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Abstract

The combination of software-as-a-service and the increasing use of mobile devices gives
rise to a considerable difference in computational power between servers and clients. Thus,
there is a desire for clients to outsource the evaluation of complex functions to an external
server. Servers providing such a service may be rewarded per computation, and as such
have an incentive to cheat by returning garbage rather than devoting resources and time to
compute a valid result.

In this work, we introduce the notion of Revocable Publicly Verifiable Computation
(RPVC), where a cheating server is revoked and may not perform future computations (thus
incurring a financial penalty). We introduce a Key Distribution Center (KDC) to efficiently
handle the generation and distribution of the keys required to support RPVC. The KDC is
an authority over entities in the system and enables revocation. We also introduce a notion
of blind verification such that results are verifiable (and hence servers can be rewarded or
punished) without learning the value. We present a rigorous definitional framework, define
a number of new security models and present a construction of such a scheme built upon
Key-Policy Attribute-based Encryption.

1 Introduction

It is increasingly common for mobile devices to be used as general computing devices. There is
also an increasing trend towards cloud computing and enormous volumes of data (“big data”)
which mean that computations may require considerable computing resources. In short, there
is, increasingly, a discrepancy between the computing resources of end-user devices and the re-
sources required to perform complex computations on large datasets. This discrepancy, coupled
with the increasing use of software-as-a-service, means there is a requirement for a client device
to be able to delegate a computation to a server.

Consider, for example, a company that operates a “bring your own device” policy, enabling
employees to use personal smartphones and tablets for work. Due to resource limitations, it
may not be possible for these devices to perform complex computations locally. Instead, a
computation is outsourced over some network to a more powerful server (possibly outside the
company, offering software-as-a-service, and hence untrusted) and the result of the computation
is returned to the client device. Another example arises in the context of battlefield communi-
cations where each member of a squadron of soldiers is deployed with a reasonably light-weight
computing device. The soldiers gather data from their surroundings and send it to regional
servers for analysis before receiving tactical commands based on results. Those servers may not
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be fully trusted e.g. if the soldiers are part of a coalition network. Thus a soldier must have
an assurance that the command has been computed correctly. A final example could consider
sensor networks where lightweight sensors transmit readings to a more powerful base station to
compute statistics that can be verified by an experimenter.

In simple terms, given a function F to be computed by a server S, the client sends input
x to S, who should return F (x) to the client. However, there may be an incentive for the
server (or an imposter) to cheat and return an invalid result y 6= F (x) to the client. The server
may wish to convince a client of an incorrect result, or (particularly if servers are rewarded per
computation performed) the server may be too busy or may not wish to devote the time or
resources to perform the computation. Thus, the client wishes to have some assurance that the
result y returned by the server is, in fact, F (x).

This problem, known as Verifiable Outsourced Computation (VC), has attracted a lot of
attention in the community recently. In practical scenarios, it may well be desirable that cheat-
ing servers are prevented from performing future computations, as they are deemed completely
untrustworthy. Thus, future clients need not waste resources delegating to a ‘bad’ server, and
servers are disincentivised from cheating in the first place as they will incur a significant (fi-
nancial) penalty from not receiving future work. Many current schemes have an expensive
pre-processing stage run by the client. However, it is likely that many different clients will be
interested in outsourcing computations, and also that the functions of interest to each of the
clients will substantially overlap, as in the “bring your own device” scenario discussed above.
It is also conceivable that the number of computation servers offering to perform such compu-
tations will be relatively low (limited to a reasonably small number of trusted companies with
plentiful resources). Thus, it is easy to envisage a situation in which many computationally lim-
ited clients wish to outsource the computation of the same (potentially large) set of functions
to a set of servers that are not fully trusted. Current VC schemes do not support this kind of
scenario particularly well.

Our main contribution, then, is to introduce the new notion of Revocable Publicly Verifiable
Computation (RPVC). We also propose the introduction of a Key Distribution Centre (KDC)
to perform the computationally intensive parts of VC and manage keys for all clients, and also
simplify the way in which the computation of multiple functions is managed. We enable the
revocation of misbehaving servers (those detected as cheating) such that they cannot perform
computations of F until recertified by the KDC, as well as “blind verification”, a form of
output privacy, such that the verifier learns whether the result is valid but not the value of
the output. Thus the verifier may reward or punish servers appropriately without learning
function outputs. We give a rigorous definitional framework for RPVC, that we believe more
accurately corresponds to real environments than previously considered in the literature. This
new framework both removes redundancy and facilitates additional functionality, leading to
several new security notions.

In the next section, we briefly review related work. In Section 3, we define our framework
and the relevant security models. In Section 4, we provide an overview, technical details and a
concrete instantiation of our framework using Attribute-based Encryption as well as full security
proofs. The paper will finish in section 5 with a conclusion. The paper is self-contained: more
details on the background can be found in the Appendix.

2 Verifiable Computation Schemes and Related Work

The concept of non-interactive verifiable computation was introduced by Gennaro et al. [7] and
may be seen as a protocol between two polynomial-time parties: a client, C, and a server, S. A
successful run of the protocol results in the provably correct computation of F (x) by the server
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Figure 1: The operation of verifiable computation schemes

for an input x supplied by the client. More specifically, a VC scheme comprises the following
steps [7]:

1. C computes evaluation information EKF that is given to S to enable it to compute F
(pre-processing)

2. C sends the encoded input σx to S (input preparation)
3. S computes y = F (x) using EKF and σx and returns an encoding of the output σy to C

(output computation)
4. C checks whether σy encodes F (x) (verification)
The operation of a VC scheme is illustrated in Figure 1a. Step 1 is performed once; steps 2–4

may be performed many times. Step 1 may be computationally expensive but the remaining
operations should be efficient for the client. In other words the cost of the setup phase (to the
client) is amortized over multiple computations of F . A VC scheme comprises four algorithms
– KeyGen, ProbGen, Compute and Verify – corresponding to the four steps described above.

Parno et al. [14] introduced Publicly Verifiable Computation (PVC). The operation of a
Publicly Verifiable Outsourced Computation scheme is illustrated in Figure 1b. In this setting,
a single client C1 computes EKF , as well as publishing information PKF that enables other
clients to encode inputs, meaning that only one client has to run the expensive pre-processing
stage. Each time a client submits an input x to the server, it may publish V KF,x, which enables
any other client to verify that the output is correct. It uses the same four algorithms as VC
but KeyGen and ProbGen are now required to output public values that other clients may use to
encode inputs and verify outputs. Parno et al. gave an instantiation of PVC using Key-Policy
Attribute-based Encryption (KP-ABE) for a class of Boolean functions. Further details are
available in Appendix A.

2.1 Other Related Work

Gennaro et al. [7] formalized the problem of non-interactive verifiable computation in which
there is only one round of interaction between the client and the server each time a computation
is performed and introduced a construction based on Yao’s Garbled Circuits [15] which provides
a “one-time” Verifiable Outsourced Computation allowing a client to outsource the evaluation
of a function on a single input. However it is insecure if the circuit is reused on a different input
and thus this cost cannot be amortized, and the cost of generating a new garbled circuit is
approximately equal to the cost of evaluating the function itself. To overcome this, the authors
additionally use a fully homomorphic encryption scheme [8] to re-randomize the garbled circuit
for multiple executions on different inputs. In independent and concurrent work, Carter et al. [5]
introduce a third party to generate garbled circuits for such schemes but require this entity to be
online throughout the computations and models the system as a secure multi-party computation
between the client, server and third-party. We do not believe this solution is practical in all
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situations since it is conceivable that a trusted entity is not always available to take part in
computations, for example in the battlefield scenario discussed in Section 1. Here, the KDC
could be physically located within a high security base or governmental building and field agents
may receive relevant keys before being deployed, but actual computations are performed using
more local available servers and communications links. It may not be feasible, or desirable, for
a remote agent to contact the headquarters and maintain a communications link with them for
the duration of the computation. In addition, the KDC could easily become a bottleneck in
the system and limit the number of computations that can take place at any one time, since we
assume there are many servers but only a single (or small number of) trusted third parties.

Some works have also considered the multi-client case in which the input data to be sent to
the server is shared between multiple clients, and notions such as input privacy become more
important. Choi et al. [6] extended the garbled circuit approach [7] using a proxy-oblivious
transfer primitive to achieve input privacy in a non-interactive scheme. Recent work of Gold-
wasser et al. [9] extended the construction of Parno et al. [14] to allow multiple clients to provide
input to a functional encryption algorithm.

2.2 Notation

In the remainder of this paper we use the following notation. If A is a probabilistic algorithm we
write y ← A(·) for the action of running A on given inputs and assigning the result to an output
y. We denote the empty string by ε and use PPT to denote probabilistic polynomial-time. We
say that negl(·) is a negligible function on its input. We denote by F the family of Boolean
functions closed under complement – that is, if F belongs to F then F , where F (x) = F (x)⊕1,
also belongs to F . By M we denote a message space and the notation AO is used to denote
the adversary A being provided with oracle access. Finally, [n] denotes the set {1, . . . , n}.

3 Revocable Publicly Verifiable Computation

We now describe our new notion of PVC, which we call Revocable Publicly Verifiable Compu-
tation (RPVC). We assume there is a Key Distribution Center (KDC) and many clients which
make use of multiple untrusted or semi-trusted servers to perform complex computations. Dif-
ferent servers may compute the same function F and servers are “certified” to compute F by the
KDC. As we briefly explained in the introduction, there appear to be good reasons for adopting
an architecture of this nature and several scenarios in which such an architecture would be ap-
propriate. The increasing popularity of relatively lightweight mobile computing devices in the
workplace means that complex computations may best be performed by more powerful servers
run by the organization. One can also imagine clients delegating computation to servers in the
cloud and would wish to have some guarantee that those servers are certified to perform certain
functions. It is essential that we can verify the results of the computation. If cloud services
are competing on price to provide “computation-as-a-service” then it is important that a server
cannot obtain an unfair advantage by simply not bothering to compute F (x) and returning
garbage instead. It is also important that a server who is not certified cannot return a result
without being detected.

3.1 Key Distribution Center

Existing frameworks assume that a client or clients run the expensive phases of a VC scheme and
that a single server performs the outsourced computation. We believe that this is undesirable
for a number of reasons, irrespective of whether the client is sufficiently powerful to perform

4



the required operations. First, we may wish, in real-world system architectures, to outsource
the setup phase to a trusted third party. In this setting, the third party would operate in a way
rather similar to a certificate authority, providing a trust service to facilitate other operations
of an organization (in this case outsourced computation, rather than authentication). Second,
we may wish, in other real-world system architectures, to limit the functions that some clients
can outsource. In other words, we wish to enforce some kind of access control policy. In this
setting, an internal trusted entity will operate both as a facilitator of outsourced computation
and as the policy enforcement point. (We hope to examine the integration of RPVC and access
control in future work.)

Notice that the KDC could in fact be a distinguished client device (which has the resources to
perform more expensive setup operations), but in this work we consider it to be a separate entity
to illustrate separation of duty between the clients that request computations, and the KDC
that is an authority on the system and users. Additionally, the KDC could be authoritative over
many sets of clients (e.g. at an organisational level as opposed to a work group level), and we
minimise its workload to key generation and revocation only. It may be tempting to suggest that
the KDC, as a trusted entity, performs all computations itself. However we believe that this is
not a practical solution in many real world scenarios, e.g. the KDC could be an authority within
the organisation responsible for user authorisation that wishes to enable workers to securely use
cloud-based software-as-a-service. As an entity within organisation boundaries, performing all
computations would negate the benefits gained from outsourcing computations to externally
available servers.

We examine the possible security concerns arising from RPVC in Sect. 3.5.
The basic idea of our scheme is to have the KDC perform the expensive setup operation.

The KDC provides each server with a distinct key to compute F . A client may request the
computation of F (x) from any server that is certified to compute F . As mentioned in the
introduction, in this paper we focus on two example system architectures, which we call the
Standard Model and the Manager Model.

3.2 Standard Model

The standard model is a natural extension of the PVC architecture with the addition of a KDC.
The entities comprise a set of clients, a set of servers and a KDC. The KDC initialises the
system and generates keys to enable verifiable computation. Keys to delegate computations are
published for the clients, whilst keys to evaluate specific functions are given to individual servers.
Clients submit computation requests, for a given input, to a particular server and publish
some verification information. The server receives the encoded input values and performs the
computation to generate a result. Any party can verify the correctness of the server’s output. If
the output is incorrect, the verifier may report the server to the the KDC for revocation, which
will prevent the server from performing any further computations of this function.

Note that the expensive KeyGen operation is now run by the more capable KDC, and many
servers are able to use the generated keys to evaluate the same function, whereas previously
each client would have run KeyGen to set up a system with its choice of server.

Figure 2 gives a table illustrating which entities are responsible for running each algorithm
in normal verifiable outsourced computation (VC), publicly verifiable outsourced computation
(PVC), the standard model of PVC detailed in this section, and finally PVC in the Manager
model which we will discuss in the next section. The figure also includes a illustration of how
the entities interact in the standard model.
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Algorithm
Run by

VC PVC RPVC Standard RPVC Manager

KeyGen C1 C1 KDC KDC
ProbGen C1 C1, C2, . . . C1, C2, . . . C1, C2, . . .
Compute S S S1, S2, . . . S1, S2, . . .
Verify C1 C1, C2, . . . C1, C2, . . . –
Blind Verify – – – M
Retrieve Output – – – C1, C2, . . .

KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σx1 σy1

σx2 σy2

σx3

σy3

V KF,x1

V KF,x2

V KG,x3

Revoke PKF , PKG

Verify

Verify

Figure 2: The operation of RPVC in the Standard Model

3.3 Manager Model

The manager model, in contrast, employs an additional Manager entity who “owns” a pool of
computation servers. Clients submit jobs to the manager, who will select a server from the
pool based on workload scheduling, available resources or as a result of some bidding process
if servers are to be rewarded per computation. A plausible scenario is that servers enlist with
a manager to “sell” the use of spare resources, whilst clients subscribe to utilise these through
the manager. Results are returned to the manager who should be able to verify the server’s
work. The manager forwards correct results to the client whilst a misbehaving server may be
reported to the KDC for revocation, and the job assigned to another server. Due to public
verifiability, any party with access to the output and the verification token can also verify the
result. However, in many situations we may not desire external entities to access the result, yet
there remains legitimate reasons for the manager to perform verification. Thus we introduce
“blind verification” such that the manager (or other entity) may verify the validity of the
computation without learning the output, but the delegating client holds an extra piece of
information that enables the output to be retrieved.

The interaction between entities in this model is illustrated in Figure 3. The manager and
computational servers are shown within a dashed region to illustrate the boundaries of internal
and external entities – that is, the entities not within the dashed region could all be within an
organisation that wishes to utilise the external resources provided by the manager to outsource
computational work. Notice that the manager performs a blind verification operation (denoted
BVerify) but only entities within the organisation may run the output retrieval algorithm (de-
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Figure 3: The operation of RPVC in the Manager model

noted here as Rout) to learn the actual result of the computation.

3.4 Formal Definition

We now present a more formal definition of the algorithms involved in a RPVC scheme.

Definition 1. A Revocable Publicly Verifiable Outsourced Computation Scheme (RPVC) com-
prises the following algorithms:

• Setup(1λ)→ (PP,MK): Run by the KDC to establish public parameters PP and a master
secret key MK.
• FnInit(PP,MK, F ) → (PKF , LF ): Run by the KDC to generate a public delegation key,
PKF , for a function F as well as a list LF of available servers for evaluating F , which is
initially empty.
• Register(PP,MK, S)→ SKS : Run by the KDC to generate a personalised key SKS for a

computation server S.
• Certify(PP,MK, F, LF , S) → (EKF,S , LF ): Run by the KDC to generate a certificate in

the form of an evaluation key EKF,S for a function F and server S. S is added to the
list, LF , of available servers for evaluating F .
• ProbGen(x, PKF ) → (σx, V KF,x, RKF,x): The ProbGen algorithm is run by a client to

delegate the computation of F (x) to a server. The output value RKF,x is used to enable
output retrieval after the blind verification step.
• Compute(σx, EKF,S , SKS) → σy: Run by a server S in possession of an evaluation key
EKF,S , SKS and an encoded input σx of x to evaluate F (x) and output an encoding, σy,
of the result, which includes an identifier of S.
• Verify(PP, σy, V KF,x, RKF,x, LF )→ (ỹ, τσy): Verification consists of two steps.

– BlindVerify(PP, σy, V KF,x, LF ) → (µ, τσy): Run by any verifying party party (stan-
dard model), or run by the manager (manager model), in possession of V KF,x and
encoded output, σy. This outputs a token τσy = (accept, S) if the output is valid,
or τσy = (reject, S) if S misbehaved. It also outputs µ which is an encoding of the
actual output value.

– RetrieveOutput(µ, τσy , V KF,x, RKF,x)→ ỹ: Run by a verifier in possession of RKF,x
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to retrieve the actual result ỹ which is either F (x) or ⊥1.

• Revoke(MK, τσy , F, LF ) → ({EKF,S′}, LF ) or ⊥: Run by the KDC if a misbehaving
server is reported i.e. that Verify returned τσy = (reject, S) (if τσy = (accept, S) then this
algorithm should output ⊥). It revokes the evaluation key EKF,S of the server S thereby
preventing any further evaluations of F . This is achieved by removing S from LF (the
list of servers for F ) and issuing updated evaluation keys EKF,S′ to all servers S′ 6= S.

We say that a RPVC scheme is correct if the verification algorithm almost certainly outputs
accept when run on a valid verification key and an encoded output honestly produced by a
computation server given a validly generated encoded input and evaluation key. That is, if all
algorithms are run honestly then the verifying party should almost certainly accept the returned
result. A more formal definition follows:

Definition 2 (Correctness). A Publicly Verifiable Computation Scheme with a Key Distribution
Center (RPVC) is correct for a family of functions F if for all functions F ∈ F and inputs x,
where negl(·) is a negligible function of its input:

Pr[Setup(1λ)→ (PP,MK),FnInit(PP,MK, F )→ (PKF , LF),

Register(PP,MK, S)→ SKS ,Certify(PP,MK, F, LF, S)→ (EKF,S, LF),

ProbGen(x, PKF )→ (σx, V KF,x, RKF,x),

Verify(PP,Compute(σx, EKF,S , SKS), V KF,x, RKF,x, LF)→ (F (x), (accept, S))]

= 1− negl(λ).

3.5 Security Models

We now introduce several security models capturing different requirements of a RPVC scheme.
We will formalise these notions of security as a series of cryptographic games run by a challenger.
The adversary against a particular function F is modelled as a probabilistic polynomial time
algorithm A run by a challengerduring the game with input parameters chosen to represent the
knowledge of a real attacker as well the security parameter λ. The adversary algorithm may
maintain state and be multi-stage (i.e. be called several times by the challenger, with different
input parameters) and we overload the notation by calling each of these adversary algorithms A.
This represents the adversary performing tasks at different points during the execution of the
system, and we assume that the adversary may maintain a state storing any knowledge it gains
during each phase (we do not provide the state as an input or output of the adversary for ease
of notation). The notation AO is used to denote the adversary A being provided with oracle
access to the following functions: FnInit(PP,MK, ·), Register(PP,MK, ·), Certify(PP,MK, ·, ·, ·)
and Revoke(MK, ·, ·, ·)2. This means that the adversary can query (multiple times) the challenger
for any of these functions with the adversary’s choice of values for parameters represented with
a dot above. This models information the adversary could learn from observing a functioning
system or by acting like a legitimate client (or corrupting one) to request some functionality.

Due to the use of a revocable KP-ABE scheme, we require that inputs have a notion of
time attached to them which is changed every time a server is revoked. Alternatively, the time
period could be regularly updated but the Revoke algorithm must be run at each interval even
if the revocation list has not changed. As such we identify the input x in the formal definitions
with the input (t, x) in these games where t is drawn from some time source τ (e.g. a counter
maintained in the public parameters or a networked clock).

1Note that if a server is not given RKF,x then it too cannot learn the output and we gain output privacy.
2We do not need to provide a Verify oracle since this is a publicly verifiable scheme and A is given verification

keys (thus we also avoid the rejection problem).
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Game 1 ExpPubVerif
A

[
RPVC, F, 1λ

]
:

1: {t?i , x?i }i∈[n] ← A(1λ);
2: (PP,MK)← Setup(1λ);

3: (PKF , LF )← FnInit(PP,MK, F );

4: SKA ← Register(PP,MK,A);
5: LF ← A(PKF ,PP, LF , SKA);
6: (EKF,A, LF )← Certify(PP,MK, F, LF ,A);
7: for i = 1 to n do

8: (σx?i
, V KF,x?i

, RKF,x?i
)← ProbGen({t?i , x?i }, PKF );

9: σy? ← AO(PKF ,PP, LF , {σx?i , V KF,x?i }, EKF,A, SKA);
10: if ∃i ∈ [n] s.t. (((ỹ, τσy? )← Verify(PP, σy? , V KF,x?i

, RKF,x?i
, LF )) and ((ỹ, τσy? ) 6= (⊥, (reject,A))) and (ỹ 6= F (x?i )))

then

11: return 1

12: else

13: return 0

The introduction of the KDC and subsequent changes in operation give rise to new security
concerns:
• Since two (or more) servers may be able to compute the same function, it is important

to ensure that servers cannot collude in order to convince a client to accept an incorrect
output as correct.

• We must ensure that neither an uncertified nor a de-certified server can convince a client
to accept an output.

• We must ensure that a malicious server S cannot convince a client to believe an honest
server has produced an incorrect output.

• We must ensure that, in the manager model, a malicious manager cannot convince a client
of an incorrect result.

• We must ensure, in the manager model, that the manager performing the BlindVerify
algorithm learns nothing of the actual output value other than its correctness.

3.5.1 Public Verifiability

In Game 1 we wish to formalize that multiple servers should not be able to collude to gain an
advantage in convincing any verifying party of an incorrect output (i.e. that Verify returns accept
on a σy for y 6= F (x)). The game begins (line 1) with the adversary selecting a (polynomially
sized) set of n input values that he would like to see the problem encoding of. The challenger
runs Setup, FnInit and Register to initialise the system and create a public delegation key for
a function F given as a parameter to the game (lines 2 to 4). The adversary is given the
delegation key, his private key and the public parameters (i.e. all values known to a server in
the real setting), and must output a list of servers that should be certified to compute F (line
6)3.

The challenger then runs ProbGen for each challenge input and gives the encoded inputs to
the adversary. The adversary also has oracle access to the FnInit, Register, Certify and Revoke
algorithms to model the corruption of other servers (line 10), and aims to create an encoded
output that is accepted by the challenger yet is not valid for any challenge input.

3This corresponds to the revocation list in the model of [1] except that we consider a certification list of servers
that should receive the update keys rather than a revocation list of servers that should not receive these keys.
The requirement to output this list here is due to the selective IND-sHRSS game that we base the construction
upon. Since this is used in a black-box manner however, a stronger primitive may allow this game to be improved
accordingly.
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Game 2 ExpRevocation
A

[
RPVC, F, 1λ

]
:

1: {t?i , x?i }i∈[n] ← A(1λ);
2: (PP,MK)← Setup(1λ);

3: (PKF , LF )← FnInit(PP,MK, F );

4: SKA ← Register(PP,MK,A);
5: LF ← A(PKF ,PP, LF , SKA);
6: (EKF,A, LF )← Certify(PP,MK, F, LF ,A);
7: τ? = (reject,A)← AO(PKF ,PP, LF , SKA);
8: ({EKF,S}, LF )← Revoke(MK, τ?, F, LF );

9: for i = 1 to n do

10: (σx?i
, V KF,x?i

, RKF,x?i
)← ProbGen({t?i , x?i }, PKF );

11: σy? ← AO(PKF ,PP, LF , {σx?i , V KF,x?i }, {EKF,S}, SKA);
12: if ∃i ∈ [n] s.t. (((ỹ, τσy? )← Verify(PP, σy? , V KF,x?i

, RKF,x?i
, LF )) and ((ỹ, τσy? ) 6= (⊥, (reject,A)))) then

13: return 1

14: else

15: return 0

Definition 3. The advantage of an adversary A running in probabilistic polynomial time
(PPT), making a polynomial number of queries q in the Public Verifiability Experiment is de-
fined as:

AdvPubVerifA (RPVC, F, 1λ, q) = Pr[ExpPubVerif
A [RPVC, F, 1λ] = 1].

A RPVC is secure in the sense of public verifiability for a function F , if for all PPT adversaries
A, AdvPubVerifA (RPVC, F , 1λ,q) ≤ negl(λ).

Note that this game is a generalisation of the Public Verifiability game of Parno et al. [14]
since they consider the case where the adversary is limited to learning only one evaluation key
and one encoded input. The motivation for this updated game is that there is a now a trusted
party issuing keys to multiple servers who may collude, as opposed to the traditional model
in which the system comprises a single client choosing a single server to whom to outsource a
computation. Thus we allow the adversary to collect multiple inputs from clients (represented
by choosing the set of target inputs) and to learn multiple evaluation keys for different functions
and associated with different servers (since evaluation keys are server-specific in our setting to
enable per-server revocation).

3.5.2 Revocation

In Game 2 we require that if a server is detected as misbehaving (i.e. a result for F (x) causes the
Verify algorithm to output (⊥, (reject, S))) then any subsequent evaluations of F by S should be
rejected. The motivation here is that even though we have outsourced the costly computation
and pre-processing stages to the server and KDC respectively, there is still a cost involved
in delegating and verifying a computation. If a server is known not to be trustworthy then
we remove any incentive for it to attempt to provide an outsourcing service for this function
(since it knows the result will not be accepted). In addition, we may like to punish and further
disincentivize malicious servers by removing their ability to perform work (and earn rewards)
for a period of time. Finally, from a privacy perspective, we may not wish to supply input
data to a server that is known not to be trustworthy. In this game the adversary chooses the
target input values as before (line 1) but now the evaluation key EKF,A that it had access to
when selecting x is revoked (line 8) before the computation is run. The remainder of the game
proceeds as in the Public Verifiability game but we require that the adversary is no longer able
to provide any result that verifies correctly (even F (x)).
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Game 3 ExpVindictiveS
A

[
RPVC, F, 1λ

]
:

1: {t?i , x?i }i∈[n] ← A(1λ);
2: (PP,MK)← Setup(1λ);

3: (PKF , LF )← FnInit(PP,MK, F );

4: SKA ← Register(PP,MK,A);
5: LF ← A(PKF ,PP, LF , SKA);
6: (EKF,A, LF )← Certify(PP,MK, F, LF ,A);
7: for i = 1 to n do

8: (σx?i
, V KF,x?i

, RKF,x?i
)← ProbGen({t?i , x?i }, PKF );

9: S̃ ← AO(PKF ,PP, LF , {(σx?i , V KF,x?i )}, EKF,A, SKA) subject to Condition 1;

10: σy? ← AO,Compute(PKF ,PP, LF , {(σx?i , V KF,x?i )}, EKF,A, SKA) subject to Condition 2;

11: if ∃i ∈ [n] s.t. ((ỹ, τσy? ) ← Verify(PP, σy? , V KF,x?i
, RKF,x?i

, LF )) and ((ỹ, τσy? ) = (⊥, (reject, S̃))) and (⊥8
Revoke(MK, τσy? , F, LF ))) then

12: return 1

13: else

14: return 0

Definition 4. The advantage of a PPT adversary A making a polynomial number of queries
q in the Revocation Experiment is defined as:

AdvRevocationA (RPVC, F, 1λ, q) = Pr[ExpRevocation
A [RPVC, F, 1λ] = 1].

A RPVC is secure against revoked servers for a function F , if for all PPT adversaries A,
AdvRevocationA (RPVC, F , 1λ,q) ≤ negl(λ).

3.5.3 Vindictive Server

The motivation for this notion of security is the manager model where a pool of computational
servers is available to accept a ‘job’ but they are abstracted by the manager such that the client
does not know or care about the individual server identities. Now, since an invalid result can
lead to revocation, this leads to a new threat model (particularly in systems where servers gain
rewards per computation performed) in which a malicious server may return incorrect results
but attribute them to an alternate server ID such that the (honest) server is revoked and the
pool of available servers for future computations is reduced in size, leading to a likely increase
in reward for the malicious server. In Game 3 the adversary must (on lines 9 and 10) output an
invalid result σy? and the ID of a server S̃ that it aims to cause to be revoked. It is provided with
the standard oracle access on line 9 and on line 10 additionally with oracle access to Compute
such that he can see outputs returned by honest servers (i.e. modelling the adversary submitting
computation requests to the system himself), subject to the following constraints:

1. No query was made of the form ORegister(PP,MK, S̃);
2. As above but also no query was made of the form OCompute(σx?i , EKF,S̃ , SKS̃);

The adversary wins if the KDC believes that S̃ returned ỹ and revokes S̃.

Definition 5. The advantage of a PPT adversary A making a polynomial number of queries
q in the Vindictive Server Experiment is defined as:

AdvVindictiveS
A (RPVC, F, 1λ, q) = Pr[ExpVindictiveS

A [RPVC, F, 1λ] = 1].

A RPVC is secure against vindictive servers for a function F , if for all PPT adversaries A,
AdvVindictiveS

A (RPVC, F , 1λ,q) ≤ negl(λ).
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3.5.4 Vindictive Manager

In Game 4 we capture security against vindictive managers attempting to provide the client
with an incorrect answer. This is a natural extension of the Public Verifiability notion (Game
1) to the manager model. The adversary, on line 5, chooses a challenge input value x, and
the server computes an encoded output of F (x). The adversary is then provided the encoded
output and verification key and must output an encoded output µ and an acceptance token.
The challenger runs RetrieveOutput on µ to get an output value ỹ, and the adversary wins if the
challenger accepts this output and ỹ 6= F (x). We remark that manager model instantiations
may vary depending on the level of trust given to the manager. A completely trusted manager
may simply return the result to a client, whilst a completely untrusted manager may have
to provide the full output from the server and the client performs the full Verify step as well
(in this case, security against vindictive managers will reduce to Public Verifiability since the
manager would need to forge a full encoded output that passes a full verification step). Here
we consider a middle ground where the manager is semi-trusted but the clients would still like
a final, efficient check.

Game 4 ExpV indictiveMA
[
RPVC, F, 1λ

]
:

1: {t?i , x?i }i∈[n] ← A(1λ);
2: (PP,MK)← Setup(1λ);
3: (PKF , LF )← FnInit(PP,MK, F );

4: SKS ← Register(PP,MK, S);
5: (EKF,S , LF )← Certify(PP,MK, F, LF , S);

6: for i = 1 to n do

7: (σx?i
, V KF,x?i

, RKF,x?i
)← ProbGen({t?i , x?i }, PKF );

8: σy?i
← Compute(σx?i

, EKF,S , SKS);

9: (µ, τσy )← AO,RetrieveOutput(PP, {σy?i }, {V KF,x?i }, PKF , LF );
10: if ∃i ∈ [n] s.t. (ỹ ← RetrieveOutput(µ, τσy , V KF,x?i

, RKF,x?i
)) and (ỹ 6= F (x?i )) and (ỹ 6=⊥) then

11: return 1
12: else

13: return 0

Definition 6. The advantage of a PPT adversary A making a polynomial number of queries
q in the Vindictive Manager Experiment is defined as:

AdvVindictiveM
A (RPVC, F, 1λ, q) = Pr[ExpVindictiveM

A [RPVC, F, 1λ] = 1].

A RPVC is secure against vindictive servers for a function F , if for all PPT adversaries A,
AdvVindictiveM

A (RPVC, F , 1λ,q) ≤ negl(λ).

3.5.5 Blind Verificaton

With Game 5, we aim to show that a verifier that does not know the value of b chosen in ProbGen
cannot learn the value of F (x) given the encoded output. The challenger chooses an input value,
x, at random from the domain of F and a time period, and uses these to generate an encoded
input. He runs Compute on this input and gives the encoded output and the verification key
to the adversary who must output a guess for the value of F (x). We require that A does not
make a query to the RetrieveOutput oracle for RKF,x as this would constitute a trivial win.

Note that in this game we do not provide the adversary with access to the encoded inputs.
In KP-ABE, the ciphertext reveals the set of attributes it was encrypted under (and hence
the input values) and the adversary may simply compute F on this input to learn the output
independently of the encoded output computed by the server. In practice, it may be desirable to
give access to the ciphertexts such that a manager may distribute the input to a chosen server.
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In this case, one should replace the KP-ABE scheme with a predicate encryption scheme which
provides input privacy and then our blind verification technique will apply straightforwardly
even with access to the encoded input. Finding an indirectly revocable predicate encryption
scheme will be the subject of future work. Alternatively, if one considers that client devices and
the KDC are within organisational boundaries then one could publish the attribute keys (in
PP) only to these entities, and therefore the external servers and manager will not understand
the semantic meaning of attribute sets given as input.

Game 5 ExpBV erifA
[
RPVC, F, 1λ

]
:

1: (PP,MK)← Setup(1λ);
2: (PKF , LF )← FnInit(PP,MK, F );
3: SKS ← Register(PP,MK, S);

4: (EKF,S , LF )← Certify(PP,MK, F, LF , S);

5: t
$← τ ;

6: x
$← Dom(F );

7: (σx, V KF,x, RKF,x)← ProbGen(t, x, PKF );
8: σy ← Compute(σx, EKF,S , SKS);
9: ŷ ← AO,RetrieveOutput(σy , V KF,x,PP, PKF , LF );

10: if (ŷ = F (x)) then
11: return 1

12: else

13: return 0

Definition 7. The advantage of a PPT adversary A making a polynomial number of queries
q in the Blind Verification Experiment is defined as:

AdvBVerif
A (RPVC, F, 1λ, q) = Pr[ExpBVerif

A [RPVC, F, 1λ] = 1].

A RPVC is secure against vindictive servers for a function F , if for all PPT adversaries A,
AdvBVerif

A (RPVC, F , 1λ,q) ≤ negl(λ).

4 Construction

4.1 Introduction

We now provide an instantiation of a RPVC scheme. Our construction is based on that used
by Parno et al. [14] (summarised in App. A) which uses Key-Policy Attribute-based Encryption
(KP-ABE) in a black-box manner to outsource the computation of a Boolean function. Follow-
ing Parno et al. we restrict our attention to Boolean functions, and in particular the complexity
class NC1 which includes all circuits of depth O(log n). Thus functions we can outsource can
be built from common operations such as AND, OR, NOT, equality and comparison operators,
arithmetic operators and regular expressions. Notice that to achieve the outsourced evaluation
of functions with n bit outputs, it is possible to evaluate n different functions, each of which
applies a mask to output the single bit in position i.

Notice also that different function families will require different constructions from that
presented here for Boolean functions. As a trivial example, verifiable outsourced evaluation of
the identity function may only require the server to sign the input. On the other hand, despite
it seemingly being a natural choice for outsourcing, it is not clear how a VC scheme for NP-
complete problems could be instantiated. A solution for such problems is by definition difficult
to find so should be outsourced, whilst a candidate solution can be verified efficiently. However,
a malicious server could simply return that a solution cannot be found for the given problem
instance, and the restricted client could not verify the correctness of this statement.
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Recall that if ⊥ is returned by the server then the verifier is unable to determine whether
F (x) = 0 or whether the server misbehaved. To avoid this issue, we follow Parno et al. and
restrict the family of functions F we can evaluate to be the set of Boolean functions closed
under complement. That is, if F belongs to F then F , where F (x) = F (x) ⊕ 1, also belongs
to F . Then, the client encrypts two random messages m0 and m1. The server is required to
return the decryption of those ciphertexts. Thus, a well-formed response satisfies the following,
where RKF,x = b:

(db, d1−b) =

{
(mb,⊥), if F (x) = 1;

(⊥,m1−b), if F (x) = 0.
(1)

Hence, the client will be able to detect whether the server has misbehaved.

4.2 Technical Details

We assume the existence of a revocable KP-ABE scheme for a class of functions F that is
closed under complement. Such a scheme defines the algorithms ABE.Setup, ABE.KeyGen,
ABE.KeyUpdate, ABE.Encrypt and ABE.Decrypt. We also make use of a signature scheme with
algorithms Sig.KeyGen, Sig.Sign and Sig.Verify and a one-way function g. Let the following be
universes of attributes acceptable by the ABE scheme: Uattr form characteristic tuples for input
values to outsourced computations, as detailed in Sect. A; UID comprises attributes representing
entity identifiers; Utime comprises attributes representing time periods issued by the time source
τ . Finally, for notational convenience, let UF be a universe of attribute labels representing
functions, thus f ∈ UF represents the function F . Then F ∧ f denotes adding a conjunctive
clause requiring the presence of the label f to the expression of the function F , and (x ∪ f)
denotes adding the function attribute to the attribute set representing the input data x.

Then we construct a publicly verifiable computation scheme for the same class of functions
comprising the algorithms RPVC.Setup, RPVC.FnInit, RPVC.Register, RPVC.Certify, RPVC.ProbGen,
RPVC.Compute, RPVC.Verify and RPVC.Revoke.

Note that in the original scheme by Parno et al. [14] the required security property of
the underlying KP-ABE scheme was a one-key IND-CPA notion. This is a more relaxed
notion that considered in the vast majority of the ABE literature (where usually the adversary
is provided with a KeyGen oracle and the scheme must prevent collusion between holders of
different decryption keys). Parno et al. could use this property due to their restricted system
model where the client certifies for only a single function per set of public parameters (that is,
the client must set up a new ABE environment per function). In our setting with a trusted
third party however, we are interested in a more decentralised (and more efficient) environment
where the KDC can issue keys for multiple functions within a single system. Thus we require
the more standard, multi-key notion of security usually considered for ABE schemes.

On a similar note, we again mention that the security games presented in this paper are in
the selective ABE model and are written in a format that allows consistency with the IND-
sHRSS game for revocable KP-ABE [1]. However, since the ABE algorithms are used in a
black box manner, we believe that choosing a instantiation with stronger security properties
(for example, a fully secure ABE [12] scheme supporting indirect user revocation) should easily
allow for a correspondingly more secure VC construction than presented here.

Finally, we remark that whereas in the revocable ABE scheme of Attrapadung et al. [1] the
update keys were generated for the set of nodes in Cover(R) where R is the list of revoked
users (as discussed in Section A), in our definitions we have a list LF of certified servers for
a particular function. Thus LF is the inverse of R i.e. LF = Uid \ R. To construct the set
of nodes for which key update material should be generated, therefore, we can either compute
R by taking the complement as above, or by altering the ABE scheme to use the following
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algorithm instead. First mark all leaves in LF . Then, working from the leaves upwards in a
breadth-first manner, mark all nodes that have both children marked and subsequently unmark
the child nodes. For ease of notation, in the following algorithms we simply associate the roles
of R and LF and pass LF directly to the revocable KP-ABE algorithms instead of R, with the
assumption that one of the above transformations has been performed.

4.3 Construction

Informally, the scheme operates in the following way.
1. RPVC.Setup establishes public parameters and a master secret key by calling the ABE.Setup

algorithm twice. This algorithm also initializes a list of registered servers LReg and a time
source τ4.

2. RPVC.FnInit initializes a list of servers LF authorized to compute function F .
3. RPVC.Register creates a public-private key pair by calling the signature KeyGen algorithm.

This is run by the KDC (or the manager in the manager model) and updates LReg to
include S.

4. RPVC.Certify creates the key EKF,S that will be used by a server S to compute F by
calling the ABE.KeyGen and ABE.KeyUpdate algorithms twice – once with a “policy” for
F and once with the complement F . The algorithm also updates LF to include S.

5. RPVC.ProbGen creates a problem instance σx = (c0, c1) by encrypting two randomly
chosen messages, and a verification key V KF,x by applying a one-way function g (such
as a pre-image resistant hash function) to the messages. The ciphertexts and verification
tokens are ordered randomly according to RKF,x = b for a random bit b, such that the
positioning of an element does not imply whether it relates to F or for F .

6. RPVC.Compute is run by a server S and computes F (x). Given a problem instance σx =
(c0, c1) it returns (m0,⊥) if F (x) = 1 or (⊥,m1) if F (x) = 0, ordered according to b
chosen in RPVC.ProbGen, together with a digital signature computed over the output.

7. RPVC.Verify either accepts the output σy = (d0, d1) or rejects it. This algorithm verifies
the signature on the output and then confirms the output is correct by applying g and
comparing with V KF,x. In RPVC.BlindVerify the verifier can compare pairwise between
the components of σy and V KF,x to determine correctness but as they are unaware of
the value of RKF,x, they do not know the order of these elements and therefore do not
learn whether the correct output corresponds to F or F being satisfied i.e. if F (x) = 1
or 0 respectively. The verifier outputs an accept or reject token as well as the satisfying
(non-⊥) output value µ ∈ {db, d1−b} where RKF,x = b. Parno et al. [14] gave a one-line
remark that permuting the key pairs and ciphertexts being given out in the ProbGen stage
could allow for output privacy. We believe that doing so would require four decryptions
in the Compute stage to ensure the correct keys have been used (since an incorrect key
(associated with a different set of public parameters) but for a satisfying attribute set
will return an incorrect, random plaintext which is indistinguishable from a valid, random
message). Since our construction fixes the order of the key pairs, we do not have this issue
and only require two decryptions. In RPVC.RetrieveOutput a verifier that has knowledge
of RKF,x can check whether the output from BlindVerify matches m0 or m1.

8. RPVC.Revoke is run by the KDC and redistributes fresh keys to all non-revoked servers.
This algorithm updates LF and updates EKF,S using the results of two calls to the
ABE.KeyUpdate algorithm.

We require two distinct sets of system parameters in Step 1 for the security proof to work. In
Step 4 we have to run the ABE.KeyGen algorithm twice – once for F and once for F . However,

4τ could be a counter that is maintained in the public parameters or a networked clock.
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to prevent a trivial win in the IND-sHRSS game, the adversary is not allowed to query for a
key with a policy that is satisfied by the challenge input attributes. By definition, either F (x)
or F (x) will output 1 and hence one of these will not be able to be queried to the Challenger.
Thus we use the two separate parameters such that the non-satisfied function can be queried to
the Challenger and the adversary can use the other set of parameters to generate a key himself.

More formally, our scheme is defined by Algorithms 1–9.

Algorithm 1 RPVC.Setup
1: Let U = Uattr ∪ UID ∪ Utime ∪ UF
2: (MPK0

ABE,MSK0
ABE)← ABE.Setup(1λ,U)

3: (MPK1
ABE,MPK1

ABE)← ABE.Setup(1λ,U)
4: LReg = ε (i.e. an empty list is created)

5: Initialize τ

6: PP = (MPK0
ABE,MPK1

ABE, LReg, τ)

7: MK = (MSK0
ABE,MSK1

ABE)

Algorithm 2 RPVC.FnInit
1: Set PKF = PP

2: Set LF = ε (i.e. an empty list is created)

Algorithm 3 RPVC.Register
1: (SKSig, V KSig)← Sig.KeyGen(1λ)

2: SKS = SKSig

3: LReg = LReg ∪ (S, V KSig)

Algorithm 4 RPVC.Certify
1: t← τ

2: SK0
ABE ← ABE.KeyGen(S, F ∧ f,MSK0

ABE,MPK0
ABE)

3: SK1
ABE ← ABE.KeyGen(S, F ∧ f,MSK1

ABE,MPK1
ABE)

4: UK0
LF ,t

← ABE.KeyUpdate(LF, t,MSK0
ABE,MPK0

ABE)

5: UK1
LF ,t

← ABE.KeyUpdate(LF, t,MSK1
ABE,MPK1

ABE)

6: Output: EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LF ,t

, UK1
LF ,t

) and LF = LF ∪ S

Algorithm 5 RPVC.ProbGen
1: t← τ

2: (m0,m1)
$←M×M

3: b
$← {0, 1}

4: cb ← ABE.Encrypt(t, (x ∪ f),mb,MPK0
ABE)

5: c1−b ← ABE.Encrypt(t, (x ∪ f),m1−b,MPK1
ABE)

6: Output: σx = (cb, c1−b), V KF,x = (g(mb), g(m1−b), LReg) and RKF,x = b

Algorithm 6 RPVC.Compute
1: Input: EKF,S = (SK0

ABE, SK
1
ABE, UK

0
LF ,t

, UK1
LF ,t

) and σx = (cb, c1−b)

2: Parse σx as (c, c′)

3: d0 ← ABE.Decrypt(c, SK0
ABE,MPK0

ABE, UK
0
LF ,t

)

4: d1 ← ABE.Decrypt(c′, SK1
ABE,MPK1

ABE, UK
1
LF ,t

)

5: γ ← Sig.Sign((db, d1−b, S), SKS)

6: Output: σy = (db, d1−b, S, γ)
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Algorithm 7 RPVC.BlindVerify
1: Input: V KF,x = (g(mb), g(m1−b), LReg) and σy = (db, d1−b, S, γ)

2: if S ∈ LF and (S, V KSig) ∈ LReg then

3: if Sig.Verify((db, d1−b, S), γ, V KSig)→ accept then

4: if g(mb) = g(db) then

5: Output (µ = db, τσy = (accept, S))

6: else if g(m1−b) = g(d1−b) then

7: Output (µ = d1−b, τσy = (accept, S))

8: else

9: Output (µ =⊥, τσy = (reject, S))

10: Output (µ =⊥, τσy = (reject,⊥))

Algorithm 8 RPVC.RetrieveOutput
1: Input: V KF,x = (g(mb), g(m1−b), LReg), σy = (db, d1−b, S, γ), RKF,x = b, and (µ, τσy ) where µ ∈ {db, d1−b,⊥}
2: if τσy = (accept, S) and g(µ) = g(m0) then

3: Output ỹ = 1

4: else if τσy = (accept, S) and g(µ) = g(m1) then

5: Output ỹ = 0

6: else

7: Output ỹ =⊥

Algorithm 9 RPVC.Revoke
1: if τσy = (reject, S) then

2: LF = LF \ S
3: Refresh5 τ

4: t← τ

5: UK0
LF ,t

← ABE.KeyUpdate(LF, t,MSK0
ABE,MPK0

ABE)

6: UK1
LF ,t

← ABE.KeyUpdate(LF, t,MSK1
ABE,MPK1

ABE)

7: for all S′ ∈ LF, S
′ 6= S do

8: Parse EKF,S′ as (SK0
ABE, SK

1
ABE, UK

0
LF ,t−1, UK

1
LF ,t−1)

9: Update and send EKF,S′ = (SK0
ABE, SK

1
ABE, UK

0
LF ,t

, UK1
LF ,t

).

10: else

11: output ⊥

4.4 Proof of Security

We now give a theorem and proof that the construction presented above is secure against the
games presented in Section 3.5.

Theorem 1. Given a secure revocable KP-ABE scheme in the sense of indistinguishability
against selective-target with semi-static query attack ( IND-sHRSS) [1] for a class of functions
F closed under complement, a signature scheme secure against EUF-CMA and a one-way
function g, let VC be the verifiable computation scheme defined in Algorithms 1–9. Then VC is
secure against Public Verifiability, Revocation and Vindictive Servers.

Informally, the proof of Public Verifiability relies on the IND-CPA security of the underlying
revocable KP-ABE scheme and the one-wayness of the function g. Revocation relies on the IND-
sHRSS security of the revocable KP-ABE scheme. Finally, security against Vindictive Servers
relies on the EUF-CMA security of the signature scheme such that a vindictive server cannot
return an incorrect result with a forged signature claiming to be from an honest server (note
that chosen message attack is required since the vindictive client could act like a client and
submit computation requests to get a valid signature). We now present a more formal proof for
Theorem 1. The proofs partially follow in the spirit of [14]. In all the following proofs, for ease
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of notation, we denote the function F by f0 and the complement function F by f1. First we
prove the following Lemma.

Lemma 1. The RPVC construction defined by Algorithms 1–9 is secure in the sense of Public
Verifiability (Game 1) under the same assumptions as in Theorem 1.

Proof. Suppose AV C is an adversary with non-negligible advantage against the Public Veri-
fiability game (Game 1) when instantiated by Algorithms 1–9. We begin by arguing that if
the revocable ABE scheme is IND-sHRSS secure then AV C cannot distinguish between the
following two games:
• Game 0: The real Public Verifiability game.
• Game 1: The Public Verifiability game is modified such that in the challenge ProbGen

stage, rather than encrypting m0 and m1 to create challenge ciphertexts c0 and c1, the
challenger chooses a random message m2 6= m0,m1 and chooses r such that f r(x) = 0.6

The challenger then replaces cr with the encryption of m2.
If AV C succeeds in distinguishing between these two games with non-negligible probability δ
then we are able to construct an adversary AABE against the ABE security. AABE interacts
with the challenger C in the ABE security game and acts as the challenger for AV C in the
security game for Public Verifiability for a function F as follows.

1. (Initialise phase.) AV C declares a set of n challenge input sets with corresponding time
periods {t?i , x?i }i∈[n]. AABE chooses one of these n input attribute sets at random that he
will issue as his challenge input set to C for the ABE game. Denote this attribute set by
(t, x).

2. (Setup phase.) C runs ABE.Setup(1λ) → (MPK0
ABE,MSK0

ABE) and sends MPK0
ABE to

AABE .
3. AABE runs ABE.Setup(1λ) → (MPK1

ABE,MSK1
ABE). He creates an empty list LReg = ε

and initializes τ . He also creates the public parameters PP = (MPK0
ABE,MPK1

ABE, LReg, τ).
4. (FnInit phase.) AABE sets PKF = PP and creates an empty list LF = ε.
5. (Register phase.) AABE runs the signature key generation algorithm (SKSig, V KSig) ←

Sig.KeyGen(1λ) to register AV C . He sets SKAV C = SKSig and adds AV C to the registered
entities list LReg = LReg ∪ (AV C , V KSig).

6. (Query phase.) AABE sends (PKF , PP, LF , SKAV C ) to AV C who outputs an updated
list LF .

7. AABE forwards to C the list R̃ = LF received from AV C . Furthermore, draw a t← τ .
8. AABE certifiesAV C for the function F as follows. Choose r ← {0, 1} such that f r({t, x}) =

0. He makes a KeyGen request to C for (id,A) pair (AV C , f r) (where for simplicity we
assume some notational equivalence between access structures and functions).
C checks if (t, x) ∈ A, if so it checks whether id ∈ R̃ and if so returns ⊥. Otherwise C
runs SK(id,A) ← ABE.KeyGen(id,A∧ f,MSK0

ABE,MPK0
ABE) and returns this to AABE who

parses this as SKr
ABE.

AABE also makes a KeyUpdate oracle request to C for the (R, t) pair (LF , t). C re-
sponds by checking if t = t then if R̃ 6⊆ R return ⊥. Otherwise, C runs UKr

R,t ←
ABE.KeyUpdate(R, t,MSK0

ABE,MPK0
ABE) and returns this to AABE .

AABE then creates a key for f1−r by running

SK1−r
ABE ← ABE.KeyGen(AV C , f1−r ∧ f,MSK1

ABE,MPK1
ABE)

and an update key UK1−r
LF ,t
← ABE.KeyUpdate(LF , t,MSK1

ABE,MPK1
ABE).

AABE finally sets EKF,AV C = (SK0
ABE, SK

1
ABE, UK

0
LF ,t

, UK1
LF ,t

) and updates LF = LF ∪
AV C .

6Recall that f0(x) = F (x) and f1(x) = F (x) = ¬F (x)
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9. (Probgen stage.) Here AABE must run ProbGen for all challenge inputs issued by AV C in
the Initialise phase. Note that AABE chose one input (t, x) to be its challenge input for
C. Thus, for (t, x), AABE should make a challenge query to C but for all other inputs, he
can use the public parameters MPK0

ABE to create ciphertexts himself.

• For {t?i , x?i }i∈[n] \ (t, x): Choose mi
0,m

i
1

$←M×M and bi
$← {0, 1}. Compute

cibi = ABE.Encrypt(t?i , (x
?
i ∪ f),mi

bi ,MPK0
ABE)

and
ci1−bi = ABE.Encrypt(t?i , (x

?
i ∪ f),mi

1−bi ,MPK1
ABE)

Set σx?i = (ci
bi
, ci

1−bi), V KF,x?i
= (g(mi

bi
), g(mi

1−bi), LReg) and RKF,x?i
= bi.

• For (t, x): Choose m0,m1,m2
$←M×M×M. Send m0,m1 to C to receive back an

encryption c of one of these messages mb where b
$← {0, 1} under the attribute set

(t, x).
AABE also computes the encryption of m2 himself and sets

σx = (c,ABE.Encrypt(t, (x ∪ f),m2,MPK1
ABE))

He chooses a random s
$← {0, 1}, sets V KF,x = (g(ms), g(m2), LReg) and RKF,x

$←
{0, 1}.

10. (Query phase.) AV C is now given the values (PKF ,PP, LF , EKF,AV C , SKAV C ) as well as
all (σx, V KF,x) pairs generated in the previous step. It is also given oracle access to the
following functions:
• FnInit(PP,MK, ·): Let G be the function queried for. AABE sets PKG = PP and

creates an empty list LG = ε.
• Register(PP,MK, ·): Let S be the server which should be registered. AABE runs the

signature key generation algorithm (SKSig, V KSig)← Sig.KeyGen(1λ) to register S.
He sets SKS = SKSig and adds S to the registered entities list LReg = LReg ∪
(S, V KSig).
• Certify(PP,MK, ·, ·, ·): Let G be the queried function, LG be the list of certified

servers for this function, and S be the server identity. AABE certifies S for G as
stated in the Certify phase above.
• Revoke(MK, ·, ·, ·): Let τσy , G, LG be the queried parameters. If τ = (accept, S, σy)

then return ⊥. Otherwise set LG = LG \ S and t = t+ 1. Then query C for key up-
date UK0

LG,t
← ABE.KeyUpdate(LG, t,MSK0

ABE,MPK0
ABE). Compute UK1

LG,t
←

ABE.KeyUpdate(LG, t,MSK1
ABE,MPK1

ABE). Then, for all S′ ∈ LG, S
′ 6= S, parse

EKG,S′ as (SK0
ABE, SK

1
ABE, UK

0
LG,t−1, UK

1
LG,t−1) and update and send EKG,S′ =

(SK0
ABE, SK

1
ABE, UK

0
LG,t

, UK1
LG,t

).
• (Guess phase.) AV C outputs a result σy? .
• If g(σy?) = g(ms) then AABE outputs a guess b′ = s. Else, AABE guesses b′ = 1− s.

Note that if AABE correctly guesses a input attribute set (t, x) that AV C wins on (which
happens with probability at least 1

n), then if s = b then the distribution of the above coincides

19



with Game 0. Otherwise, if s = 1− b the distribution coincides with Game 1. Thus,

Pr(b′ = b) = Pr(s = b) Pr(b′ = b|s = b) + Pr(s 6= b) Pr(b′ = b|s 6= b)

=
1

2
Pr(g(σy?) = g(ms)|s = b) +

1

2
Pr(g(σy?) 6= g(ms)|s 6= b)

=
1

2
Exp0

AV C

[
RPVC, F, 1λ

]
+

1

2
(1− Pr(g(σy?) = g(ms)|s 6= b))

=
1

2
Exp0

AV C

[
RPVC, F, 1λ

]
+

1

2

(
1−Exp1

AV C

[
RPVC, F, 1λ

])
=

1

2

(
Exp0

AV C

[
RPVC, F, 1λ

]
−Exp1

AV C

[
RPVC, F, 1λ

]
+ 1
)

≥ 1

2
(δ + 1)

Hence,

AdvAABE ≥
1

n

∣∣∣∣Pr(b = b′)− 1

2

∣∣∣∣
≥ 1

n

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2n

Since n is polynomial in the security parameter and δ is non-negligible, δ
2n is also non-

neglible. If AV C has advantage δ at distinguishing these games then AABE can win the ABE
IND-sHRSS game with non-negligible probability. Thus since we assumed the ABE scheme to
be IND-sHRSS secure, we conclude that AV C cannot distinguish Game 0 from Game 1 with
non-negligible probability.

We now show that using AV C in Game 1, we can construct an adversary that inverts the
one-way function g – that is, given a challenge g(z) we construct an adversary that can recover z.
Specifically, we implicitly choose the challenge message mr = z and then set the verification key
for the successful forgery to be g(z). Since we choose r such that f1−r(x) = 1, an honest server
would return m1−r. A cheating server (i.e. AV C) will return σy? = mr such that g(mr) = g(z),
and hence our adversary can output z = σy? to invert the one-way function with non-negligible
probability.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function
is secure, then the VC scheme defined by Algorithms 1–9 is secure in the sense of Public
Verifiability.

Lemma 2. The RPVC scheme is secure against Revocation (Game 2) from ABE defined by
Algorithms 1–9 under the same assumptions as in Theorem 1.

Proof. The proof of this lemma is similar to the one of Lemma 1. Suppose AV C is an adversary
with non-negligible advantage against the Revocation game (Game 2) when instantiated by
Algorithms 1–9. We begin by arguing that if the revocable ABE scheme is IND-sHRSS secure
then AV C cannot distinguish between the following two games:
• Game 0: The real Revocation game.
• Game 1: The Revocation game is modified in the following way. In the challenge ProbGen

stage, instead of returning an encryption of m0 and an encryption of m1 to create challenge
ciphertexts c0 and c1, the challenger chooses a random message m2 6= m0,m1 and chooses
r such that f r(x) = 0. The challenger then replaces cr with the encryption of m2.
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In case AV C succeeds in distinguishing both games with non-negligible probability δ then we
are able to construct a second adversary AABE against the ABE security. We let AABE interact
with the challenger C in the ABE security game and let AABE act as the challenger for AV C in
the security game for Revocation for a function F as follows.

1. (Initialise phase.) First, AV C announces a set of n challenge input sets with corresponding
time periods {t?i , x?i }i∈[n]. Next, AABE chooses one of these n input attribute pairs at
random that he will use as his challenge input and issue it to C for the ABE game.
Denote this attribute set by (t, x).

2. (Setup phase.) C runs ABE.Setup(1λ) → (MPK0
ABE,MSK0

ABE) and sends MPK0
ABE

to AABE . Then AABE runs ABE.Setup(1λ) → (MPK1
ABE,MSK1

ABE) and creates an
empty list LReg = ε and initializes τ . AABE then publishes the public parameters PP =
(MPK0

ABE,MPK1
ABE, LReg, τ).

3. (FnInit phase.) AABE sets PKF = PP and creates an empty list LF = ε.
4. (Register phase.) The adversary AABE registers AV C by running the signature key gen-

eration algorithm (SKSig, V KSig) ← Sig.KeyGen(1λ). AABE sets SKAV C = SKSig and
addputs AV C to the list with registered entities LReg = LReg ∪ (AV C , V KSig) and finally
draw a t← τ .

5. (Query phase.) AABE sends (PKF , PP, LF , SKAV C ) to AV C who outputs an updated
list LF = LF ∪ AV C .

6. AABE forwards to C the list R̃ = LF \AV C (if AV C is in the list, otherwise he just directly
forwards the list) received from AV C . Note that we require AV C /∈ R̃ since this is a list
of revoked entities at the challenge time t received from AV C .

7. AABE has to certifyAV C for the function F by choosing a r ← {0, 1} such that f r((t, x)) =
0. Then AABE makes a KeyGen request to C for (id,A) which is notational equivalent to
the pair (AV C , f r).
Then the challenger C checks if (t, x) ∈ A, if so C checks whether id ∈ R̃ and if so returns
⊥. Otherwise C runs SK(id,A) ← ABE.KeyGen(id,A ∧ f,MSK0

ABE,MPK0
ABE) and returns

this to AABE who parses this as SKr
ABE.

AABE also makes a KeyUpdate oracle request to C for the (R, t) pair (LF , t). C re-
sponds by checking if t = t then if R̃ 6⊆ R return ⊥. Otherwise, C runs UKr

R,t ←
ABE.KeyUpdate(R, t,MSK0

ABE,MPK0
ABE) and returns this to AABE .

AABE then creates a key for f1−r by running

SK1−r
ABE ← ABE.KeyGen(AV C , f1−r ∧ f,MSK1

ABE,MPK1
ABE)

and an update key UK1−r
LF ,t
← ABE.KeyUpdate(LF , t,MSK1

ABE,MPK1
ABE).

Finally AABE sets EKF,AV C = (SK0
ABE, SK

1
ABE, UK

0
LF ,t

, UK1
LF ,t

) and updates LF =
LF ∪ AV C .

8. (Revocation phase.) AV C is now given (PKF , PP, LF , SKAV C ) and oracle access to O
and outputs a rejection token τ? = (reject,AV C) for himself.

9. AABE now revokes AV C for the function F as follows. First, AV C will be removed from
LF = LF \ S and the clock is updated to t = t + 1. AABE makes a KeyUpdate oracle re-
quest to C to obtain UK0

LF ,t
← ABE.KeyUpdate(LF , t,MSK0

ABE,MPK0
ABE) and updates

UK1
LF ,t

← ABE.KeyUpdate(LF , t,MSK1
ABE,MPK1

ABE) himself. Now for all S ∈ LF

where S 6= AV C , we parse EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LF ,t−1, UK

1
LF ,t−1) and update

and send EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LF ,t

, UK1
LF ,t

) around.
10. (Probgen stage.) In this stage AABE must run ProbGen for all (i ∈ [n]) challenge inputs

issued by AV C in the Initialise phase. Notice that AABE choses one input (t, x) to be his
challenge input for the challenger C. Thus, for (t, x), AABE makes a challenge query to C
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but for all other inputs, he is able to use the public parameters MPK0
ABE (created by C)

to create ciphertexts himself.

• For {t?i , x?i }i∈[n] \ (t, x): Choose mi
0,m

i
1

$←M×M and bi
$← {0, 1}. Compute

cibi = ABE.Encrypt(t?i , (x
?
i ∪ f),mi

bi ,MPK0
ABE)

and
ci1−bi = ABE.Encrypt(t?i , (x

?
i ∪ f),mi

1−bi ,MPK1
ABE)

Set σx?i = (ci
bi
, ci

1−bi), V KF,x?i
= (g(mi

bi
), g(mi

1−bi), LReg) and RKF,x?i
= bi.

• For (t, x): Choose m0,m1,m2
$←M×M×M. Send m0,m1 to C to receive back an

encryption c of one of these messages mb where b
$← {0, 1} under the attribute set

(t, x).

Finally AABE computes the encryption of m2 himself and sets

σx = (c,ABE.Encrypt(t, (x ∪ f),m2,MPK1
ABE))

He chooses a random s
$← {0, 1}, sets V KF,x = (g(ms), g(m2), LReg)and RKF,x

$← {0, 1}.
11. (Query phase.) AV C is now given the values (PKF ,PP, LF , {EKF,S}, SKAV C ) as well as

all (σx, V KF,x) pairs generated in the previous step (here the set {EKF,S} can consist of
”old” keys with the former time stamp t− 1 too). Furthermore, AV C is also given oracle
access to the following functions:
• KeyGen(PP,MK, ·): Let G be the function queried for. AABE sets PKG = PP and

creates an empty list LG = ε.
• Register(PP,MK, ·): Let S̃ be the server which should be registered. AABE runs the

signature key generation algorithm (SKSig, V KSig)← Sig.KeyGen(1λ) to register S̃.
He sets SKS̃ = SKSig and adds S̃ to the registered entities list LReg = LReg ∪
(S̃, V KSig).
• Certify(PP,MK, ·, ·, ·): Let G be the queried function, LG be the list of certified

servers for this function, and S̃ be the server identity. AABE certifies S̃ for G as
stated in the Certify phase above.
• Revoke(MK, ·, ·, ·): Let τσy , G, LG be the queried parameters. If τ = (accept, S̃, σy)

then return ⊥. Otherwise set LG = LG \ S̃ and t = t+ 1. Then query C for key up-
date UK0

LG,t
← ABE.KeyUpdate(LG, t,MSK0

ABE,MPK0
ABE). Compute UK1

LG,t
←

ABE.KeyUpdate(LG, t,MSK1
ABE,MPK1

ABE). Then, for all S′ ∈ LG, S
′ 6= S̃, parse

EKG,S′ as (SK0
ABE, SK

1
ABE, UK

0
LG,t−1, UK

1
LG,t−1) and update and send EKG,S′ =

(SK0
ABE, SK

1
ABE, UK

0
LG,t

, UK1
LG,t

).
• (Guess phase.) AV C outputs a result σy? .
• If g(σy?) = g(ms) then AABE outputs a guess b′ = s. Else, AABE guesses b′ = 1− s.

Notice that in the case AABE guesses an input attribute set (t, x) correctly where AV C
wins on (which happens again with a probability of at least 1

n), then in case that s = b the
distribution of the above coincides with Game 0. Otherwise, we have the case that s = 1 − b

22



and the distribution coincides with Game 1. Thus, we can claim that

Pr(b′ = b) = Pr(s = b) Pr(b′ = b|s = b) + Pr(s 6= b) Pr(b′ = b|s 6= b)

=
1

2
Pr(g(σy?) = g(ms)|s = b) +

1

2
Pr(g(σy?) 6= g(ms)|s 6= b)

=
1

2
Exp0

AV C

[
RPVC, F, 1λ

]
+

1

2
(1− Pr(g(σy?) = g(ms)|s 6= b))

=
1

2
Exp0

AV C

[
RPVC, F, 1λ

]
+

1

2

(
1−Exp1

AV C

[
RPVC, F, 1λ

])
=

1

2

(
Exp0

AV C

[
RPVC, F, 1λ

]
−Exp1

AV C

[
RPVC, F, 1λ

]
+ 1
)

≥ 1

2
(δ + 1).

Hence,

AdvAABE ≥
1

n

∣∣∣∣Pr(b = b′)− 1

2

∣∣∣∣
≥ 1

n

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2n

Since n is polynomial in the security parameter and δ is non-negligible, δ
2n is also non-

neglible. If AV C has an advantage of δ at distinguishing between the games then AABE can win
the ABE IND-sHRSS game with non-negligible probability. Based on the assumption that the
ABE scheme is IND-sHRSS secure we conclude that AV C is not able to distinguish between
Game 0 from Game 1 with non-negligible probability.

Next we argue that using AV C in Game 1, we construct an adversary that is able to invert
the one-way function g – that is, given a challenge g(z) we construct an adversary that can
recover z. In particular, we choose the challenge message mr = z and set the verification key
for the successful forgery to be g(z). Since we choose r such that f1−r(x) = 1, an honest server
would return m1−r. A cheating server (i.e. AV C) will return σy? = mr such that g(mr) = g(z),
and hence our adversary can output z = σy? to invert the one-way function with non-negligible
probability.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function is
secure, then the VC scheme defined by Algorithms 1–9 is secure in the sense of Revocation.

Lemma 3. The RPVC construction defined by Algorithms 1–9 is secure against Vindictive
Servers (Game 3) under the same assumptions as in Theorem 1.

Proof. Suppose AV C is an adversary with non-negligible advantage against the Vindictive
Servers game (Game 3) when instantiated by Algorithms 1–9. We show that an adversary
ASig with non-negligble advantage δ in the EUF-CMA signatures game (Game 7) can be con-
structed using AV C . ASig interacts with the challenger C in the EUF-CMA security game and
acts as the challenger for AV C in the security game for Vindictive Servers for a function F as
follows. The basic idea is that ASig can create a VC instance and play the Vindictive Servers
game with AV C by executing Algorithms 1–9 himself. ASig will guess a server identity that he
thinks the adversary will select to vindictively revoke. The signature signing key that would be
generated during the Register algorithm for this server will be implicitly set to be the signing
key in the EUF-CMA game and any Compute oracle queries for this identity will be forwarded
to the challenger to compute. Then, assuming that ASig guessed the correct server identity,
AV C will output a forged signature that ASig may output as its guess in the EUF-CMA game.
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1. C initialises Q = ε to be an empty list of messages queried to the Sig.Sign oracle and runs
Sig.KeyGen(1λ) to generate a challenge signing key SK and verification key V K. C sends
V K to ASig.

2. ASig chooses a function F on which to instantiate AV C .
3. AV C selects a set of n challenge input attribute sets and time periods {t?i , x?i }i∈[n] and

sends these to ASig.
4. ASig chooses a server identity from UID \ AV C which will be denoted by S.
5. ASig runs RPVC.Setup(1λ), RPVC.FnInit(PP,MK, F ), RPVC.Register(PP,MK,AV C) as

specified in Algorithms 1, 2 and 3 respectively and passes the resulting values PKF ,PP, LF
and SKAV C to the VC adversary.

6. AV C outputs an updated list of authorised servers LF .
7. ASig runs RPVC.Certify(PP,MK, F, LF ,AV C) as per Algorithm 4 and for all challenge

input sets chosen by AV C in Step 3 runs RPVC.ProbGen({t?i , x?i }, PKF ) as in Algorithm 5.
8. AV C is given the values of PKF ,PP, LF , {σx?i , V KF,x?i

}, EKF,AV C and SKAV C . It is also
given oracle access to the following functions. ASig simulates these oracles and maintains
a state of the generated parameters for each query.
• FnInit(PP,MK, ·): Let G be the function queried for. ASig sets PKG = PP and

creates an empty list LG = ε as per Algorithm 2.
• Register(PP,MK, ·): Let S be the server which should be registered. If S 6= S then
ASig runs Algorithm 3.
Otherwise, he implicitly sets SKS = SK and updates the list LReg = LReg∪(S, V K).
• Certify(PP,MK, ·, ·, ·): Let G be the queried function, LG be the list of certified

servers for this function, and S be the server identity. ASig certifies S for G as in
Algorithm 4.
• Revoke(MK, ·, ·, ·): Let τσy , G, LG be the queried parameters. ASig operates as in

Algorithm 9.
AV C outputs a target server identity S̃ which has not been queried to the Register oracle.

9. If S̃ 6= S then ASig outputs ⊥ and stops. Otherwise, AV C is allowed to continue with
access to the oracles as described in Step 8 as well as a Compute oracle. AV C submits
queries of the form Compute(σx, EKF,S , SKS) for its choice of server S and σx (note that
he may generate a valid σx using the public delegation key). If S 6= S then ASig simply
follows Algorithm 6 using the decryption and signing keys generated during the oracle
queries. Otherwise, the query is for the challenge server identity and ASig does not have
access to the signing key SKS . Thus, he runs the ABE.Decrypt operations correctly to
generate plaintexts d0 and d1, and submits m = (d0, d1, S) as a Sig.Sign oracle query to
C. C adds m to the list Q and returns γ ← Sig.Sign(m,SK), which ASig uses to return
σy = (d0, d1, S, γ) to AV C .

10. AV C finally outputs a result σy? which he claims to be identical to an invalid result
computed by S̃. Thus, in particular, (⊥, (reject, S̃)) ← RPVC.Verify(PP, σy? , V KFx?i

, LF )

and accept← Sig.Verify((d0, d1, S̃), γ, V K). Thus, γ is a valid signature under signing key
SK.

11. ASig outputs m? = (d0, d1, S̃) and γ? = γ to C.
Note that due to Constraint 2 in Game 3, AV C is not allowed to have made a query for

OCompute(σx?i , EKF,S̃ , SKS̃) and thus the forgery (m?, γ?) output by ASig will satisfy the re-
quirement in Game 7 that m? /∈ Q.

We argue that, assuming S = S̃ (i.e. ASig correctly guessed the challenge identity) then
ASig succeeds with the same non-negligible advantage δ as AV C . We assume that the size of
Uid is polynomial (else the KDC would not be able to operate efficiently when searching the
list LReg for example and as a consequence the EUF-CMA adversary ASig who simulates the
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KDC in the above game will also not be polynomial time). Let n = |Uid|, then the probability
that ASig correctly guesses S = S̃ is 1

n and

AdvASig ≥
1

n
AdvAV C

≥ δ

n
≥ negl(λ)

Thus we conclude that ASig has a non-negligible advantage against the EUF-CMA game
if AV C has a non-negligible advantage in the Vindictive Servers game, but since we assume
the signature scheme in our construction to be EUF-CMA secure, such as adversary may not
exist.

We note that we lose a polynomial factor in the advantage due to having to guess the server
S̃ that the adversary will attempt to revoke. This factor could be removed if we formulated the
security model in a selective fashion such that AV C must declare up front which server he will
target, and then ASig can implicitly set the signing key for that server (in the Register step) to
be the challenge key in the EUF-CMA game and forward any Compute oracle requests to the
challenger.

Lemma 4. The RPVC construction defined by Algorithms 1–9 is secure against vindictive
managers (Game 4) under the same assumptions as in Theorem 1.

Proof. Let us assume that AV C is an adversary with non-negligible advantage against the
Vindictive Manager game (Game 4) when instantiated by algorithms 1–9. We start by arguing
that if the revocable ABE scheme is IND-sHRSS secure then AV C cannot distinguish between
the following two games:
• Game 0: The real Vindictive Manager game.
• Game 1: The Vindictive Manager game is modified such that in the challenge ProbGen

stage, rather than encrypting m0 and m1 to create challenge ciphertexts c0 and c1, the
challenger chooses a random message m2 6= m0,m1 and chooses r such that f r(x) = 0.
The challenger then replaces cr with the encryption of m2.

If AV C succeeds in distinguishing between these two games with non-negligible probability δ
then we are able to construct an adversary AABE against the ABE security. AABE interacts
with the challenger C in the ABE security game and acts as the challenger for AV C in the
security game for Public Verifiability for a function F as follows.

1. (Initialise phase.) AV C declares a set of n challenge input sets with corresponding time
periods {t?i , x?i }i∈[n]. AABE chooses one of these n input attribute sets at random that he
will issue as his challenge input set to C for the ABE game. Denote this attribute set by
(t, x).

2. (Setup phase.) C runs ABE.Setup(1λ) → (MPK0
ABE,MSK0

ABE) and sends MPK0
ABE to

AABE .
3. AABE runs ABE.Setup(1λ) → (MPK1

ABE,MSK1
ABE). He creates an empty list LReg = ε

and initializes τ . He also creates the public parameters PP = (MPK0
ABE,MPK1

ABE, LReg, τ).
4. (FnInit phase.) AABE sets PKF = PP and creates an empty list LF = ε.
5. (Register phase.) AABE runs the signature key generation algorithm (SKSig, V KSig) ←

Sig.KeyGen(1λ) to register S. He sets SKS = SKSig and adds S to the registered entities
list LReg = LReg ∪ (S, V KSig).

6. AABE forwards to C the list R̃ = LF and draw t← τ .
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7. (Certify phase.) AABE certifies S for the function F as follows. Choose r ← {0, 1} such
that f r({t, x}) = 0. He makes a KeyGen request to C for (id,A) pair (S, f r) (where for sim-
plicity we assume some notational equivalence between access structures and functions).
C checks if (t, x) ∈ A, if so it checks whether id ∈ R̃ and if so returns ⊥. Otherwise C
runs SK(id,A) ← ABE.KeyGen(id,A∧ f,MSK0

ABE,MPK0
ABE) and returns this to AABE who

parses this as SKr
ABE.

AABE also makes a KeyUpdate oracle request to C for the (R, t) pair (LF , t). C re-
sponds by checking if t = t then if R̃ 6⊆ R return ⊥. Otherwise, C runs UKr

R,t ←
ABE.KeyUpdate(R, t,MSK0

ABE,MPK0
ABE) and returns this to AABE .

AABE then creates a key for f1−r by running

SK1−r
ABE ← ABE.KeyGen(AV C , f1−r∧,MSK1

ABE,MPK1
ABE)

and an update key UK1−r
LF ,t
← ABE.KeyUpdate(LF , t,MSK1

ABE,MPK1
ABE).

AABE finally sets EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LF ,t

, UK1
LF ,t

) and updates LF = LF ∪S.
8. (Probgen stage.) Here AABE must run ProbGen for all challenge inputs issued by AV C in

the Initialise phase. Note that AABE chose one input (t, x) to be its challenge input for
C. Thus, for (t, x), AABE should make a challenge query to C but for all other inputs, he
can use the public parameters MPK0

ABE to create ciphertexts himself.

• For {t?i , x?i }i∈[n] \ (t, x): Choose mi
0,m

i
1

$←M×M and bi
$← {0, 1}. Compute

cibi = ABE.Encrypt(t?i , (x
?
i ∪ f),mi

bi ,MPK0
ABE)

and
ci1−bi = ABE.Encrypt(t?i , (x

?
i ∪ f),mi

1−bi ,MPK1
ABE)

Set σx?i = (ci
bi
, ci

1−bi), V KF,x?i
= (g(mi

bi
), g(mi

1−bi), LReg) and RKF,x?i
= bi.

• For (t, x): Choose m0,m1,m2
$←M×M×M. Send m0,m1 to C to receive back an

encryption c of one of these messages mb where b
$← {0, 1} under the attribute set

(t, x).
AABE also computes the encryption of m2 himself and sets

σx = (c,ABE.Encrypt(t, (x ∪ f),m2,MPK1
ABE))

He chooses a random s
$← {0, 1}, sets V KF,x = (g(ms), g(m2), LReg) and RKF,x

$←
{0, 1}.

9. (Compute stage.) AABE runs the Compute algorithm on all encoded inputs {σx?i }i∈[n] and
outputs for each query an encoded output σy?i to AV C . AABE parses each σx?i as (c, c′)
and runs ABE.Decrypt on c and c′ with the appropriate ordered keys. If the decryption
fails then AABE runs ABE.Decrypt on the same c and c′ but with the reversed order of
the keys. AABE runs Sig.Sign on the decrypted outputs using the earlier created signing
key SKS and finally sends {σy?i } to AV C .

10. (Query phase.) AV C is now given the values ({σy?i }, PKF ,PP, LF , {V KF,x?i
})i∈[n]. It is

also given oracle access to the following functions:
• FnInit(PP,MK, ·): Let G be the function queried for. AABE sets PKG = PP and

creates an empty list LG = ε.
• Register(PP,MK, ·): Let S̃ be the server which should be registered. AABE runs the

signature key generation algorithm (SKSig, V KSig)← Sig.KeyGen(1λ) to register S̃.
He sets SKS̃ = SKSig and adds S̃ to the registered entities list LReg = LReg ∪
(S̃, V KSig).
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• Certify(PP,MK, ·, ·, ·): Let G be the queried function, LG be the list of certified
servers for this function, and S̃ be the server identity. AABE certifies S̃ for G as
stated in the Certify phase above.
• RetrieveOutput(·, ·, ·, ·): Let µ, τσy , V KG,x, RKG,x be the queried parameters. If τσy =

(accept, S̃) and g(µ) = g(m0) then ỹ = 1, else if τσy = (accept, S̃) and g(µ) = g(m1)
then ỹ = 0. In case that τσy corresponds a reject token then the ouput corresponds
to ⊥.
• Revoke(MK, ·, ·, ·): Let τσy , G, LG be the queried parameters. If τ = (accept, S̃, σy)

then return ⊥. Otherwise set LG = LG \ S̃ and t = t+ 1. Then query C for key up-
date UK0

LG,t
← ABE.KeyUpdate(LG, t,MSK0

ABE,MPK0
ABE). Compute UK1

LG,t
←

ABE.KeyUpdate(LG, t,MSK1
ABE,MPK1

ABE). Then, for all S′ ∈ LG, S
′ 6= S̃, parse

EKG,S′ as (SK0
ABE, SK

1
ABE, UK

0
LG,t−1, UK

1
LG,t−1) and update and send EKG,S′ =

(SK0
ABE, SK

1
ABE, UK

0
LG,t

, UK1
LG,t

).
11. (Guess phase.) AV C outputs a pair (µ, τσy).
12. If τσy = (accept, S), then if g(µ) = g(ms) then AABE outputs a guess b′ = s. Else, AABE

guesses b′ = 1− s.
Note that if AABE correctly guesses a input attribute set (t, x) that AV C wins on (which

happens with probability at least 1
n), then if s = b then the distribution of the above coincides

with Game 0. Otherwise, if s = 1− b the distribution coincides with Game 1. Thus,

Pr(b′ = b) = Pr(s = b) Pr(b′ = b|s = b) + Pr(s 6= b) Pr(b′ = b|s 6= b)

=
1

2
Pr(g(µ) = g(ms)|s = b) +

1

2
Pr(g(µ) 6= g(ms)|s 6= b)

=
1

2
Exp0

AV C

[
RPVC, F, 1λ

]
+

1

2
(1− Pr(g(µ) = g(ms)|s 6= b)

=
1

2
Exp0

AV C

[
RPVC, F, 1λ

]
+

1

2

(
1−Exp1

AV C

[
RPVC, F, 1λ

])
=

1

2

(
Exp0

AV C

[
RPVC, F, 1λ

]
−Exp1

AV C

[
RPVC, F, 1λ

]
+ 1
)

≥ 1

2
(δ + 1)

Hence,

AdvAABE ≥
1

n

∣∣∣∣Pr(b = b′)− 1

2

∣∣∣∣
≥ 1

n

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2n

Since n is polynomial in the security parameter and δ is non-negligible, δ
2n is also non-

neglible. If AV C has advantage δ at distinguishing these games then AABE can win the ABE
IND-sHRSS game with non-negligible probability. Thus since we assumed the ABE scheme to
be IND-sHRSS secure, we conclude that AV C cannot distinguish Game 0 from Game 1 with
non-negligible probability.

We now show that using AV C in Game 1, we can construct an adversary that inverts the
one-way function g – that is, given a challenge g(z) we construct an adversary that can recover z.
Specifically, we implicitly choose the challenge message mr = z and then set the verification key
for the successful forgery to be g(z). Since we choose r such that f1−r(x) = 1, an honest server
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would return m1−r. A cheating server (i.e. AV C) will return µ = mr such that g(mr) = g(z),
and hence our adversary can output z = µ to invert the one-way function with non-negligible
probability.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function is
secure, then the VC scheme defined by Algorithms 1–9 is secure in the sense of Vindictive
Manager.

Lemma 5. The RPVC construction defined by Algorithms 1–9 is secure against Blind Verifi-
cation (Game 5) under the same assumptions as in Theorem 1.

Proof. The proof follows from a standard probability argument. The inputs to the adversary
that depend on x or F (x) are σx, σy and V KF,x, and thus we restrict out attention to these.
First note that σx comprises two ABE encryptions of random messages m0 and m1. Since A
does not hold a valid decryption key for these ciphertexts (since by definition it does not possess
EKF ), the IND-sHRSS property of the revocable ABE scheme ensures that no information
about m0 or m1 is learnt by the adversary. As observed in (1) in Appendix 4, a well-formed
response by the server will be either (mb,⊥) or (⊥,m1−b) according RKF,x. In detail this means,
where RKF,x = b:

• if F (x) = 1, then σy =

{
(m0,⊥), if b = 0

(⊥,m0), if b = 1

• if F (x) = 0, then σy =

{
(⊥,m1), if b = 0

(m1,⊥), if b = 1

Finally note also that V KF,x = (g(mb), g(m1−b)) by definition. We introduce the notation
V to denote the adversary’s view of σy and V KF,x (we omit σx since we showed that this does
not reveal information related to the messages) – that is, V = (db, d1−b, g(mb), g(m1−b)) would
imply that σy = (db, d1−b) and that V KF,x = (g(mb), g(m1−b).

We show that the probability that the adversary outputs a correct guess of F (x) given
a particular set of inputs V is the same as his chance of guessing without seeing V. Thus,
he cannot guess F (x) with any advantage over what he knows about the distribution of F a
priori. The argument proceeds as follows. Let V1 = (m′,⊥, g(m′), g(m1−b)) and let V2 = (⊥
,m′′, g(mb), g(m′′)). Note that these are the two possible views – A sees one message (either m0

or m1, both of which are uniformly drawn from the same distribution) and the one-way function
applied to that message and the one way function applied to a different (unseen) message.

First observe that the value of F (x) and the value of b
$← {0, 1} are independent events,

Pr[b = 1] = 1
2 , and that Pr[F (x) = 0] + Pr[F (x) = 1] = 1 since F is a Boolean function and

must result in either 1 or 0. Then,

Pr[V = V1] = Pr[(F (x) = 1 ∧ b = 0) ∨ (F (x) = 0 ∧ b = 1)]

= Pr[F (x) = 1 ∧ b = 0] + Pr[F (x) = 0 ∧ b = 1]

= Pr[F (x) = 1] Pr[b = 0] + Pr[F (x) = 0] Pr[b = 1] since F (x) and b are independent

=
1

2
Pr[F (x) = 1] +

1

2
Pr[F (x) = 0]

=
1

2
(Pr[F (x) = 0] + Pr[F (x) = 1])

=
1

2
(2)

Now,
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Pr[F (x) = 0|V = V1] =
Pr[F (x) = 0 ∧ V = V1]

Pr[V = V1]

=
Pr[F (x) = 0 ∧ b = 1]

Pr[V = V1]

=
Pr[F (x) = 0] Pr[b = 1]

Pr[V = V1]
since F (x) and b are independent

=
1
2 Pr[F (x) = 0]

1
2

by (2)

= Pr[F (x) = 0]

Similarly,

Pr[V = V2] = Pr[(F (x) = 1 ∧ b = 1) ∨ (F (x) = 0 ∧ b = 0)]

= Pr[F (x) = 1 ∧ b = 1] + Pr[F (x) = 0 ∧ b = 0]

= Pr[F (x) = 1] Pr[b = 1] + Pr[F (x) = 0] Pr[b = 0] since F (x) and b are independent

=
1

2
Pr[F (x) = 1] +

1

2
Pr[F (x) = 0]

=
1

2
(Pr[F (x) = 0] + Pr[F (x) = 1])

=
1

2
(3)

Now,

Pr[F (x) = 0|V = V2] =
Pr[F (x) = 0 ∧ V = V2]

Pr[V = V2]

=
Pr[F (x) = 0 ∧ b = 0]

Pr[V = V2]

=
Pr[F (x) = 0] Pr[b = 0]

Pr[V = V2]
since F (x) and b are independent

=
1
2 Pr[F (x) = 0]

1
2

by (3)

= Pr[F (x) = 0]

A symmetric argument holds for F (x) = 1, and hence we can conclude that knowledge of the
adversarial inputs does not provide any advantage in determining F (x) other than that which
could be guessed without that knowledge (i.e. the inputs leak no information about F (x)).

We conclude that combining the results of Lemmas 1–5 gives a proof of Theorem 1.

5 Conclusion

In this paper we have introduced the new notion of Revocable Publicly Verifiable Outsourced
Computation and provided a rigorous new framework that we believe to be more realistic than
the purely theory oriented models of prior work, especially when considering the KDC to be
an entity within a organisation that is responsible for user authorisation. Compared to prior

29



models, we believe ours to more accurately reflect practical environments and necessary inter-
action between entities for PVC. Each server may provide services for many different functions
and for many different clients. The first model of Parno et al. [14] considered evaluations of a
single function, while the second allowed for multiple functions but required a more exotic type
of ABE scheme. This allowed a single ProbGen stage to encode input for any function, whilst in
our model, we also allow multiple functions but use a simpler ABE scheme that also permits the
revocation functionality. We require ProbGen to be run for each unique F (x) to be outsourced
which we believe to be reasonable. Additionally, in our model, any clients may submit multiple
requests to any available servers, whereas prior work considered the use of just one server.

The consideration of this new model leads to new functionality as well as new security
threats. We have shown that by using a revocable KP-ABE scheme we can allow the revocation
of misbehaving servers such that they receive a penalty for cheating, and that by permuting
elements within messages we can achieve output privacy (as hinted at by Parno et al. although
seemingly with two fewer decryptions than their brief description implies), which gives the new
functionality of blind verification. We have shown that this could be used when a manager runs
a pool of servers and rewards correct work – thus he should be able to verify but is not entitled
to learn the result. We have extended previous notions of security to fit our new definitional
framework as well as introducing models to capture threats arising from this new functionality
(e.g. vindictive servers using revocation to remove competing servers), and provided a provably
secure construction to meet these notions.

We believe that this work is a useful step towards making PVC practical in real environments
and also provides a natural set of baseline definitions from which to add future functionality.
For example, in future work we will introduce an access control framework into these definitions
(using our scheme as a black box construction) to restrict the set of functions that clients may
outsource, or to restrict (using the blind verification property) the set of verifiers that may
learn the output. In this scenario, the KDC entity may, in addition to certifying servers and
registering clients, determine access rights for such entities.

We note that the construction presented in this paper (and the security notions that we
can achieve) has been geared towards using existing primitives from the literature to illustrate
that an instantiation of RPVC is practical. However, using stronger primitives will enable
correspondingly stronger security reductions, and thus finding such constructions (such as a
fully secure revocable KP-ABE scheme with multiple challenge messages) is useful future work.
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A Background

Cryptographic Primitives

In this section we introduce some cryptographic primitives that will be required in our construc-
tion of a VC scheme, namely Key-policy Attribute-based Encryption (KP-ABE), a revocable
extension of KP-ABE, digital signatures and one-way functions. For each, we also give a brief
insight into the intended purpose of these primitives in the VC construction to follow. These
remarks will become clearer in the remainder of the paper. We begin by providing an overview
of the notation used throughout the remainder of the paper.

Key-policy Attribute-based Encryption

Attribute-based encryption (ABE) is a public key, functional encryption primitive that allows
the decryption of a ciphertext if and only if some policy formula formed over the data and
decrypting entity is satisfied. More specifically, we define a universe U of “attributes” which
are labels that may describe data or entities. We then form a set of attributes A ∈ 2U and a
policy A ∈ 22

U
. Then decryption may succeed if and only if A ∈ A. Variants of ABE include

Key-policy ABE (KP-ABE) [10] where the policy is associated with the decryption key and
a set of attributes is associated with each ciphertext; Ciphertext-policy ABE (CP-ABE) [3]
where the policy is attached to a ciphertext and decryption keys are associated with sets of
attributes; and Dual-policy ABE (DP-ABE) [2] in which both ciphertexts and decryption keys
are associated with both a policy and an attribute set, and the key attributes must satisfy the
ciphertext policy and vice versa. In this paper we will focus only on KP-ABE.

More concretely, in KP-ABE, each private key is associated with some family of attribute
sets A = {A1, . . . , Am}, while each ciphertext is computed using a single, system-wide public
key and associated with a single subset of attributes A. Decryption succeeds if the private key
includes the attribute set under which the message was encrypted: that is Ai = A for some
i ∈ [m]. The set of attribute sets defining a private key is usually called an access structure
and, in most schemes, is monotonic, meaning A′ ∈ A whenever there exists A ⊂ A′ such that
A ∈ A. A notable non-monotonic scheme was given by Ostrovsky et al. [13].

A KP-ABE scheme comprises the following algorithms:

• ABE.Setup(1λ) → (PP,MK): a randomized algorithm that takes a security parameter as
input and outputs a master key MK and public parameters PP
• ABE.Encrypt(m,A,PP)→ CT : a randomized algorithm that takes as input a message m,

a set of attributes A and the public parameters PK, and outputs a ciphertext CT
• ABE.KeyGen(A,MK,PP) → SKA: a randomized algorithm that takes as input an access

structure A, the master key MK and the public parameters PP, and outputs a private
decryption key SKA
• ABE.Decrypt(CT, SK,PP) → m or ⊥: takes as input a ciphertext CT of a message m

associated with a set of attributes A, a decryption key SK with embedded access structure
A, and the public parameters. It outputs the message m if A ∈ A, and ⊥ otherwise.
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We do not give the correctness or security properties in this background section as we will
be interested in using a revocable extension of KP-ABE. The reader is referred to the cited
prior literature for more details. ABE has previously been used primally as a means of cryp-
tographically enforcing access control – for example, with KP-ABE objects are encrypted and
a descriptive set of attributes attached, while entities are certified and issued a key containing
a policy defining the types of objects they may access; decryption of an object succeeds if and
only if the access control policy is satisfied by the requested object’s attributes. In this work,
we use KP-ABE in a different setting as a proof that a policy has been satisfied by a set of
input values.

Revocable KP-ABE

To enable the revocation of malicious computation servers, we require a KP-ABE scheme that
supports entity revocation (as opposed to attribute revocation). Revocable ABE schemes can
support two different modes [1]:
• Direct revocation allows users to specify a revocation list at the point of encryption. This

means that periodic rekeying is not required but the encryptors must have knowledge of,
or be able to choose, the current revocation list.

• Indirect revocation requires ciphertexts to be associated with a time period (as an addi-
tional attribute) and for a key authority to issue key update material at each time period
which enables non-revoked users to update their key to be functional during that time
period. A revoked user will not be able to use the update material and thus their key will
not succeed at decrypting ciphertexts associated with the current time period attribute.
With indirect revocation, users need only know the current time attribute during encryp-
tion, but increased communication costs are incurred due to the dissemination of the key
update material.

In this paper we use the indirect revocable KP-ABE scheme given by Attrapadung et al. [1],
itself a more formal definition of that given by Boldyreva et al. [4]. This choice is primarily
due to our assumption that the KDC should be the authority on trusted servers (since it is
the KDC that certifies them in the first place) and that client devices should have the least
amount of work to do and therefore shouldn’t be required to maintain the revocation list, and
to synchronise it with that held by other clients. However, due to the largely black-box use of
this primitive, it should be easy to change to an alternate revocation scheme.

These schemes work by defining the universe of attributes to be U = Uattr ∪ UID ∪ Utime

where Uattr is the normal attribute universe for describing ciphertexts and forming access control
policies, Utime comprises attributes for time periods, and UID contains an attribute per server
identity. They then use the following algorithms:
• ABE.Setup(1λ,U)→ (PP,MK): This randomised algorithm takes the security parameter

and the universe of attributes as input and outputs public parameters PP and master
secret key MK.
• ABE.Encrypt(t, A,m,PP)→ CT : The randomised encryption algorithm takes the current

time period t ∈ Utime, an attribute set A ⊂ Uattr, a message m and the public parameters,
and outputs a ciphertext that is valid for time t.
• ABE.KeyGen(id,A,MK,PP)→ SKid,A: The randomised key generation algorithm takes as

input an identity id ∈ UID for a user, an access structure encoding a policy, as well as the
master secret key and public parameters. It outputs a decryption key for the user id.
• ABE.KeyUpdate(R, t,MK,PP) → UKR,t: This randomised algorithm takes a revocation

list R ⊆ UID containing the identities of revoked entities, the current time period, as well
as the master secret key and public parameters. It outputs updated key material UKR,t.
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• ABE.Decrypt(CT, SKid,A,PP, UKR,t) → m or ⊥: The decryption algorithm takes a ci-
phertext, a decryption key, the public parameters and an update key as input. It outputs
the plaintext m if the attributes associated with CT satisfy A and the value of t in the
update key matches that specified during the encryption of CT , and outputs ⊥ otherwise.

Correctness of a revocable KP-ABE scheme is defined as follows:

Definition 8. A revocable KP-ABE scheme is correct if for all m ∈ M, id ∈ Uid,R ⊆ Uid,A ∈
2Uattr,A ⊂ Uattr, t ∈ Utime, if A ∈ A and id /∈ R, then

Pr[ABE.Setup(1λ)→ (PP,MK),ABE.KeyGen(id,A,MK,PP)→ SKid,

ABE.Encrypt(t, A,m,PP)→ CT,ABE.Decrypt(CT, SKid,A,PP, UKR,t)→ m]

= 1− negl(λ),

The schemes cited above use the Complete-subtree method to arrange users as the leaves of
a binary tree such that the required key-update material can be reduced from the naive method
of O(n−r) where n is the number of users and r is the number of revoked users, to O(r log(n2 )).
This approach works as follows for a revocation list R. For a leaf node l ∈ UID, let Path(l) be
the set of nodes on the path between the root node and l inclusively. Then, for each l ∈ R, mark
all nodes in Path(l). Define Cover(R) to be the set of all unmarked children of marked nodes,
and generate update keys for these nodes. In this paper we use a permitted list rather than a
revocation list and thus this algorithm will be adjusted accordingly, as discussed in Section 4.

Note that the time parameter in the above algorithms could be a literal clock value where
all entities have access to some synchronised clock. In this case, rekeying must occur at every
time period regardless of whether a revocation has occurred in the prior period. Alternatively,
the time parameter could simply be a counter that is updated when a revocation takes place
and the ABE.KeyUpdate algorithm is run. This would be more akin to a “push” system where
entities should be notified by the key authority when newly updated key material is required.
For generality, in our instantiation we will assume a time source τ from which the current time
period t (be that a literal time value or counter etc.) may be sampled as t← τ .

The security property we consider in this paper for revocable KP-ABE is indistinguishability
against selective-target with semi-static query attack (IND-sHRSS), presented in Game 6 [1].
This is a selective notion where the adversary must declare at the beginning of the game the set
of attributes (t?, x?) to be challenged upon. He is then given access to the public parameters
and must choose a target revocation set R̃ which is the set of entities that should be in a
revoked state at time t?. The adversary is then given oracle access to the ABE.KeyGen and
ABE.KeyUpdate functions as specified in Oracle Queries 1 and 2. To prevent trivial wins, for
a Key Generation query, the adversary may not query for any key SKid,A where the target
attribute set x? satisfies A and the identity is not revoked at time t?. Similarly, for an Update
Key request, the adversary is prevented from learning an update key UKR,t? for the challenge
time period t? for a less restrictive revocation list R than the challenge list R̃. As in a standard
IND-CPA notion, the adversary outputs two messages and the challenger chooses one of them
at random to encrypt and passes the resulting ciphertext to the adversary. The adversary then
guesses which message was encrypted. The advantage of the adversary is given in Definition 9.

Definition 9. The advantage of an adversary A running in probabilistic polynomial time (PPT)
is defined as:

AdvIND-sHRSS
A (ABE , 1λ) = Pr[ExpIND-sHRSS

A [ABE , 1λ] = 1]− 1
2 .

A revocable KP-ABE scheme is secure in the sense of indistinguishability against selective-target
with semi-static query attack (IND-sHRSS) if for all PPT adversaries A, AdvIND-sHRSS

A (ABE,
1λ) ≤ negl(λ).
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Game 6 ExpIND-sHRSS
A

[
ABE , 1λ

]
:

1: (t?, x?)← A(1λ);
2: (PP,MK)← Setup(1λ);
3: R̃← A(PP);

4: (m0,m1)← AO
KeyGen(·,·,MK,PP),OKeyUpdate(·,·,MK,PP))(R̃,PP);

5: b
$← {0, 1};

6: CT ? ← Encrypt(t?, x?,mb,PP);

7: b? ← AOKeyGen(·,·,MK,PP),OKeyUpdate(·,·,MK,PP))(R̃,PP);
8: If b′ = b
9: Return 1

10: Else Return 0

Oracle Query 1 OKeyGen(id,A,MK,PP):

1: if x? ∈ A then
2: if id /∈ R̃ then
3: return ⊥
4: SKid,A ← KeyGen(id,A,MK,PP)
5: return SKid,A

Oracle Query 2 OKeyUpdate(R, t,MK,PP):

1: if t = t? then
2: if R̃ 6⊆ R then
3: return ⊥
4: UKR,t ← KeyUpdate(R, t,MK,PP)
5: return UKR,t

Digital Signatures

Digital signatures provide a proof message integrity, as well as data origin authentication (since
keys can be associated to particular users). We require a message to be signed using a private
signing key owned by a particular entity, and using a public verification key we can verify
that the signature was actually generated using the given signing key and that the contents of
the message has not changed since the signature was computed. We will use this primitive to
provide a means of validating that the result of a computation was computed by the claimed
server and that it has not been maliciously altered.

A digital signature scheme Sig comprises three polynomial-time algorithms Sig.KeyGen, Sig.Sign
and Sig.Verify defined as follows [11]:
• Sig.KeyGen(1λ) → (SK, V K): The probabilistic KeyGen algorithm takes as input the

security parameter and generates a signing key SK and a verification key V K.
• Sig.Sign(m,SK) → γ: The probabilistic Sign algorithm takes as input a message to be

signed and the signing key, and outputs a signature γ of m.
• Sig.Verify(m, γ, V K)→ accept or reject: The deterministic Verify algorithm takes as input

a message and corresponding signature to be verified as well as the verification key, and
outputs accept if γ is a valid signature on m and reject otherwise.

Definition 10. A signature scheme is correct if for all (SK, V K) pairs generated by Sig.KeyGen(1λ)
and every message m in the message space, Sig.Verify(m,Sig.Sign(m,SK), V K) = 1.

We define a signature scheme to be existentially unforgeable under an adaptive chosen
message attack (EUF-CMA) if an adversary, given polynomially many signatures on messages
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Game 7 ExpEUF-CMA
A

[
Sig, 1λ

]
:

1: Initialise Q = ε to be an empty list
2: (SK, V K)← Sig.KeyGen(1λ)

3: (m?, γ?)← AOSig.Sign(·,SK)(V K)
4: If accept← Sig.Verify(m?, γ?, V K) and m? /∈ Q
5: Return 1
6: Else Return 0

Oracle Query 3 OSig.Sign(m,SK):

1: Q = Q ∪m
2: return Sig.Sign(m,SK)

Game 8 ExpInvertA
[
g, 1λ

]
:

1: w ← {0, 1}λ
2: z = g(w)
3: w′ ← A(1λ, z)
4: If g(w′) = z
5: Return 1
6: Else Return 0

of its choice, cannot create a message m? with a valid signature where m? was not one of the
messages that it saw a signature for. More formally, this is defined in Game 7 where A has
access to a Sig.Sign oracle which is handled by the algorithm given in Oracle Query 3.

Definition 11. The advantage of an adversary A running in probabilistic polynomial time
(PPT) is defined as:

AdvEUF-CMA
A (Sig, 1λ) = Pr[ExpEUF-CMA

A [Sig, 1λ] = 1].

A digital signature scheme Sig is existentially unforgeable under an adaptive chosen message
attack (EUF-CMA) if for all PPT adversaries A, AdvEUF-CMA

A (Sig, 1λ) ≤ negl(λ).

One-way Functions

A one-way function g is characterized by having the properties of being easy to compute,
but hard to invert. The first condition is given by the requirement that g is computable in
polynomial time. The second condition is formalized by requiring that it is infeasible for any
probabilistic polynomial-time algorithm to invert g (that is, to find a pre-image of a given
value y) except with negligible probability. This requirement will be captured in the inverting
experiment (Game 8) where we consider the experiment for any algorithm A, any value λ for
the security parameter, and the function g : {0, 1}? → {0, 1}?. Note that it suffices for A to find
any value of x′ for which g(x′) = y = g(x) in the experiment.

Here we give a definition what it means for a function g to be one-way [11].

Definition 12. A function g : {0, 1}? → {0, 1}? is one-way if the following two conditions hold.
1. (Easy to compute.) There exists a polynomial-time algorithm Mg computing g; i.e.

Mg(w) = g(w) for all w.
2. (Hard to invert.) For every PPT algorithm A, there exists a negligible function negl such

that

Pr[ExpInvertA [g, 1λ] = 1] ≤ negl(λ).
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Table 1: PVC using KP-ABE

Abstract PVC parameter Parameter in KP-ABE instantiation

EKF SKAF
PKF Master public key PP
σx Encryption of m using PP and Ax
σy m or ⊥
V KF,x g(m)

PVC using Key-Policy Attribute-based Encryption.

Parno et al. [14] provide a concrete instantiation of PVC using KP-ABE7 for the case when F
is a Boolean function [14]. Define a universe U of n attributes and associate V ⊆ U with a
binary n-tuple in which the ith place is 1 if and only if the ith attribute is in V . We call this the
characteristic tuple of V . Thus, there is a natural one-to-one correspondence between n-tuples
and attribute sets; we write Ax to denote the set associated with x. An alternative way to view
this is to let U = {A1, A2, . . . , An}. Then, a bit string v of length n is the characteristic tuple
of the set V ⊆ U if V = {Ai : vi = 1}. A function F : {0, 1}n → {0, 1} is monotonic if x 6 y
implies F (x) 6 F (y), where x = (x1, . . . , xn) is less than or equal to y = (y1, . . . , yn) if and only if
xi 6 yi for all i. For a monotonic function F : {0, 1}n → {0, 1}, the set {x ∈ {0, 1}n : F (x) = 1}
defines a monotonic access structure which we denote AF .

The mapping between PVC and KP-ABE parameters is shown in Table 1. Informally, for
a Boolean function F , the client generates a private key SKAF using the KeyGen algorithm.
Given an input x, a client encrypts a random message m “with” Ax using the Encrypt algorithm
and publishes V KF,x = g(m) where g is a suitable one-way function (e.g. a pre-image resistant
hash function). The server decrypts the message using the Decrypt algorithm, which will either
return m (when F (x) = 1) or ⊥. The server returns m to the client. Any client can test whether
the value returned by the server is equal to g(m). Note, however, that a “rational” malicious
server will always return ⊥, since returning any other value will (with high probability) result
in the verification algorithm returning a reject decision. Thus, it is necessary to have the server
compute both F and its “complement” (and for both outputs to be verified). We revisit this
point in Sect. 4. The interested reader may also consult the original paper for further details [14].
Note that, to compute the private key SKAF , it is necessary to identify all minimal elements
x of {0, 1}n such that F (x) = 1. There may be exponentially many such x. Thus, the initial
phase is indeed computationally expensive for the client. Note also that the client may generate
different private keys to enable the evaluation of different functions.

7If input privacy is required then a predicate encryption scheme could be used in place of the KP-ABE scheme.
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