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Abstract

In this paper, we consider a setting where a client wants to outsource storage of a large
amount of private data and then perform substring search queries on the data – given a data
string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an
encryption paradigm that we call queryable encryption, which generalizes searchable symmetric
encryption (SSE) and structured encryption. Then, we construct a queryable encryption scheme
for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency
comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn)
time and produces a ciphertext of size O(λn), and querying for a substring of length m that
occurs k times takes O(λm+k) time and three rounds of communication, where λ is the security
parameter. Our security definition guarantees correctness of query results and privacy of data
and queries against a malicious, adaptive adversary. Following the line of work started by
Curtmola et al. (ACM CCS 2006), in order to construct more efficient schemes we allow the
query protocol to leak some limited information that is captured precisely in the definition.
We prove security of our substring-searchable encryption scheme against malicious adversaries,
where the query protocol leaks limited information about memory access patterns through the
suffix tree of the encrypted string.

1 Introduction

In traditional symmetric-key encryption schemes, a user encrypts a message so that only the owner
of the corresponding secret key can decrypt it. Decryption is “all-or-nothing”; that is, with the
key one can decrypt the message completely, and without the key one learns nothing about the
message. However, many settings such as cloud storage call for encryption schemes that support
the evaluation of certain classes of queries on the data without decrypting the data. A client may
wish to store encrypted data on a cloud server and then be able to issue queries on the data to the
server in order to make use of the data without retrieving and decrypting the original ciphertext.

Much work has been done on searchable symmetric encryption (SSE), which considers the set-
ting where the data consists of a set of documents that the client wishes to search for combinations
of keywords. However, we are interested in applications where one wants to search not for predeter-
mined keywords but for arbitrary substrings. For example, suppose a medical research lab wants to
store subjects’ genomic data using a cloud storage service. Privacy concerns may require that this

∗Work performed while at Microsoft Research.

1



data be encrypted. At the same time, the researchers need to be able to use the data efficiently. Re-
searchers may be interested in making substring queries on the genomic data to determine whether
a particular cancer marker sequence appears in any of the data or to count whether a certain probe
sequence is rare enough to be useful. In addition to protecting the privacy of the data from the
cloud provider, researchers would like to ensure that the process of performing queries does not
reveal information to the cloud about the queries or the original data.

We note that existing SSE techniques do not solve the substring search problem efficiently;
applying SSE by considering every substring of the original string as a separate keyword results in
O(n2) storage for a string of length n. Our goal is to avoid this storage overhead and achieve Õ(n)
storage (as one would have in the unencrypted scenario).

Queryable encryption In this paper, we first define queryable encryption, which generalizes the
SSE and structured encryption paradigms. A queryable encryption scheme allows for evaluation
of some query functionality F that takes as input a message M and a query q and outputs an
answer. A client encrypts a message M under a secret key and stores the ciphertext on a server.
Then, using the secret key, the client can issue a query q by executing an interactive protocol with
the server. At the end of this protocol, the client learns the value of F(M, q). For example, for
substring search queries, a query q is a search string, the message M is a string, and F(M, q)
returns the set of indices of all occurrences of q as a substring of M .

Substring-searchable encryption We give a construction for a queryable encryption scheme
for substring search queries – given a string s and a search string p, return all occurrences of p as a
substring of s. Our construction has asymptotic efficiency comparable to that of substring search
on unencrypted data.

We note that general techniques such as fully homomorphic encryption [25, 10, 9, 27] and
functional encryption [7, 35, 42] would not achieve our efficiency goals. Instead, we tailor our
scheme to the specific functionality of substring search.

To construct a substring-searchable encryption scheme, we use suffix trees, a data structure
used to efficiently perform substring search on unencrypted data. We combine basic symmetric-key
primitives to develop a method that allows traversal of select edges in a suffix tree in order to
efficiently perform substring search on encrypted data, without revealing significant information
about the string or the queries.

A suffix tree for a data string of length n takes O(n log n) space, and searching for a substring
of length m takes O(m + k) time, where k is the number of occurrences of the substring. In
our substring-searchable encryption scheme, encryption time and ciphertext size are O(λn), and
querying for a substring takes time and communication complexity O(λm + k), where λ is the
security parameter. The query protocol takes a constant number of rounds of communication. All
operations are based only on symmetric-key primitives.

Security We prove security of our scheme against malicious adversaries. For security, we will
think of the server as an adversary trying to learn information about the message and the queries.
Ideally, we want an adversary that is given a ciphertext and that engages in query protocols for
several queries to learn nothing about the message or the queries. However, in order to construct
a more efficient scheme, we will allow some limited information about the message and the queries
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to be revealed (“leaked”) to the server through the ciphertext and the query protocol. Our se-
curity definition specifies explicitly what information is leaked and guarantees that an adversary
learns nothing more than the specified leakage. This approach of trading off perfect privacy for
efficiency has been adopted previously in the case of structured encryption [13] and in recent work
on searchable encryption variants [12].

Our definition is similar to previous definitions for structured encryption and SSE. However,
while previous definitions focused on document retrieval and the adversary had to learn the list
of documents returned, in our definition there are no documents and all that is required is that
the client learn the result of the query. Furthermore, most previous definitions have focused on
honest-but-curious adversaries. We define security within a malicious adversary model.

2 Related Work

Searchable encryption and structured encryption We draw on related work on symmetric
searchable encryption (SSE) [16] and its generalization to structured encryption [13]. These works
take the approach of considering a specific type of query and identifying a data structure that allows
efficient evaluation of those queries in an unencrypted setting. The construction then “translates”
the data structure into an encrypted setting, so that the user can encrypt the data structure and
send the server a token to evaluate a query on the encrypted structure. This translation is designed
to preserve the efficiency of the unencrypted data structure.

Since the server is processing the query, the server can determine the memory access pattern of
the queries, that is, which parts of memory have been accessed, and when the same memory block
is accessed again.1 The approach to security in SSE and structured encryption is to acknowledge
that some information will be leaked because of the memory access pattern, but to clearly specify
the leakage and to guarantee that is the only information that the server can learn.

There have been many recent advances in SSE. Cash et al. [12] propose an efficient construction
for searches involving multiple keywords. Several works [11, 43, 30, 31] propose schemes that allow
updates to the stored documents, and Kurosawa and Ohtaki [38] propose a UC definition. However,
all of these works focus on the problem of retrieving documents based on keywords; there has been
very little work that considers encrypting more complex types of data structures.

Predicate encryption and fully homomorphic encryption Predicate encryption (a special
case of functional encryption [7]) allows the secret key owner to generate tokens for various predi-
cates. One can evaluate a token for a predicate f on an encryption of m to determine whether f(m)
is satisfied. State-of-the-art predicate encryption schemes (e.g., [35, 42]) support inner-product
queries; that is, f specifies a vector v, and f(m) = 1 if 〈m, v〉 = 0. Applying an inner product
predicate encryption scheme naively to construct a substring-searchable encryption scheme, where
the substrings can be of any length, would result in ciphertexts and query time that are O(nn),
where n is the length of the string s, which is clearly impractical.

Fully homomorphic encryption (FHE), beginning with the breakthrough work of Gentry [25]
and further developed in subsequent work, e.g., [10, 9, 26], allows one to evaluate any arbitrary
circuit on encrypted data without being able to decrypt. FHE would solve the substring-searchable

1Note that this is true even if we use fully homomorphic encryption (e.g., [25, 10, 9, 27]) or functional encryption [7,
35, 42].
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encryption problem (although it would require O(n) query time), but existing constructions are
extremely impractical.

Oblivious RAMs The problem of leaking the memory access pattern is addressed in the work
on oblivious RAMs [41], which shows how to implement any query in a way that ensures that the
memory access pattern is independent of the query. There has been significant process in making
oblivious RAMs more efficient; however, even the most efficient constructions to date (see, e.g.,
Stefanov et al. [44]) increase the amortized costs of processing a query by a factor of at least log n,
where n is the size of the stored data. In our setting, where we assume that the large size of the
dataset may be one of the primary motivations for outsourcing storage, a log n overhead may be
unacceptable.

Secure two-party computation of substring search There have been several works on secure
two-party or multiparty computation (e.g., [17, 40]) and specifically on secure substring search and
other text processing in the two-party setting (see [3, 39, 29, 24, 34, 22, 46]). This is an interesting
line of work; however, our setting is rather different. In our setting, the client has outsourced
storage of its encrypted data to a server, and then the client would like to query its data with a
search string. The server does not have the data string in the clear; it is encrypted. Thus, even
ignoring the extra rounds of communication, we cannot directly apply secure two-party substring
search protocols.

Memory delegation and integrity checking We consider security against malicious adver-
saries. One way a malicious adversary may misbehave is by returning something other than what
was originally stored on the server. Along these lines, there is related work on memory delegation
(e.g., [14]) and memory checking (e.g., [18]), verifiable computation (e.g., [6, 23]), integrity check-
ing (e.g., [45]), and encrypted computation on untrusted programs (e.g., [21]); the theme of these
works is retrieving and computing on data stored on an untrusted server. For our purposes, since
we focus on the specific functionality of substring-searchable encryption in order to achieve an effi-
cient scheme using simple primitives, we do not need general purpose integrity checking techniques,
which can be expensive or rely on more complex assumptions.

3 Preliminaries

In this section, we review notation and definitions of the data structures and cryptographic primi-
tives we will use. For formal definitions of the cryptographic primitives, we refer the reader to [33].

3.1 Notation

We write x
R← X to denote an element x being sampled uniformly at random from a finite set X,

and x← A to denote the output x of an algorithm A.
If x is a string, then |x| refers to the length of x, and xi denotes the ith character of x. If |x| = n

and a and b are integers 1 ≤ a ≤ b ≤ n, then x[a..b] denotes the substring xa . . . xb. If x and y are
strings, then x‖y denotes the concatenation of x and y. We use ε to denote the empty string.

If S is a set, then |S| refers to the cardinality of S, and P(S) denotes the power set of S (the
set of all subsets of S). If n is a positive integer, [n] denotes the set {1, . . . , n}.
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If F : K × D → R is a family of functions, we write FK for the function defined by FK(x) =
F (K,x). We sometimes write EncK(m) and DecK(c) for Enc(K,m) and Dec(K, c), respectively.

3.2 Data Structures

A dictionary D is a data structure that contains key/value pairs. For our construction it is sufficient
for a dictionary to support insert and lookup operations. The insert operation takes a key/value
pair (k, v) and adds it to the dictionary. The lookup operation takes a key k and returns the
associated value v = D[k].

3.3 Symmetric-Key Encryption

A symmetric encryption scheme Π = (Gen,Enc,Dec) consists of three polynomial-time algorithms.
Gen is a probabilistic algorithm that takes a security parameter λ and outputs a secret key K. Enc
is a probabilistic algorithm takes a key K and a message M and outputs a ciphertext CT . Dec is a
deterministic algorithm that takes a key K and a ciphertext CT and outputs a message M or the
symbol ⊥. Correctness requires Dec(K,Enc(K,M)) = M with probability 1 for all K and M .

We use the following security notions for symmetric encryption.

• CPA security requires that ciphertexts reveal no information about plaintexts (other than
length) to a PPT adversary that can adaptively query an encryption oracle.

• Ciphertext integrity [5, 36, 4] requires that it be infeasible for any PPT adversary given access
to an encryption oracle to construct a new ciphertext that decrypts successfully. A symmetric
encryption scheme is authenticated if it has both CPA security and ciphertext integrity.

• Key hiding (also known as which-key concealing) [20, 1] requires that it be infeasible for any
PPT adversary given access to two encryption oracles to tell whether they encrypt using the
same key or different keys.

3.4 Pseudorandom Functions and Permutations

A pseudorandom function family (PRF) (respectively, pseudorandom permutation family (PRP))
is a family F of functions such that it is computationally infeasible for any PPT adversary to distin-
guish a function chosen randomly from F from a uniformly random function (resp., permutation).

An almost-universal hash function is a family H of hash functions such that for any pair of
distinct messages the probability of a hash collision for a hash function chosen randomly from H
is negligible.

A PRF composed with an almost-universal hash function results in another PRF. That is, one
can evaluate a PRF on a long input by first hashing it using an almost-universal hash function to
a short input and then applying a PRF.

4 Queryable Encryption

We now formalize queryable encryption and present our main definitions.
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4.1 Functionality

Definition 4.1. A queryable encryption scheme supporting query functionality F :M×Q→ R for
message spaceM, query space Q, and result spaceR consists of three probabilistic polynomial-time
algorithms.

Gen(1λ)→ K: The key generation algorithm takes a security parameter λ and generates a secret
key K.

Enc(K,M) → CT : The encryption algorithm takes a secret key K and a message M ∈ M, and
outputs a ciphertext CT .

Query(K, q, CT ) : The interactive query protocol occurs between a client and a server. The client’s
input is the secret key K and a query q ∈ Q, and the server’s input is a ciphertext CT . The
client’s output is a query result r ∈ R; the server has no output.

For correctness we require the following property. For all λ ∈ N, q ∈ Q, M ∈ M, let K ←
Gen(1λ), CT ← Enc(K,M), and r ← Query(K, q, CT ). Then Pr[r = F(M, q)] = 1− negl(λ).

Substring-searchable symmetric encryption We define substring-searchable encryption as a
special case of queryable encryption.

Definition 4.2. A substring-searchable symmetric encryption scheme for an alphabet Σ is a
queryable encryption scheme for message space M = Σ∗, query space Q = Σ∗, result space
R = P(N), and query functionality F , where F(s, p) is the set of indices of all the occurrences
of p as a substring of s. That is, F(s, p) = {i|s[i..i+m− 1] = p}, where m = |p|.

Discussion Note that the definition of a queryable encryption scheme does not include an explicit
decryption algorithm. If full decryption is desired, one can include a query in F that returns the
entire message.

Note also that typically we expect M to be quite large, while the representation of q and
F(M, q) are small, so we would like the query protocol to be efficient relative to the size of q and
F(M, q). Without such efficiency goals, designing a queryable encryption scheme would be trivial:
the server could return the entire ciphertext, and the client could decrypt the ciphertext to get M
and compute F(M, q) directly.

Related definitions Our queryable encryption definition can be viewed as a generalization of
previous definitions of searchable encryption [16] and structured encryption [13]. Queryable en-
cryption allows any general functionality F . In contrast, the definition of searchable encryption is
tied to the specific functionality of returning documents containing a requested keyword. Struc-
tured encryption is a generalization of searchable encryption, but the functionalities are restricted
to return pointers to elements of an encrypted data structure.

Since we allow general functionalities, our definition is similar to those of functional encryption.
The main technical difference is that our security definition only allows for a single ciphertext.
Intuitively, in queryable encryption, encryption is a one-time process: a single (potentially very
large) ciphertext is encrypted, and then many queries are performed on that ciphertext. We stress
that one “message” encrypted under our scheme refers not to a single word or document but to a
body of data upon which one wishes to be able to perform queries; this could be a collection of
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documents in the SSE case, or a (set of) very long string(s) of data (e.g., a genome database) as in
this work.2

Also, in queryable encryption we allow the query protocol to be interactive. In structured
encryption, functional encryption, and many searchable encryption schemes the query protocol
consists of two algorithms TK ← Token(K, q) and A ← Query(TK,CT ). The client constructs a
query token and sends it to the server, and the server uses the token and the ciphertext to compute
the answer to the query, which it sends back to the client. We can think of these schemes as having
a one-round interactive query protocol. Our more general definition allows for arbitrary interactive
protocols, which may enable better efficiency or privacy.

Finally, in contrast to related searchable encryption notions, we do not require the server to
actually learn the answer to the query. After the server’s final message, the client may do some
additional computation using its secret key to compute the answer. This can allow stronger privacy
guarantees against the server.

4.2 Malicious (L1,L2)-CQA2 Security

We now present our simulation-based security definition against malicious adversaries. Follow-
ing [13], we call the definition (L1,L2)-CQA2 security, where the name “CQA2” comes from “cho-
sen query attack” because the adversary chooses its queries adaptively. The security definition
will be parameterized by two leakage functions L1 and L2. First, L1(M) denotes the information
about the message that is leaked by the ciphertext. Second, for any j, L2(M, q1, . . . , qj) denotes
the information about the message and all queries made so far that is leaked by the jth query.

We want to ensure that the information specified by L1 and L2 is the only information that is
leaked to the adversary, even if the adversary can choose the message that is encrypted and then
adaptively choose the queries for which it executes a query protocol with the client. To capture
this, our security definition requires that the view of any adaptive adversary be simulatable given
only the information specified by L1 and L2.

Our definition differs from many previous definitions in that we allow the adversary to be
arbitrarily malicious in the protocol. Since our protocol is interactive, this guarantee is important
for privacy as well as correctness. We require that the adversary cannot distinguish the honest
player’s output from the correct output (or ⊥ if the adversary misbehaved in the protocol). This
means the honest protocol must always produce the correct output (or ⊥) even in the face of a
malicious adversary; thus this definition captures both privacy and correctness.

Definition 4.3 (Malicious (L1,L2)-CQA2 security). Let E = (Gen,Enc,Query) be a queryable
encryption scheme for message space M, query space Q, result space R, and query functionality
F :M×Q → R. For functions L1 and L2, adversary A, and simulator S, consider the following
experiments:

RealE,A(λ): The challenger begins by running Gen(1λ) to generate a secret key K. The adversary
A outputs a message M . The challenger runs Enc(K,M) to generate a ciphertext CT , and
sends CT to A. The adversary adaptively makes a polynomial number of queries q1, . . . , qt.
For each query qi, first A interacts with the challenger. The challenger plays the part of the
client in the Query protocol with input (K, qi) and sends its output to the adversary. Finally,
A outputs a bit b.

2See the discussion at the end of Section 5.4 for an extension to allow for searches over a set of strings.
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IdealE,A,S(λ): First, A outputs a message M . The simulator S is given L1(M), and outputs a value
CT . The adversary adaptively makes a polynomial number of queries q1, . . . , qt. For each
query qi, the simulator is given L2(M, q1, . . . , qi) and interacts with A. Then the simulator
produces a flag fi; if fi = ⊥, the challenger sends ⊥ to the adversary, otherwise it sends
F(M, qi). Finally, A outputs a bit b.

We say that E is (L1,L2)-CQA2 secure against malicious adversaries if, for all PPT adversaries A,
there exists a simulator S such that

|Pr[RealE,A(λ) = 1]− Pr[IdealE,A,S(λ) = 1]| ≤ negl(λ)

5 Substring-Searchable Encryption Construction

In this section, we construct a substring-searchable encryption scheme – a queryable encryption
scheme that supports the functionality F , where F(s, p) returns the indices of all occurrences of p
as a substring of s.

5.1 Suffix Trees

Our scheme draws upon substring search algorithms for unencrypted data. Several substring search
algorithms exist [37, 8, 32, 2], varying in their preprocessing efficiency and query efficiency. Many
algorithms have preprocessing time O(m) and query time O(n), where n is the length of the string s
and m is the length of the query substring p. In contrast, suffix trees [47, 19, 28] have preprocessing
time O(n) and query time O(m). This is ideal for our applications, where the client stores one
string or set of strings on the server, and later performs queries for many search strings. Therefore,
we will focus on substring search using suffix trees as the basis for our scheme.

Here we give a brief overview of suffix trees. We follow the terminology of [28].

Definition 5.1. A suffix tree for a string s = s1 . . . sn is a rooted, directed tree with the following
properties:

• Each edge is labeled with a non-empty substring of s, called its edge label.

• Every internal node has at least two children.

• No two edges out of a node have edge labels starting with the same character.

• The tree has n leaves, labeled 1 to n. These are in one-to-one correspondence with the n
suffixes to s. Specifically, for each i, the suffix s[i..n] is the concatenation of the edge labels
on the path from the root to the leaf labeled i.

Definition 5.2. The path label of a node is the concatenation of the edge labels on the path from
the root to that node.

Figure 1 shows a suffix tree for the string “cocoon”.
Note that for a suffix tree to exist for a string s, it must be the case that no suffix of s is a

prefix of another suffix of s. If this is not the case, one can append a special termination character
$ that does not appear elsewhere in the string.
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Figure 1: A suffix tree for the string s =“cocoon”. The six suffixes of “cocoon” correspond to
the paths from the root to the six leaves. Each leaf is labeled with the position in s where the
corresponding suffix begins. Additionally, the nodes have arbitrary labels that are provided for
future reference.

Substring search procedure Searching for a substring using a suffix tree relies on the following
key observation: a string p is a substring of s if and only if it is a prefix of some suffix of s. Thus,
to search for p in s, we look for a path from the root whose label matches p.

To do this, match the characters of p sequentially with a path from the root. Since no two
edges out of a node start with the same character, this path is unique. Specifically, at each node on
the path, find the outgoing edge whose label starts with the next character of p (if one exists) and
continue matching along that edge. Continue until either the next character of p does not match,
meaning p is not a substring of s, or all of p has been matched, meaning p is a substring of s. If
p is a substring of s, the indices of the occurrences of p as a substring of s are exactly the indices
labeling the leaves in the subtree below the end of the matching path.

Efficiency A suffix tree can be constructed in O(n) time for a string of length n [47, 19]. It can
be shown that a suffix tree has at most 2n nodes. However, storing the edge label for all edges
would require O(n2) storage in the worst case. To represent a suffix tree in O(n log n) space, one
stores for each edge the start and end indices in s of the first occurrence of the edge label as a
string of s, along with a copy of the string s.

Searching for a substring p of length m takes O(m) time to find a single occurrence, or O(m+k)
time to find all occurrences, where k is the number of occurrences.

Observations We make a few observations that will be useful for our construction. We can
identify with each node u an initial path label, which is the concatenation of the path label of the
parent of u and the first character of the edge label from the parent to u. Note that if a string p
matches the initial path label of a node u and if p is a substring of s, then either p’s matching path
ends somewhere along the edge to u, or it ends somewhere in the subtree rooted at u. Note also
that the indices in s of occurrences of a node’s path label are exactly the indices of the occurrences
of the node’s initial path label.

5.2 Notation

Before we describe our substring-searchable encryption scheme, we introduce some notation. Some
of the notation will be relative to a string s and its suffix tree Trees, even though they are not
explicit parameters.
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u: a node in Trees

ε: the empty string

path(u): the path label of u, i.e., the concate-
nation of the edge labels on the path
from the root to u. If u is the root,
path(u) = ε.

initpath(u): the initial path label of u, i.e., the con-
catenation of the path label of u’s par-
ent and the first character of the edge
label from u’s parent to u. If u is the
root, initpath(u) = ε.

leafi: the ith leaf in Trees, where the leaves
are numbered left to right

len(u): the length of initpath(u)

ind(u): the index in s of the first occurrence of
path(u) (equivalently, of initpath(u)).
If path(u) = ε, ind(u) = 0.

leafpos(u): the position (between 1 and n) in the
tree of the leftmost leaf in the subtree
rooted at u.

num(u): the number of occurrences in s of
path(u) (equivalently, of initpath(u))
as a substring. If path(u) = ε,
num(u) = 0. For non-root nodes
u, num(u) is equal to the number of
leaves in the subtree rooted at u.

To illustrate the notation above, let us look at

the suffix tree in Figure 1 for the string “cocoon”. In this tree, we have path(u3) = “cocoon”, initpath(u3) =
“coc”, leaf3 = u6, ind(u2) = 1, leafpos(u5) = 3, num(u2) = 2.

5.3 Intuition

Here we provide some intuition and work our way up to the full construction.
We will use a symmetric encryption scheme Π, a PRF F , and a PRP P . The key generation

algorithm will generate keys KD,KC,KL for Π, keys K1,K2 for the PRF, and keys K3,K4 for the
PRP. We will explain how the keys are used as we develop the intuition for the construction.

A first attempt We first aim to construct a queryable encryption scheme for a simpler func-
tionality F ′, where F ′(s, p) returns whether p occurs as a substring in s, and, if so, the index
of the first occurrence in s of p. We will also only consider correctness and security against an
honest-but-curious server, that is, a server that follows the protocol honestly.

Let Π be a CPA-secure symmetric encryption scheme. We will encrypt a string s = s1 . . . sn in
the following way. First, construct a suffix tree Trees for s. Then construct a dictionary D that
contains, for each node u, the key/value pair (FK1(path(u)),Π.EncKD

(ind(u)). This dictionary is
the ciphertext.
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In the query protocol for a string p, the client sends FK1(p). The server then looks up FK1(p)
in the dictionary. If there is a corresponding value, the server returns it to the client. The client
then decrypts using KD to get the index of the first occurrence in s of p.

The problem with this approach is that it only works for search strings that fully match a node’s
path label (i.e., end exactly at a node); it does not work for finding substrings that end partway
down an edge.

Returning a possible match To address this problem, we will identify each node with its initial
path label instead of its path label. Note that if u is the last node (farthest from the root) for
which any prefix of p equals initpath(u), then either p is not a substring of s, or p ends somewhere
on the path to u, and the indices in s of the occurrences of initpath(u) are the same as the indices
of the occurrences of p.

In the dictionary D, we will now use initpath(u) instead of path(u) as the search key for a node
u. We will say that a prefix p[1..i] is a matching prefix if p[1..i] = initpath(u) for some u; otherwise,
we say p[1..i] is a non-matching prefix. The ciphertext will also include an array C of encryptions
of each character of s, with C[i] = Π.EncKC

(si).
In the query protocol, the client will send T1, . . . , Tm, where Ti = FK1(p[1..i]). The server

finds the entry D[Tj ], where p[1..j] is the longest matching prefix of p. The server will return the
encrypted index Π.EncKD

(ind) stored in D[Tj ]. The client will then decrypt it to get ind, the index of
the first occurrence of the possible match, and requests the server to send C[ind], . . . , C[ind+m−1].
The client then decrypts the result to check whether the decrypted string is equal to the search
string p and thus, whether p is a substring of s.

Returning all occurrences We would like to return not just the first occurrence or a constant
number of occurrences, but all of the occurrences of the search string. However, in order to keep
the ciphertext size O(n), we need the storage for each node to remain a constant size. In a naive
approach, in each dictionary entry we would store encryptions of indices of all of the occurrences
of the corresponding string. However, this would take O(n2) storage in the worst case.

To maintain constant storage for each node, we use the fact that the occurrences of a node’s
path label (or initial path label) as a substring of s are exactly the occurrences of the path labels
of the leaves in the subtree rooted at that node, each of which is a suffix of s.

We construct a leaf array L of size n, with the leaves numbered 1 to n from left to right.
Each element L[i] stores an encryption of the index in s of the path label of the ith leaf. That is,
L[i] = Π.EncKL

(ind(leafi)). In the encrypted tuple in the dictionary entry for a node u we also store
leafpos(u), the position in the tree of the leftmost leaf in the subtree rooted at u, and num(u), the
number of leaves in the subtree rooted at u. That is, the value in the dictionary entry for a node
u is now Π.EncKD

(ind(u), leafpos(u), num(u)) instead of Π.EncKD
(ind(u)).

In the query protocol, the server will return the encryption of ind(u), leafpos(u), num(u) for the
last node u matched by a prefix of p. The client then decrypts this and asks for C[ind], . . . , C[ind +
m−1], decrypts to determine whether p is a substring of s, and if so, asks for L[leafpos(u)], . . . , L[leafpos(u)+
num− 1] to retrieve all occurrences of p in s.

Hiding common non-matching prefixes among queries The scheme outlined so far works; it
supports the desired substring search functionality, against an honest-but-curious adversary. How-
ever, it leaks a lot of unnecessary information to the server; we now add a number of improvements
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to reduce the information that is leaked.
In the scheme sketched so far, the server will learn from the Ti values when any two queries

share a prefix, even if the shared prefix is not a substring of s. Although memory accesses will
necessarily reveal when two queries share a matching prefix (contained in the dictionary), but we
would like to hide when queries share non-matching prefixes.

To hide when queries share non-matching prefixes, we change each Ti to be an encryption of

f
(i)
1 = FK1(p[1..i]) under the key f

(i)
2 = FK2(p[1..i]). The dictionary entry for a node u will now

also contain values f2,i for its children nodes, where f2,i = FK2(initpath(vi)) for each of the children
vi of u.

In the query protocol, the server starts at the root node, and after reaching any node, the server
tries using each of the f2,i for that node to decrypt each of the next Tj ’s, until it either succeeds
and reaches the next node or it reaches the end of the search string.

Hiding node degrees, order of children, and number of nodes in suffix tree Since the
maximum degree of any node is the size d of the alphabet, we can hide the degree of each node by
creating dummy random f2,i values so that there are d in total. To hide the order of the children
and hide which of the f2,i are dummy values, we store the f2,i in a random permuted order in the
dictionary entry.

Similarly, since a suffix tree for a string of length n contains at most 2n nodes, we will hide the
exact number N of nodes in the suffix tree by constructing 2n−N dummy entries in D.

Hiding string indices and leaf positions In order to hide the actual values of the string
indices ind, . . . , ind +m− 1 and the leaf positions leafpos, . . . , leafpos + num− 1, we make use of a
pseudorandom permutation family P of permutations [n]→ [n]. Instead of sending (ind, . . . , ind +
m − 1), the client applies the permutation PK3 to ind, . . . , ind + m − 1 and outputs the resulting
values in a randomly permuted order. Similarly, instead of sending (leafpos, . . . , leafpos + num− 1),
the client applies the permutation PK4 to leafpos, . . . , leafpos + num− 1 and outputs the resulting
values in a randomly permuted order. Note that while the server does not learn the actual indices
or leaf positions, it still learns when two queries ask for the same or overlapping indices or leaf
positions.

Handling malicious adversaries The scheme described so far satisfies security against an
honest-but-curious adversary, but not against a malicious adversary; an adversary could poten-
tially send malformed or incorrect ciphertexts during the query protocol.

To handle a malicious adversary, we will require Π to be an authenticated encryption scheme.
Thus, an adversary will not be able to construct a ciphertext that is not part of the dictionary D
or the arrays C or L. We add auxiliary information to the encrypted messages to allow the client
to check that any ciphertext returned by the server is the one expected by the honest algorithm.
For example, for the characters of s we will encrypt (si, i) instead of just si so that the client
can check that it is receiving the correct piece of the ciphertext. For dictionary entries, we will
add auxiliary information in the encrypted tuple so that the client can check that the ciphertext
returned corresponds to the longest matching prefix of p.
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5.4 Construction

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a PRF, and let P : {0, 1}λ × [n] → [n] be a PRP. Let Π =
(Gen,Enc,Dec) be an authenticated, key-hiding symmetric-key encryption scheme. Our substring-
searchable encryption scheme E for an alphabet Σ with |Σ| = d is as follows.

Gen(1λ): Choose random strings KD,KC,KL,K1,K2,K3,K4
R← {0, 1}λ.3 The secret key is

K = (KD,KC,KL,K1,K2,K3,K4).

Enc(K, s): Let s = s1 . . . sn ∈ Σn. Construct a suffix tree Trees for s.

1. Construct a dictionary D as follows.

For any node u, define f1(u) := FK1(initpath(u)) and f2(u) := FK2(initpath(u)).

For each node u in Trees (including the root and leaves):

• Let v1, . . . , vj denote the children of u.

• For i = 1, . . . , j, let g2,i = f2(vi).

• For i = j + 1, . . . , d let g2,i
R← {0, 1}λ.

• Choose a random permutation πu : [d]→ [d].

• For i = 1, . . . , d, let f2,i(u) = g2,πu(i)(u).

• Let Xu = (ind(u), leafpos(u), num(u), len(u), f1(u), f2,1(u), . . . , f2,d(u)), and then let
Wu = Π.EncKD

(Xu).

• Store Vu = (f2,1(u), . . . , f2,d(u),Wu) with search key κu = f1(u) in D.

Let N denote the number of nodes in Trees. Construct 2n−N dummy entries in D as

follows. For each dummy entry, choose random strings f1, f2,1, . . . , f2,d
R← {0, 1}λ, and

store (f2,1, . . . , f2,d,Π.EncKD
(0)) with search key f1 in D.

2. Construct an array C as follows: for i = 1, . . . , n, set C[PK3(i)] = Π.EncKC
(si, i).

3. Construct an array L as follows: For i = 1, . . . , n, set L[PK4(i)] = Π.EncKL
(ind(leafi), i).

Output the ciphertext CT = (D,C,L).

Query(K, p,CT ): The interactive query protocol between a client with K and p and a server with
CT runs as follows.

Let p = p1 . . . pm ∈ Σm, and let CT = (D,C,L).

1. The client computes, for i = 1, . . . ,m, f
(i)
1 = FK1(p[1..i]), f

(i)
2 = FK2(p[1..i]) , and

sets Ti = Π.Enc
f
(i)
2

(f
(i)
1 ). Also, compute root = FK1(ε). The client sends the server

(root, T1, . . . , Tm).

3We will assume for simplicity that Π.Gen simply chooses a random key k
R← {0, 1}λ, so throughout the construction

we will use random values as Π keys. To allow for general Π.Gen algorithms, instead of using a random value r directly
as a key, we could use a key generated by Π.Gen with r providing Π.Gen’s random coins.
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2. The server proceeds as follows, maintaining variables f1, f2,1, . . . , f2,d,W . Initialize
(f2,1, . . . , f2,d,W ) to equal D[root].

For i = 1, . . . ,m :

For j = 1, . . . , d:

Let f1 ← Π.Decf2,j (Ti). If f1 6= ⊥, update (f2,1, . . . , f2,d,W ) to equal D[f1], and
break (proceed to the next value of i). Otherwise, do nothing.

At the end, the server sends W to the client.

3. The client runs X ← Π.DecKD(W ). If X = ⊥, output ⊥ and end the protocol. Other-
wise, parse X as (ind, leafpos, num, len, f1, f2,1, . . . , f2,d). Check whether FK1(p[1..len]) =
f1. If not, output ⊥ and end the protocol. Otherwise, check whether Π.Dec(f2,i, Tj) 6= ⊥
for any j ∈ {len + 1, . . . ,m} and i ∈ {1, . . . , d}. If so, output ⊥ and end the protocol.
If ind = 0, output ∅. Otherwise, choose a random permutation π1 : [m] → [m]. For
i = 1, . . . ,m, let xπ1(i) = PK3(ind + i− 1). The client sends (x1, . . . , xm) to the server.

4. The server sets Ci = C[xi] for i = 1, . . . ,m and sends (C1, . . . , Cm) to the client.

5. For i = 1, . . . ,m, the client runs Y ← Π.DecKC
(Cπ1(i)). If Y = ⊥, output ⊥ and end the

protocol. Otherwise, let the result be (p′i, j). If j 6= ind + i− 1, output ⊥. Otherwise, if
p′1 . . . p

′
m 6= p, then the client outputs ∅ as its answer and ends the protocol. Otherwise,

the client chooses a random permutation π2 : [num] → [num]. For i = 1, . . . , num, let
yπ2(i) = PK4(leafpos + i− 1). The client sends (y1, . . . , ynum) to the server.

6. The server sets Li = L[yi] for i = 1, . . . , num, and sends (L1, . . . , Lnum) to the client.

7. For i = 1, . . . , num, the client runs Π.DecKL
(Lπ2(i)). If the result is ⊥, the client outputs

⊥ as its answer. Otherwise, let the result be (ai, j). If j 6= leafpos + i − 1, output ⊥.
Otherwise, output the answer A = {a1, . . . , anum}.

Extension to multiple data strings While we describe the protocol in terms of a single data
string s, we note that it can easily be extended to support a functionality where the client encrypts
a set of strings initially, and then can search for occurrences of a substring within all of them. This
is done by building a generalized suffix tree [28] that contains suffixes from multiple strings and
then using our encryption scheme. For simplicity, however, in the following analysis we restrict
ourselves to the single string version.

5.5 Efficiency

We will make the standard RAM model assumption that values of size O(log n) bits can be read
or written in constant time.

We assume encryption and decryption using Π take O(λ) time. Also, we assume the dictionary
is implemented in such a way that dictionary lookups take constant time (using hash tables, for
example).

Efficient batch implementation of PRFs Assuming the evaluation of a PRF takes time linear
in the length of its input, in a naive implementation of our scheme, computing the PRFs f1(u) and
f2(u) for all nodes u would take O(n2) time, since the sum of the lengths of the strings initpath(u)
can be O(n2). Similarly, computing the PRFs used for T1, . . . , Tm would take O(m2) time. It turns
out that we can take advantage of the way the strings we are applying the PRFs to are related, to
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speed up the batch implementation of the PRFs for all of the nodes of the tree. We will use two
tools: the polynomial hash and suffix links (described below).

The polynomial hash is defined as follows. View a message x as a sequence (x1, . . . , xn) of
`-bit strings. For any k in the finite field GF(2`), the hash function Hk(x) is defined as the
evaluation of the polynomial px over GF(2`) defined by coefficients x1, . . . , xn, at the point k. That
is, Hk(x) = px(k) = Σn

i=1xik
i−1, where all operations are in GF(2`). The polynomial hash is an

almost universal hash function, so to compute the PRF of a string, we can first apply the polynomial
hash and then compute the PRF.

First, we use a trick that is used in the Rabin-Karp rolling hash (see Cormen et al. [15],e.g.).
(A rolling hash is a hash function that can be computed efficiently on a sliding window of input;
the hash of each window reuses computation from the previous window.) The Rabin-Karp hash
is the polynomial hash, with each character of the string viewed as a coefficient of the polynomial
applied to the random key of the hash.

The key observation is that the polynomial hash H allows for constant-time computation of
Hk(x1 . . . xn) from Hk(x2 . . . xn), and also of Hk(x1 . . . xn) from Hk(x1 . . . xn−1). To see this, notice
that Hk(x1 . . . , xn) = x1 + k ·Hk(x2 . . . xn), and Hk(x1 . . . xn) = Hk(x1 . . . xn−1) + xnk

n−1. Using
this trick, for any string x of length `, we can compute the hashes Hk(x[1..i]) for all i = 1, . . . ,m
in total time O(λm). Thus, the T1, . . . , Tm can be computed in time O(λm).

To compute the hashes of initpath(u) for all nodes u in time O(n), we need one more trick.
Many efficient suffix tree construction algorithms include suffix links. Each non-leaf node u with
associated string path(u) = a||B, where a is a single character, has a pointer called a suffix link
pointing to the node u′ such that path(u′) is B. It turns out that connecting the nodes in a suffix
tree using the suffix links forms another tree, in which the parent of a node u is the node u′ to
which u’s suffix link points.

Since initpath(u) = path(par(u))||u1, where par(u) is the parent of u, we can first compute the
hashes of path(u) for all non-leaf nodes u, and then compute initpath(u) for each node u in constant
time from path(par(u)). To compute path(u) for all nodes u, we traverse the tree formed by the
suffix links, starting at the root, and compute the hash of path(u) for each u using path(u′), where
u′ is u’s parent in the suffix link tree. Each of these computations takes constant time, since path(u)
is the same as path(u′) but with one character appended to the front. Therefore, computing the
hashes of path(u) for all non-leaf nodes u (and thus, computing the hashes of initpath(u) for all
nodes u) takes total time O(n).

Encryption efficiency Using the efficient batch implementation of PRFs described above, the
PRFs f1(u) and f2(u) can be computed for all nodes u in the tree in total time O(λn). Therefore,
the dictionary D of 2n entries can be computed in total time O(λn). The arrays C and L each
have n elements and can be computed in time O(λn). The PRPs can actually be implemented by
applying a PRF and then sorting the resulting output. Therefore, encryption takes time O(λn)
and the ciphertext is of size O(λn).

Query protocol efficiency In the query protocol, the client first computes T1, . . . , Tm. Using

the efficient batch PRF implementation above, computing the f
(i)
1 and f

(i)
2 for i = 1, . . . ,m takes

total time O(m), and computing each Π.Enc
f
(i)
2

(f
(i)
1 ) takes O(λ) time, so the total time to compute

T1, . . . , Tm is O(λm).
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To find W , the server performs at most md decryptions and dictionary lookups, which takes
total time O(λm). The client then computes x1, . . . , xm and the server retrieves C[x1], . . . , C[xm],
in time O(m). If the answer is not ∅, the client then computes y1, . . . , ynum and the server retrieves
L[y1], . . . , L[ynum] in time O(num), in time O(num). Thus, both the client and the server take
computation time O(λm + num) in the query protocol. (Since we are computing an upper bound
on the query computation time, we can ignore the possibility that the server cheats and the client
aborts the protocol.) The query protocol takes three rounds of communication, and the total size
of the messages exchanged is O(λm+ num).

5.6 Security

Before describing the leakage functions for our scheme, we provide some notation.
We first give some notation for the leakage of this scheme. We say that a query p visits a node

u in the suffix tree Trees if initpath(u) is a prefix of p.
Let:

• numi denote the number of occurrences of pi as a substring of s

• indi denote the index in s of the first occurrence of the longest prefix of pi that is a substring
of s, or 0 if no such prefix exists

• leafposi denote the index in the tree of the leftmost leaf whose path label has pi as a prefix

• ui,j denote the jth node visited by the query for pi

• leni,j denote the length of initpath(ui,j)

• ni denote the number of nodes visited by the query for pi

The leakage from queries includes the query prefix pattern, the index intersection pattern, and
the leaf intersection pattern, which we now define.

The query prefix pattern for a query pi indicates, for each node visited for pi, which of the
previous queries also visited that node.

Definition 5.3. The query prefix pattern QP(s, p1, . . . , pi) is a sequence of length ni, where the
jth element is a list listj of indices i′ < i such that the i′th query also visited ui,j .

The index intersection pattern for a query pi indicates when any of the retrieved indices
indi, . . . , indi + |pi| − 1 are equal to any of the retrieved indices for previous queries.

Definition 5.4. The index intersection pattern IP(s, p1, . . . , pi) is a sequence of length i, where the
jth element is equal to {r1[indj ], . . . , r1[indj+mj−1]} for a fixed random permutation r1 : [n]→ [n].

The leaf intersection pattern for a query pi indicates when any of the retrieved leaves leafposi, . . . , leafposi+
numi − 1 are equal to any of the retrieved leaves for previous queries.

Definition 5.5. The leaf intersection pattern LP(s, p1, . . . , pi) is a sequence of length i, where the
jth element is equal to {r2[leafposj ], . . . , r2[leafposj + numj − 1]} for a fixed random permutation
r2 : [n]→ [n].

The leakage of the scheme E is as follows. L1(s) is just n = |s|. L2(s, p1, . . . , pi) consists of
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• mi = |pi|

• {leni,j}nij=1

• QP(s, p1, . . . , pi)

• IP(s, p1, . . . , pi)

• LP(s, p1, . . . , pi)

Leakage Example To illustrate the leakage of our scheme, consider the following toy example.
Consider the string s = “cocoon”, whose suffix tree is shown in Figure 1, and a sequence of

three queries, p1 = “co”, p2 = “coco”, and p3 = “cocoa”.
The query for “co” visits node u2, the retrieved indices into s are 1, 2, and the retrieved leaf

positions are 1, 2. The query for “coco” visits nodes u2 and u3, the indices retrieved are 1, 2, 3, 4,
and the leaf position retrieved is 1. The query for “cocoa” visits nodes u2 and u3, the indices
retrieved are 1, 2, 3, 4, 5, and no leaf positions are retrieved (because there is not a match).

The leakage L1(s) is n = 6. The leakage L2 from all three queries combined is as follows.

• The lengths of the search strings: 2, 4, and 5,

• The lengths 1 and 3 of the initial paths of the nodes u2 and u3 visited by the three queries,

• The query prefix pattern, which says that p1, p2, p3 visited the same first node, and then p2
and p3 visited the same second node,

• The index intersection pattern, which says that two of the indices returned for p2 are the
same as the two indices returned for p1, and four of the indices returned for p3 are the same
as the four indices returned for p2, and

• The leaf intersection pattern, which says that the leaf returned for p2 is one of the two leaves
returned for p1, and that the queries for p1, p2, and p3 returned two leaves, one leaf, and no
leaves, respectively.

Security Our security theorem is as follows.

Theorem 5.6. Let L1 and L2 be as defined above. If F is a PRF, P is a PRP, and Π is an au-
thenticated, key-hiding, symmetric-key encryption scheme, then the substring-searchable encryption
scheme E satisfies malicious (L1,L2)-CQA2 security.

The proof is given in Appendix A.

Discussion As mentioned in Section 1, our work follows a line of work starting with [16] that
allows some information leakage while ensuring that this leakage is formally specified. In all of this
work, a major challenge is interpreting the impact of this leakage for any particular application,
and this challenge become greater as the schemes become more complex (see e.g. [12] or [31]). Our
work presents similar challenges in this respect.

We make a few brief observations. It may be possible to reduce the leakage heuristically at
the cost of some efficiency by, for example, having the client cache the result of previous queries
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and do some of the query evaluation locally, or by incorporating ORAM techniques. However,
it seems difficult to reduce the leakage significantly without reducing the efficiency of the scheme
significantly. The leakage in our scheme corresponds roughly to the information an adversary
would gain if it were allowed to observe only the memory access pattern when a search is evaluated
on an unencrypted suffix tree. In this sense, our leakage seems inherent in any suffix-tree-based
approach. Constructing an efficient scheme with significantly less leakage would seem to require a
different data structure whose memory access patterns leak less information. We pose the problem
of identifying or designing such a data structure as an interesting open problem.

6 Conclusion

We presented a definition of queryable encryption schemes and defined security against malicious
adversaries making chosen query attacks. Our security definitions are parameterized by leakage
functions that specify the information that is revealed about the message and the queries by the
ciphertext and the query protocols.

We constructed an efficient substring-searchable encryption scheme – a queryable encryption
scheme that supports finding all occurrences of a search string p as a substring of an encrypted
string s. Our approach is based on suffix trees. Our construction uses only basic symmetric-key
primitives (pseudorandom functions and permutations and an authenticated, key-hiding encryption
scheme). The ciphertext size and encryption time are O(λn) and query time and message size are
O(λm + k), where λ is the security parameter, n is the length of the string, m is the length of
the search string, and k is the number of occurrences of the search string. Querying requires three
rounds of communication.

While we have given a formal characterization of the leakage of our substring-searchable encryp-
tion scheme, it is an open problem to analyze the practical cost of the leakage. Given the leakage
from several typical queries, what can a server infer about the message and the queries? We believe
our scheme provides a worthwhile efficiency/leakage tradeoff for many applications, especially when
current alternatives are either no encryption at all or existing searchable encryption schemes that
are designed for keyword search but inefficient for substring search.
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A Security Against Malicious Adversaries

We now prove that our substring-searchable encryption scheme satisfies malicious-(L1,L2)-CQA2
security for the leakage functions L1 and L2 defined in Section 5.6.

Theorem A.1. Let L1 and L2 be defined as in Section 5.6. If F is a PRF, P is a PRP, and
Π is a key-hiding, authenticated symmetric-key encryption scheme, then the substring-searchable
encryption scheme E satisfies malicious (L1,L2)-CQA2 security.

Proof. As explained in Section 4.2, we show that our scheme leaks only L1,L2, by showing that
no adversary can distinguish interaction with the real client from interaction with a simulator who
does not know s or the queries qj , but is only given the leakage defined by L1,L2.

We define a simulator S that works as follows. S first chooses random keys KD,KC,KL
R←

{0, 1}λ.

Ciphertext Given L1(s) = n, S constructs a simulated ciphertext as follows.

1. Construct a dictionaryD as follows. For i = 1, . . . , 2n, choose fresh random values κi, f2,1, . . . , f2,d,
R←

{0, 1}λ, and then for each i store Vi = (f2,1, . . . , f2,d,W = Π.Enc(KD, 0)) with search key κi
in D.4

2. Choose an arbitrary element σ0 ∈ Σ. Construct an array C, where C[i] = Π.Enc(KC, (σ0, 0))
for i = 1, . . . , n.

3. Construct an array L, where L[i] = Π.Enc(KL, 0) for i = 1, . . . , n.

Output CT = (D,C,L).

4Throughout our description, we assume each key is only used for a fixed message space. Thus, for example, 0
here is padded to the appropriate length to match the messages encrypted under KD in the real scheme.
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Tables In order to simulate the query protocol, S will need to do some bookkeeping.
S will maintain two tables T1 and T2, both initially empty. T1 contains all currently defined

tuples (i, j, κ) such that the entry in D with search key κ represents the jth node visited by the
ith query. We write T1(i, j) = κ if (i, j, κ) is an entry in T1.
T2 contains all currently defined tuples (κ, f2, flag, flag1, . . . , flagd), where for the node u repre-

sented by the entry D[κ], κ = f1(u), f2 = f2(u), flag indicates whether u has been visited by any
query, and flagi indicates whether child(u, πu(i)) has been visited. The value of each flag is either
“visited” or “unvisited”. We write T2(κ) = (f2, flag, flag1, . . . , flagd) if (κ, f2, flag, flag1, . . . , flagd) is
an entry in T2.

Choose an arbitrary entry (κ∗, V ∗) in D to represent the root node of Trees. In T2(κ∗), set all
flags to “unvisited” and set f2 = 0. (The f2 for the root node will never be used, so it is fine to set
it to 0.) We implicitly define T1(i, 0) = κ∗ for all i.

Query protocols For the jth token query pj , S is given L2(s, p1, . . . , pj), which consists of
mj = |pj |, {lenj,i}

nj
i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), and LP(s, p1, . . . , pj).

For t = 1, . . . , nj , if listt = QP(pj , s)[t] is non-empty (i.e., the node uj,t was visited by a previous
query), let j′ be one of the indices in listt. Let κ = T1(j′, t) and let (f2, flag, flag1, . . . , flagd) = T2(κ).
Tlenj,t = Π.Enc(f2, κ). Set T1(j, t) = κ.

If instead listt is empty, choose a random unused entry (κ, V ) in D to represent the node uj,t,
and set T1(j, t) = κ. Let κ′ = T1(j, t − 1) and let (f2, flag, flag1, . . . , flagd) = T2(κ′). Choose a
random i ∈ {1, . . . , d} such that flagi is “unvisited”, and set flagi to “visited”. Let f2,i be D[κ′].f2,i.
Set Tlenj,t = Π.Enc(f2,i, κ), set T2(κ).f2 = f2,i, set T2(κ).flag to “visited”, and set T2(κ).flagi to
“unvisited” for i = 1, . . . , d.

For any i 6= lent for any t = 1, . . . , nj , choose a random f2
R← {0, 1}λ, and let Ti = Π.Enc(f2, 0).

Let κ∗ be the key chosen for the root entry of the dictionary in the simulated ciphertext. Send
(κ∗, T1, . . . , Tm) to the adversary.

Upon receiving a W from the adversary, check whether W = D[T1(j, nj)].W . If not, output ⊥
and set the flag fj to ⊥. Otherwise, let (x1, . . . , xm) be a random ordering of the elements of the
set IP(pj , s)[j], and send (x1, . . . , xm) to the adversary. (If IP(pj , s)[j] shows no indices for the jth
query, then end the protocol.)

Upon receiving C1, . . . , Cm from the adversary, check whether Ci = C[xi] for each i. If not,
output ⊥ and set the flag fj to ⊥. Otherwise, let (y1, . . . , ynum) be a random ordering of the
elements of LP(pj , s)[j], and send (y1, . . . , ynum) to the adversary. (If LP(pj , s)[j] shows no leaf
positions for the jth query, then end the protocol.)

Upon receiving L1, . . . , Lnum from the adversary, check whether Li = L[yi] for each i. If not,
output ⊥ and set the flag fi to ⊥.

This concludes the description of the simulator S.

Sequence of games We now show that the real and ideal experiments are indistinguishable by
any PPT adversary A except with negligible probability. To do this, we consider a sequence of
games G0, . . . , G17 that gradually transform the real experiment into the ideal experiment. We will
show that each game is indistinguishable from the previous one, except with negligible probability.

Game G0. This game corresponds to an execution of the real experiment, namely,

• The challenger begins by running Gen(1λ) to generate a key K.
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• The adversary A outputs a string s and receives CT ← Enc(K, s) from the challenger.

• A adaptively chooses search strings p1, . . . , pq. For each pi, A first interacts with the
challenger, who is running the client part of Query honestly with input (K, pi). Then
the challenger sends its output from Query to A.

Game G1. This game is the same as G0, except that in G1 the challenger is replaced by a simu-
lator that does not generate keys K1,K2 and replaces FK1 and FK2 with random functions.
Specifically, the simulator maintains tables R1, R2, initially empty. Whenever the challenger
in G0 computes FKi(x) for some x, the simulator uses Ri(x) if it is defined; otherwise, it
chooses a random value from {0, 1}λ, stores it as Ri(x), and uses that value.

A straightforward hybrid argument shows that G1 is indistinguishable from G0 by the PRF
property of F .

Game G2. This game is the same as G1, except that in G2 the simulator does not generate keys
K3,K4 and replaces PK3 and PK4 with random permutations. Specifically, the simulator
maintains tables R3 and R4, initially empty. Whenever the simulator in G1 computes PKi(x)
for some x, the simulator in G2 uses Ri(x), if it is defined; otherwise, it chooses a random
value in [n] that has not yet been defined as Ri(y) for any y, and uses that value.

A straightforward hybrid argument shows that G1 and G2 are indistinguishable by the PRP
property of P .

Game G3. This is the same as G2, except that we modify the simulator as follows. For any query,
when the simulator receives a W from the adversary in response to T1, . . . , Tm, the simulator’s
decision whether to output ⊥ will not based on the decryption of W . Instead, it will output
⊥ if W is not the ciphertext in the dictionary entry D[R1(p[1..i])], where p[1..i] is the longest
matching prefix of p. Otherwise, the simulator proceeds as in G2.

We argue that games G2 and G3 are indistinguishable by the ciphertext integrity of Π.

Lemma A.2. If Π has ciphertext integrity, then G2 and G3 are indistinguishable, except with
negligible probability.

Proof. We analyze the cases in which G2 and G3 each output ⊥ in response to a W .

G2 runs Π.Dec(KD,W ) to get either ⊥ or a tuple X, which it parses as (ind, leafpos, num, len,
f1, f2,1, . . . , f2,d). G2 outputs ⊥ if any of the following events occur:

• (Event W.1) Π.Dec(KD,W ) = ⊥, or

• (Event W.2) W decrypts successfully, but f1 6= R1(p[1..len]), or

• (Event W.3) W decrypts successfully and f1 = R1(p[1..len]), but
Π.Dec(f2,i, Tj) 6= ⊥ for some i ∈ {1, . . . , d}, j > len.

G3 outputs ⊥ if W is not the ciphertext in the dictionary entry D[R1(p[1..i])], where p[1..i]
is the longest matching prefix of p, which is the case if any of the following events occur:

• (Event W.1′) W is not a ciphertext in D,

• (Event W.2′) W is a ciphertext in D but not for any prefix of p. That is, W = D[κ]
where κ is not equal to R1(p[1..i]) for any i.
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• (Event W.3′) W is a ciphertext in D for a prefix of p, but there is a longer matching
prefix of p. That is, W = D[R1(p[1..i])] for some i, but there exists a j > i such that
there is an entry D[R1(p[1..j])].

If G3 outputs ⊥ in response to W for any query, then G2 also outputs ⊥: If event W.1′ occurs,
then W.1 occurs with all but negligible probability by the ciphertext integrity of Π. If event
W.2′ occurs, then event W.2 occurs with probability all but at most 1/2λ (the probability
that FK1(p[1..len]) = f1 when f1 is an independent, random value). If event W.3′ occurs, then
clearly W.3 also occurs.

If G2 outputs ⊥, then G3 also outputs ⊥, since if W is the ciphertext in D[R1(p[1..i])],
then W will decrypt successfully, with f1 = R1(p[1..len]), and Π.Dec(f2,k, Tj) = ⊥ for all
k ∈ {1, . . . , d}, j > i.

Thus, G2 and G3 are indistinguishable except with negligible probability.

Game G4. This is the same as G3, except that we modify the simulator as follows. For any query,
when the simulator receives C1, . . . , Cm from the adversary in response to indices x1, . . . , xm,
the simulator’s decision whether to output ⊥ is not based on the decryptions of C1, . . . , Cm.
Instead, it outputs ⊥ if Ci 6= C[xi] for any i. Otherwise, the simulator proceeds as in G3.

We argue that games G4 and G3 are indistinguishable by the ciphertext integrity of Π.

Lemma A.3. If Π has ciphertext integrity, then G3 and G4 are indistinguishable, except with
negligible probability.

Proof. We analyze the cases in which G3 and G4 each output ⊥ in response to C1, . . . , Cm.

For each i, G3 outputs ⊥ if either of the following events occur:

• (Event C.1) Π.Dec(KC, Ci) = ⊥, or

• (Event C.2) Π.Dec(KC, Ci) = (p′i, j) where j is not the correct index.

For each i, G4 outputs ⊥ if Ci 6= C[xi], which happens if either of the following events occur:

• (Event C.1′) Ci is not among C[1], . . . , C[n], or

• (Event C.2′) Ci = C[k] where k 6= xi.

If G4 outputs ⊥ for some i then G3 outputs ⊥ except with negligible probability: For any i, if
event C.1′ occurs, then event C.1 occurs with all but negligible probability, by the ciphertext
integrity of Π. If event C.2′ occurs, then event C.2 occurs, since if Ci = C[k] for some k 6= xi,
Ci will decrypt to (sj , j) for an incorrect index j.

If G3 outputs ⊥, if event C.1 occurred, then C.1′ also occurred, since Ci will decrypt success-
fully if it is one of C[1], . . . , C[n]. If event C.2 occurred, then either C.1′ or C.2′ occurred,
since Ci will decrypt to the correct value if Ci = C[xi]. Therefore, if G3 outputs ⊥ for some
i, so does G4.

Thus, G3 and G4 are indistinguishable except with negligible probability.
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Game G5. This game is the same as G4, except for the following differences. The simulator does
not decrypt the C1, . . . , Cm from the adversary. For any query p, instead of deciding whether
to output ∅ based on the decryptions of C1, . . . , Cm, the simulator outputs ∅ if p is not a
substring of s. Otherwise, the simulator proceeds as in G4.

As we showed in Lemmas A.2 and A.3, if the adversary does not send the correct W , the
client will respond with ⊥, and if the adversary does not send the correct C1, . . . , Cm, the
client will also respond with ⊥. Therefore, if the simulator has not yet output ⊥ when it is
deciding whether to output ∅, then C1, . . . , Cm are necessarily the correct ciphertexts, and the
decryptions p′1, . . . , p

′
m computed in G4 match p if and only if p is a substring of s. Therefore,

G4 and G5 are indistinguishable.

Game G6 . This game is the same as G5, except that in G6, for i = 1, . . . , n, instead of setting
ci = Π.Enc(KC, (si, i)), the simulator sets ci = Π.Enc(KC, (σ0, 0)), where σ0 is an arbitrary
element of Σ.

Note that in both G5 and G6, KC is hidden and the ci’s are never decrypted. A hybrid
argument shows that games G5 and G6 are indistinguishable by CPA security of Π.

Game G7. This game is the same as G6, except that we eliminate the use of the random per-
mutation R3, in the following way. For i = 1, . . . , n, the simulator set C[i] = ci instead
of C[R3(i)] = ci, where ci = Π.Enc(KC, (σ0, 0)). Furthermore, for any query pj , the simu-
lator is given an additional input IP(s, p1, . . . , pj) (as defined in Section 5.6). To generate
(x1, . . . , xm) in the query protocol, the simulator outputs a random ordering of the elements
in IP(s, p1, . . . , pj)[j].

Since each ci is an encryption under KC of (σ0, 0), it does not matter whether the ci’s are
permuted in C; if we permute the ci’s or not, the result is identical. After we eliminate the
use of R3 in generating C, R3 is only used by the simulator to compute (x1, . . . , xm). Thus,
we can replace the computation of (x1, . . . , xm) for each query pj with a random ordering of
the elements of IP(s, p1, . . . , pj)[j], and the result will be identical.

Game G8. This is the same as G7, except that we modify the simulator as follows. For any
query, when the simulator receives L1, . . . , Lnum from the adversary in response to indices
y1, . . . , ynum, the simulator’s decision whether to output ⊥ is not based on the decryptions
of the L1, . . . , Lnum; instead, it outputs ⊥ if Li 6= L[yi] for any i; otherwise, it proceeds to
compute the answer A as in G7.

Lemma A.4. If Π has ciphertext integrity, then G3 and G4 are indistinguishable, except with
negligible probability.

This follows from a very similar argument to the proof of Lemma A.3.

Game G9. This game is the same as G8, except for the following differences. The simulator does
not decrypt the L1, . . . , Lnum from the adversary. For any query pj , instead of computing the
answer Aj using the decryptions of L1, . . . , Lnum, if Aj has not already been set to ⊥ or ∅,
the simulator outputs Aj = F(s, pj).

As we showed in Lemmas A.2, A.3, and A.4, if any of the W , C1, . . . , Cm or L1, . . . , Lnum

from the adversary are incorrect, the client will respond to the incorrect message with ⊥.
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Moreover, if the simulator has not yet output ⊥ when it is computing Aj , then the it follows
directly from the protocol description that the output will be Aj = F(s, pj) (by correctness
of E). Therefore, G8 and G9 are indistinguishable.

Game G10. This game is the same as G9, except that in G10, for each i = 1, . . . , n, the simulator
generates each `i as Π.Enc(KL, 0) instead of Π.Enc(KL, (indleafi , i)).

A straightforward hybrid argument shows that G9 and G10 are indistinguishable by the CPA
security of Π.

Game G11. This game is the same as G10, except that we eliminate the use of the random per-
mutation R4, in the following way. For i = 1, . . . , n, the simulator set L[i] = `i instead
of L[R4(i)] = `i, where `i = Π.Enc(KL, 0). Furthermore, for any query pj , the simula-
tor is given an additional input LP(s, p1, . . . , pj) (as defined in Section 5.6). To generate
(y1, . . . , ynum) in the query protocol, the simulator outputs a random ordering of the elements
in LP(s, p1, . . . , pj)[j].

The argument for game G11 is analogous to the one for game G7. Since each `i is an encryption
under KL of 0, it does not matter whether the `i’s are permuted in L; if we permute the `i’s
or not, the result is identical. After we eliminate the use of R4 in generating L, R4 is only
used by the simulator to compute (y1, . . . , ynum). Thus, we can replace the computation of
(y1, . . . , ynum) for each query pj with a random ordering of the elements of LP(s, p1, . . . , pj)[j],
and the result will be identical.

Game G12. This is the same as G11, except that the simulator in G12 does not decrypt the W
from the adversary in the query protocol.

Since the simulator in G11 no longer uses any values from the decryption of W , G12 is
indistinguishable from G11.

Game G13. This is the same as G12, except that in G13, for each node u the simulator generates
Wu as Π.Enc(KD, 0) instead of Π.Enc(KD, Xu).

A straightforward hybrid argument shows that G12 and G13 are indistinguishable by the CPA
security of Π.

Game G14. This is the same as game G13, except that in the query protocol, for any non-matching
prefix p[1..i], the simulator replaces Ti with an encryption under a fresh random key. That
is, for any query p, for any prefix p[1..i], i = 1, . . . ,m, if p[1..i] is a non-matching prefix, the
simulator chooses a fresh random value r and sets Ti ← Π.Enc(r,R1(p[1..i])); otherwise, it
sets Ti ← Π.Enc(R2(p[1..i]), R1(p[1..i])) as in game G13.

For any k and i, let pk denote the kth query, and let Tk,i denote the Ti produced by the
simulator for the kth query. The only way an adversary A may be able to tell apart G13 and
G14 is if two queries share a non-matching prefix; that is, there exist i, j, j′ such that j 6= j′

and pj [1..i] = pj′ [1..i]. In this case, G14 will use different encryption keys to generate Ti,j and
Ti,j′ , while G13 will use the same key. Note that the decryption keys for Ti,j and Ti,j′ will
never be revealed to A in either game. Thus, a straightforward hybrid argument shows that
G13 and G14 are indistinguishable by the key-hiding property of Π.
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Game G15. This is the same as game G14, except that in the query protocol for any string
p, for any non-matching prefix p[1..i], the simulator replaces Ti with an encryption of 0.
That is, for any query p, for any prefix p[1..i], i = 1, . . . ,m, if p[1..i] is non-matching,
the simulator chooses a fresh random value r and sets Ti ← Π.Enc(r, 0); otherwise, it sets
Ti ← Π.Enc(R2(p[1..i]), R1(p[1..i])) as in game G14.

The only way an adversary A may be able to tell apart G14 and G15 is if a prefix pj [1..i]
is non-matching. In this case, in G15, Tj,i will be an encryption of 0, while in G14, Tj,i will
be an encryption of R1(pj [1..i]). The decryption key for Tj,i will never be revealed to A in
either game. Thus, a straightforward hybrid argument shows that games G14 and G15 are
indistinguishable by the CPA security of Π.

Game G16. This is the final game, which corresponds to an execution of the ideal experiment. In
G16, the simulator is replaced with the simulator S defined above.

The differences between G15 and G16 are as follows. In G16, the simulator no longer uses
the string s when creating the dictionary D, and for each query p, it no longer uses p when
creating T1, . . . , Tm. When constructing D, whenever the simulator in G15 generates a value
by applying a random function to a string, S generates a fresh random value without using
the string. Note that all of the initpath(u) strings used in D are unique, so S does not need
to ensure consistency between any of the random values, thus the resulting D will clearly be
identical. For any query pj , for each matching prefix pj [1..i], S constructs Ti to be consistent
with D and with prefix queries using the query prefix pattern QP(s, p1, . . . , pj). The simulator
in game G15 behaves the same except that it again uses random functions (applied to distinct
strings) in place of randomly sampled strings; as above the result is identical. Also, while the
simulator in G15 associates entries in D to strings when it first constructs D, S associates
entries in D to strings as it answers each new query; this however has no effect on the game.
Finally, in game G15, after each query the simulator outputs either ⊥ or Aj = F(s, pj) which
is sent to the adversary. In game G16 the simulator outputs a flag fj = ⊥ exactly when the
G15 simulator outputs ⊥. By definition of the ideal game, the game sends ⊥ to the adversary
whenever fj = ⊥ and sends F(s, pj) otherwise. Thus, both simulators produce identical
views.
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