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Abstract

We improve the timing attack on ECDSA in [1] by Brumley and
Tuveri. We use the Gaussian heuristic to analyse the length of er-
ror vectors in the lattice Close Vector Problem in order to deter-
mine the problems which are theoretically solvable. Then we cost
each solution using a strengthened lattice reduction algorithm and
Schnorr-Euchner enumeration to determine which problems are prac-
tically solvable. The original work by Brumley and Tuveri resulted
in OpenSSL’s ECDSA being updated to remove the timing informa-
tion they exploited, so that application is not vulnerable to our im-
provements. However we publish this work as a general advance in
side-channel recovery techniques which may be applicable in related
scenarios.
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1 Introduction

Digital signature schemes such as ECDSA underpin authentication in cryp-
tographic protocols such as TLS. Traditional cryptanalysis has a good under-
standing of the strength of such schemes. However, increasingly, side-channel
information is being used to demonstrate exploitability of these schemes due
to weaknesses in implementations. In [4], Howgrave-Graham and Smart de-
scribed how a theoretical side-channel giving a small number of bits of the
ephemeral private keys used in DSA, could be used to construct a lattice
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for which solving a Close Vector Problem recovers the static private key.
Later, Brumley and Tuveri in [1], identified such a side-channel which man-
ifests itself as a timing correlation to the number of leading zero ephemeral
private key bits occurring in the Montgomery’s ladder algorithm for elliptic
curve multiplication in the OpenSSL 0.9.80 implementation of ECDSA. They
demonstrated this experimentally to recover the static private key from a re-
mote TLS server after of the order of a thousand signatures. In accordance
with their recommendation for a mitigating countermeasure, the OpenSSL
implementation was patched to remove the timing vulnerability.

Our work presents improvements to the original timing attack. We acknowl-
edge that the results are no longer applicable to the implementation of Mont-
gomery’s ladder in OpenSSL, but the results may be relevant in related sce-
narios and nonetheless represent a general advance in the applicability and
efficacy of lattice techniques to such side-channel recoveries.

We shall summarise Brumley and Tuveri’s approach in Section 2, and present
the lattice attack in Section 3. Our contribution focuses on solving the lattice
attack, we do not repeat the timing attack. Brumley and Tuveri use LLL-
reduction and Babai rounding to recover the closest vector and we aim to
improve on this.

The problem space is parameterized by the number of signatures and the
number of leading zero bits given by the side-channel. We begin with an
analysis of the length of the error vector in Section 4, and use the Gaus-
sian heuristic to determine the region of the problem space where the closest
vector is indeed likely to be the desired solution. This region has a theoret-
ical solution by CVP provided we can afford to find the closest vector. We
assess the practical cost in Section 5 by considering an improved but more
expensive reduction than LLL, namely HKZ-reduction, which interpolates
an exact method to find shortest vectors in low-dimensional subspaces with
the approximate method of LLL. We consider the cost of Schnorr-Euchner
enumeration on this reduced basis: first to find the closest vector; and then
by extending the search radius to enumerate more distant lattice vectors and
reach the desired solution, thus extending the theoretically solvable region.
We use the size of the search tree as a bound on the enumeration cost.

In Section 6 we discuss the implications for the amount of work required to
recover static private keys for the Brumley and Tuveri experiments. Then,
in Section 7, look at the implications for reducing the number of signatures
collected. We present where future work could go in Section 8, by exploit-



ing the side-channel information we have not used, and costing improved
enumeration methods. Finally, Section 9 concludes.

2 ECDSA Side-Channel

Let E be an elliptic curve and G be a point on F of prime order p. To sign
a message m with the static private key x, the signer chooses an ephemeral
private key y and computes

b= (m+zf)y " (mod p)
where f = ([y]G). (mod p).

The most expensive part of signature generation is the scalar multiplication
in the elliptic curve so it is important that this is implemented as efficiently
as possible. However, differences in the time taken to compute [y]G can also
leak information about the ephemeral private key y.

Brumley and Tuveri [1] noted that for binary curves OpenSSL 0.9.80 used
a Montgomery ladder whose length depended on logs(y). This meant that
scalar multiplication, and so signature generation, was faster for ephemeral
private keys that had a greater number of leading zeroes. Turning this
around, by timing a large number of signatures they could assume that the
fastest ones corresponded to ephemeral private keys with a certain number
of leading zeroes. Given enough of these it was then possible to use the lat-
tice attack from [4] to recover the ephemeral private keys and thus the static
private key.

Brumley and Tuveri perform three experiments to gather timing informa-
tion, all using OpenSSL with the NIST binary elliptic curve B-163, whose
ephemeral private keys have 163 bits. The first is a local experiment whereby
timings are taken in ideal conditions by directly invoking the ECDSA func-
tions on a local machine. The second and third are remote experiments
whereby a TLS handshake is performed over a network to a server, and the
time between the TLS ClientHello and ServerKeyExchange is used as an
approximation to the side-channel timing. For the second experiment the
server is actually on the same host machine, connected to the client by a
loopback interface. For the third experiment, the server is on a remote host
machine but is connected to the same network switch. From all experiments,
they form lattices as described in Section 3, using the signatures with the



fastest timings as an approximation to those whose ephemeral keys have a
particular number, a, of leading zeroes.

The lattice CVP is solved using Sage’s implementation of LLIL-reduction
to produce what is hopefully a nearly orthogonal lattice, then using Gram-
Schmidt orthoganalization and Babai rounding to estimate the closest vec-
tor. In case the filtered signatures contain too many false positives - that
erroneously have fewer than a leading zeroes - then a subset is randomly
re-sampled from the fastest signatures until few enough false positives are
present. “Few enough” is preferably zero, but they acknowledge the CVP
sometimes solves in the presence of small errors because the desired solution
can still be the closest vector.

We shall try to extract comparable results from their paper by focusing on 7
leading zeroes. They find that 43 correctly filtered signatures gives a lattice
that solves with good probability in a short time. For each experiment they
collect 8192 signatures and re-sample a subset of 43 from the fastest 64 until
their CVP succeeds. We’ll use their estimate of the number of random re-
samplings until they select a filtered set with no false positives to estimate
the work required. This is presented in Table 1. They find that recovery
of the static private key is feasible for all their experimental scenarios, and
performing 8192 signatures only takes a few minutes.

Experiment Collected signatures | Work

Local attack 8192 5.6
Loopback attack 8192 100
Switched attack 8192 100000

Table 1: Average work (number of size 43 lattice attacks) to recover static
private key given that the filtered set is selected from the top 64 timings

3 Lattice attack

Recall that, to sign a message m with the static private key x, the signer
chooses an ephemeral private key y and computes

b= (m+zf)y " (mod p)

where f = ([y]G), (mod p).



If we have n signatures, then we obtain a set of n equations

bi

(mi +afi)y; ' (mod p).
We can rearrange these to give a set of equations of the form
yi + Ciz + D; = 0 (mod p)

where C; = —f;b; ' (mod p) and D; = —m;b; ' (mod p). Further, using the
equation for ¢ = 0 to cancel z we obtain

yi + Aiyo + B; = 0 (mod p)
where A; = —C;C;" (mod p) and B; = D; — DyC;Cy ™t (mod p).
Suppose now that we know the leading bits of y;; that is, for some u; we have
yi = 2 + 22!
where 0 < z; < 2% and 2/ is known. This then gives
zi + 8iz0 + t; = 0 (mod p)
where s; = A; and t; = 212 + A;2M02] + B;.

The key point is that the solutions z; to the equations above are shorter
than would be expected for random equations of this form. We can therefore
attempt to recover the ephemeral private keys via a Close Vector Problem.
Consider the lattice
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Then we see that

(-Zo, kl, ey knfl)A — (O,tl, RN ,tnfl) = (Z(], Ce ,anl)

where k; € Z are such that z; + s;29 +t; = k;p. Thus, we want to find the
lattice vector closest to the target vector ¢t = (0,t1,...,t,_1).



4 Close vectors

There is an estimate in [4] of the number of signatures needed to recover
the ephemeral private keys from the lattice under the assumption that the
Close Vector Problem is being solved using Babai’s nearest plane algorithm
with an LLL-reduced basis. Similarly, [1] provides experimental evidence of
success rates when Babai’s rounding algorithm is used with an LLL-reduced
basis. We will take a slightly different approach and consider the number
of signatures required to guarantee that the solution to the Close Vector
Problem gives the desired answer regardless of the method of solving it.

To be confident of recovering z from the Close Vector Problem we need that
||z|| is at most half the length of the shortest vector in L. We shall use
the standard notation of A;(L) for the length of the shortest vector. The
Gaussian heuristic estimates this for a random lattice of dimension n as

n
M (L) ~ ,/%det(L)l/”

where det(L) is the determinant of the lattice. In our case it is clear that
det(L) = p"!, so we have

n

Now we need to estimate ||z||. For simplicity we will assume that g = 3 =
o+ = lp—1 = . We then have an upper bound

2] < v/n2t.

However, viewing the z; as independent random variables chosen uniformly
from the interval [0,2* — 1], we see that the expected squared-length of z is

(=) - M= =

Consequently, we can bound the expected length of z by

ey R CE POy 0

and so we should expect z to be recoverable from the Close Vector Problem

whenever
;M < /ip(”—l)/n'
— V¥ 8re
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Figure 1: Log, length of error vector z, and half short vector, for B-163

In the case of the binary curve B-163 where we know a = 163 — p leading
bits of the ephemeral private keys this corresponds to the values in Table 2.

ald 6 7 8 9
n|93 60 44 35 29

Table 2: Expected number of signatures required for B-163

Experiments show that the mean length of the observed error is close to the
bound on the expected length, but that the Gaussian heuristic slightly under-
estimates the length of the actual shortest vector in the lattices. This means
that the crossover points, see Figure 1, are marginally lower in practice, as
shown by Table 3.

Note that for a = 7 this agrees with the observation in [1] that 43 signatures



a 6 7 8 9
n 59 43 34 28
prob | 0.76 0.65 0.74 0.75

Table 3: Observed number of signatures required for B-163 and the proba-
bility of success

are needed to solve the lattice problem with a reasonable probability and for
a = 6 this is a significant improvement on the results in [1].

5 Lattice enumeration

The dimension of the lattices we are using is low enough that we can consider
lattice enumeration to solve the Close Vector Problem. In its simplest form,
this is a depth-first search through a tree whose leaves are all the lattice
vectors within a given distance R of the target vector. If R is chosen correctly
then enumeration (without any form of pruning) is guaranteed to find the
closest vector.

The cost of lattice enumeration is exponential and depends on the quality
of the basis. Following the complexity analysis in [3], the number of nodes
visited at level k£ by Schnorr-Euchner enumeration [5] can be estimated as

1 Vi(R)
2 [T 1051]

where b} is the ¢-th basis vector after Gram-Schmidt orthogonalization, and
Vi(R) = RFrF/2I(k/2 + 1)7! is the volume of the k-dimensional sphere of
radius R. In our case, we will take R to be the bound on the expected length
of the error vector from (1).

H, (2)

The ratio |[b7[|/]|b;;1]| is approximately constant for a reduced basis, where
this constant depends on the reduction algorithm. For example, [2] suggests
that in practice LLL will produce a basis with ||b}||/||bj || ~ 1.0439. The
argument in [3] would then give an estimate of the number of nodes visited
at level £ as

H,, ~ (1.0439)(n—Rk/290()

However, this is an asymptotic estimate and is not particularly accurate for
the small dimensional lattices that we will be using.
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Instead we will estimate the average number H of nodes visited by reducing
the lattice for the curve B-163 and applying equation (2) directly, see Table 4.
Again, as the dimension of our lattices is relatively low, we will use the
stronger HKZ-reduction rather than the standard LLL-reduction.

a 6 7 8 9
n 59 43 34 28
logy(H) | 12.6 7.44 4.92 355

Table 4: Estimated log, number of nodes visited by enumeration for B-163
using HKZ-reduced bases

In fact, we can go further and estimate the cost of enumerating up to the
bound given by (1) as we reduce the dimension of the lattices, see Figure 2.
When the number of signatures drops below the crossover bounds specified
in Table 3, we cannot guarantee that the ephemeral private keys are given
by the shortest error vector. However, lattice enumeration will find all error
vectors whose length is at most the expected length of z, so we can use
secondary testing to identify the desired solution. This allows us to reduce
the dimension of the lattices used while still limiting the total number of
nodes visited by enumeration to a reasonable level, say 2'®. The number of
signatures necessary are extracted into Table 5.

a 6 7 8 9
n 50 34 27 22
logy(H) | 15.6 14.6 13.5 14.9

Table 5: Number of signatures required for B-163 with HKZ-reduced bases
and lattice enumeration limited to 2% nodes

In particular, we see that for a = 7 the lattice attack will succeed with 34
signatures, if we are willing to increase the number of nodes visited in lattice
enumeration by a factor of around 27.

6 Implications

Brumley and Tuveri perform their attacks by collecting a large number of
signatures and using the timing information to filter down a set of 64 signa-
tures which they believe should correspond to ephemeral private keys with
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Figure 2: Estimated log, cost of lattice enumeration up to the bound (1)
using HKZ-reduced bases for B-163

the leading a = 7 bits set to zero. However, noise in the timing information
means that their filtered set contains a number of false positives, as shown
in Table 6.

N 4096 8192 16384

Local attack 1792 1.48 0.05
Loopback attack | 17.06 4.01  0.90
Switched attack | 19.40 8.96 11.81

Table 6: Average false positive counts for B-163 with a = 7 from [1]

Their solution to the problem of false positives is to note that they only need
43 signatures for the lattice attack so they can select subsets of size 43 from
the filtered set until they find one for which the lattice attack works. The
cost of the attack can then be viewed as the number of attempts they expect
to have to make before choosing a subset with no false positives, as shown
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in Table 7.

N 4096 8192 16384

Local attack 41.0 2.40 0.08
Loopback attack | 38.0 6.75 1.44
Switched attack | 47.0 16.4 22.9

Table 7: log, CVP attempts for B-163 with a =7 and n = 43

We can improve on this in two ways. Firstly, from the previous section we see
that the lattice attack can succeed with only 34 signatures if we are willing
to use lattice enumeration with secondary testing. The lattice attack will be
more expensive by a factor of 27, but for the remote attack over a switched
network this is more than offset by the reduction in the number of times the
lattice attack needs to be performed as shown in Table 8.

N 4096 8192 16384

Local attack 25.1 1.63 0.05
Loopback attack | 23.6 4.55  0.98
Switched attack | 28.0 10.9 14.9

Table 8: log, lattice enumeration attempts for B-163 with a =7 and n = 34

Secondly, we can weaken the assumption on the leading bits and instead
perform the lattice attack for a = 6. Unfortunately, Brumley and Tuveri do
not indicate how many of the false positives in their filtered set correspond
to ephemeral private keys where the leading 6 bits are still all zero. We will
estimate the number of “doubly false positives” by assuming it is proportional
to the number of false positives in the filtered set; e.g. if there are 17.92 false
positives in a filtered set of 64 then 5.02 = % x 17.92 of these will be
doubly false positive. In this case, Table 5 tells us we need to select a set
of 50 signatures with no doubly false positives for the lattice enumeration
attack to succeed. We give these results in Table 9, presenting a considerable
further improvement.

7 Reducing number of signatures

In practical terms, we can use lattice enumeration with secondary testing,
or reduction of the number of assumed leading bits a, to decrease the work

11



N 4096 8192 16384

Local attack 11.9 0.07 0.00
Loopback attack | 10.7 0.54  0.03
Switched attack | 14.3 2.76  4.89

Table 9: Estimate log, lattice enumeration attempts for B-163 with a = 6
and n = 50

required to recover the static private key or reduce the number of signatures
that need to be collected, N. The probability of a B-163 signature having a
leading zero bits is 279! because the top bit is (almost) always 0 due to the
group size being only just larger than 2!%2, However, timing noise means we
cannot perfectly identify the signatures with a (or more) leading zeroes. If
we could identify perfectly then the number of signatures for which we can
expect to recover the static private key is given by Table 10 where we solve
by closest vector, and by Table 11 where we do more work by solving by
enumeration up to the nearest 2'6 vectors.

a| 6 7 8 9
n| 99 43 34 28
N | 1888 2752 4352 7168

Table 10: Expected total number of signatures required if no timing noise
and solve by closest vector

al| 6 7 8 9
n | 50 34 27 22
N | 1600 2176 3456 5632

Table 11: Expected total number of signatures collected if no timing noise
and solve by enumeration up to 2'

Thus, it’s actually better to assume fewer leading zero bits.

8 Future Work

The timing attack lets us predict the number of lead zeroes, a;, for a signa-
ture. Crudely we threshold by time and estimate that all surviving signa-
tures have equally many lead zeroes, i.e. a; are constant, whereas in practice,
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shorter times have more lead zeroes. We could imagine scaling each column
of the lattice by our best estimate of 2%, and this would, in effect, re-balance
for the varying a; in the error norm. Where we are confident of a; we could
also include the information that the next bit down is set, reducing the num-
ber of unknown ephemeral private key bits by one. Further work thus first
requires an analysis of the accuracy of the mapping from time to number of
lead zeroes, and how this affects the lattice problem. The work should then
subsequently exploit the full information given varying a; for each signature.

We consider the size of the search tree as an upper bound on the lattice
enumeration work. However, improvements which prune branches of the
tree with a low probability of containing the solution, should be considered.
Most notably, this should include the technique of Extreme Pruning defined
by Gama, Nguyen and Regev in [3], which gives an order of magnitude com-
plexity speedup compared to Schnorr-Euchner enumeration.

9 Conclusion

We have performed an analysis of the length of error vectors in the Brumley
and Tuveri attack, and used it to determine the cost of recovering the static
private key by Schnorr-Euchner lattice enumeration with secondary testing,
even when the desired solution is not the closest lattice point to the target
vector. We’ve shown this reduces the number of signatures required and
allows us to solve the higher-dimensional problems arising where we assume
fewer lead zero bits are set.
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