
Generic Hardness of the Multiple Discrete Logarithm
Problem

Aaram Yun

Ulsan National Institute of Science and Technology (UNIST)
Republic of Korea

aaramyun@unist.ac.kr

Abstract. We study generic hardness of the multiple discrete logarithm problem, where
the solver has to solve n instances of the discrete logarithm problem simultaneously. There
are known generic algorithms which perform O(

√
np) group operations, where p is the group

order, but no generic lower bound was known other than the trivial bound. In this paper
we prove the tight generic lower bound, showing that the previously known algorithms are
asymptotically optimal. We establish the lower bound by studying hardness of a related
computational problem which we call the search-by-hyperplane-queries problem.

Keywords: multiple discrete logarithm, search-by-hyperplane-queries, generic group model

1 Introduction

Multiple discrete logarithm problem. Let G be a cyclic group of order p, where p is prime, and
let g be a generator of G. Then the Discrete Logarithm (DL) problem is defined as follows: given

(G, p, g, gα) for a uniform random α
$← Zp, find out α.

Similarly, the Multiple Discrete Logarithm (MDL) problem is: given (G, p, g, gα1 , . . . , gαn), for

independently chosen uniform random elements α1, . . . , αn
$← Zp, find out ~α = (α1, . . . , αn).

The discrete logarithm problem (and related variants like the Diffie-Hellman problem) is used
for many cryptographic constructions and its hardness was studied widely. On the other hand, as
far as we know, there are no cryptographic constructions whose security are based on the multiple
discrete logarithm problem.

Still, the multiple discrete logarithm problem is relevant in the context of standard curves in
the elliptic curve cryptography. Since generating good elliptic curves is rather computationally
expensive, some standards like NIST’s FIPS 186 [NIS13] recommend using a few standard curves
to instantiate cryptographic schemes. Hence, in such a setting, we naturally have to consider the
multiple discrete logarithm problem. Hitchcock et al. [HMCD04] analyzed efficiency of algorithms
solving the multiple discrete logarithm problem to see how using such a standard curve affects
security.

Moreover, some cryptographic constructions require a user to solve ‘small’ discrete logarithm
problems: either the group order p is small, or the exponent α is chosen from a small subset I ⊆ Zp.
One such example is the Boneh-Goh-Nissim homomorphic encryption [BGN05], where in order
to decrypt a ciphertext, a user has to first compute gm from the given ciphertext and then solve
the discrete logarithm to recover the message m. Another example is the Maurer-Yacobi identity-
based encryption [MY96]. Their construction uses a trapdoor discrete logarithm group, where the
discrete logarithm problem is feasible to a user who has the trapdoor information, while hard for
those who do not. They achieve this by using a composite-order group, and then the trapdoor
information is the factorization of the group order. A user who has the factorization can solve
DL on small groups so the discrete logarithm problem is feasible, but an adversary has to solve
the DL problem in a large group. For these cases, efficient algorithms for solving DL is crucial,
and for example, Bernstein and Lange [BL12] showed how to speed up the solution of the discrete
logarithm problem via precomputation. When considered as a whole, this becomes an algorithm
for solving the multiple discrete logarithm problem.



Generic group model. In general, hardness of a cryptographic problem based on a group does not
depend solely on the isomorphism class of the underlying group. For example, while we believe
that, if we carefully choose an elliptic curve and a subgroup G of prime order p on it, then the
discrete logarithm problem on G would be difficult, we also know that the same problem is trivial
on the additive group Zp which is nonetheless isomorphic to G. What is important is how the same
isomorphism class is encoded to a concrete ‘representation’. When ξ : Zp → {0, 1}t is an injective
function, we say that ξ is an encoding of the group Zp. In such a case, we may define G := ξ(Zp),
and make G into a group by giving G the unique group structure induced from the bijection
ξ : Zp

∼→ G. Conversely, we can see that any concrete cyclic group with prime order p should come
from such an encoding ξ : Zp → {0, 1}t together with functions µ : {0, 1}t × {0, 1}t → {0, 1}t,
ι : {0, 1}t → {0, 1}t such that µ|G×G and ι|G give multiplication and inversion on G, respectively.

Also, a sophisticated algorithm may analyze and exploit structures of such an encoding to solve
group-based computational problems. Naturally, such an algorithm is specific to that particular
encoding. On the other hand, there are many ‘generic’ algorithms which are agnostic to the
particular encoding used. One such example is the Baby-Step-Giant-Step algorithm for solving the
discrete logarithm problem: BSGS algorithm does not assume anything about the group encoding,
except that it is indeed a group encoding, therefore it works for any cyclic group, even though
better algorithms exist for some specific groups.

‘Generic hardness’ of a cryptographic problem, that is, hardness against such generic algo-
rithms, was studied for many group-based cryptographic problems. While a proof of generic hard-
ness cannot really replace serious cryptanalyses for such a problem, at least it serves as a sanity
check, in the sense that if a problem can be solved efficiently even by a generic algorithm, certainly
one cannot base cryptographic constructions on such an easy problem. Also, for example on elliptic
curves, so far no better non-generic algorithms are known.

To analyze such generic algorithms, the generic group model was proposed by Nechaev [Nec94]
and Shoup [Sho97]. In the generic group model, to ensure that a generic algorithm cannot exploit
the encoding of a group, a random encoding, an encoding ξ : Zp → {0, 1}t which is uniform
randomly chosen from the set of all injections Zp ↪→ {0, 1}t, is used. Since in such a case we
cannot expect any efficient algorithms for group laws, the group laws are given by oracles: the
algorithm makes oracle queries by giving encodings of group elements like ξ(α), ξ(β), and the
oracle returns the result of multiplication or division of these elements in encoded form. In the
generic group model, we consider the query complexity of an algorithm to measure its efficiency.

Generic algorithms for DL and MDL problems. Shoup [Sho97] analyzed generic hardness of the
discrete logarithm problem. He showed that any generic DL solver which makes at most q queries
to the group law oracles have the success probability at most O(q2/p). In other words, any generic
DL solver with some constant success probability should make at least Ω(

√
p) queries.

As explained before, there are generic algorithms for DL with asymptotically tight matching
upper bounds. The Baby-Step-Giant-Step algorithm is an example, and Pollard’s rho algorithm
is another. Both algorithms perform O(

√
p) group operations. And this gives us a trivial generic

algorithm for solving MDL: simply repeat such an asymptotically optimal generic algorithm n
times, where n is the total number of DL instances. The total complexity would be O(n

√
p).

In fact, there is a better generic algorithm for MDL. Kuhn and Struik [KS01] extended Pollard’s
rho to a generic algorithm solving MDL. Their algorithm performs O(

√
np) group operations.

On the other hand, as far as we know, precise generic hardness of MDL is not known. Clearly,
solving n DL instances would be at least as hard as solving one single DL instance, therefore
Shoup’s lower bound Ω(

√
p) applies here. Kuhn and Struik [KS01] conjectured that the tight

lower bound would be Ω(
√
np), but this has never been proved yet. This means that even the

(admittedly unlikely) possibility of a generic algorithm solving n DL instances within O(
√
p),

independent of n, is not yet eliminated.

In this paper, we show that the conjecture of Kuhn and Struik is indeed correct: any generic
algorithm solving MDL with constant success probability should make at least Ω(

√
np) queries to

the group law oracles.

2



Search-by-Hyperplane-Queries problem. We establish the generic lower bound of MDL by analyzing
a closely related problem, which we call Search-by-Hyperplane-Queries (SHQ) problem. In the SHQ
problem, a uniform random point ~α = (α1, . . . , αn) of the n-dimensional affine space Znp is hidden,
and the goal of the solver is to find the point ~α. Of course, the success probability of any unaided
solver is at most 1/pn. Therefore, we allow any solver to make adaptive hyperplane queries. Recall
that an affine hyperplane H ⊆ Znp can be described by an equation of form a1X1 + · · ·+anXn = b,
where a1, . . . , an, b ∈ Zp. A hyperplane query is asked by specifying a hyperplane H via the
coefficients a1, . . . , an, b, and the intended meaning of the query is ‘is ~α ∈ H?’ A SHQ solver may
make a series of adaptive hyperplane queries, and use the information gained by such queries to
find the hidden point ~α.

We are going to show that any SHQ solver which makes at most q hyperplane queries has
success probability at most O((eq/np)n), where e is the base of the natural logarithm. Therefore,
any SHQ solver with some constant success probability should make Ω(np) queries. Then, we are
going to show that this lower bound for the SHQ problem implies the Ω(

√
np) lower bound for

the MDL problem.

2 Multiple discrete logarithm problem in the generic group model

2.1 Generic group model

Let p be a prime number, and let ξ : Zp → {0, 1}t be a random encoding of Zp, that is, a uniform
randomly chosen function among all injective functions of form Zp → {0, 1}t for some t satisfying
t ≥ log2 p. We define the group law oracle µ as the oracle satisfying the following:

µ(b, ξ(α), ξ(β)) = ξ(α+ (−1)bβ mod p),

where b ∈ {0, 1} is a bit indicating whether multiplication or division is intended.
In the generic group model, we consider the generic algorithm, which is a probabilistic algorithm

A which is initially given a list of group elements ξ(β1), . . . , ξ(βk), encoded by the random encoding
ξ. Also, while running, the algorithm A can make group law queries to the oracle µ. Finally A
halts with an output. Note that ξ is never explicitly given to A, but only implicitly via the initial
input and the group law oracles.

2.2 Multiple discrete logarithm problem

Let G be a cyclic group of order p, where p is prime, and let g be a generator of G. Also, let n
be an integer. We require that n is unbounded and n = o(p): formally, we consider a family of
such numbers, so that there is a security parameter λ, and both n and p are functions of λ, and
n(λ)→∞ and n(λ)/p(λ)→ 0, as λ→∞.

Then the Multiple Discrete Logarithm (MDL) problem is: given (G, p, g, gα1 , . . . , gαn), for in-

dependently chosen uniform random elements α1, . . . , αn
$← Zp, find out (α1, . . . , αn).

We consider the MDL problem in the generic group model. Hence, for a generic algorithm A,
we define Advmdl

p,n(A), the advantage of A in solving the MDL problem as

Advmdl
p,n(A) = Pr[Aµ(p, ξ(1), ξ(α1), . . . , ξ(αn)) = (α1, . . . , αn)],

where the probability is over the random choice of ξ, α1, . . . , αn, and the internal randomness of
A.

For any generic MDL solver A, let us say that A solves MDL with constant advantage if there
exists some constant c > 0 such that

Advmdl
p,n(A) ≥ c,

for any value of the security parameter λ.

3



3 Search-by-Hyperplane-Queries problem

In this section, we describe the Search-by-Hyperplane-Queries (SHQ) problem. Let p be a prime
number and Znp be the n-dimensional affine space over the finite field Zp. As in the MDL problem,
we assume that n is unbounded and n = o(p).

Let X1, . . . , Xn be the canonical coordinate functions of Znp . Then, an affine hyperplane H
in Znp can be written by a formula of form a1X1 + · · · + anXn = b for some a1, . . . , an, b ∈ Zp,
with ai 6= 0 for some i. Sometimes we represent such a hyperplane H by the linear function
a1X1 + · · ·+ anXn − b, or even simply by the tuple (a1, . . . , an, b).

Let ~α ∈ Znp be a point in the affine space. We define

H(~α,H) :=

{
1 if ~α ∈ H,

0 otherwise.

The SHQ problem is as follows: pick a uniform random point ~α of Znp . The goal of the problem
is to correctly guess the hidden point ~α. Without anything else, the probability of correct guess is
p−n. Therefore, up to some q adaptive hyperplane queries are allowed: a solver for this problem is
allowed to submit up to q hyperplane queries H1, . . . ,Hq adaptively, and for each such query, the
result H(~α,Hi) is given. In other words, the solver is given the hyperplane query oracle H(~α, ·).

For a SHQ solver A, we define Advshq
p,n(A), the advantage of A in solving SHQ, as

Advshq
p,n(A) = Pr[AH(~α,·)(p, n) = ~α],

where the probability is over the random choice of ~α and the internal randomness of A.
For any SHQ solver A, let us say that A solves SHQ with constant advantage if there exists

some constant c > 0 such that
Advshq

p,n(A) ≥ c,
for any value of the security parameter λ.

Worst-case SHQ. We may also consider the worst-case version of the SHQ problem: instead
of searching for the uniform randomly chosen ~α with constant advantage, the worst-case SHQ
problem is to find any instance ~α ∈ Znp . Formally, we say that a generic algorithm A solves SHQ

in the worst case within q queries, if for any ~α ∈ Znp , AH(~α,·)(p, n) always outputs ~α after at most
q queries.

Example 1. Here we exhibit a very simple, ‘brute-force’ SHQ solver. Identify Zp with {0, 1, . . . , p−
1}, and consider hyperplanes of form Xi = j, where i = 1, . . . , n, and j = 1, . . . , p − 1. There
are total n(p − 1) such hyperplanes, and we see that non-adaptive hyperplane queries for these
q := n(p − 1) hyperplanes are enough to correctly find any ~α: let ~α = (α1, . . . , αn). For any i, if
H(~α,Xi = j) = 1 for some j = 1, . . . , p−1, then αi = j. On the other hand, if H(~α,Xi = j) = 0 for
all j = 1, . . . , p−1, then clearly αi = 0. So in this way the brute-force solver completely determines
all coordinates of ~α.

While the above brute-force solver looks very trivial, it turns out that it is actually optimal,
by Theorem 2 at Section 5.

4 Relationship between the two problems

In this section, we show that MDL and SHQ are closely related, and any hardness result for SHQ
immediately produces a hardness result for MDL.

Theorem 1. Let A be any generic MDL solver which makes at most q queries. Then, using A,
it is possible to construct a SHQ solver B which makes at most (q + n)(q + n+ 1)/2 queries, and
satisfying

Advshq
p,n(B) ≥ Advmdl

p,n(A).

4



Proof. We describe how B works. First B receives (p, n) as the input, and B also has access to

the oracle H(~α, ·), for a uniform randomly chosen ~α = (α1, . . . , αn)
$← Znp . For convenience, let us

define α0 := 1. The solver B has to simulate a random encoding ξ : Zp → {0, 1}t for A. To do this,
B maintains two sequences, {si}i and {Li}i, where si ∈ {0, 1}t are random bitstrings generated
by B and given to A as simulated output of the encoding function ξ, and Li are linear functions
of form Li(X1, . . . , Xn) = a1X1 + · · · + anXn + b ∈ Zp[X1, . . . , Xn]. The idea is to simulate the
random encoding ξ, by pretending si = ξ(Li(~α)) for (si, Li) ∈ T .

– Initialization: Here B prepares the simulation of the initial input to A: B chooses s0
$← {0, 1}t,

and defines L0 := 1. Next, B chooses s1, . . . , sn recursively as follows: when choosing si, if
there is some j < i with H(~α,Xi = Xj) = 1 then B picks smallest such j and defines si := sj .

Otherwise, B chooses si
$← {0, 1}t \ {s0, . . . , si−1}. And, Li is defined as Xi. Let ctr be n.

Finally, B runs A(p, s0, s1, s2, . . . , sn).
– Queries: when A makes a query1 µ(si, sj , b) for some 0 ≤ i, j ≤ ctr and b ∈ {0, 1}, B increments

ctr ← ctr + 1, then defines sctr and Lctr as follows: Lctr is simply defined as Li + (−1)bLj .
Now, if there is k < ctr with H(~α, Lctr = Lk) = 1, then B picks the smallest such k and defines

sctr := sk. Otherwise, B randomly picks sctr
$← {0, 1}t \ {s0, . . . , sctr−1}. Finally, B returns

sctr as the answer to the query.
– Output: eventually, A halts with output ~β = (β1, . . . , βn) ∈ Znp . B then also outputs ~β and

halts.

Now, let us analyze the SHQ solver B. At the initialization phase, B can choose si after
making i hyperplane queries; so B makes 1 + · · ·+ n = n(n+ 1)/2 hyperplane queries up to this
point. Similarly, to determine sctr , B has to make ctr hyperplane queries. In total, the number of
hyperplane queries B makes is bounded by

n(n+ 1)

2
+

n+q∑
ctr=n+1

ctr =
n(n+ 1)

2
+ nq +

q(q + 1)

2

=
n2 + n+ q2 + q + 2nq

2

=
(q + n)(q + n+ 1)

2
.

Next we have to show that
Advshq

p,n(B) ≥ Advmdl
p,n(A).

In fact, we will show that Advshq
p,n(B) = Advmdl

p,n(A). For this, we need only to show that the
simulated input (p, s0, s1, . . . , sn) given to A has the same distribution as in the original generic
MDL problem, and also the simulated group law oracle has the same distribution as in the original
generic MDL problem. Let ξ : Zp → {0, 1}t be a random encoding, and let s′i := ξ(αi) for
i = 0, 1, . . . , n, and let s′n+1, s

′
n+2, . . . be the sequence of bitstrings which would be given as the

answers to the oracle queries made by A, when A is engaged in the real MDL game with ξ. Finally,
let αi := ξ−1(s′i) for i = n + 1, n + 2, . . . . Then, we need only to show the following: the random
variables sctr and s′ctr are identically distributed for any ctr ∈ {1, . . . , q + n}, conditioned on the
event that

si = s′i and αi = Li(~α), for all i = 0, 1, 2, . . . , ctr − 1.

Let us prove this only for ctr > n: the case for s0, . . . , sn can be done similarly. Suppose that
the group law query of A is µ(si, sj , b) when determining the bitstring sctr . Then, s′ctr is easy to
compute: s′i = ξ(αi), s

′
j = ξ(αj), so s′ctr = ξ(αi+(−1)bαj). Also, αctr = ξ−1(s′ctr ) = αi+(−1)bαj =

Li(~α) + (−1)bLj(~α) = (Li + (−1)bLj)(~α) = Lctr (~α). We need to compare this s′ctr with sctr
computed by the algorithm B.

1 Here we may assume that µ never makes group law queries using bitstrings outside of si, because B may
ensure that A can guess bitstrings in ξ(Zp) only with negligible probability, by sufficiently enlarging the
bit length t.

5



– When there is no k < ctr with H(~α, Lctr = Lk) = 1: in this case, we have sctr
$← {0, 1}t \

{s0, . . . , sctr−1}. But, this means that Lctr (~α) 6= Lk(~α), that is, αctr 6= αk for k = 0, . . . , ctr−1.
So s′i = ξ(αctr ) is uniformly distributed on {0, 1}t\{ξ(α0), . . . , ξ(αctr−1)}. Since si = s′i = ξ(αi)
by assumption, we see that sctr and s′ctr are identically distributed in this case.

– Otherwise: let k be the smallest index such that H(~α, Lctr = Lk) = 1. Then sctr is defined
to be sk. On the other hand, this means that Lctr (~α) = Lk(~α), in other words αctr = αk, so
s′ctr = ξ(αctr ) = ξ(αk) = s′k. Since we have sk = s′k by assumption, we see that sctr and sk
are in fact the same in this case.

Hence, in both cases, we see that sctr and s′ctr are identically distributed. Therefore the theorem
follows.

5 Query complexity of the SHQ problem

In this section, we analyze the complexity of the SHQ problem. In fact, we are going to analyze
both the worst-case version and the average-case version.

5.1 Pointless queries

For technical reasons which will soon become obvious, we need to define the notion of pointless
queries. Let us define a hyperplane query H pointless, if it is possible to know that the return
value H(~α,H) should be 1 before making the query, based on the return values for the previous
hyperplane queries made: for example, if the solver A previously made a query H and received the
answer H(~α,H) = 1, then making the same query H again will definitely give the same answer 1.
Another example is that, if A previously made p−1 queries X1 = j for j = 1, . . . , p−1 and received
answer H(~α,X1 = j) = 0 for all j = 1, . . . , p− 1, then the A can deduce that H(~α,X1 = 0) = 1, so
the hyperplane query X1 = 0 is pointless. In general, suppose so far A made q = r+ s hyperplane
queries H1, . . . ,Hr, H

′
1, . . . ,H

′
s, and assume that H(~α,Hi) = 1 for i = 1, . . . , r, and H(~α,H ′j) = 0

for j = 1, . . . , s. Then the information given by the answers to the queries is exactly

~α ∈
r⋂
i=1

Hi \
s⋃
j=1

H ′j .

Hence, we may formally define a hyperplane query H made at this point as pointless if

r⋂
i=1

Hi \
s⋃
j=1

H ′j ⊆ H.

Note that it is possible to determine if H is pointless or not algorithmically. Since we consider
only query complexity of solvers, this does not even have to be efficient.

Remark 1. While it is possible to extend the definition of pointless queries to include all queries
which are destined to return 0 as the answer, but for technical reasons we define pointless queries
only as above.

5.2 Worst-case SHQ

Theorem 2. Any worst-case SHQ solver should make at least n(p− 1) queries.

Proof. Let A be a worst-case SHQ solver. We show that, without loss of generality, we may assume
that A never asks pointless queries. Suppose that A is a solver which may ask pointless queries.
Then, we construct a solver B as follows: B runs A internally, and eventually outputs A’s output.
When A asks a hyperplane query H, B first determines if it is pointless or not. If it is pointless,
then B replies with 1. If it is not pointless, then B makes the same oracle query, receives the

6



answer bit b, and returns the same bit b to the solver A. So, B is a worst-case SHQ solver which
makes no more queries than A, and B also does not make any pointless queries. If we show this
theorem for B, then the result for A immediately follows.

Now, let A be a worst-case SHQ solver which never makes pointless queries. Suppose that A
makes at most q queries, and q < n(p−1). Let H1, H2, . . . ,Hq be the affine hyperplanes represented
by linear equations: let

Hi(X1, . . . , Xn) = ai1X1 + · · ·+ ainXn − bi.

Then we may show that | ∪qi=1Hi| ≤ pn− 2. First, we cannot have that | ∪qi=1Hi| = pn; in this
case, we have ∪qi=1Hi = Znp , so

Znp \
q−1⋃
i=1

Hi ⊆ Hq,

which shows that the last query Hq is pointless.

Next, suppose that | ∪qi=1 Hi| = pn − 1. Let Znp \ ∪
q
i=1Hi, which is a singleton, be {~β =

(β1, . . . , βn)}.
Then, we define F ∈ Zp[X1, . . . , Xn] as

F (X1, . . . , Xn) :=

q∏
i=1

(ai1(X1 + β1) + · · ·+ ain(Xn + βn)− bi) .

We can easily see that deg(F ) = q < n(p − 1), F (~0) 6= 0, and F (~x) = 0 for any ~x 6= ~0, which
contradicts Theorem 1.8 of Bruen [Bru92], which we quote as Theorem 3 below.

Therefore, whenever q < n(p − 1), there should be at least two points ~β 6= ~γ ∈ Znp which are
not on ∪qi=1Hi. This allows us to use the standard adversary argument against A: for any such

SHQ solver A, whenever A asks a hyperplane query H, answer with 0. In the end, if A outputs ~β,
pretend that ~α = ~γ, and if A outputs any point other than ~β, pretend that ~α = ~β. This shows that
A in general does not solve the worst-case SHQ problem. Therefore, q should be at least n(p− 1)
if A is any worst-case SHQ solver.

Theorem 3 (Theorem 1.8 of [Bru92]). Let F in Zp[X1, . . . , Xn] satisfy the following conditions.

1. F (~0) 6= 0
2. F (~x) = 0 if ~x 6= ~0

Then deg(F ) ≥ n(p− 1).

For the proof of Theorem 3, we refer to [Bru92]. The proof is done using algebraic techniques.

5.3 Average-case SHQ

Theorem 4. Let A be any SHQ solver which makes at most q hyperplane queries. Then,

Advshq
p,n(A) ≤ 1

pn

n∑
i=0

(
q

i

)
.

Proof. Let A be a SHQ solver which makes at most q hyperplane queries. We are going to argue
that we may safely assume that A satisfies certain properties.

First, using essentially the same argument as in Theorem 2, WLOG we may assume that A
never makes pointless queries.

Second, we may also assume that A makes exactly q queries: if A is a SHQ solver never making
pointless queries, then we define a SHQ solver B as follows: B initializes a counter ctr ← 0, runs
A internally, and whenever A makes a query H, then B makes the same query, receives the answer
bit b, then returns the bit b to the solver A, and increments the counter: ctr ← ctr +1. Eventually,

7



A will halt with an output ~α′. Since ctr counts the number of hyperplane queries made by A,
we have ctr ≤ q. Then B makes q − ctr additional hyperplane queries which are not pointless as
follows: in case there was at least one hyperplane query H made by A with 0 as the answer, all
of the q − ctr remaining queries made by B will be H: surely this query is not pointless, for the
answer should be 0. On the other hand, in case there was at least one hyperplane query H made
by A with 1 as the answer, let us write H as H(X1, . . . , Xn) = a1X1 + · · · + anXn − b. Then,
let H0 be the corresponding linear hyperplane defined by H0(X1, . . . , Xn) = a1X1 + · · · + anXn.
Clearly, H0 6= Znp , so there exists a vector ~v ∈ Znp satisfying ~v 6∈ H0. In fact, we may easily find

such a ~v: since (a1, . . . , an) 6= ~0, WLOG we may assume a1 6= 0. Then, ~v := (a1, 0, 0, . . . , 0) is such
an example. Now, let H ′ be the hyperplane H + ~v, which is a parallel translation of H by ~v. We
may show that H(~α,H ′) = 0: suppose not, then ~α ∈ H ′ = H+~v, and ~α ∈ H by assumption. Then,
from these two we may conclude that ~v ∈ H0, which contradicts the construction of ~v. Therefore,
in this case B makes q− ctr queries, all of them H ′. Again these queries are not pointless. Finally,
B halts with the answer ~α′, which was the output of A.

By the construction, B makes exactly q non-pointless queries, but since the output of B is
identical to that of A, we have Advshq

p,n(B) = Advshq
p,n(A). So, if we prove this theorem for B, the

theorem for A clearly follows.
Therefore, now assume that our SHQ solver A makes exactly q non-pointless queries. In general,

A may be probabilistic, consuming finite but unbounded number of random bits. Therefore, let us
write AH(~α,·)(p, n;~r) as the output of the algorithm A with input p, n, while having access to the
oracle H(~α, ·) and when the randomness used is ~r = (r1, r2, r3, . . . ) ∈ {0, 1}∞.

Then we observe that, once ~α, ~r, and the algorithm A are fixed, the queries made by A
and the corresponding answers are also fixed. More precisely, let H1, . . . ,Hq be the hyperplane
queries made by A with some fixed ~α, ~r, and let b1, . . . , bq be the answer bits: bi = H(~α,Hi).

Let us define ~H := (H1, . . . ,Hq) and ~b := (b1, . . . , bq). Then, in fact, we can see that A, ~r, and ~b

completely determine ~H, and A, ~r, and ~α completely determine~b. So we use the following notation:
~H = H(A)

~r (~b), ~b = B(A)
~r (~α). Sometimes we just write H(~b), B(~α) to simplify notation, when the

context is clear.
Moreover, we see that the output AH(~α,·)(p, n;~r) of the algorithm A is completely determined

by A, ~r, and the vector ~b. So we may write AH(~α,·)(p, n;~r) as A~r(~b). Again, sometimes we just write

A(~b), suppressing ~r. For a randomly chosen ~α, since the output A~r(~b) is determined by ~b = B(~α),
which is in turn determined by ~α, we may write AH(~α,·)(p, n;~r) = A(B(~α)).

Now, let us fix randomness ~r, and compute the advantage of A, which is Pr[AH(~α,·)(p, n;~r) =
~α], where the probability is only over the random choice of ~α. Here, to emphasize that it is a
random variable, we used bold font to write ~α. We then have

Pr[AH(~α,·)(p, n;~r) = ~α] = Pr[A(B(~α)) = ~α]

=
∑
~α

Pr[~α = ~α] ·Pr[A(B(~α)) = ~α | ~α = ~α]

=
1

pn

∑
~α

Pr[A(B(~α)) = ~α],

where ~α is a random variable with uniform distribution on Znp , and ~α is used as a variable for
possible concrete values of ~α. Note that Pr[A(B(~α)) = ~α] should be either 0 or 1, for any ~α,
because all randomness is fixed: we have Pr[A(B(~α)) = ~α] = 1 iff A(B(~α)) = ~α. Continuing,

Pr[AH(~α,·)(p, n;~r) = ~α] =
1

pn

∑
~α

Pr[A(B(~α)) = ~α],

=
1

pn

∑
~b

∑
~α:B(~α)=~b

Pr[A(B(~α)) = ~α],

=
1

pn

∑
~b

∑
~α:B(~α)=~b

Pr[A(~b) = ~α],

8



We can see that, in the above, for any ~b,∑
~α:B(~α)=~b

Pr[A(~b) = ~α] ≤ 1,

where the sum is over all ~α satisfying B(~α) = ~b. Indeed, the only ~α which can possibly make

Pr[A(~b) = ~α] = 1 is ~α = A(~b), so if B(A(~b)) = ~b, then the above value is 1, and if B(A(~b)) 6= ~b
then the above value is 0.

Therefore, we see that

Pr[AH(~α,·)(p, n;~r) = ~α] ≤ 1

pn

∑
~b

1

=
the number of all possible ~b’s

pn
.

Any ~b = B(α) is a bitstring of length q, and moreover, in any such ~b, 1 cannot occur more than
n times: this is because we assumed that the algorithm A never makes pointless queries: suppose
H1, . . . ,Hm are hyperplane queries made by A with 1 as the answer. Then, all of these hyperplanes
intersect (~α is on all of them). Moreover, due to the fact that A does not make pointless queries,
we have

H1 ∩ · · · ∩Hi 6⊆ Hi+1,

for all i = 1, 2, . . . ,m − 1. But then each hyperplane should decrement the dimension of the
intersection by 1, so there can be at most n such hyperplanes, and there can be at most n 1s in
any ~b. Hence we have,

Pr[AH(~α,·)(p, n;~r) = ~α] ≤ 1

pn

n∑
i=0

(
q

i

)
.

Finally, the theorem is satisfied for general A, because when conditioned on any randomness
~r, the success probability is bounded by the same upper bound p−n

∑n
i=0

(
q
i

)
.

Corollary 1. Let A be any SHQ solver which makes at most q hyperplane queries. Then,

Advshq
p,n(A) ≤ 1

pn
+

1

2

(
eq

np

)n
.

Proof. The proof follows from Theorem 4 and the following Theorem 5.

Remark 2. If we write q as q = npδ for some δ, then Corollary 1 says that the advantage of the
solver A is bounded by p−n + (eδ)n/2. Since we assume that n = o(p), certainly p−n → 0 as
λ → ∞. So, since we assume n is unbounded, if δ < 1/e, then Advshq

p,n(A) → 0 as λ → ∞. This
shows that if A solves SHQ with constant advantage, then δ ≥ 1/e. In short, a SHQ solver with
constant advantage should make Ω(np) queries.

Theorem 5. We have
n∑
i=1

(
q

i

)
≤ 1

2

(eq
n

)n
for any positive integers q, n satisfying 1 ≤ n ≤ q.

The proof of Lemma 5 is in the Appendix A.

9



6 Conclusion

6.1 Generic hardness of MDL

By combining the results so far, we obtain the following corollary:

Corollary 2. Let A be any generic MDL solver which makes at most q queries. Then,

Advmdl
p,n(A) ≤ 1

pn
+

1

2

(
e(q + n+ 1)2

2np

)n
.

Proof. This follows directly from Theorem 1 and Corollary 1.

Let us write q =
√
npδ for some δ. Then, the upper bound of Advmdl

p,n(A) in Corollary 2 can be
expanded as

1

pn
+

1

2

(
e(
√
npδ + n+ 1)2

2np

)n
=

1

pn
+

1

2

(
eδ2

2
+ eδ

√
n

p
+

eδ
√
np

+
en

2p
+
e

p
+

e

2np

)n
.

Suppose that A solves MDL with constant advantage. Then we can see that δ ≥
√

2/e: suppose

not and assume that δ <
√

2/e. Since we assume that n = o(p), all the terms except eδ2/2
converges to 0 as λ→∞. So, we have

Advmdl
p,n(A) ≤ 1

pn
+

1

2

(
eδ2

2
+ o(1)

)n
.

But, since we assume that n is unbounded, from δ <
√

2/e we obtain Advmdl
p,n(A) → 0 as

λ → ∞, contradicting that A has constant advantage. Therefore, if a generic MDL solver has
constant advantage, then it should make Ω(

√
np) queries. This affirmatively settles Kuhn and

Struik’s conjecture [KS01].

6.2 Interval-MDL

We may also consider Interval-MDL, where instead of the exponents α1, . . . , αn are chosen from
the whole group Zp, they are chosen from an interval {0, 1, . . . , l− 1} ⊆ Zp of size l. For example,
Boneh-Goh-Nissim homomorphic encryption [BGN05] requires solving DL for exponents chosen
from such an interval, and Bernstein and Lange [BL12] suggested preprocessing methods to speed
up such computations.

We remark that with trivial modifications, all of our results (except the worst-case SHQ) also
apply to Interval-MDL and the corresponding Interval-SHQ: in the upper bounds for advantages,
simply replace the group order p with the interval size l. For example, the bound in Corollary 2
becomes

1

ln
+

1

2

(
e(q + n+ 1)2

2nl

)n
,

and a generic Interval-MDL solver with constant advantage should make Ω(
√
nl) queries, assuming

n is unbounded and n = o(l). This is because our proof techniques, especially that of Theorem 4,
work equally well for the interval version. For that matter, the size-l subset does not even have to
be an interval: any subset of size l would do.

Acknowledgments. This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korean government (MEST) (No. 2011-0025127).

10



References

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In
Theory of Cryptography, pages 325–341. Springer, 2005.

[BL12] Daniel J. Bernstein and Tanja Lange. Computing small discrete logarithms faster. In Progress
in Cryptology — INDOCRYPT 2012, pages 317–338. Springer, 2012.

[Bru92] Aiden A. Bruen. Polynomial multiplicities over finite fields and intersection sets. Journal of
Combinatorial Theory, Series A, 60(1):19–33, 1992.

[HMCD04] Yvonne Hitchcock, Paul Montague, Gary Carter, and Ed Dawson. The efficiency of solving
multiple discrete logarithm problems and the implications for the security of fixed elliptic
curves. International Journal of Information Security, 3(2):86–98, 2004.

[KS01] Fabian Kuhn and René Struik. Random walks revisited: Extensions of Pollard’s Rho algorithm
for computing multiple discrete logarithms. In Selected Areas in Cryptography, pages 212–229.
Springer, 2001.

[MY96] Ueli M. Maurer and Yacov Yacobi. A non-interactive public-key distribution system. Designs,
Codes and Cryptography, 9(3):305–316, 1996.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes, 55(2):165–172, 02 1994. Translated from Matematicheskie Zametki, Vol. 55, No. 2, pp.
91–101, February, 1994.

[NIS13] Digital signature standard (DSS). NIST (National Institute of Standards and Technology)
FIPS 186-4, 2013.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology — EUROCRYPT 1997, pages 256–266. Springer, 1997.

A Proof of Theorem 5

Before proving Theorem 5, we need a technical lemma:

Lemma 1. Suppose that q ≥ 5 and 2 ≤ n ≤ q − 3. Then,

q

n∑
i=1

(
q

i

)
≥ (n+ 1)

n+1∑
i=1

(
q

i

)
. (1)

Proof. Letting S :=
∑n
i=1

(
q
i

)
, we may write the inequality (1) as

qS ≥ (n+ 1)

(
S +

(
q

n+ 1

))
. (2)

This can be simpified as
n+ 1

q − n− 1

(
q

n+ 1

)
≤ S. (3)

But,
n+ 1

q − n− 1

(
q

n+ 1

)
=

n+ 1

q − n− 1
· q!

(n+ 1)!(q − n− 1)!

=
q − n

q − n− 1
· q!

n!(q − n)!

=
q − n

q − n− 1

(
q

n

)
.

(4)

So, the inequality (1) is equivalent to(
1 +

1

q − n− 1

)(
q

n

)
≤

n∑
i=1

(
q

i

)
, (5)

11



which in turn is equivalent to

1

q − n− 1

(
q

n

)
≤
n−1∑
i=1

(
q

i

)
. (6)

So let us prove this inequality (6).
Consider the function f(n) := (n − 1)(q − 1 − n). As a function of n, this is a quadratic

concave function with f(1) = f(q − 1) = 0. Since we assume 2 ≤ n ≤ q − 3, we have f(n) ≥
min(f(2), f(q − 3)). Since f(2) = q − 3 ≥ 2 and f(q − 3) = 2(q − 4) ≥ 2, we have

(n− 1)(q − 1− n) ≥ 2, (7)

for any n = 2, . . . , q − 3. Simple calculation shows that this is equivalent to

1

(q − n− 1)n
≤ 1

q − n+ 1
. (8)

Then,
1

q − n− 1

(
q

n

)
=

1

(q − n− 1)n
· n
(
q

n

)
≤ 1

q − n+ 1
· n
(
q

n

)
≤ n

q − n+ 1
· q!

n!(q − n)!
=

q!

(n− 1)!(q − n+ 1)!

=

(
q

n− 1

)
≤
n−1∑
i=1

(
q

n

)
.

(9)

Now we are ready to prove Theorem 5:

Theorem 5. We have
n∑
i=1

(
q

i

)
≤ 1

2

(eq
n

)n
(10)

for any positive integers q, n satisfying 1 ≤ n ≤ q.

Proof. The proof is based on case analysis. First, we prove the inequality when q ≥ 5 and 1 ≤ n ≤
q − 2.

From Lemma 1, we have

q

n∑
i=1

(
q

i

)
≥ (n+ 1)

n+1∑
i=1

(
q

i

)
, (11)

for q ≥ 5 and 2 ≤ n ≤ q − 3.
Then, since e ≥ (1 + 1/n)n, we have

eq

n∑
i=1

(
q

i

)
≥
(

1 +
1

n

)n
(n+ 1)

n+1∑
i=1

(
q

i

)
, (12)

which is equivalent to (
n

eq

)n n∑
i=1

(
q

i

)
≥
(
n+ 1

eq

)n+1 n+1∑
i=1

(
q

i

)
. (13)

Also, when n = 1, the above inequality (13) is

1

eq

(
q

1

)
≥
(

2

eq

)2 2∑
i=1

(
q

i

)
, (14)

12



which is equivalent to
e

2
≥ 1 +

1

q
, (15)

which is certainly satisfied when q ≥ 5. So,(
n

eq

)n n∑
i=1

(
q

i

)
(16)

is a decreasing function for n ∈ {1, 2, . . . , q − 2}. Then, for any n = 1, 2, . . . , q − 2, we have(
n

eq

)n n∑
i=1

(
q

i

)
≤
(

1

eq

)1 1∑
i=1

(
q

i

)
=

1

e
≤ 1

2
, (17)

proving the inequality (10) when q ≥ 5 and 1 ≤ n ≤ q − 2.
Therefore, we need to handle the remaining cases: when q ≤ 4, or when n = q − 1, q.

– Case n = q: Then the inequality (10) is equivalent to

2q − 1 ≤ 1

2

(
eq

q

)q
=
eq

2
. (18)

This holds when 2q ≤ eq/2, which can be written as q/(q + 1) ≥ log 2 ≈ 0.693 · · · . So this
inequality holds when q ≥ 3; then q/(q+1) ≥ 0.75 > log 2. We can also check that 2q−1 ≤ eq/2
holds for q = 1, 2 separately.

– Case n = q − 1: Then the inequality (10) is equivalent to

2q − 2 ≤
(

q

q − 1

)q−1
eq−1

2
. (19)

Since the RHS is greater than eq−1/2, the inequality is satisfied if 2q − 2 ≤ eq−1/2. First, we
can check that 2q ≤ eq−1/2 holds if q ≥ 6. And we can also separately check the inequality (19)
for q = 2, . . . , 5. This finishes this case.

– Case q ≤ 4: Here, we need only to show that the inequality (10) holds when n = 1 or 2 (of
course when n ≤ q). This is because, when q = 1, 2, then n = 1, 2 cases cover all possibilities.
Also, when q = 3, 4, then n = 1, 2, and n = q − 1, q cases cover all possibilities. Hence,

– Case n = 1: Then the inequality (10) is equivalent to

q ≤ 1

2

(eq
1

)
, (20)

which holds trivially, since e ≥ 2.
– Case n = 2: Then the inequality (10) is equivalent to

q +
q(q − 1)

2
=
q(q + 1)

2
≤ 1

2

(eq
2

)2
. (21)

Simplifying, we get
1

q
≥ e2

4
− 1 ≈ 0.847 · · · , (22)

which holds for q ≥ 2.

13


