrees. In §3 we explain why, contrary to the claims, the strongly
unforgeable structure-preserving signature scheme in [4] actually has signatures comprising
of three group elements and has two PPEs in signature verification. We present a natural
analogue of the scheme in the Type 3 setting, and show that it is more efficient than
the Type 2 scheme. In §4, we present our Type 3 analogue of the Type 2 randomizable
structure-preserving signature scheme in [4], and show that the Type 3 scheme is more
efficient. In §5, we present our conversion framework for generic-signer structure-preserving
signature schemes from the Type 2 setting to the Type 3 setting, the separation between
Types 2 and 3, and the impossibility of having a single pairing-based verification equation
in the Type 2 setting. We draw our conclusions in §6. Two instances of Groth-Sahai NIWI
proofs in the Type 2 and Type 3 settings are given in Appendix A. The definitions of
structure-preserving signatures and their security are reproduced in Appendix B.

2. Asymmetric bilinear pairings

Let Fq be a finite field of characteristic p ≥ 5, and let E be an ordinary elliptic curve
defined over Fq. Let n be a prime divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the

embedding degree) be the smallest positive integer such that n | qk − 1. We will henceforth
assume that k is even, since then some important speedups in pairing computations are
applicable [7]. Some prominent families of elliptic curves with even embedding degree
include the MNT [23], BN [8], KSS [22], and BLS [6] curves.

Since k > 1, we have E[n] ⊆ E(Fqk) where E[n] denotes the n-torsion group of E. Let
G ∈ E(Fq)[n] be an Fq-rational point of order n, and define G1 = 〈G〉. Let GT denote the
order-n subgroup of the multiplicative subgroup of Fqk .

2.1. Type 3 pairings. Following [16], we denote by D the CM discriminant of E and set
e = gcd(k, 6) if D = −3, e = gcd(k, 4) if D = −4, e = 2 if D < −4, and d = k/e. For
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example, BN curves have k = 12, e = 6 and d = 2, whereas MNT curves have k = 6,
e = 2 and d = 3. Now, E has a unique degree-e twist Ẽ defined over Fqd such that

n | #Ẽ(Fqd) [21]. Let Ĩ ∈ Ẽ(Fqd) be a point of order n, and let G̃3 = 〈Ĩ〉. Then there is

a monomorphism φ : G̃3 −→ E(Fqk) such that I = φ(Ĩ) 6∈ G1. The group G3 = 〈I〉 is the
Trace-0 subgroup of E[n], so named because it consists of all points P ∈ E[n] for which

Tr(P ) =
∑k−1

i=0 π
i(P ) =∞, where π denotes the q-th power Frobenius. The monomorphism

φ can be defined so that φ : G̃3 −→ G3 can be efficiently computed in both directions;
therefore we can identify G̃3 and G3, and consequently the elements of G3 can be viewed
as having coordinates in Fqd (instead of in the larger field Fqk).

Non-degenerate bilinear pairings e3 : G1×G3 −→ GT are said to be of Type 3 because no
efficiently-computable isomorphisms from G1 to G3 or from G3 to G1 are known [16]. There
are several Type 3 pairings, of which the most efficient is Vercauteren’s optimal pairing [24].

2.2. Type 2 pairings. Let H ∈ E[n] with H 6∈ G1 and H 6∈ G3. Then G2 = 〈H〉 is an
order-n subgroup of E(Fqk) with G2 6= G1 and G2 6= G3. Non-degenerate bilinear pairings
e2 : G1×G2 −→ GT are said to be of Type 2 because the map Tr is an efficiently-computable
isomorphism from G2 to G1; note, however, that no efficiently-computable isomorphism from
G1 to G2 is known. These pairings have the property that hashing onto G2 is infeasible
(other than by multiplying H by a randomly selected integer).

The computation of e2 is efficiently reduced to the task of computing Type 3 pairing e3
[16]. Thus, the costs of computing e2 and e3 are approximately equal. To see this, define
the maps ψ : E[n] −→ G1, Q 7→ 1

kTr(Q) and ρ : E[n] −→ G3, Q 7→ Q− ψ(Q). Recall that
e2 and e3 are restrictions of the (reduced) Tate pairing ê : E[n]× E[n] −→ GT . Hence, for
all P ∈ G1, Q ∈ G2, we have

(1) e2(P,Q) = ê(P,ψ(Q)) · ê(P, ρ(Q)) = ê(P, ρ(Q)) = e3(P, ρ(Q)).

Remark 1. Note that the Type 2 setting is equipped with not only the map ψ : G2 −→ G1

but also the map ρ : G2 −→ G3. The abstract definition of the Type 2 setting, e.g., in [4],
does not capture the latter. However, as we show in the following sections, the map ρ plays
a crucial role for a comparative study of the protocols in the Type 2 and Type 3 settings.

2.3. Comparing the performance of Type 2 and Type 3 pairings. Since points in
G2 have coordinates in Fqk whereas points in G3 have coordinates in the proper subfield
Fqd , it would appear that the ratio of the bitlengths of points in G2 and G3 is k/d. Similarly,

the ratio of the costs of addition in G2 and G3 can be expected to be k2/d2 bit operations
(using naive methods for extension field arithmetic). These ratios are given in Table 3 of
[16]. However, as observed in [12], points in G2 have a shorter representation which we
describe next. We emphasize that this representation can be used for all order-n subgroups
G2 of E[n] different from G1 and G3.

Let H be an arbitrary point from E[n]\(G1∪G3), and set G2 = 〈H〉. Define G = 1
kTr(H)

so that the map ψ restricted to G2 is an efficiently-computable isomorphism from G2 to G1

with ψ(H) = G. Finally, set I = H −G. Then I ∈ G3 and the map ρ restricted to G2 is an
efficiently-computable isomorphism from G2 to G3 with ρ(H) = I.

Now, given a point Q ∈ E[n], one can efficiently determine the unique points Q1 ∈ G1

and Q2 ∈ G3 such that Q = Q1 + Q2; namely, Q1 = ψ(Q) and Q2 = ρ(Q) = Q − Q1.
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Writing D(Q) = (ψ(Q), ρ(Q)) and letting H2 ⊆ G1 ×G3 denote the range of D applied to
G2, we have an efficiently-computable isomorphism D : G2 −→ H2 whose inverse is also
efficiently computable. Hence, without loss of generality, points Q ∈ G2 can be represented
by a pair of points (Q1, Q2) with Q1 ∈ G1 and Q2 ∈ G3. Note that arithmetic in G2

with this representation is component-wise. Thus the ratio of the bitlengths of points in
G2 and G3 is in fact (d + 1)/d, whereas the ratio of the costs of addition in G2 and G3 is
(d2 + 1)/d2. We also have the following simple condition for determining membership of a
point Q ∈ E[n] in G2.

Lemma 1. Let Q ∈ E[n], and let Q1 = ψ(Q) and Q2 = ρ(Q). Then Q ∈ G2 if and only if
logGQ1 = logI Q2.

Proof. Suppose thatQ ∈ G2, soQ = `H for some ` ∈ [0, n−1]. ThenQ = `(G+I) = `G+`I.
Thus Q1 = `G and Q2 = `I, whence logGQ1 = logI Q2. The converse is similar. �

Table 2 of [12] lists the costs of performing basic operations in G1, G2 and G3 for a
particular BN curve. The table confirms the expectation that basic operations in G2 are
only marginally more expensive than the operations in G3. One notable exception is that
testing membership in G2 is several times more expensive than testing membership in
G1 and G3. To see this, let us consider the case of BN curves E defined over Fq where
q and n = #E(Fq) are prime; recall that these curves have embedding degree k = 12
and d = 2. Testing membership of a point Q in G1 is very efficient, and simply entails
verifying that Q has coordinates in Fq and satisfies the equation that defines the curve, i.e.,
Q ∈ E(Fq). Testing membership of a point Q in G3 involves a fast check that φ−1(Q) is in

Ẽ(Fq2), followed by an exponentiation to verify that nQ = ∞. Testing membership in G2

is more costly since the known methods require two pairing computations. If the shorter
representation (as elements of G1 × G3) is used for G2 then, by Lemma 1, membership
of (Q1, Q2) in G2 can be determined by first checking that Q1 ∈ G1 and Q2 ∈ G3, and
then verifying that e3(Q1, I) = e3(G,Q2) [14]. If the longer representation (as elements of
E(Fq12)) is used for G2, then membership of Q in G2 can be determined by first checking
that Q ∈ E(Fq12) and nQ =∞, and then verifying that e2(ψ(Q), H) = e2(G,Q).

Remark 2. Unlike G1 and G3, the group G2 does not have any special structure, and all
the n−1 order-n subgroups of E[n] other than G1 and G3 are candidates for G2. Subgroup
membership testing in G2 is costly because given any arbitrary point Q, the task is to
decide whether (i) Q ∈ E[n] and then whether (ii) ψ(Q) and ρ(Q) have the same discrete
log with respect to the generators G and I. Thus a pairing-based verification is assumed to
be necessary for a subgroup membership test for G2 (unless one knows some other efficient
method for testing equality of discrete logarithms in G1 and G2, e.g., by solving the discrete
logarithm problem in G1 or G2). As the primary focus of our work is a concrete comparative
study of structure-preserving signatures in Types 2 and 3, in the remainder of the paper
we perform our analysis based on this reasonable assumption. However, for the sake of
completeness, in Remark 5 we comment on why none of the superiority claims [4] of Type 2
structure-preserving signatures over Type 3 will hold even in the hypothetical scenario where
an efficient subgroup membership testing in G2 that does not require pairing computation
is discovered.
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2.4. A case for concrete treatment. Protocol designers usually assume the existence of
a bilinear group generator which given a security parameter generates the relevant group
descriptions and the bilinear map. This abstraction filters out the interconnection between
Type 2 and 3 settings. For example, the existing generic definition of Type 2 pairings is
oblivious to the fact that both Type 2 and 3 pairings can be defined over the same elliptic
curve and are restrictions of the same function to different subgroups.

In contrast, comparative studies of Type 2 and Type 3 setting, as initiated in [16] or
in follow-up works such as [13], are in the concrete security setting. In fact Galbraith
et al. noted that the existence of a polynomial-time bilinear group generator assumed in
the asymptotic treatment is not always automatic (see §2.1 of [16]), although it is not
a problem in practice as one can efficiently generate a bilinear group description for any
concrete security level of interest. For example, the BN family is optimized for the 128-bit
security level and the notion of asymptotic security cannot be used in a meaningful way
when the underlying pairing is derived from such family of curves.

In particular, when efficiency is being studied one cannot meaningfully distinguish be-
tween the Type 2 and Type 3 settings in the asymptotic sense. Clearly, it’s the concrete
efficiency (e.g., the number of group elements in a signature or the number of PPEs and
pairings in verification) that Abe et al. [4] and Barthe et al. [9] are concerned with when they
discuss the efficiency or optimality of their constructions of structure-preserving signature
in the Type 2 setting.

Thus the focus here, as in [16, 13], is on concrete security (along with functionality and
efficiency) in the Type 2 and 3 settings. The Type 2 and 3 pairings (i.e., e2 and e3) are
defined as restrictions of the (reduced) Tate pairing. In the performance comparison above
we used the example of BN curves as they yield the most efficient pairings at the 128-bit
security level. However, we note that our observations are without loss of generality and
apply equally well to asymmetric pairings derived from other prominent families of elliptic
curves such as MNT, KS and BLS. Readers are referred to Galbraith et al. [16] for a more
general comparative treatment of the Type 2 and 3 settings including a discussion on the
high cost of group membership testing for G2 in the Type 2 setting.2

In §§3–5, we use multiplicative notation for elements of G1, G2 and G3.

3. Strongly unforgeable structure-preserving signatures

We present the Type 2 strongly unforgeable SPS from [4] and our Type 3 analogue of it.
The Type 3 scheme was obtained by following the general recipe given in [13] for converting
a protocol from the Type 2 to the Type 3 setting.

3.1. Type 2 strongly unforgeable SPS [4].

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

2Since this is how Type 2 and Type 3 pairings are currently defined, any concrete efficiency/security
treatment must be based on that existing knowledge. No comparative study or claim of superiority of one
setting over another will make sense based on hitherto undiscovered mathematical structure. If there is a
completely new way to define Type 2 and Type 3 pairings in the future, then of course that will mandate a
new concrete analysis of all asymmetric pairing-based protocols.
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(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G2, select t ∈R [1, n−1] and compute R = Ht−w

and S = Mv/tH1/t. The signature on M is (R,S).
(4) Signature verification. To verify a signed message (M, (R,S)), check that (a)M,R, S ∈

G2; and (b) e2(Wψ(R), S) = e2(V,M) · e2(G,H).

In [4, Theorem 2], the Type 2 scheme is proven strongly secure3 against generic forgers.
Signatures are comprised of two G2 elements. Signature verification requires three G2

membership tests and one PPE verification.

3.2. Type 3 strongly unforgeable SPS.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To signM ∈ G3, select t ∈R [1, n−1] and computeR1 = Gt−w,

R2 = It−w, and S = Mv/tI1/t. The signature on M is (R1, R2, S).
(4) Signature verification. To verify a signed message (M, (R1, R2, S)), check that

(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(WR1, S) = e3(V,M) · e3(G, I).

It is easy to verify correctness of the Type 3 signature scheme. The security proof given
in [4, Theorem 2] that the Type 2 scheme is strongly secure against generic forgers also
applies (with minimal changes) to the Type 3 signature scheme. The reason that the proof
carries over with minimal changes is that we follow the strategy of [13] in the conversion.
The Type 3 scheme is obtained by first replacing all G2 elements by the corresponding H2

elements and then discarding the redundant G1 elements that are not used either in the
construction or in security argument in the Type 2 setting.

Signatures for the Type 3 scheme are comprised of one G1 element and two G3 elements.
Signature verification requires one G1 membership test, three G3 membership tests, and
two PPE verifications.

We note that the verification step 4(b) of the Type 3 scheme cannot be omitted. In-
deed, if this step is omitted then the scheme succumbs to the following key-only attack:
(1, (W−1G, 1, I)) is a valid forgery. Moreover, even if the message M = 1 is disallowed,
the scheme succumbs to the following random message attack. The forger first obtains a
signed message (M, (R1, R2, S)). It then computes M ′ = MS−1 and R′1 = R1V

−1, thereby
obtaining a valid forgery (M ′, (R′1, R2, S)). We note that this attack is anticipated by the
proof of Theorem 2 in [2] which establishes that any Type 3 structure-preserving signature
scheme with a single verification equation is existentially forgeable under random message
attack.

3A signature scheme is said to be secure if it is existentially unforgeable under chosen-message attack.
If, in addition, it is infeasible to find a new signature for a message that has already been signed, then the
signature scheme is said to be strongly secure.
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3.3. Comparisons.

3.3.1. Signature size. Signatures in the Type 2 scheme are comprised of two G2 elements
or, equivalently, two G1 and two G3 elements. Thus, signatures in the Type 3 scheme are
smaller than signatures in the Type 2 scheme.

3.3.2. Signature generation cost. In signature generation, computing R = Ht−w for the
Type 2 scheme has exactly the same cost as computing R1 = Gt−w and R2 = It−w for
the Type 3 scheme. However, the computation of S = Mv/tH1/t in the Type 2 scheme
is significantly slower than in the Type 3 scheme since the computation takes place in G2

in the former and in G3 in the latter. Thus, signature generation is slower in the Type 2
scheme than in the Type 3 scheme.

3.3.3. Signature verification cost. Signature verification in the Type 2 scheme is significantly
slower than in the Type 3 scheme. This is because, as explained in §2.3, the subgroup
membership tests M,R, S ∈ G2 required in the Type 2 scheme each requires the verification
of a PPE, whereas the subgroup membership tests R1 ∈ G1 and M,R2, S ∈ G3 in the Type 3
scheme are relatively inexpensive. Thus, signature verification in the Type 2 scheme requires
four PPE verifications, whereas only two are needed in the Type 3 scheme. Note that the
high cost of PPE verifications can be mitigated by batching [10, 15].

The costly subgroup membership tests in step 4(a) of the Type 2 scheme cannot be
omitted for two reasons. First, if these tests are omitted then the security proof given in [4]
is no longer applicable since the proof makes the assumption that M,R, S ∈ G2. Second,
and more importantly, there are attacks on the scheme if the membership tests are omitted.
For example, given a valid signed message (M, (R,S)), one can easily4 select a second point
R′ ∈ E[n] with R′ 6= R and ψ(R′) = ψ(R), thereby obtaining a second valid signed message
(M, (R′, S)). Similarly, given (M, (R,S)) one can obtain a second valid signed message
(M ′, (R,S)) or (M, (R,S′)) if membership tests for M or S are omitted.

3.3.4. Cost of signature verification with Groth-Sahai proofs. SPS schemes were not de-
signed to be used as stand-alone primitives, but rather in conjunction with non-interactive
proof systems like Groth-Sahai as explained in §1. Suppose that Groth-Sahai proof verifi-
cation always requires subgroup membership tests for the group elements in commitment
and proof as described in Appendix A. Now the pertinent question is whether in Type 2 it
is possible to give a proof for a single PPE as opposed to two PPEs in Type 3. This may
give some advantage to the Type 2 scheme because the cost of a Groth-Sahai proof depends
heavily on the number of PPEs in signature verification.

Consider the Type 2 signature scheme of Abe et al. when used in conjunction with a
Groth-Sahai proof. The prover provides a commitment of (M, (R,S)) together with a proof
that the committed values satisfy the following PPE:

(2) e2(Wψ(R), S) = e2(V,M) · e2(G,H).

In this proof system, the group elements G, H, V and W are known to the verifier, whereas
the variables are M,R, S ∈ G2. However, since Groth-Sahai proofs do not have a mechanism
for incorporating the evaluation of ψ(R), the variables in (2) are actually M , ψ(R) and S.

4Given R ∈ G2, one computes R1 = ψ(R) and selects arbitrary R′2 ∈ G3 with R′2 6= R · R−1
1 . Then

R′ = R1 ·R′2 satisfies ψ(R′) = R1 and R′ 6= R.
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In other words, a Groth-Sahai proof for (2) only convinces a verifier that the prover knows
R1 ∈ G1 and M,S ∈ G2 that satisfy the following PPE:

(3) e2(WR1, S) = e2(V,M) · e2(G,H).

In particular, the proof does not establish that the prover knows R ∈ G2 such that R1 =
ψ(R). As we have shown above, unless the prover establishes that s/he knows R ∈ G2

which has the same discrete logarithm to the base H ∈ G2 as R1 to the base G ∈ G1,
the signature scheme is insecure, i.e., not (strongly) unforgeable. Thus, as per the Groth-
Sahai proof system, the prover needs to convince the verifier that it possesses a solution
(M,R1, R, S) to the following collection of PPEs:

e2(WR1, S) = e2(V,M) · e2(G,H)(4)

e2(R1, H) = e2(G,R).(5)

When composed with Groth-Sahai proof systems, the verification now has two PPEs (note
that batching does not work in this scenario). This is in contrast to the claim made in [4]
that the Type 2 signature scheme of §3.1 has only one PPE. Moreover, in addition to R,S,
the prover has to commit to R1 in the Groth-Sahai proof. So when composed with Groth-
Sahai, signatures are comprised of three group elements, i.e., R1 ∈ G1 must be included in
the signature along with R,S ∈ G2.

Recall that the Type 3 signature scheme in §3.2 also has two PPEs in verification and
signatures that are comprised of three group elements. Thus, it might appear at first glance
that signature verification for the Type 2 and Type 3 schemes costs roughly the same when
used in conjunction with Groth-Sahai proofs. However, the Groth-Sahai proofs for the
Type 2 setting are based on hardness of the decisional linear (DLIN) problem in G2 [17],
whereas Groth-Sahai proofs for the Type 3 setting can be based on hardness of the decisional
Diffie-Hellman (DDH) problem in G1 and G3 [19]. Now, DLIN-based Groth-Sahai proofs
are significantly more costly than DDH-based Groth-Sahai proofs in terms of commitment
size, proof size, and the total number of pairing computations in proof verification. For
example, one can see that the DLIN-based proof of knowledge of a solution (X,Y ) to the
equation e2(A,X) · e2(B, Y ) = t in Appendix A.1 is significantly more costly than the
DDH-based proof of knowledge of a solution (X,Y ) to the equation e3(A,X) · e3(B, Y ) = t
in Appendix A.2; see also the performance estimates given in §3.4 of [11]. Thus, the
Type 2 structure-preserving signature scheme will be significantly slower than its Type 3
counterpart when combined with Groth-Sahai proofs.

3.3.5. Conclusions. The Type 3 strongly unforgeable structure-preserving signature scheme
is superior to its Type 2 counterpart with respect to signature size, signature generation
cost, and signature verification cost when the schemes are used as stand-alone signature
schemes and when used in conjunction with Groth-Sahai proofs. Moreover, the schemes
have similar security proofs against generic forgers. Thus, the Type 2 scheme offers no
advantages over the Type 3 scheme.
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4. Randomizable structure-preserving signatures

We present the Type 2 randomizable structure-preserving signature scheme from [4] and
our Type 3 analogue of it. The Type 3 scheme was obtained by following the general recipe
given in [13] for converting a protocol from the Type 2 setting to the Type 3 setting.

4.1. Type 2 randomizable SPS [4].

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G2, select r ∈R [1, n− 1] and compute R = Hr

and S = MvHr2+w. The signature on M is (R,S).
(4) Randomization. To randomize (M, (R,S)), select α ∈R [1, n − 1] and compute

R′ = RHα and S′ = SR2αHα2
. The randomized signature on M is (R′, S′).

(5) Signature verification. To verify a signed message (M, (R,S)), check that (a)M,R, S ∈
G2; and (b) e2(G,S) = e2(V,M) · e2(ψ(R), R) · e2(W,H).

In [4, Theorem 1], the Type 2 scheme is proven secure against generic forgers. Signatures
are comprised of two G2 elements. Signature verification requires three G2 membership
tests and one PPE verification.

4.2. Type 3 randomizable SPS.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Gv and W = Gw.

(3) Signature generation. To sign M ∈ G3, select r ∈R [1, n− 1] and compute R1 = Gr,

R2 = Ir and S = MvIr
2+w. The signature on M is (R1, R2, S).

(4) Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n− 1] and compute

R′1 = R1G
α, R′2 = R2I

α, and S′ = SR2α
2 Iα

2
. The randomized signature on M is

(R′1, R
′
2, S
′).

(5) Signature verification. To verify a signed message (M, (R1, R2, S)), check that
(a) R1 ∈ G1 and M,R2, S ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(G,S) = e3(V,M) · e3(R1, R2) · e3(W, I).

It is easy to verify correctness of the Type 3 scheme. Following the strategy outlined in
§3.2, the security proof given in [4, Theorem 1] that the Type 2 scheme is secure against
generic forgers can be modified (with minimal changes) for the Type 3 signature scheme.

Signatures for the Type 3 scheme are comprised of one G1 element and two G3 elements.
Signature verification requires one G1 membership test, three G3 membership tests, and
two PPE verifications.

We note that the verification equation in step 5(b) of the Type 3 scheme cannot be
omitted. Indeed, if this step is omitted then the scheme succumbs to the following random
message attack. The forger first obtains a signed message (M, (R1, R2, S)). It then computes



12 SANJIT CHATTERJEE AND ALFRED MENEZES

M ′ = MR2 and R′1 = R1V
−1, thereby obtaining a valid forgery (M ′, (R′1, R2, S)). Indeed,

this attack is anticipated by the proof of Theorem 2 of [2].

4.3. Comparisons. The subgroup membership tests performed in step 5(a) of the Type 2
randomizable structure-preserving signature scheme cannot be omitted. If they are, then an
attacker can proceed as follows. Having obtained a valid message-signature pair (M, (R,S)),
she computes M ′ = MR and R′ = RV −1. Note that ρ(R′) = ρ(R). Then (M ′, (R′, S))
is a valid signed message since the term e2(V,M) · e2(ψ(R), R) in step 5(b) of signature
verification remains unchanged:

e2(V,M
′) · e2(ψ(R′), R′) = e2(V,MR) · e2(ψ(R) · ψ(V −1), R′)

= e2(V,M) · e2(V,R) · e2(ψ(R), R′) · e2(ψ(V ), R′)−1

= e2(V,M) · e3(V, ρ(R)) · e3(ψ(R), ρ(R)) · e3(V, ρ(R))−1

= e2(V,M) · e2(ψ(R), R).

The comparisons made between the Type 2 and Type 3 strongly unforgeable structure-
preserving signature schemes in §3.3 are also valid for the Type 2 and Type 3 randomizable
structure-preserving signature schemes in §4.1 and §4.2. Namely, the Type 3 scheme has
smaller signatures, faster signature generation, faster signature verification in stand-alone
applications (since it requires the verification of two PPEs instead of four PPEs for the
Type 2 scheme), and faster signature verification when used with Groth-Sahai proofs (since
both schemes have two PPEs and three group elements in signatures, but the Type 3 proofs
are DDH-based instead of DLIN-based).

As mentioned in [4], randomizable structure-preserving signature schemes are useful in
building anonymization protocols because the signature component that is uniformly dis-
tributed and independent of the message can be revealed without leaking any information
about the message or the original signature from which the randomized signature was de-
rived. In the Type 2 randomizable signature scheme of §4.1, the signature component R
can be made public. In that case, only the single PPE in step 5(b) of signature verification
needs to be transformed when used in conjunction with Groth-Sahai proofs (and the PPE
is of the form described in §A.1). Similarly, in the Type 3 randomizable signature scheme of
§4.2, the signature components R1 and R2 can be made public. In that case, only the single
PPE in step 5(c) of signature verification needs to be transformed when used in conjunction
with Groth-Sahai proofs (and the PPE is of the form described in §A.2).

In both situations, i.e., whether the message-independent signature components are made
public or not, the Type 3 scheme is superior in all respects to its Type 2 counterpart.

4.4. Strongly-optimal signatures. In a recent paper, Barthe et al. [9] investigated the
optimal number of pairings for structure-preserving signature. The question is indeed well
motivated as the Groth-Sahai proof complexity also depends on the number of pairings in
each PPE. Barthe et al. work in the Type 2 setting as that supposedly allows a single PPE
based verification and explicitly disregard the PPEs in group membership testing for G2

elements in the verification. This is justified by stating that such tests “may require an
amortizable (aka offline) pairing computation in practical instantiation”. However, this is a
not a valid assumption, particularly when the main goal of [9] is to find a lower bound on the
“concrete number of pairings” and optimal construction meeting that bound. As we have



13

already pointed out in the context of the Abe et al. constructions [4], one cannot in general
ignore the pairing-based verification equations involved in G2 membership testing either in
the stand-alone setting or in conjunction with Groth-Sahai proofs. It is also evident that
these pairings cannot be treated as offline (and thereby, amortizable) since they involve
message and/or signature elements.

Assuming that signature verification involves a single PPE, Barthe et al. [9] derive a lower
bound of three pairings for CMA-secure construction and two pairings for RMA security
in the generic Type 2 setting. They use an automated tool to obtain signature schemes
matching these lower bounds which they term as “strongly optimal”. However, when their
abstract construction is translated to the concrete Type 2 setting, then we see that the
CMA-secure scheme actually requires six more additional pairings, none of which can be
made offline. Incidentally, following the general recipe of [13], they also propose a Type 3
counterpart that requires a total of five pairings of which only three are online.

More interesting is the case of their RMA-secure construction in the Type 2 setting
which is claimed to have only two online pairings, whereas in concrete terms six additional
online pairings will be required. Now consider the scenario when this signature scheme
is composed with Groth-Sahai proofs. Given a signature (R,S) ∈ G2

2 for M ∈ G2, their
verification equation5 is of the form

e2(ψ(S) ·W,H) = e(ψ(R) · V,M).

As the scheme is randomizable, the message-independent random group element R in the
signature can be revealed but not the signature element S ∈ G2. As we already pointed out
in the context of the Abe et al. strongly-unforgeable signature, Groth-Sahai proofs do not
have any mechanism for incorporating the evaluation of ψ(S). Hence, the signature now
has an additional component ψ(S) ∈ G1 and verification involves one additional PPE:

e2(ψ(S), H) = e2(G,S).

Clearly, the signature contains three group elements and verification involves four online
pairings that need to be counted when the scheme is composed with a Groth-Sahai proof.

5. A closer look at Type 2 schemes

We first establish that all Type 2 generic-signer structure-preserving signature schemes
can be transformed to the Type 3 setting without any penalty in security or efficiency.6

Next, we demonstrate the impossibility of having signature verification with a single pairing-
product equation in the Type 2 setting when messages are drawn from G2. Finally, we
show a separation between the Type 2 and Type 3 settings by proposing a Type 3 signature
scheme that has no secure Type 2 counterpart.

Based on the claimed optimality of their Type 2 schemes, Abe et al. [4] asserted that the
Type 2 setting is different from Type 3 setting as it “permits the construction of crypto-
graphic schemes with unique properties”. This, according to [4], settles the open question in
[13] of whether all Type 2 schemes can be converted to the Type 3 setting with no efficiency

5We correct a typo in [9] where R is used in the equation.
6Our transformation uses the concrete (and only known) mathematical structure over which Type 2 and

Type 3 pairings are defined. This concreteness does not cause the transformation to lose its generality since
any Type 2 structure-preserving signature scheme can be converted using our framework.



14 SANJIT CHATTERJEE AND ALFRED MENEZES

loss. In contrast, the results of this section formally establish that all Type 2 generic-signer
structure-preserving signature schemes are merely Type 3 schemes in disguise and cannot
beat the established lower bound results even when messages are drawn from G2.

5.1. Conversion from Type 2 to Type 3. Recall the definition of structure-preserving
signatures (SPS) from [4, Definition 4]. Based on that definition, any generic-signer structure-
preserving signature scheme with message space G2 can be described as follows. The con-
version framework with message space G1 is analogous.

SPS-T2

(1) Setup. Let e2 : G1 × G2 −→ GT be a Type 2 pairing where G1, G2 and GT have
order n; G, H are fixed generators of G1, G2, respectively.

(2) Key generation. The secret key contains elements u1, u2, . . . , v1, v2, . . . ∈R [1, n− 1].
The public key contains elements U1, U2, . . . ∈ G1, V1, V2, . . . ∈ G2, where Ui = Gui

and Vj = Hvj . Note that because the signer is generic, we can assume without loss
of generality that the signer knows the discrete logarithm of the Ui and the Vj .

(3) Signature generation. The message is M ∈ G2. However, unlike the public key, we
cannot in general assume that the signer knows the discrete logarithm of M = Hm.
The signing algorithm is restricted to generic group operations, so a generic signer
can only construct signature elements of the form Si = ψ(M)αiGβi ∈ G1 and Tj =

MγjHδj where αi, βi, γj , δj ∈ [0, n− 1] are independent of m. Finally, the algorithm
outputs a signature containing elements (S1, S2, . . .) ∈ G1 and (T1, T2, . . .) ∈ G2.

(4) Signature verification. Given message M and a corresponding signature of the form
(S1, S2, . . . , T1, T2, . . .), the verifier does the following:
(a) check that S1, S2, . . . ∈ G1;
(b) check that M ∈ G2 and T1, T2, . . . ∈ G2;
(c) verify a collection of equations of the following form:∏

i

∏
j

e2(Si, Tj)
aqij ·

∏
i

∏
j

e2(Si, Vj)
bqij ·

∏
j

e2(ψ(M), Tj)
cqj

·
∏
j

e2(ψ(M), Vj)
dqj ·

∏
i

e2(Si,M)eqi ·
∏
i

e2(Ui,M)fqi

·
∏
i

∏
j

e2(Ui, Tj)
gqij · e2(ψ(M),M)hq = 1.

Note: We use the augmented set S = {S1, S2, . . .}∪ {ψ(T1), ψ(T2), . . .} in the above
verification equation. However, there is no need to consider the elements ψ(Vj)
separately because they can, without loss of generality, be included in the public
key. The constant exponents aqij , bqij , . . . from [0, n − 1] used in the verification
equations are specified as part of the signature verification algorithm.

We now propose the following transformation to convert SPS-T2 from the Type 2 to
the Type 3 setting. The transformation uses the efficiently-computable isomorphism D :
G2 −→ H2 given by D(Q) = (ψ(Q), ρ(Q)) where H2 ⊆ G1 × G3 (see §2.3). Our strategy
is very simple: apply D so that all G2 elements in SPS-T2 are replaced by their “shorter
representation” as elements of H2. This strategy, together with the observation that the
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computation of a Type 2 pairing e2 is efficiently reduced to the task of computing a Type 3
pairing e3 (see equation (1)), immediately yields the following Type 3 structure-preserving
signature scheme.

SPS-T3

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. For each element Vj = Hvj in SPS-T2, compute Vj1 = Gvj and
Vj2 = Ivj . The secret key contains elements u1, u2, . . . , v1, v2, . . . ∈R [1, n − 1].
The public key contains elements U1, U2, . . . ∈ G1 (as in SPS-T2) and (V11 , V12),
(V21 , V22), . . . ∈ H2.

(3) Signature generation. The messageM = Hm in SPS-T2 can be written as (M1,M2) =
(Gm, Im) ∈ H2. Recall that using generic group operations, a generic signer in
SPS-T2 can only construct Si = Mαi

1 Gβi and Tj = MγjHδj where αi, βi, γj , δj are
independent of m. Representing Tj as an element of H2 we have Tj = (Tj1 , Tj2) =

(M
γj
1 Gδj ,M

γj
2 Iδj ) ∈ H2. It is easy to see that a generic signer can compute the signa-

ture element Tj ∈ G2 if and only if she can compute M
γj
1 Gδj ∈ G1 and M

γj
2 Iδj ∈ G3.

Using the above idea we can convert each signature element Tj ∈ G2 of SPS-T2 to
(Tj1 , Tj2) ∈ H2 and thereby obtain the corresponding signature elements in SPS-
T3. Finally, the algorithm outputs a signature of the form S1, S2, . . . ∈ G1 and
(T11 , T12), (T21 , T22), . . . ∈ H2.

(4) Signature verification. Given a message (M1,M2) and corresponding signature
(S1, S2, . . . , (T11 , T12), (T21 , T22), . . .), the verifier does the following:
(a) check that S1, S2, . . . ∈ G1;
(b) check that (M1,M2), (T11 , T12), (T21 , T22), . . . ∈ H2;
(c) verify a set of equations of the following form:∏

i

∏
j

e3(Si, Tj2)aqij ·
∏
i

∏
j

e3(Si, Vj2)bqij ·
∏
j

e3(M1, Tj2)cqj

·
∏
j

e3(M1, Vj2)dqj ·
∏
i

e3(Si,M2)
eqi ·

∏
i

e3(Ui,M2)
fqi

·
∏
i

∏
j

e3(Ui, Tj2)gqij · e3(M1,M2)
hq = 1.

Note: We use the augmented set S = {S1, S2, . . .} ∪ {T11 , T21 , . . .} in the above
verification equation. As already observed in the context of SPS-T2, there is
no need to consider the public key elements V11 , V21 , . . . separately and the
constants in the exponent are specified in the verification algorithm.

Correctness of SPS-T3 follows directly from the correctness of SPS-T2. Moreover, SPS-
T3 maintains all the claimed benefits of SPS-T2. We now show that SPS-T3 is as secure as
its original Type 2 counterpart SPS-T2. For concreteness, the security argument is sketched
for existential unforgeability under chosen message attack (EUF-CMA), but it is easy to see
that the argument extends to other standard notions of security such as EUF-RMA and
strong unforgeability under chosen/random message attack.

Claim 2. SPS-T2 is EUF-CMA-secure if and only if SPS-T3 is EUF-CMA-secure.
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Proof. In the framework of the conversion described above, we have consistently replaced
all G2 elements in SPS-T2 by the corresponding H2 elements to derive the corresponding
algorithms of SPS-T3. Recall that D : G2 −→ H2 is an efficiently-computable isomorphism
whose inverse is also efficiently computable. Hence, given an EUF-CMA adversary against
SPS-T3, one can easily construct an EUF-CMA adversary against SPS-T2 and vice versa. �

Remark 3. SPS-T3 does not have any efficiency gain (or loss) compared to SPS-T2. Fur-
ther optimizations for SPS-T3 are usually possible by removing some redundant group
elements after a careful scrutiny of the construction and its security argument as suggested
in [13]. For example, the Type 3 schemes described in §3 and §4 are optimized versions of
their Type 2 counterparts obtained by following the general recipe given above.

Remark 4. The subgroup membership tests described in step 4(b) of SPS-T2 and SPS-T3
involve pairing-based verification equations. We have observed in §3 and §4 that avoiding
subgroup membership tests can lead to a random message attack in both the Type 2 and
3 settings. Apart from these pairing-based verifications of subgroup membership, signa-
ture verification will involve at least one more pairing product equation. See the proof of
Theorem 3 for further details.

Remark 5. Consider the following hypothetical situation. Working within the mathemat-
ical structure of asymmetric pairings described in §2, someone in the future discovers an
efficient method for membership testing in G2 that does not require a pairing computa-
tion. By Lemma 1, the pairing-based verifications in the Type 3 setting for testing whether
(Q1, Q2) ∈ H2 (see step 4(b) in SPS-T3) will no longer be required. This simple observa-
tion together with Claim 2 immediately shows that if there exists, say, an EUF-CMA secure
structure-preserving signature scheme in Type 2 with a single PPE-based verification, then
there exists an EUF-CMA secure structure-preserving signature scheme in Type 3 with a
single PPE-based verification. For example, if the membership testing in G2 in the verifi-
cation step of the Type 2 randomizable SPS of [4] can be performed without pairing then
the verification in step 5(b) of the Type 3 randomizable SPS of Section 4.2 can be replaced
by a pairing-free check of (R1, R2) ∈ H2, leading to a single PPE-based verification in the
Type 3 setting. Consequently, our hypothetical situation will refute the Abe et al. asser-
tion [4] that, unlike the Type 2 setting, in the Type 3 setting no secure structure-preserving
signature scheme can have a single PPE-based verification. Further, when read in conjunc-
tion with Claim 2 and Remark 3, it is easy to see that none of the superiority claims in
[4] of a structure-preserving signature scheme in Type 2 over Type 3 will hold even in this
hypothetical scenario.

5.2. Impossibility of single PPE in verification. In Theorem 2 of [2], Abe et al. showed
that there is no Type 3 structure-preserving signature scheme with a single pairing-based
verification equation that is existentially unforgeable under random message attack. The
original argument was for messages in G1, but can be easily extended when messages are
from G3. In Theorem 3 of [4], Abe et al. showed a similar impossibility result for Type 2
structure-preserving signature schemes with messages in G1.
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Assuming that the hypothetical scenario discussed in Remark 5 does not occur7, one can
generalize the above results to show that the impossibility holds even when the messages
are drawn from H2. As a corollary, one concludes that there is no Type 2 SPS scheme with
a single pairing-based verification equation that is existentially unforgeable under random
message attack.

Theorem 3. No structure-preserving signature scheme with a single pairing-product equa-
tion based signature verification is secure in the sense of existential unforgeability under
random message attack.

Proof. The case of messages in G1 in the Type 3 setting (resp. the Type 2 setting) is proved
in [2, Theorem 2] (resp. [4, Theorem 3]). The case of messages in G3 in the Type 3 setting
is analogous to the proof of Theorem 2 in [2]. The case of the Type 1 setting was settled in
[3, Theorem 4].

We now show the same impossibility for messages in G2. For ease of exposition, we
will use the structure of SPS-T3, which we have already shown equivalent to SPS-T2, and
the message space H2 (recall that H2 is isomorphic to G2, and that an element of H2 is
comprised of a pair in G1 ×G3 the components of which have the same discrete logarithm
with respect to the fixed generators G and I). Our argument closely follows the proof of
Theorem 2 from [2] but needs to take care of additional complications due to the structure
of H2.

Recall the signature verification for SPS-T3 where in step 4(c) we described the general
form of a verification equation. Our claim is that having a single verification equation of
the form 4(c) and omitting the subgroup membership test in step 4(b) lead to a random
message attack. In other words, signature verification must involve more than one PPEs
(some of which may be in the disguise of subgroup membership test for H2 i.e., G2). For
simplicity, we assume that the signature contains two elements of H2. Note that Abe et al.
claim that two group elements is the optimal signature size in Type 2 – see Table 1 of [4].
However, it is easy to see that our result holds for the more general case.

Consider a structure-preserving signature scheme for messages in H2 with verification key
containing group elements U1, U2, . . . ∈ G1, V1, V2, . . . ∈ G3, and Z ∈ GT .8 For simplicity,
in the following we consider two Ui’s and two Vi’s in the verification key. A signature is of

7Note that Theorem 2 of [2] has to be interpreted modulo the (implicit) assumption that the hypothetical
scenario discussed in Remark 5 does not occur. Otherwise, the Type 3 randomizable structure-preserving
signature scheme in Section 4.2 with message space G3 and its dual discussed later in Section 5.3 with
message space G1 will contradict the impossibility result of [2].

8Here, as in [2], we have relaxed the original definition of structure-preserving signatures to allow the
public verification key to contain an arbitrary element Z from GT that appears in the verification equation.
As already observed in [2], the relaxation strengthens the impossibility result.
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the form (S1, T1), (S2, T2) ∈ H2 and is verified by the following PPE:

e3(S1, T1)
a11 · e3(S1, T2)a12 · e3(S2, T1)a21 · e3(S2, T2)a22

·e3(S1, V1)b11 · e3(S1, V2)b12 · e3(S2, V1)b21 · e3(S2, V2)b22

·e3(M1, T1)
c11 · e3(M1, T2)

c12 · e3(M1, V1)
d11 · e3(M1, V2)

d12

·e3(S1,M2)
c21 · e3(S2,M2)

c22 · e3(U1,M2)
d21 · e3(U2,M2)

d22

·e3(U1, T1)
e11 · e3(U1, T2)

e12 · e3(U2, T1)
e21 · e3(U2, T2)

e22

·e3(M1,M2)
f = Z.

Note that terms such as e3(Ui, Vj) can be incorporated in Z ∈ GT without any loss of
generality.

Given a signature (S1, T1), (S2, T2) ∈ H2 on a random message (M1,M2) ∈ H2, we isolate
S1, S2 and M2 in the verification equation to obtain:

A1 = T a111 T a122 V b11
1 V b12

2 A2 = T a211 T a222 V b21
1 V b22

2

B1 = Mf
1 S

c22
2 Ud211 Ud222 B2 = Mf

1 S
c21
1 Ud211 Ud222 .

Suppose that A1 6= M−c212 . We first rewrite the verification equation as

e3(S1,M2)
c21 · e3(S1, A1) · e3(B1,M2) · Ẑ = Z.

Note that Ẑ does not contain the terms S1 and M2. If c21 = 0, then we set S
′
1 = S1B

−1
1

and M
′
2 = M2A1. For the message (M1,M

′
2) we have a forged signature (S

′
1, T1), (S2, T2).

9

If c21 6= 0, then we set S
′
1 = S−11 B

−2/c21
1 and M

′
2 = M−12 A

−2/c21
1 and the corresponding

forgery is (S
′
1, T1), (S2, T2) for message (M1,M

′
2).

A similar attack works when A2 6= M−c222 .
Suppose now that A1M

c21
2 = 1 and A2M

c22
2 = 1. So both S1 and S2 are cancelled from

the verification equation and henceforth we will only consider the signature elements T1,
T2. Now, the verification equation will be of the form

e3(M1, T1)
c11 · e3(M1, T2)

c12 · e3(M1, V1)
d11 · e3(M1, V2)

d12

·e3(U1,M2)
d21 · e3(U2,M2)

d22

·e3(U1, T1)
e11 · e3(U1, T2)

e12 · e3(U2, T1)
e21 · e3(U2, T2)

e22

·e3(M1,M2)
f = Z.

Proceeding as before, we isolate M1 and M2 to obtain

A3 = T c111 T c122 V d11
1 V d12

2 B3 = Ud211 Ud222 .

Suppose A3 6= M−f2 . The verification equation can be written as

e3(M1,M2)
f · e3(M1, A3) · e3(B3,M2) · Z ′ = Z.

Note that Z ′ does not contain the elements M1 and M2. If f = 0, then setting M
′
1 =

M1B
−1
3 and M

′
2 = M2A3 yields the forgery (T1, T2) for (M

′
1,M

′
2). If f 6= 0, then setting

M
′
1 = M−11 B

−2/f
3 and M

′
2 = M−12 A

−2/f
3 yields the forgery (T1, T2) for (M

′
1,M

′
2).

9The attack can be prevented by checking whether (M1,M
′
2) and (S

′
1, T1) are elements of H2 or not.

However that requires two additional pairing-product equations in signature verification.
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Suppose now that A3M
f
2 = 1; so the message element M1 is also cancelled from the

verification equation. Thus the signature verification is reduced to the form:

e3(U1,M2)
d21 · e3(U2,M2)

d22 · e3(U1, T1)
e11 · e3(U1, T2)

e12

· e3(U2, T1)
e21 · e3(U2, T2)

e22 = Z.

Producing a forgery is now trivial. The adversary obtains signatures (T1, T2) and (T
′
1, T

′
2)

on random messages (M1,M2) and (M
′
1,M

′
2). From these the adversary forms a signature

(T 2
1 /T

′
1, T

2
2 /T

′
2) on a new message (M2

1 /M
′
1,M

2
2 /M

′
2). �

5.3. Separation. We construct a Type 3 randomizable structure-preserving signature scheme
that has no secure counterpart in the Type 2 setting. The Type 3 scheme is a “dual” of
the scheme presented in §4.2 in the sense that the former has V,W ∈ G1 and M,S ∈ G3,
whereas the latter has V,W ∈ G3 and M,S ∈ G1.

(1) Setup. Let e3 : G1 × G3 −→ GT be a Type 3 pairing, where G1, G3 and GT have
order n; G, I are fixed generators of G1, G3, respectively.

(2) Key generation. The secret key is v, w ∈R [1, n−1]. The public key is (V,W ) where
V = Iv and W = Iw.

(3) Signature generation. To sign M ∈ G1, select r ∈R [1, n− 1] and compute R1 = Gr,

R2 = Ir and S = MvGr
2+w. The signature on M is (R1, R2, S).

(4) Randomization. To randomize (M, (R1, R2, S)), select α ∈R [1, n− 1] and compute

R′1 = R1G
α, R′2 = R2I

α, and S′ = SR2α
1 Gα

2
. The randomized signature on M is

(R′1, R
′
2, S
′).

(5) Signature verification. To verify a signed message (M, (R1, R2, S)), check that
(a) M,R1, S ∈ G1 and R2 ∈ G3;
(b) e3(R1, I) = e3(G,R2); and
(c) e3(S, I) = e3(M,V ) · e3(R1, R2) · e3(G,W ).

Because of the dual nature of the two schemes, the security proof against generic forgers
for the Type 3 scheme indicated in §4.2 carries over to the Type 3 scheme described here
when we swap the roles of the elements in G1 and G3.

However, the above Type 3 scheme does not have a secure and natural counterpart in the
Type 2 setting. The natural Type 2 variant has public key V = Hv, W = Hw, signatures

on a message M ∈ G1 comprising of R = Hr and S = MvGr
2+w, and verification that

checks M,S ∈ G1, R ∈ G2 and e2(S,H) = e2(M,V ) · e2(ψ(R), R) · e2(G,W ). Now, given
the public key (V,W ) an adversary can mount the following no-message attack. Select
arbitrary m, r ∈ [1, n− 1] and compute a forged signature on M = Gm as R = Hr and S =

ψ(V )mψ(W )Gr
2

= MvGr
2+w. While the absence of an efficiently-computable isomorphism

from G3 to G1 allows us to construct the secure Type 3 scheme described above, the
availability of ψ in the Type 2 setting provides the adversary with the means to mount
the no-message attack.

5.4. Type 2: A designer’s artifact? It is not the case that the Abe et al. [4] constructions
and security arguments have any intrinsic weakness. However, their efficiency analysis as
well as the optimality claims are incorrect. A similar observation holds for the optimality
claims made in the follow-up work of Barthe et al. [9] and in various lower bound results
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of [4, 9].10 The central problem in the analysis of protocols in the generic Type 2 model
and associated lower bound claims stems from an incomplete abstraction of the underlying
mathematical structure.

In prime-order asymmetric pairing groups, a protocol designer has the choice of using
elements from G1, G3 and H2 ⊆ G1 × G3. However, the definition of a bilinear group
generator in the generic Type 2 setting recognizes only G1, G2 and the isomorphism ψ :
G2 −→ G1. See, for example, the definition of a bilinear group generator G in §2.1 of [4].
The definition does not take into account the fact that in concrete settings there may exist
a group G3 and an efficiently-computable isomorphism ρ : G2 −→ G3. This incompleteness
in the abstract definition has a significant bearing on the concrete analysis of pairing-based
cryptographic protocols as we demonstrate in this paper.11

More generally, a protocol designer desiring to use the map ψ in a cryptographic protocol
or the corresponding security argument unnecessarily restricts herself to G1 and G2 (i.e. H2).
This design artifact introduces (costly) redundancy in the cryptographic scheme without
any benefit in terms of functionality or security. This observation was first made in [13]
based on a careful analysis of existing Type 2 schemes. However, [13] did not attempt a
formal proof of the assertion that Type 2 pairings are “merely less efficient implementation
of Type 3 pairings”. Motivated by the erroneous claim of superiority of Type 2 over Type 3
in [4], in this paper we formally settle the relation between Type 2 and Type 3 settings in
the context of generic-signer structure-preserving signatures.

6. Concluding remarks

We presented natural Type 3 analogues of the Type 2 strongly unforgeable and random-
izable structure-preserving signature schemes that were proposed in [4]. By properly ac-
counting for subgroup membership testing of group elements in signatures, we have shown
that the Type 3 schemes are superior to their Type 2 counterparts when the signature
schemes are used in a stand-alone setting, and when used in conjunction with Groth-Sahai
proofs. Finally, we show that all generic-signer Type 2 schemes are merely Type 3 schemes
in disguise and cannot beat the existing lower bound results. On the other hand, not all
Type 3 schemes have a secure Type 2 counterpart. We conclude that the question posed
in [13] of the existence of a cryptographic protocol which necessarily has to be restricted to
Type 2 for implementation or security reasons is still open.

Acknowledgements. We thank Jens Groth and Francisco Rodŕıguez-Henŕıquez for their com-
ments on an earlier draft of the paper. We also thank the Asiacrypt reviewers for their
helpful feedback.

10For example, Theorem 4 of [4] proves a lower bound of two group elements in the verification key under
the assumption of a single verification equation. The theorem as stated is void because there is no secure
structure-preserving signature with a single verification equation.

11Following the approach outlined here, we believe it is not difficult to devise a more comprehensive
definition of generic bilinear group generator in the Type 2 setting. Such a definition should be able to
better model the concrete properties of the Type 2 setting, such as infeasibility of hashing into G2 and the
cost of subgroup membership testing in G2. However, we do not undertake such an exercise or, for that
matter, a better model of Type 2 structure-preserving signature, since we don’t see any concrete motivation
for using the Type 2 setting in the first place.
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Appendix A. Groth-Sahai proofs

In this section, we use additive notation for elements of G1, G2 and G3.

A.1. DLIN-based proofs. Let A,B ∈ G1 and t ∈ GT . We present a Groth-Sahai non-
interactive witness-indistinguishable proof of knowledge of X,Y ∈ G2 such that e2(A,X) ·
e2(B, Y ) = t. The NIWI proof is derived from the general description in §4.2 of [17]. It
can also be used with Type 3 pairings. Security is based on the decisional linear (DLIN)
assumption.

(1) Setup. Let e2 : G1 ×G2 −→ GT be a Type 2 pairing.
(2) Common reference string. Let H be a generator of G2. Let a, b, i, j ∈R [1, n−1], and

define U = aH, V = bH, I = iU , J = jV , K = (i + j)H. The common reference
string is (H,U, V, I, J,K).

(3) Commitment. Select s11, s12, s13, s21, s22, s23 ∈R [1, n−1] and compute d11 = s11U+
s13I, d12 = s12V + s13J , d13 = X + s11H + s12H + s13K, d21 = s21U + s23I,
d22 = s22V + s23J and d23 = Y + s21H + s22H + s23K. The commitment is
d = (d11, d12, d13, d21, d22, d23).

(4) Proof. Compute θ1 = s11A + s21B, θ2 = s12A + s22B and θ3 = s13A + s23B. The
proof is θ = (θ1, θ2, θ3).

(5) Verification. Check that θ1, θ2, θ3 ∈ G1, d11, d12, d13, d21, d22, d23 ∈ G2, and

e2(A, d11) · e2(B, d21) = e2(θ1, U) · e2(θ3, I)

e2(A, d12) · e2(B, d22) = e2(θ2, V ) · e2(θ3, J)

e2(A, d13) · e2(B, d23) = e2(θ1, H) · e2(θ2, H) · e2(θ3,K) · t.

A.2. DDH-based proofs. Let A,B ∈ G1 and t ∈ GT . We present a Groth-Sahai non-
interactive witness-indistinguishable proof of knowledge of X,Y ∈ G3 such that e3(A,X) ·
e3(B, Y ) = t. The NIWI proof is derived from the general description in §4.1 of [17].
Security is based on the decisional Diffie-Hellman (DDH) assumption in G3. Since the
decisional Diffie-Hellman problem is easy in G2, the NIWI proof has no counterpart with
Type 2 pairings.

(1) Setup. Let e3 : G1 ×G3 −→ GT be a Type 3 pairing.
(2) Common reference string. Let I be a generator of G3. Let a, b ∈R [1, n − 1], and

define U = aI, V = bI, J = bU . The common reference string is (I, U, V, J).
(3) Commitment. Select s11, s12, s21, s22 ∈R [1, n − 1] and compute d11 = s11I + s12V ,

d12 = X + s11U + s12J , d21 = s21I + s22V and d22 = Y + s21U + s22J . The
commitment is d = (d11, d12, d21, d22).

(4) Proof. Compute θ1 = s11A+ s21B and θ2 = s12A+ s22B. The proof is θ = (θ1, θ2).
(5) Verification. Check that θ1, θ2 ∈ G1, d11, d12, d21, d22 ∈ G3, and

e3(A, d11) · e3(B, d21) = e3(θ1, I) · e3(θ2, V )

e3(A, d12) · e3(B, d22) = e3(θ1, U) · e3(θ2, J) · t.
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Appendix B. Definitions

Here we reproduce the definition of structure-preserving signature and its security from
[4].

Recall that a signature scheme is defined as a set of four algorithms: P,K,S,V. The set-
up algorithm P takes input a security parameter and outputs public parameter PP . The
key generation algorithm K takes input PP and outputs signing and verification key pair
(SK, V K). The signing algorithm takes input SK and a message M from the appropriate
message space M and returns a signature σ. The verification algorithm takes input V K,
and a message-signature pair (M,σ) and returns a bit indicating whether the signatureis
valid or not. The set of four algorithms (P,K,S,V) must satisfy the standard correctness
requirement:

Pr[PP ← P(1k); (SK, V K)← K(PP ); M ←M; σ ← SSK(M)

: VV K(M,σ) = 1] = 1.

The formal definition of a structure-preserving signature scheme assumes the existence
of a bilinear group generator which, given a security parameter, returns a bilinear group
description of the appropriate type.

Definition 1. A signature scheme (P,K,S,V) is called a Type 2 structure-preserving sig-
nature scheme if

• PP includes a bilinear group description (n,G1,G2,GT , e, ψ,G,H) generated by G,
elements from G1,G2 and constants in Zn.
• V K consists of PP and elements from G1 and G2.
• messages consists of group elements from G1 and G2.
• V only needs to decide membership in G1 and G2, use the map ψ and evaluate

pairing product equations.

Existential unforgeability under chosen message attack (EUF-CMA) for a structure-
preserving signature scheme is defined in the standard way.

A randomizable variant of structure-preserving signature is also discussed in [4]: given
a verification key V K, and a message-signature pair (M,σ), a randomization algorithm R
returns a randomized signature σ′.

Definition 2 (Randomizability). A signature scheme (P,K,S,V) is called (perfectly) ran-
domizable if there exists a randomization algorithm R such that for all k ∈ N and for all
interactive adversaries A, we have

Pr[PP ← P(1k); (SK, V K)← K(PP ); (M,σ)← A(SK);

σ0 ← SSK(M); σ1 ← RV K(M,σ); b ∈R {0, 1}

: VV K(M,σ) = 1 ∧ A(σb) = b] ≈ 1

2
+ ε.

(We correct a minor error in [4]: ε, which is a negligible function in k, was missing in the
original definition [4].)
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