
Revocation in Publicly Verifiable Outsourced Computation

James Alderman∗, Christian Janson, Carlos Cid†, and Jason Crampton

Information Security Group, Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom

{James.Alderman.2011, Christian.Janson.2012}@live.rhul.ac.uk
{Carlos.Cid, Jason.Crampton}@rhul.ac.uk

Abstract

The combination of software-as-a-service and the increasing use of mobile devices gives
rise to a considerable difference in computational power between servers and clients. Thus,
there is a desire for clients to outsource the evaluation of complex functions to an external
server. Servers providing such a service may be rewarded per computation, and as such
have an incentive to cheat by returning garbage rather than devoting resources and time to
compute a valid result.

In this work, we introduce the notion of Revocable Publicly Verifiable Computation
(RPVC), where a cheating server is revoked and may not perform future computations (thus
incurring a financial penalty). We introduce a Key Distribution Center (KDC) to efficiently
handle the generation and distribution of the keys required to support RPVC. The KDC is
an authority over entities in the system and enables revocation. We also introduce a notion
of blind verification such that results are verifiable (and hence servers can be rewarded or
punished) without learning the value. We present a rigorous definitional framework, define
a number of new security models and present a construction of such a scheme built upon
Key-Policy Attribute-based Encryption.

1 Introduction

It is increasingly common for mobile devices to be used as general computing devices. There
is also a trend towards cloud computing and enormous volumes of data (“big data”) which
means that computations may require considerable computing resources. In short, there is a
growing discrepancy between the computing resources of end-user devices and the resources
required to perform complex computations on large datasets. This discrepancy, coupled with
the increasing use of software-as-a-service, means there is a requirement for a client device to
be able to delegate a computation to a server.

Consider, for example, a company that operates a “bring your own device” policy, enabling
employees to use personal smartphones and tablets for work. Due to resource limitations, it
may not be possible for these devices to perform complex computations locally. Instead, a

∗The first author acknowledges support from BAE Systems Advanced Technology Centre under a CASE
Award.
†This research was partially sponsored by US Army Research laboratory and the UK Ministry of Defence

under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the US Army Research Laboratory, the U.S. Government, the UK Ministry of Defence, or the UK Government.
The US and UK Governments are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

1

computation is outsourced over some network to a more powerful server (possibly outside the
company, offering software-as-a-service, and hence untrusted) and the result of the computation
is returned to the client device. Another example arises in the context of battlefield communi-
cations where each member of a squadron of soldiers is deployed with a reasonably light-weight
computing device. The soldiers gather data from their surroundings and send it to regional
servers for analysis before receiving tactical commands based on results. Those servers may not
be fully trusted e.g. if the soldiers are part of a coalition network. Thus a soldier must have
an assurance that the command has been computed correctly. A final example could consider
sensor networks where lightweight sensors transmit readings to a more powerful base station to
compute statistics that can be verified by an experimenter.

In simple terms, given a function F to be computed by a server S, the client sends input
x to S, who should return F (x) to the client. However, there may be an incentive for the
server (or an imposter) to cheat and return an invalid result y 6= F (x) to the client. The server
may wish to convince a client of an incorrect result, or (particularly if servers are rewarded
per computation performed) the server may be too busy or may not wish to devote resources
to perform the computation. Thus, the client wishes to have some assurance that the result y
returned by the server is, in fact, F (x).

This problem, known as Verifiable Outsourced Computation (VC), has attracted a lot of
attention in the community recently. In practical scenarios, it may well be desirable that cheat-
ing servers are prevented from performing future computations, as they are deemed completely
untrustworthy. Thus, future clients need not waste resources delegating to a ‘bad’ server, and
servers are disincentivised from cheating in the first place as they will incur a significant (fi-
nancial) penalty from not receiving future work. Many current schemes have an expensive
pre-processing stage run by the client. However, it is likely that many different clients will be
interested in outsourcing computations, and that functions of interest to each client will sub-
stantially overlap, as in the “bring your own device” scenario above. It is also conceivable that
the number of servers offering to perform such computations will be relatively low (limited to
a reasonably small number of trusted companies with plentiful resources). Thus, it is easy to
envisage a situation in which many computationally limited clients wish to outsource computa-
tions of the same (potentially large) set of functions to a set of untrusted servers. Current VC
schemes do not support this kind of scenario particularly well.

Our main contribution, then, is to introduce the new notion of Revocable Publicly Verifiable
Computation (RPVC). We also propose the introduction of a Key Distribution Center (KDC)
to perform the computationally intensive parts of VC and manage keys for all clients, and we
simplify the way in which the computation of multiple functions is managed. We enable the
revocation of misbehaving servers (those detected as cheating) such that they cannot perform
further computations until recertified by the KDC, as well as “blind verification”, a form of
output privacy, such that the verifier learns whether the result is valid but not the value of
the output. Thus the verifier may reward or punish servers appropriately without learning
function outputs. We give a rigorous definitional framework for RPVC, that we believe more
accurately reflects real environments than previously considered. This new framework both
removes redundancy and facilitates additional functionality, leading to several new security
notions.

In the next section, we briefly review related work. In Section 3, we define our framework
and the relevant security models. In Section 4, we provide an overview, technical details and a
concrete instantiation of our framework using Attribute-based Encryption as well as full security
proofs. Additional background details can be found in the Appendix.

2

SC

1. EKF

2. σF,x

3. θF (x)

4.

(a) A VC system

SC1 C2

Public

EKF

σF,x1

θF (x1)

σF,x2

θF (x2)

PKF , V KF,x1 V KF,x2

Verify Verify

(b) A PVC system

Figure 1: The operation of verifiable computation schemes

Notation. In the remainder of this paper we use the following notation. If A is a probabilistic
algorithm we write y ← A(·) for the action of running A on given inputs and assigning the
result to an output y. We denote the empty string by ε and use PPT to denote probabilistic
polynomial-time. We say that negl(·) is a negligible function on its input and κ denotes the
security parameter. We denote by F the family of Boolean functions closed under complement
– that is, if F belongs to F then F , where F (x) = F (x)⊕ 1, also belongs to F . We denote the
domain of F by Dom(F) and the range by Ran(F). By M we denote a message space and the
notation AO is used to denote the adversary A being provided with oracle access. Finally, [n]
denotes the set {1, . . . , n}.

2 Verifiable Computation Schemes and Related Work

The concept of non-interactive verifiable computation was introduced by Gennaro et al. [7] and
may be seen as a protocol between two polynomial-time parties: a client, C, and a server, S. A
successful run of the protocol results in the provably correct computation of F (x) by the server
for an input x supplied by the client. More specifically, a VC scheme comprises the following
steps [7]:

1. C computes evaluation information EKF that is given to S to enable it to compute F
(pre-processing);

2. C sends the encoded input σF,x to S (input preparation);
3. S computes F (x) using EKF and σF,x and returns an encoding of the output θF (x) to C

(output computation);
4. C checks whether θF (x) encodes F (x) (verification).
The operation of a VC scheme is illustrated in Figure 1a. Step 1 is performed once; steps 2–4

may be performed many times. Step 1 may be computationally expensive but the remaining
operations should be efficient for the client. In other words the cost of the setup phase (to the
client) is amortized over multiple computations of F . A VC scheme comprises four algorithms
– KeyGen, ProbGen, Compute and Verify – corresponding to the four steps described above.

Parno et al. [14] introduced Publicly Verifiable Computation (PVC). The operation of a
Publicly Verifiable Outsourced Computation scheme is illustrated in Figure 1b. In this setting,
a single client C1 computes EKF , as well as publishing information PKF that enables other
clients to encode inputs, meaning that only one client has to run the expensive pre-processing
stage. Each time a client submits an input x to the server, it may publish V KF,x, which enables
any other client to verify that the output is correct. It uses the same four algorithms as VC
but KeyGen and ProbGen now output public values that other clients may use to encode inputs
and verify outputs. Parno et al. gave an instantiation of PVC using Key-Policy Attribute-
based Encryption (KP-ABE) for a class of Boolean functions. Further details are available in

3

Appendix A.

2.1 Other Related Work

Gennaro et al. [7] formalized the problem of non-interactive verifiable computation in which
there is only one round of interaction between the client and the server each time a computation
is performed and introduced a construction based on Yao’s Garbled Circuits [15] which provides
a “one-time” Verifiable Outsourced Computation allowing a client to outsource the evaluation
of a function on a single input. However it is insecure if the circuit is reused on a different input
and thus this cost cannot be amortized, and the cost of generating a new garbled circuit is
approximately equal to the cost of evaluating the function itself. To overcome this, the authors
additionally use a fully homomorphic encryption scheme [8] to re-randomize the garbled circuit
for multiple executions on different inputs. In independent and concurrent work, Carter et al. [5]
introduce a third party to generate garbled circuits for such schemes but require this entity to be
online throughout the computations and models the system as a secure multi-party computation
between the client, server and third-party. We do not believe this solution is practical in all
situations since it is conceivable that a trusted entity is not always available to take part in
computations, for example in the battlefield scenario discussed in Section 1. Here, the KDC
could be physically located within a high security base or governmental building and field agents
may receive relevant keys before being deployed, but actual computations are performed using
more local available servers and communications links. It may not be feasible, or desirable, for
a remote agent to contact the headquarters and maintain a communications link with them for
the duration of the computation. In addition, the KDC could easily become a bottleneck in
the system and limit the number of computations that can take place at any one time, since we
assume there are many servers but only a single (or small number of) trusted third parties.

Some works have also considered the multi-client case in which the input data to be sent to
the server is shared between multiple clients, and notions such as input privacy become more
important. Choi et al. [6] extended the garbled circuit approach [7] using a proxy-oblivious
transfer primitive to achieve input privacy in a non-interactive scheme. Recent work of Gold-
wasser et al. [9] extended the construction of Parno et al. [14] to allow multiple clients to provide
input to a functional encryption algorithm.

3 Revocable Publicly Verifiable Computation

We now describe our new notion of PVC, which we call Revocable Publicly Verifiable Compu-
tation (RPVC). We assume there is a Key Distribution Center (KDC) and many clients which
make use of multiple untrusted or semi-trusted servers to perform complex computations. Mul-
tiple servers may be certified, by the KDC, to compute the same function F . As we briefly
explained in the introduction, there appear to be good reasons for adopting an architecture
of this nature and several scenarios in which such an architecture would be appropriate. The
increasing popularity of relatively lightweight mobile computing devices in the workplace means
that complex computations may best be performed by more powerful servers run by the organi-
zation. One can also imagine clients delegating computation to servers in the cloud and would
wish to have some guarantee that those servers are certified to perform certain functions. It is
essential that we can verify the results of the computation. If cloud services are competing on
price to provide “computation-as-a-service” then it is important that a server cannot obtain an
unfair advantage by simply not bothering to compute F (x) and returning garbage instead. It is
also important that a server who is not certified cannot return a result without being detected.

4

Algorithm
Run by

VC PVC RPVC Standard RPVC Manager

KeyGen C1 C1 KDC KDC

ProbGen C1 C1, C2, . . . C1, C2, . . . C1, C2, . . .

Compute S S S1, S2, . . . S1, S2, . . .

Verify C1 C1, C2, . . . C1, C2, . . . –

Blind Verify – – – M

Retrieve – – – C1, C2, . . .

KDCS1 S2 S3

PublicC1 C2

EKF,S1 EKF,S2

EKG,S3

σF,x1 θF (x1)

σF,x2 θF (x2)

σG,x3

θG(x3)

V KF,x1

V KF,x2

V KG,x3

Revoke PKF , PKG

Verify

Verify

(a) Standard Model

KDCS1

M
S2

Public

C1

C2

EKF,S1

EKG,S2

σF,x1

θF (x1)

τθF (x1)

σ
G,x

2

θG(x2)

τθ
G
(x

2)

V KF,x1

PKF

PKG

V KG,x2

Revoke

BVerif
Retrieve

Retrieve

(b) Manager model

Figure 2: The operation of RPVC

3.1 Key Distribution Center

Existing frameworks assume that a client or clients run the expensive phases of a VC scheme and
that a single server performs the outsourced computation. We believe that this is undesirable
for a number of reasons, irrespective of whether the client is sufficiently powerful to perform the
required operations. First, in a real-world system, we may wish to outsource the setup phase
to a trusted third party. In this setting, the third party would operate rather similarly to a
certificate authority, providing a trust service to facilitate other operations of an organization
(in this case outsourced computation, rather than authentication). Second, we may wish to
limit the functions that some clients can outsource. In other words, we wish to enforce some
kind of access control policy where an internal trusted entity will operate both as a facilitator of
outsourced computation and as the policy enforcement point. (We will examine the integration
of RPVC and access control in future work.)

We consider the KDC to be a separate entity to illustrate separation of duty between the
clients that request computations, and the KDC that is authoritative on the system and users.
The KDC could be authoritative over many sets of clients (e.g. at an organizational level as
opposed to a work group level), and we minimise its workload to key generation and revocation
only. It may be tempting to suggest that the KDC, as a trusted entity, performs all computations
itself. However we believe that this is not a practical solution in many real world scenarios,
e.g. the KDC could be an authority within the organization responsible for user authorization
that wishes to enable workers to securely use cloud-based software-as-a-service. As an entity
within organization boundaries, performing all computations would negate the benefits gained
from outsourcing computations to externally available servers. We examine the possible security
concerns arising from RPVC in Sect. 3.5.

The basic idea of our scheme is to have the KDC perform the expensive setup operation.
The KDC provides each server with a distinct key to compute F . A client may request the
computation of F (x) from any server that is certified to compute F . As mentioned in the
introduction, in this paper we focus on two example system architectures, which we call the

5

Standard Model and the Manager Model.

3.2 Standard Model

The standard model is a natural extension of the PVC architecture with the addition of a KDC.
The entities comprise a set of clients, a set of servers and a KDC. The KDC initializes the
system and generates keys to enable verifiable computation. Keys to delegate computations are
published for the clients, whilst keys to evaluate specific functions are given to individual servers.
Clients submit computation requests, for a given input, to a particular server and publish
some verification information. The server receives the encoded input values and performs the
computation to generate a result. Any party can verify the correctness of the server’s output. If
the output is incorrect, the verifier may report the server to the the KDC for revocation, which
will prevent the server from performing any further computations.

Note that the expensive KeyGen operation is now run by the more capable KDC, and many
servers are able to use the generated keys to evaluate the same function, whereas previously
each client would have run KeyGen to set up a system with its choice of server.

Figure 2 gives a table illustrating which entities are responsible for running each algorithm
in normal verifiable outsourced computation (VC), publicly verifiable outsourced computation
(PVC), the standard model of PVC detailed in this section, and finally PVC in the Manager
model which we will discuss in the next section. The figure also includes a illustration of how
the entities interact in the standard model.

3.3 Manager Model

The manager model, in contrast, employs an additional Manager entity who “owns” a pool of
computation servers. Clients submit jobs to the manager, who will select a server from the
pool based on workload scheduling, available resources or as a result of some bidding process if
servers are to be rewarded per computation. A plausible scenario is that servers enlist with a
manager to “sell” the use of spare resources, whilst clients subscribe to utilizee these through
the manager. Results are returned to the manager who should be able to verify the server’s
work. The manager forwards correct results to the client whilst a misbehaving server may be
reported to the KDC for revocation, and the job assigned to another server. Due to public
verifiability, any party with access to the output and the verification token can also verify the
result. However, in many situations we may not desire external entities to access the result, yet
there remains legitimate reasons for the manager to perform verification. Thus we introduce
“blind verification” such that the manager (or other entity) may verify the validity of the
computation without learning the output, but the delegating client holds an extra piece of
information that enables the output to be retrieved.

The interaction between entities in this model is illustrated in Figure 2b. The manager and
computational servers are shown within a dashed region to illustrate the boundaries of internal
and external entities – that is, the entities not within the dashed region could all be within an
organization that wishes to utilizee the external resources provided by the manager to outsource
computational work. Notice that the manager performs a blind verification operation (denoted
BVerif) but only entities within the organization may run the output retrieval algorithm (denoted
here as Retrieve) to learn the actual result of the computation.

3.4 Formal Definition

We now present a more formal definition of the algorithms involved in a RPVC scheme.

6

Definition 1. A Revocable Publicly Verifiable Outsourced Computation Scheme (RPVC) com-
prises the following algorithms:

• (PP ,MK) ← Setup(1κ): Run by the KDC to establish public parameters PP and a
master secret key MK.

• PKF ← FnInit(F,MK,PP): Run by the KDC to generate a public delegation key, PKF ,
for a function F .
• SKS ← Register(S,MK,PP): Run by the KDC to generate a personalised signing key
SKS for a computation server S.
• EKF,S ← Certify(S, F,MK,PP): Run by the KDC to generate a certificate in the form

of an evaluation key EKF,S for a function F and server S.
• (σF,x, V KF,x, RKF,x)← ProbGen(x, PKF , PP): ProbGen is run by a client to delegate the

computation of F (x) to a server. The output values are: the encoded input of x, σF,x; a
verification key, V KF,x that will verify the result; and a retrieval key RKF,x which will
enable the output to be read.
• θF (x) ← Compute(σF,x, EKF,S , SKS , PP): Run by a server S holding an evaluation key
EKF,S , SKS and an encoded input σF,x of x, to output an encoding, θF (x), of F (x),
including an identifier of S.
• (ỹ, τθF (x)

) ← Verify(θF (x), V KF,x, RKF,x, PP): Verification comprises two steps. These
two steps could be run together if the Blind Verification property is not required.

– (RTF,x, τθF (x)
) ← BVerif(θF (x), V KF,x, PP): Run by any verifying party (standard

model), or by the manager (manager model), in possession of V KF,x and an encoded
output, θF (x). This outputs a token τθF (x)

= (accept, S) if the output is valid, or
τθF (x)

= (reject, S) if S misbehaved. It also outputs a retrieval token RTF,x which is
an encoding of the actual output value.

– ỹ ← Retrieve(τθF (x)
, RTF,x, V KF,x, RKF,x, PP): Run by a verifier holding RKF,x to

retrieve the actual result ỹ which is either F (x) or ⊥.1

• {EKF,S′} or ⊥ ← Revoke(τθF (x)
,MK,PP): Run by the KDC if a misbehaving server is

reported i.e. that Verify returned τθF (x)
= (reject, S) (if τθF (x)

= (accept, S) then this algo-
rithm outputs ⊥). It revokes all evaluation keys EK·,S of the server S thereby preventing
S from performing any further evaluations. Updated evaluation keys EK·,S′ are issued to
all servers.2

Although not stated, the KDC may update the public parameters PP during any algorithm.
We say that a RPVC scheme is correct if the verification algorithm almost certainly outputs
accept when run on a valid verification key and an encoded output honestly produced by a
computation server given a validly generated encoded input and evaluation key. That is, if all
algorithms are run honestly then the verifying party should almost certainly accept the returned
result. A more formal definition follows:

Definition 2 (Correctness). A Publicly Verifiable Computation Scheme with a Key Distribution
Center (RPVC) is correct for a family of functions F if for all functions F ∈ F and inputs x,

1Note that if a server is not given RKF,x then it too cannot learn the outputand we gain output privacy.
2In some instantiations, it may not be necessary to issue entirely new evaluation keys to each entity. In Sect. 4,

we only need to issue a partially updated key for example.

7

where negl(·) is a negligible function of its input:

Pr[(PP ,MK)← Setup(1κ), PKF ← FnInit(F,MK,PP),

SKS ← Register(S,MK,PP), EKF,S ← Certify(S, F,MK,PP),

(σF,x, V KF,x, RKF,x)← ProbGen(x, PKF , PP),

(F (x), (accept, S))← Verify(Compute(σF,x, EKF,S , SKS , PP), V KF,x, RKF,x, PP)]

= 1− negl(κ).

3.5 Security Models

We now introduce several security models capturing different requirements of a RPVC scheme.
We will formalize these notions of security as a series of cryptographic games run by a chal-
lenger. The adversary against a particular function F is modelled as a PPT algorithm A run
by a challenger with input parameters chosen to represent the knowledge of a real attacker as
well as the security parameter κ and a parameter qt > 1 denoting the number of queries the
adversary makes to the Revoke oracle before the challenge is generated. The adversary algo-
rithm may maintain state and be multi-stage (i.e. be called several times by the challenger,
with different input parameters) and we overload the notation by calling each of these adver-
sary algorithms A. This represents the adversary performing tasks at different points during
the execution of the system, and we assume that the adversary may maintain a state storing
any knowledge it gains during each phase (we do not provide the state as an input or output
of the adversary for ease of notation). The notation AO denotes the adversary A being pro-
vided with oracle access to the following functions: FnInit(·,MK,PP), Register(·,MK,PP),
Certify(·, ·, ·,MK,PP) and Revoke(·, ·, ·,MK,PP).3 This means that the adversary can query
(multiple times) the challenger for any of these functions with the adversary’s choice of values
for parameters represented with a dot above. This models information the adversary could learn
from observing a functioning system or by acting like a legitimate client (or corrupting one) to
request some functionality.

The introduction of the KDC and subsequent changes in operation give rise to new security
concerns:
• Since two (or more) servers may be able to compute the same function, it is important

to ensure that servers cannot collude in order to convince a client to accept an incorrect
output as correct (Public Verifiability).
• We must ensure that neither an uncertified nor a de-certified server can convince a client

to accept an output (Revocation).
• We must ensure that a malicious server S cannot convince a client to believe an honest

server has produced an incorrect output (Vindictive Servers).
• We must ensure that, in the manager model, a malicious manager cannot convince a client

of an incorrect result (Vindictive Manager).
• We must ensure, in the manager model, that the manager performing the BVerif algorithm

learns nothing of the actual output value other than its correctness (Blind Verification).

3.6 Discussion of Games

As mentioned above, we define five notions of security for RPVC. We model each notion as a
cryptographic game. However, in the cases of Public Verifiability, Revocation and Vindictive

3We do not need to provide a Verify oracle since this is a publicly verifiable scheme and A is given verification
keys (thus we also avoid the rejection problem).

8

Managers, we also define weaker notions of security which we term selective, semi-static no-
tions. This is due to the particular IND-sHRSS indirectly revocable key-policy attribute-based
encryption scheme we use in our construction, which introduces similar restrictions. Thus, with
our current primitives we cannot achieve full security for these notions, but can achieve the
slightly weaker variants presented here. In this section we will discuss the restrictions we must
impose and how they could be removed in the future. We also discuss their relation to the IND-
sHRSS game, although it may be helpful to refer back to this discussion after the construction
has been introduced in Section 4.

These variants require two additional restrictions on the adversary. Firstly, the adversary
must declare upfront (before seeing the public parameters) the set of input values to be used
in the challenge stage. This is in contrast to the full game where the inputs are chosen after
the adversary has oracle access to the system. Secondly, the adversary must (e.g. on line 6 in
Game 3), declare a list R of servers that must be revoked when the challenge encoded inputs
are generated from ProbGen. The adversary must do this before receiving oracle access.

To remove the first (selective) restriction, we require a fully secure indirectly revocable KP-
ABE scheme. To remove the second (semi-static) restriction, we require an adaptive notion of
revocation.4 At present, instantiating such a primitive is an open problem.

To implement the semi-static restriction, we must alter the games somewhat from their full
versions. The challenger must now define two additional parameters: t and QRev. The variable
t models system time and is initialized to 1. It is incremented each time a revoke query is made
to illustrate that keys generated at prior time periods may no longer function. In the IND-
sHRSS game, update keys are associated with a time period and queries can be made for update
keys for arbitrary time periods. However, in our setting, we consider an interactive protocol
and as such time must increase linearly. The time period is important in the consideration of
the revocation functionality – a user should not have access to a secret decryption key and an
update key for any time period which would allow a trivial win against the challenge ciphertext.
The adversary in the IND-sHRSS game selects a time period for the challenge as well as a
challenge input. In our game, however, we parametrise the adversary on the number of revoke
queries he is allowed to make in its first query phase to be qt (and define security over all choices
of qt). Since t is incremented only when a Revoke query is made, the challenge will occur at
time t? = qt (or qt + 1 in the case of the Revocation game), and hence the challenger may select
t? as its challenge time in a reductive proof.

The other additional parameter, QRev, is a list (initialized to be empty) comprising all servers
that are revoked during the current time period. Servers are added to the list when the Revoke
oracle is queried with a reject token, and are removed from the list if subsequently certified for a
function. Thus, unless one server is added or removed as mentioned, the revocation list remains
consistent over consecutive oracle queries to model realistic system evolution (whereas, in the
IND-sHRSS game, the revocation list can be dynamically changed per query). By the semi-
static restriction, the adversary must choose a revocation list R detailing all servers that should
be revoked at the challenge time. If the actual list of revoked servers, QRev, at the challenge
time t? is not a superset of this list (i.e. there exists a server that the adversary claimed would
be revoked but actually is not) then the adversary has not requested a suitable sequence of
oracle queries and loses the game to avoid a trivial win.

To avoid other trivial wins, we must restrict the oracle queries that the adversary may make
such that he cannot obtain both a secret key and an update key (i.e. a full evaluation key in
our terminology) for a server that is revoked at the challenge time. Thus, as shown in Oracle
Query 2, a Revoke query will increment the time parameter t and return ⊥ if the queried token
is (accept, ·) i.e. there is no server to revoke. Since t is still incremented, the adversary may

4Attrapadung et al. [1] defined a notion with adaptive queries but did not provide an instantiation.

9

query acceptance tokens to Revoke in order to progress the system time if desired. If the query
is made at the challenge time i.e. t = t?, the challenger must return ⊥ if the challenge revocation
list R is not a subset of the current revocation list QRev (including the queried server S as this
is about to be revoked). That is, ⊥ is returned if there exists a server, other than S, listed on
R, and hence that should be revoked at the challenge time period (i.e. the current time period),
but is not actually on the list of currently revoked servers. If ⊥ was not returned in this case,
the adversary would receive a valid update key, which combined with a decryption key would
form a valid evaluation key for a revoked server.

Similarly, as specified in Oracle Query 1, a query to the Certify oracle will result in ⊥ if made
during the time period qt and if, excluding S as it is about to be revoked, there is a server that
should be revoked according to R but is not actually revoked. The challenger also returns ⊥ if
the query is made for the challenge function F (given as a parameter to the adversary) and the
queried identity is not on the list of servers to be revoked at challenge time, R. Otherwise, an
evaluation key would be issued for F and for a server that will not be revoked at the challenge
time, and hence the server will have a valid update key and so a fully functional evaluation key
that can decrypt the challenge ciphertexts.

Note that unlike the oracle queries in the IND-sHRSS game, both “KeyGen” (Certify)
queries and “Update KeyGen” (Revoke) queries include a notion of identity and Revoke queries
cannot be made for arbitrary time periods. Hence the oracle restrictions in these games differ
slightly from those in the IND-sHRSS game but capture the same principle.

3.6.1 Public Verifiability

We extend the Public Verifiability game of Parno et al. [14] to formalize that multiple servers
should not be able to collude to gain an advantage in convincing any verifying party of an
incorrect output (i.e. that Verify returns accept on an encoded output θ? not corresponding to
the true output of the computation). Note that this game is a generalization of the Public
Verifiability game of Parno et al. [14] since they consider the case where the adversary is limited
to learning only one evaluation key and one encoded input. The motivation for this updated
game is that there is a now a trusted party issuing keys to multiple servers who may collude, as
opposed to the traditional model in which the system comprises a single client choosing a single
server to whom to outsource a computation. Thus we allow the adversary to collect multiple
inputs from clients (though oracle access) and to learn multiple evaluation keys for different
functions and associated with different servers (since evaluation keys are server-specific in our
setting to enable per-server revocation).

Full Public Verifiability. This is captured in the full game presented in Game 2. The game
begins with the challenger setting up the system and running FnInit to initialize the challenge
function F . The adversary, A, is given the resulting public parameters and given oracle access
to FnInit(·,MK,PP), Register(·,MK,PP), Certify(·, ·, ·,MK,PP) and Revoke(·, ·, ·,MK,PP)
as mentioned previously. All oracles simply run the relevant algorithm.

Eventually, the adversary will finish this query phase and output a challenge input x?.
The challenger will then generate a challenge by running ProbGen on this input, and give the
resulting encoded input to A. The adversary is again given oracle access and wins if it can
produce an encoded output that verifies correctly but does not encode the value F (x?).

Selective, semi-static Public Verifiability. As mentioned in Section 3.6, we also define
a selective, semi-static notion of Public Verifiability in Game 3. The adversary first selects
an input value to be outsourced. The challenger initializes a list of currently revoked entities

10

Game 1 ExpmPubVerif
A [RPVC, F, 1κ]:

1: (PP ,MK)← Setup(1κ);

2: PKF ← FnInit(F,MK,PP);

3: {x?i }i∈[n] ← AO(PKF , PP);

4: for i = 1 to n do

5: (σF,x?i
, V KF,x?i

, RKF,x?i
)← ProbGen(x?i , PKF , PP);

6: θ? ← AO({σF,x?i , V KF,x?i , RKF,x?i }, PKF , PP);

7: if (∃i ∈ [n] s.t. (((ỹ, τθ?)← Verify(θ?, V KF,x?i
, RKF,x?i

, PP))

and ((ỹ, τθ?) 6= (⊥, (reject,A))) and (ỹ 6= F (x?i))))

8: return 1;

9: else return 0;

Game 2 ExpPubVerif
A [RPVC, F, 1κ]:

1: (PP ,MK)← Setup(1κ);

2: PKF ← FnInit(F,MK,PP);

3: x? ← AO(PKF , PP);

4: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

5: θ? ← AO(σF,x? , V KF,x? , RKF,x? , PKF , PP);

6: if ((((ỹ, τθ?)← Verify(θ?, V KF,x? , RKF,x? , PP))

and ((ỹ, τθ?) 6= (⊥, (reject,A))) and (ỹ 6= F (x?))))

7: return 1;

8: else return 0;

QRev and a time parameter t before running Setup and FnInit to create a public delegation
key for the function F given as a parameter to the game(lines 2 to 5). The adversary is given
the generated public parameters and must output a list R of servers to be revoked when the
challenge is created. It is then given oracle access to the above functions which simulate all
values known to a real server as well as those learnt through corrupting entities. The challenger
responds to Certify and Revoke queries as detailed in Oracle Queries 1 and 2 respectively. It
must ensure that QRev is kept up-to-date by adding or removing the queried entity, and in the
case of revocation must increment the time parameter. It also ensures that issued keys will not
lead to a trivial win.

Once the adversary has finished this query phase (and in particular, due to the parameter-
isation of the adversary, after exactly qt Revoke queries), the challenger must check that the
queries made by the adversary has indeed left the list of revoked entities to be at least that
selected beforehand by the adversary. If there is a server that the adversary included on R but
is not currently revoked, then the adversary loses the game. Otherwise, the challenger generates
the challenge by running ProbGen on x?. The adversary is given the resulting encoded input
and oracle access again, and wins the game if it creates an encoded output that verifies correctly
yet does not encode the correct value F (x?).

Definition 3. The advantage of a PPT adversary A making a polynomial number of queries
q (including qt Revoke queries), where X ∈ {mPubVerif,PubVerif}, is defined as:

• AdvXA (RPVC, F, 1κ, q) = Pr[ExpX
A [RPVC, F, 1κ] = 1]

• AdvsSS -PubVerifA (RPVC, F, 1κ, q) = Pr[Exp sSS-PubV erif
A [RPVC, F, qt, 1κ] = 1]

A RPVC is secure against Game X or sSS-PubVerif for a function F , if for all PPT adversaries
A,

AdvX,sSS -PubVerifA (RPVC, F , 1κ,q) ≤ negl(κ).

11

Game 3 ExpsSS -PubVerif
A [RPVC, F, qt, 1κ]:

1: x? ← A(1κ);
2: QRev = ε;

3: t = 1;

4: (PP ,MK)← Setup(1κ);

5: PKF ← FnInit(F,MK,PP);

6: R← A(PKF , PP);

7: AO(PKF , PP);

8: if (R 6⊆ QRev) return 0;

9: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

10: θ? ← AO({σF,x? , V KF,x? , RKF,x?}, EKF,A, SKA, PKF , PP);

11: if ((((ỹ, τθ?)← Verify(θ?, V KF,x? , RKF,x? , PP))

and ((ỹ, τθ?) 6= (⊥, (reject, ·))) and (ỹ 6= F (x?))))

12: return 1;

13: else return 0;

Oracle Query 1 OCertify(S, F ′,MK,PP):

1: if ((F ′ = F and S /∈ R) or (t = qt and R 6⊆ QRev \ S)) return ⊥;
2: QRev = QRev \ S;
3: return Certify(S, F ′,MK,PP);

Oracle Query 2 ORevoke(τθF ′(x) ,MK,PP):

1: t = t+ 1;
2: if (τθF ′(x) = (accept, ·)) return ⊥;

3: if (t = qt and R 6⊆ QRev ∪ S) return ⊥;
4: QRev = QRev ∪ S;
5: return Revoke(τθF ′(x) ,MK,PP);

3.6.2 Revocation

The notion of revocation requires that any subsequent computations by a server detected as
misbehaving (i.e. a result for F (x) causes the Verify algorithm to output (⊥, (reject, S))) should
be rejected (even if the result is correct). The motivation here is that even though the costly
computation and pre-processing stages have been outsourced to the server and KDC respec-
tively, there is still a cost to delegating and verifying a computation. We remove any incentive
for an untrustworthy server to attempt to provide an outsourcing service (since it knows the
result will not be accepted). In addition, we may punish and further disincentivise malicious
servers by removing their ability to perform work (and earn rewards). Finally, from a privacy
perspective, we may not wish to supply input data to a server that is known to be untrustworthy.

Full Revocation. As before, we define both a full game and a weaker variant that we can
achieve with current primitives. The full notion, in Game 4, begins by declaring a Boolean
flag chall which in initially set to false and a list QRev which servers will be added to when
revoked and removed from when certified. The chall flag will be set to true when the challenge
is created, and after this point QRev is no longer updated. Thus QRev will comprise all servers
that are revoked at the challenge time and hence all servers that, if an adversary can output a
result ‘from’ one of these servers and have it accepted, will count as a win for the adversary.

The game proceeds in a similar fashion to Public Verifiability with the challenger running
Setup and FnInit to initialize the system and providing the public parameters to the adversary
along with oracle access. All oracles simply run the relevant algorithms except for Certify and
Revoke which additionally maintain the list of revoked entities as mentioned above and specified

12

Game 4 ExpRevocation
A [RPVC, F, 1κ]:

1: chall = false;

2: QRev = ε;

3: (PP ,MK)← Setup(1κ);

4: PKF ← FnInit(F,MK,PP);

5: x? ← AO(PKF , PP);

6: chall = true;

7: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

8: θ? ← AO(σx? , V KF,x? , RKF,x? , PKF , PP);

9: if (((ỹ, (accept, S))← Verify(θ?, V KF,x? , RKF,x? , PP))

and (S ∈ QRev) then

10: return 1

11: else

12: return 0

Oracle Query 3 OCertify(S, F ′,MK,PP):

1: if (chall = false) QRev = QRev \ S;
2: return Certify(S, F ′,MK,PP);

Oracle Query 4 ORevoke(τθF ′(x) , F
′,MK,PP):

1: r ← Revoke(τθF ′(x) , F
′,MK,PP);

2: if (r 6=⊥ and chall = false) QRev = QRev ∪ S;
3: return r;

Game 5 ExpsSS -Revocation
A [RPVC, F, qt, 1κ]:

1: x? ← A(1κ);
2: QRev = ε;

3: t = 1;

4: (PP ,MK)← Setup(1κ);

5: PKF ← FnInit(F,MK,PP);

6: R← A(PKF , PP);

7: AO(PKF , PP);

8: if (R 6⊆ QRev) return 0;

9: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

10: θ? ← AO(σx? , V KF,x? , RKF,x? , PKF , PP);

11: if (((ỹ, (accept, S))← Verify(θ?, V KF,x? , RKF,x? , PP))

and (S ∈ R) then

12: return 1

13: else

14: return 0

in Oracle Queries 3 and 4 respectively. After the adversary has finished this query phase, it
outputs a challenge input x?, and the challenger sets the chall flag to true. It then generates
the challenge by running ProbGen on x? and gives the resulting parameters to the adversary
along with oracle access again (however, since chall is set, QRev will no longer be updated).
Eventually, the adversary outputs a result θ? and wins if Verify outputs accept for a server that
was revoked when the challenge was generated (even a correct result).

Selective, semi-static Revocation. On the other hand, the selective, semi-static notion of
Revocation given in Game 5 proceeds exactly as the sSS-PubVerif game for Public Verifiability
except for the winning condition. Here, the adversary wins if it outputs any result (even a correct
encoding of F (x?)) that is accepted as a valid response from any server that was revoked at the
time of the challenge which the adversary chose to be (at least) those servers on R. This game
also uses the Certify and Revoke oracles specified in Oracle Queries 1 and 2 respectively.

13

Game 6 ExpVindictiveS
A [RPVC, F, 1κ]:

1: QReg = ε;

2: (PP ,MK)← Setup(1κ);

3: PKF ← FnInit(F,MK,PP);

4: x? ← AO(PKF , PP);

5: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

6: S̃ ← AO,Register2(σF,x? , V KF,x? , RKF,x? , PKF , PP) subject to (1);

7: θ? ← AO,Compute,Register2(σF,x? , V KF,x? , RKF,x? , PKF , PP) subject to (2);

8: if ((ỹ, τθ?)← Verify(θ?, V KF,x? , RKF,x? , PP))

and ((ỹ, τθ?) = (⊥, (reject, S̃))) and (⊥8 Revoke(τθ? ,MK,PP))) then

9: return 1

10: else

11: return 0

Definition 4. The advantage of a PPT adversary A making a polynomial number of queries
q against Revocation or sSS-Revocation is defined as:

• AdvRevocationA (RPVC, F, 1κ, q) = Pr[ExpRevocation
A [RPVC, F, 1κ] = 1]

• AdvsSS -RevocationA (RPVC, F, 1κ, q) = Pr[ExpsSS -Revocation
A [RPVC, F, qt, 1κ] = 1]

A RPVC is secure against Revocation or sSS-Revocation for a function F , if for all PPT
adversaries A,

AdvRevocation,sSS -RevocationA (RPVC, F , 1κ,q) ≤ negl(κ).

3.6.3 Vindictive Server

This notion is motivated by the manager model where a pool of computational servers is available
to accept a ‘job’ but they are abstracted by the manager such that the client does not know
the individual server identities. Since an invalid result can lead to revocation, this reveals a
new threat model (particularly if servers are rewarded per computation). A malicious server
may return incorrect results but attribute them to an alternate server ID such that an (honest)
server is revoked and the pool of available servers for future computations is reduced in size,
leading to a likely increase in reward for the malicious server.

In Game 6, the challenger maintains a list of registered entities QReg. The game proceeds
similarly to the previous notions, except that, on lines 6 and 7, the adversary selects a target
server ID, S̃, he wishes to be revoked and generates an encoded output that will cause this. He
is given oracle access subject to the following constraints to avoid trivial wins:

(1) No query of the form ORegister(S̃,MK,PP) was made;
(2) As above and no query OCompute(σF,x?i , EKF,S̃ , SKS̃ , PP) was made.

In addition, he is provided with an oracle, Register2, which performs the Register algorithm but
does not return the resulting key SKS (it may however update the public parameters to reflect
the additional registered entity). The adversary may query any identity to Register2 (including
S̃). We also modify the standard Register oracle such that if an identity has been previously
queried to the Register2 oracle, it generates the same parameters (and vice versa). These oracles
are shown in Oracle Queries 5 and 6. All other oracles simply run the relevant algorithm.The
adversary wins if the KDC believes S̃ returned ỹ and revokes S̃.

Definition 5. The advantage of a PPT adversary A making a polynomial number of queries
q in the Vindictive Server Experiment is defined as:

AdvVindictiveS
A (RPVC, F, 1κ, q) = Pr[ExpVindictiveS

A [RPVC, F, 1κ] = 1].

A RPVC is secure against vindictive servers for a function F , if for all PPT adversaries A,

AdvVindictiveS
A (RPVC, F , 1κ,q) ≤ negl(κ).

14

Oracle Query 5 ORegister(S,MK,PP):

1: if (S, ·) /∈ QReg then
2: SKS ← Register(S,MK,PP);
3: QReg = QReg ∪ (S, SKS);
4: return SKS

Oracle Query 6 ORegister2(S,MK,PP):

1: if (S, ·) /∈ QReg then
2: SKS ← Register(S,MK,PP);
3: QReg = QReg ∪ (S, SKS);
4: return ⊥

3.6.4 Vindictive Manager

This is a natural extension of the Public Verifiability notion to the manager model where a
vindictive manager may attempt to provide a client with an incorrect answer. We remark that
instantiations may vary depending on the level of trust given to the manager: a completely
trusted manager may simply return the result to a client, whilst an untrusted manager may
have to provide the full output from the server so that the client can performsthe full Verify
step as well (in this case, security against vindictive managers will reduce to Public Verifiability
since the manager would need to forge a full encoded output that passes a full verification step).
Here we consider a middle ground where the manager is semi-trusted but the clients would still
like a final, efficient check.

Full Vindictive Managers. Game 7 begins with the challenger initializing the system as
usual. The adversary is given oracle access (each oracle runs the relevant algorithm) and outputs
a challenge input x?. The challenger now selects a random server identity from the space of
all identities UID that it will use to generate the challenge. It runs Register and Certify for
this server (if not already done so), creates a problem instance by running ProbGen on x? and
finally runs Compute on the generated encoded input. The adversary is then given the encoded
input, verification key and the output from Compute, as well as oracle access, and must output
a retrieval token RTF,x? and an acceptance token τθF (x?)

. The challenger runs Retrieve on RTF,x
to get an output value ỹ, and the adversary wins if the challenger accepts this output and
ỹ 6= F (x?).

Selective, semi-static Vindictive Managers. The weaker variant, in Game 8, performs
similarly. First, the adversary selects its challenge input x?, and the challenger initializes a list
of revoked entities QRev and a time paramter t. It also sets up the system and gives the public
parameters to the adversary, who must select a list R of servers to be revoked at the challenge
time. We require that R is not the full set of all servers in the system, as one non-revoked
identity is required to generate the challenge. The adversary then gets oracle access (using the
Certify and Revoke oracles specified in Oracle Queries 1 and 2 respectively). If, after finishing
this query phase (and in particular after qt Revoke queries), the list of revoked entities does not
include R then the adversary loses the game. Otherwise, a server S is chosen at random from
the set of all server identities UID excluding R (as these must be revoked at the challenge time).
This server is used to generate the challenge. If not already done, the challenger registers and
certifies S for F , and runs ProbGen on the challenge input, before finally running Compute to
generate an encoded output θF (x?). The adversary is then given the encoded input, verification
key and θF (x?), as well as oracle access, and must output a retrieval token RTF,x? and an

15

Game 7 ExpV indictiveMA [RPVC, F, 1κ]:
1: (PP ,MK)← Setup(1κ);
2: PKF ← FnInit(F,MK,PP);
3: x? ← AO(PKF , PP);

4: S
$← UID;

5: SKS ← Register(S,MK,PP);

6: EKF,S ← Certify(S, F,MK,PP);
7: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

8: θF (x?) ← Compute(σF,x? , EKF,S , SKS , PP);

9: (RTF,x? , τθF (x?)
)← AO(σF,x? , θF (x?), V KF,x? , PKF , PP);

10: if (ỹ ← Retrieve(τθF (x?)
, RTF,x? , V KF,x? , RKF,x? , PP))

and (ỹ 6= F (x?)) and (ỹ 6=⊥) then

11: return 1
12: else

13: return 0

Game 8 ExpsSS-V indictiveMA [RPVC, F, qt, 1κ]:
1: x? ← A(1κ);
2: QRev = ε;
3: t = 1

4: (PP ,MK)← Setup(1κ);
5: PKF ← FnInit(F,MK,PP);
6: R← A(PKF , PP)

7: AO(PKF , PP);
8: if ((R 6⊆ QRev) or (R = UID)) return 0;

9: S
$← UID \R;

10: SKS ← Register(S,MK,PP);

11: EKF,S ← Certify(S, F,MK,PP);
12: (σF,x? , V KF,x? , RKF,x?)← ProbGen(x?, PKF , PP);

13: θF (x?) ← Compute(σF,x? , EKF,S , SKS , PP);

14: (RTF,x? , τθF (x?)
)← AO(σF,x? , θF (x?), V KF,x? , PKF , PP);

15: if (ỹ ← Retrieve(τθF (x?)
, RTF,x? , V KF,x? , RKF,x? , PP))

and (ỹ 6= F (x?)) and (ỹ 6=⊥) then

16: return 1
17: else

18: return 0

acceptance token τθF (x?)
. The challenger runs Retrieve on RTF,x to get an output value ỹ, and

the adversary wins if the challenger accepts this output and ỹ 6= F (x?).

Definition 6. The advantage of a PPT adversary A making a polynomial number of queries
q against VindictiveM or sSS-VindictiveM is defined as:

• AdvVindictiveM
A (RPVC, F, 1κ, q) = Pr[ExpRevocation

A [RPVC, F, 1κ] = 1]
• AdvsSS -VindictiveM

A (RPVC, F, 1κ, q) = Pr[ExpsSS -Revocation
A [RPVC, F, qt, 1κ] = 1]

A RPVC is secure against VindictiveM or sSS-VindictiveM for a function F , if for all PPT
adversaries A,

AdvVindictiveM ,sSS -VindictiveM
A (RPVC, F , 1κ,q) ≤ negl(κ).

3.6.5 Blind Verification

With this notion we aim to show that a verifier that does not hold the retrieval token RTF,x
chosen in ProbGen cannot learn the value of F (x) given the encoded output. This property
was hinted at by Parno et al. [14] but was not formalized. The game begins as usual with the
challenger initializing the system. The challenger then selects an input at random from the
domain of F , and a random server S. It registers and certifies S, runs ProbGen for the chosen

16

Game 9 ExpBV erifA [RPVC, F, 1κ]:

1: (PP ,MK)← Setup(1κ);
2: PKF ← FnInit(F,MK,PP);

3: x
$← Dom(F);

4: S
$← UID;

5: SKS ← Register(S,MK,PP);

6: EKF,S ← Certify(S, F,MK,PP);
7: (σF,x, V KF,x, RKF,x)← ProbGen(x, PKF , PP);

8: θF (x) ← Compute(σF,x, EKF,S , SKS , PP);

9: ŷ ← AO(θF (x), V KF,x, PKF , PP);

10: if (ŷ = F (x)) then
11: return 1

12: else

13: return 0

input and runs Compute to generate an output θF (x). This is given to the adversary along with
the verification key and oracle access, and the adversary wins if it can guess the value of F (x)
without seeing the retrieval key. Clearly, the adversary can trivially make a guess for F (x) based
on a priori knowledge of the distribution of F over all possible inputs. Unless F is balanced
(i.e. outputs 1 exactly half the time), the adversary could gain an advantage. Thus, we define
security by subtracting the most likely guess for F (x).

Note that in this game we do not provide the adversary with access to the encoded inputs.
In KP-ABE, the ciphertext reveals the set of attributes it was encrypted under (and hence
the input values) and the adversary may simply compute F on this input to learn the output
independently of the encoded output computed by the server. In practice, it may be desirable to
give access to the ciphertexts such that a manager may distribute the input to a chosen server.
In this case, one should replace the KP-ABE scheme with a predicate encryption scheme which
provides input privacy and then our blind verification technique will apply straightforwardly
even with access to the encoded input. Finding an indirectly revocable predicate encryption
scheme will be the subject of future work.

Definition 7. The advantage of a PPT adversary A making a polynomial number of queries
q in the Blind Verification Experiment is defined as:

AdvBVerif
A (RPVC, F, 1κ, q) = Pr[ExpBVerif

A [RPVC, F, 1κ] = 1]− max
y∈Ran(F)

(Pr
x∈Dom(F)

[F (x) = y]).

A RPVC is secure against vindictive servers for a function F , if for all PPT adversaries A,

AdvBVerif
A (RPVC, F , 1κ,q) ≤ negl(κ).

4 Construction

We now provide an instantiation of a RPVC scheme. Our construction is based on that used by
Parno et al. [14] (summarized in App. A.2) which uses Key-Policy Attribute-based Encryption
(KP-ABE) in a black-box manner to outsource the computation of a Boolean function. We
restrict our attention to Boolean functions, and in particular the complexity class NC1 which
includes all circuits of depth O(log n). Thus functions we can outsource can be built from
common operations such as AND, OR, NOT, equality and comparison operators, arithmetic
operators and regular expressions. Notice that to achieve the outsourced evaluation of functions
with n bit outputs, it is possible to evaluate n different functions, each of which applies a mask
to output the single bit in position i.

Notice also that different function families will require different constructions from that
presented here for Boolean functions. As a trivial example, verifiable outsourced evaluation of

17

the identity function may only require the server to sign the input. On the other hand, despite
it seemingly being a natural choice for outsourcing, it is not clear how a VC scheme for NP-
complete problems could be instantiated. A solution for such problems is by definition difficult
to find so should be outsourced, whilst a candidate solution can be verified efficiently. However,
a malicious server could simply return that a solution cannot be found for the given problem
instance, and the restricted client could not verify the correctness of this statement.

Recall that if ⊥ is returned by the server then the verifier is unable to determine whether
F (x) = 0 or whether the server misbehaved. To avoid this issue, we restrict the family of
functions F we can evaluate to be the set of Boolean functions closed under complement. That
is, if F belongs to F then F , where F (x) = F (x)⊕ 1, also belongs to F . Then, the client encrypts
two random messages m0 and m1. The server is required to return the decryption of those
ciphertexts. Thus, a well-formed response θF (x), comprising recovered plaintexts (db, d1−b),
satisfies the following, where RKF,x = b:

(db, d1−b) =

{
(mb,⊥), if F (x) = 1;

(⊥,m1−b), if F (x) = 0.
(1)

Hence, the client will be able to detect whether the server has misbehaved.

4.1 Technical Details

We require an indirectly revocable KP-ABE scheme comprising the algorithms ABE.Setup,
ABE.KeyGen, ABE.KeyUpdate, ABE.Encrypt and ABE.Decrypt. We also use a signature scheme
with algorithms Sig.KeyGen, Sig.Sign and Sig.Verify, and a one-way function g. Let U be the
universe of attributes acceptable by the ABE scheme, and let U = Uattr∪UID∪Utime∪UF where:
attributes in Uattr form characteristic tuples for input data, as detailed in Appendix A.2; UID
comprises attributes representing entity identifiers; Utime comprises attributes representing time
periods issued by the time source T; and finally UF comprises attributes that represent functions
in F . Define a bijective mapping between functions F ∈ F and attributes f ∈ UF . Then the
policy F ∧ f denotes adding a conjunctive clause requiring the presence of the label f to the
expression of the function F , and (x∪ f) denotes adding the function attribute to the attribute
set representing the input data x. This will prevent servers using alternate evaluation keys for
a given input and hence we are able to certify servers to compute multiple functions.

Parno et al. [14] considered two models of publicly verifiable computation, namely single
function and multi-function. In single function PVC, the function to be computed is embedded
in the public parameters, whilst in multi-function PVC delegation keys for multiple functions
can be generated and a single encoded input can be used to input the same data to multiple
functions. To achieve this latter notion, Parno et al. required the somewhat complex primitive
of KP-ABE with Outsourcing [11]. In this work, we take a different approach. We believe that
in practical environments it is unrealistic to expect a server to compute just a single function,
and we also believe that it is a reasonable cost expectation to prepare an encoded input per
computation, and that the input data to different functions may well differ. Thus, whereas
Parno et al. use complex primitives to allow an encoded input to be used for computations of
different functions on the same data, we use the simple trick of adding a conjunctive clause to
the functions requiring the presence of the appropriate function label in the input data – that
is, the function F is encoded in a decryption key for the policy F ∧ f where f is the attribute
representation of F in UF ; the complement function F is encoded as a key for F ∧ f ; and we
encode the input data x to the function F as x∪ f . Thus, the client must perform the ProbGen
stage per computation as the function label in the input data will differ, but servers can be
certified for multiple functions and may not use a key for one function to compute on data

18

intended for another (since the function label required by the conjunctive clause in the key will
not be present in the input data). As a result, and unlike the single function notion of Parno et
al., we are able to provide the adversary with oracle access in our security games.

The scheme of Parno et al. required a one-key IND-CPA notion of security for the underlying
KP-ABE scheme. This is a more relaxed notion than considered in the vast majority of the
ABE literature (where the adversary is given a KeyGen oracle and the scheme must prevent
collusion between holders of different decryption keys). Parno et al. could use this property
due to their restricted system model where the client is certified for only a single function per
set of public parameters (so the client must set up a new ABE environment per function). In
our setting, we must be able to certify servers for multiple functions and hence the KDC must
be able to issue multiple keys and we require the more standard, multi-key notion of security
usually considered for ABE schemes.

4.2 Instantiation

Informally the scheme operates as follows.
1. RPVC.Setup establishes public parameters and a master secret key by calling the ABE.Setup

algorithm twice. This algorithm also initializes a time source5 T, a list of revoked servers,
and a two-dimensional array of registered servers LReg – the array is indexed in the first
dimension by server identities and the first dimension will store signature verification keys
while the second will store a list of functions that server is authorized to compute.

2. RPVC.FnInit simply outputs the public parameters. This step is not required in our
particular construction, but we retain the algorithm for generality and to enable further
computations.

3. RPVC.Register creates a public-private key pair by calling the signature KeyGen algorithm.
This is run by the KDC (or the manager in the manager model) and updates LReg to store
the verification key for S.

4. RPVC.Certify creates the key EKF,S that will be used by a server S to compute F by
calling the ABE.KeyGen and ABE.KeyUpdate algorithms twice – once with a “policy” for
F and once with the complement F . It also updates LReg to include F . Note that since
we have a form of multi-function PVC, we must prevent a server certified to perform
two different functions, F and G (that differ on their output) from using the key for G
to retrieve the plaintext and claiming it as a result for F . To prevent this, we add an
additional attribute to the input set in ProbGen encoding the function the input should
applied to, and add a conjunctive clause for such an attribute to the key policies. Thus
an input set intended for F (including the F attribute) will only satisfy a key issued for
F (comprising the F conjunctive clause), and a key for G will not be satisfied as G is
not in the input set. The algorithm also updates the lists to remove the server from the
revocation list and to add F to the list of functions it is authorized for.

5. RPVC.ProbGen creates a problem instance σF,x = (cb, c1−b) by encrypting two randomly
chosen messages under an attribute set corresponding to x, and a verification key V KF,x

by applying a one-way function g (such as a pre-image resistant hash function) to the
messages. The ciphertexts and verification tokens are ordered randomly according to
RKF,x = b for a random bit b, such that the positioning of an element does not imply
whether it relates to F or to F . The output also includes a copy of LReg from the public
parameters incase the list changes between now and verification time, e.g. a server is
revoked. This copy may be removed if verification is likely to be imminent or if results
computed before a server was revoked should be rejected.

5T could be a counter that is maintained in the public parameters or a networked clock.

19

6. RPVC.Compute is run by a server S. Given an input σF,x = (cb, c1−b) it returns (m0,⊥) if
F (x) = 1 or (⊥,m1) if F (x) = 0 (ordered according to RKF,x chosen in RPVC.ProbGen)
and a signature on the output.

7. RPVC.Verify either accepts the output θF (x) = (db, d1−b) or rejects it. This algorithm
verifies the signature on the output and confirms the output is correct by applying g
and comparing with V KF,x. In RPVC.BVerif the verifier can compare pairwise between
the components of θF (x) and V KF,x to determine correctness but as they are unaware of
the value of RKF,x, they do not know the order of these elements and hence whether the
correct output corresponds to F or F being satisfied i.e. if F (x) = 1 or 0 respectively. The
verifier outputs an accept or reject token as well as the output value RTF,x ∈ {db, d1−b,⊥}
where RKF,x = b. Parno et al. [14] gave a one line remark that permuting the key pairs
and ciphertexts given out in ProbGen could give output privacy. We believe that doing so
would require four decryptions in the Compute stage to ensure the correct keys have been
used (since an incorrect key,associated with different public parameters, but for a satisfying
attribute set will return an incorrect, random plaintext which is indistinguishable from
a valid, random message). Since our construction fixes the order of the key pairs, we do
not have this issue and only require two decryptions. In RPVC.Retrieve a verifier that has
knowledge of RKF,x can check whether the output from BVerif matches m0 or m1.

8. RPVC.Revoke is run by the KDC and redistributes fresh keys to all non-revoked servers.
This algorithm first refreshes the time source T (e.g. increments T if it is a counter). It
then updates LReg and LRev, and updates EKF,S using the results of two calls to the
ABE.KeyUpdate algorithm.

We require two distinct sets of system parameters in Step 1 for the security proof to work. In
Step 4 we have to run the ABE.KeyGen algorithm twice – once for F and once for F . However,
to prevent a trivial win in the IND-sHRSS game, the adversary is not allowed to query for a
key with a policy that is satisfied by the challenge input attributes. By definition, either F (x)
or F (x) will output 1 and hence one of these will not be able to be queried to the Challenger.
Thus we use the two separate parameters such that the non-satisfied function can be queried to
the Challenger and the adversary can use the other set of parameters to generate a key himself.

More formally, our scheme is defined by Algorithms 1–9.

Alg. 1 (PP ,MK)← RPVC.Setup(1κ)

1: Let U = Uattr ∪ UID ∪ Utime ∪ UF
2: (MPK0

ABE,MSK0
ABE)← ABE.Setup(1κ,U)

3: (MPK1
ABE,MPK1

ABE)← ABE.Setup(1κ,U)
4: for S ∈ UID do

5: LReg[S][0] = ε

6: LReg[S][1] = {ε}
7: LRev = ε

8: Initialise T
9: PP = (MPK0

ABE,MPK1
ABE, LReg,T)

10: MK = (MSK0
ABE,MSK1

ABE, LRev)

Alg. 2 PKF ← RPVC.FnInit(F,MK,PP)

1: Set PKF = PP

Alg. 3 SKS ← RPVC.Register(S,MK,PP)

1: (SKSig, V KSig)← Sig.KeyGen(1κ)

2: SKS = SKSig

3: LReg[S][0] = V KSig

20

Alg. 4 EKF,S ← RPVC.Certify(S, F,MK,PP)

1: LReg[S][1] = LReg[S][1] ∪ F
2: LRev = LRev \ S
3: t← T
4: SK0

ABE ← ABE.KeyGen(S, F ∧ f,MSK0
ABE,MPK0

ABE)

5: SK1
ABE ← ABE.KeyGen(S, F ∧ f,MSK1

ABE,MPK1
ABE)

6: UK0
LRev,t

← ABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

7: UK1
LRev,t

← ABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

8: EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

Alg. 5 (σF,x, V KF,x, RKF,x)← RPVC.ProbGen(x, PKF , PP)

1: t← T
2: (m0,m1)

$←M×M
3: b

$← {0, 1}
4: cb ← ABE.Encrypt(mb, (x ∪ f), t,MPK0

ABE)

5: c1−b ← ABE.Encrypt(m1−b, (x ∪ f), t,MPK1
ABE)

6: Output: σF,x = (cb, c1−b), V KF,x = (g(mb), g(m1−b), LReg) and RKF,x = b

Alg. 6 θF (x) ← RPVC.Compute(σF,x, EKF,S , SKS , PP)

1: Input: EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

) and σF,x = (cb, c1−b)

2: Parse σF,x as (c, c′)

3: db ← ABE.Decrypt(c, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

4: d1−b ← ABE.Decrypt(c′, SK1
ABE,MPK1

ABE, UK
1
LRev,t

)

5: γ ← Sig.Sign((db, d1−b, S), SKS)

6: Output: θF (x) = (db, d1−b, S, γ)

Alg. 7 (RTF,x, τθF (x)
)← RPVC.BVerif(θF (x), V KF,x, PP)

1: Input: V KF,x = (g(mb), g(m1−b), LReg) and θF (x) = (db, d1−b, S, γ)

2: if F ∈ LReg[S][1] then

3: if accept← Sig.Verify((db, d1−b, S), γ, LReg[S][0]) then

4: if g(mb) = g(db) then Output (RTF,x = db, τθF (x)
= (accept, S))

5: else if g(m1−b) = g(d1−b) then Output (RTF,x = d1−b, τθF (x)
= (accept, S))

6: else Output (RTF,x =⊥, τθF (x)
= (reject, S))

7: Output (RTF,x =⊥, τθF (x)
= (reject,⊥))

Alg. 8 ỹ ← RPVC.Retrieve(τθF (x)
, RTF,x, V KF,x, RKF,x, PP)

1: Input: V KF,x = (g(mb), g(m1−b), LReg), θF (x) = (db, d1−b, S, γ), RKF,x = b, and (RTF,x, τθF (x)
) where RTF,x ∈

{db, d1−b,⊥}
2: if (τθF (x)

= (accept, S) and g(RTF,x) = g(m0)) then Output ỹ = 1

3: else if (τθF (x)
= (accept, S) and g(RTF,x) = g(m1)) then Output ỹ = 0

4: else Output ỹ =⊥

21

Alg. 9 {EKF,S′} or ⊥ ← RPVC.Revoke(τθF (x)
,MK,PP)

1: if τθF (x)
= (reject, S) then

2: LReg[S][1] = {ε}
3: LRev = LRev ∪ S
4: Refresh T
5: t← T
6: UK0

LRev,t
← ABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

7: UK1
LRev,t

← ABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

8: for all S ∈ UID do

9: Parse EKF,S as (SK0
ABE, SK

1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

10: Update and send EKF,S = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

11: else

12: output ⊥

Theorem 1. Given a revocable KP-ABE scheme secure in the sense of indistinguishability
against selective-target with semi-static query attack (IND-sHRSS) [1] for a class of Boolean
functions F closed under complement, an EUF-CMA secure signature scheme and a one-way
function g. Let RPVC be the Revocable Publicly Verifiable Computation scheme defined in
Algorithms 1–9. Then RPVC is secure in the sense of selective semi-static Public Verifiability,
selective semi-static Revocation, Vindictive Servers, Blind Verification and selective semi-static
Vindictive Managers.

Informally, the proof of Public Verifiability relies on the IND-CPA security of the underlying
revocable KP-ABE scheme and the one-wayness of the function g. Revocation relies on the
IND-sHRSS security of the revocable KP-ABE scheme. Finally, security against Vindictive
Servers relies on the EUF-CMA security of the signature scheme such that a vindictive server
cannot return an incorrect result with a forged signature claiming to be from an honest server
(note that chosen message attack is required since the vindictive client could act like a client
and submit computation requests to get a valid signature).

The proofs partially follow in the spirit of [14]. First we prove the following Lemma.

Lemma 1. The RPVC construction defined by Algorithms 1–9 is secure in the sense of selective,
semi-static Public Verifiability (Game 3) under the same assumptions as in Theorem 1.

Proof. Suppose AV C is an adversary with non-negligible advantage against the selective, semi-
static Public Verifiability game (Game 3) when instantiated by Algorithms 1–9. We begin by
defining the following three games:
• Game 0. This is the selective, semi-static Public Verifiability game as defined in Game 3.
• Game 1. This is the same as Game 0 with the modification that in ProbGen, we no

longer return an encryption of m0 and m1. Instead, we choose another random message
m′ 6= m0,m1 and, if F (x?) = 1, we replace c1 by the encryption of m′, and otherwise
we replace c0. In other words, we replace the ciphertext associated with the unsatisfied
function with the encryption of a separate random message unrelated to the other system
parameters, and in particular to the verification keys.
• Game 2. This is the same as Game 1 with the exception that instead of choosing a

random message m′, we implicitly set m′ to be the challenge input w in the one-way
function game.

Partially in the fashion of Parno et al. [14], we aim to show that an adversary with non-negligible
advantage distinguishing Game 0 and Game 1 can be used to construct an adversary that
may invert the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advantage
between Game 0 and Game 1, both with parameters (RPVC, F, qt, 1κ). Suppose otherwise,

22

that AV C can distinguish the two games with non-negligible advantage δ. We then construct
an adversary AABE that uses AV C as a sub-routine to break the IND-sHRSS security of the
indirectly revocable KP-ABE scheme. We consider a challenger C playing the IND-sHRSS
game (Game 10) with AABE , who in turn acts as a challenger for AV C :

1. AV C declares its choice of challenge input x?.
2. AABE transforms this into its own challenge input x? = x? ∪ f where f ∈ UF is the

attribute representing the challenge function F . It then sends this choice to C along with
a challenge time period t? = qt.

3. C runs the ABE.Setup algorithm to generate MPK0
ABE,MSK0

ABE and sends MPK0
ABE to

AABE .
4. AABE initializes QRev = ε and t = 1. It then simulates running RPVC.Setup by running

Algorithm 1 as written, with the exception of Line 2 where it sets MPK0
ABE to be that

provided by C, and implicitly sets MSK0
ABE to be that held by the challenger.

5. AABE runs RPVC.FnInit as written and gives PKF and PP to AV C , who returns a revo-
cation list R comprising servers that must be revoked at challenge time. AABE forwards
this list to C.

6. AV C is now provided with oracle access, to which AABE can respond as follows:
• Queries to RPVC.FnInit and RPVC.Register are performed as in Algorithms 2 and 3.
• Queries of the form RPVC.Certify(S, F ′,MK,PP): If AV C has queried for the chal-

lenge function F and for an identity that is not to be revoked at the challenge time
i.e. an identity S /∈ R, then AABE will return ⊥ (since generating an evaluation
key that will not be revoked for the challenge would be a trivial win). Similarly, ⊥
is returned if the current time period is the challenge time qt and there is a server
(other than the queried S) that is not currently revoked but should be in accordance
with AV C ’s challenge revocation list R (i.e. R * QRev \ S).
If ⊥ has not already been returned, AABE removes S from the list, QRev, of cur-
rently revoked servers (if present) and then simulates running RPVC.Certify as fol-
lows. Algorithm 4 is run as written with the exception that Lines 4 and 6 are
simulated using oracle queries to C. To simulate Line 4, AABE will make an or-
acle query to the ABE.KeyGen oracle. C will return the decryption key unless
x? ∈ F ′ (i.e. F ′(x?) = 1) and S /∈ R. The KeyGen query will be of the form
OKeyGen(S, F ′ ∧ f ′,MSK0

ABE,MPK0
ABE). Observe that x? /∈ F ′ ∧ f ′ unless F ′ = F .

Hence, C will always return a valid key if F ′ 6= F . If AV C has queried for the chal-
lenge function F for a server S then C will return ⊥ if S is supposed to be revoked
at the challenge time, or return the correct key otherwise. This is in-keeping with
the expected behaviour of the Certify oracle by the first clause of Line 1 of Oracle
Query 1.
To simulate Line 6, AABE makes a query toOKeyUpdate(QRev, t,MSK0

ABE,MPK0
ABE).

C returns a valid update key unless the current time is the challenge time (which
AABE chose to be qt) and the queried revocation list does not contain the challenge
revocation list R. Now, by the second clause of Line 1 in Oracle Query 1, this precise
occurrence will return ⊥, so to the view of AV C this is consistent behaviour.
• Queries of the form RPVC.Revoke(τθF (x)

,MK,PP): AABE first increments its time
counter, and outputs ⊥ if the token is acceptance, as no server should be revoked
(and in particular, Revoke would similarly return ⊥ and no server should be added to
the revocation list). Otherwise, S is added to QRev. Then, if the current time is the
challenge time, then AABE returns ⊥ if QRev does not contain all servers listed on the
challenge revocation list R. It then simulates running the RPVC.Revoke algorithm
by running Algorithm 9 as written with the exception of Line 6. To simulate this

23

line, AABE makes a query to OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). C returns a
valid update key unless t = qt and the queried revocation list does not contain the
challenge revocation list R. However, by the above check, AV C will expect to receive
⊥ in this case. Otherwise, a valid update key is returned.

7. Eventually (and in particular after qt Revoke queries), AV C finishes this query phase.
AABE then checks whether the queries made by AV C are consistent with the challenge
revocation list R chosen beforehand. If there is an entity listed within R that is not
currently revoked (i.e. listed in QRev) then AV C loses the game.

8. AABE must now generate a challenge for either Game 0 or Game 1.
To do so, it samples three distinct messages m0,m1 and m2 uniformly at random from

the message space, and flips a random coin RKF,x? = b
$← {0, 1}. It submits m0 and m1

as its choice of challenge to C, and receives back the encryption, CT ?, of one of these

messages (mb? for b?
$← {0, 1}), under attributes x? and time t? = qt. AABE sets cb to be

CT ?. It generates c1−b itself by running ABE.Encrypt(m2, x? = (x? ∪ f), qt,MPK1
ABE).

AABE chooses a random bit s
$← {0, 1}. If b = 0, it sets V KF,x? = (g(ms), g(m2), LReg).

Otherwise, V K = F, x? = (g(m2), g(ms), LReg). Note that s is essentially AABE ’s guess
of the bit b? chosen by C.

9. The resulting values are sent to AV C who is provided with oracle access. These queries
are handled in the same way as before, and eventually AV C outputs its guess θ?.

10. Let y be the non-⊥ plaintext contained in θ?. If g(y) = g(ms), AABE outputs a guess
b′ = s. Else, AABE guesses b′ = 1− s.

Notice that if s = b?(the challenge bit chosen by C), then the distribution of the above
coincides with Game 0 (since the verification key comprises g(m′) where m′ is the message
a legitimate server could recover, and g(ms) where ms is the other plaintext). Otherwise,
s = 1 − b? the distribution coincides with Game 1 (since the verification key comprises the
legitimate message and a random message m1−s that is unrelated to the ciphertext).

Now, we consider the advantage of this constructed adversary AABE playing the IND-
sHRSS game: Recall that by assumption, AV C has a non-negligible advantage δ in distinguish-
ing between Game 0 and Game 1 – that is

|Pr(Exp0
AV C [RPVC, F, qt, 1κ])− Pr(Exp1

AV C [RPVC, F, qt, 1κ])| > δ

where ExpiAV C [RPVC, F, qt, 1κ] denotes the output of running AV C in Game i.

Pr(b′ = b?) = Pr(s = b?) Pr(b′ = b?|s = b?) + Pr(s 6= b?) Pr(b′ = b?|s 6= b?)

=
1

2
Pr(g(y) = g(ms)|s = b?) +

1

2
Pr(g(y) 6= g(ms)|s 6= b?)

=
1

2
Exp0

AV C [RPVC, F, qt, 1κ] +
1

2
(1− Pr(g(y) = g(ms)|s 6= b?))

=
1

2
Exp0

AV C [RPVC, F, qt, 1κ] +
1

2

(
1−Exp1

AV C [RPVC, F, qt, 1κ]
)

=
1

2

(
Exp0

AV C [RPVC, F, qt, 1κ]−Exp1
AV C [RPVC, F, qt, 1κ] + 1

)
≥ 1

2
(δ + 1)

24

Hence,

AdvAABE ≥
∣∣∣∣Pr(b? = b′)− 1

2

∣∣∣∣
≥
∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2

Since δ is assumed non-negligible, δ
2 is also non-negligible. If AV C has advantage δ at

distinguishing these games then AABE can win the IND-sHRSS game with non-negligible
probability. Thus since we assumed the ABE scheme to be IND-sHRSS secure, we conclude
that AV C cannot distinguish Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the value of m′

to no longer be random but instead to correspond to the challenge w in the one-way function
inversion game (Game 12). We argue that the adversary has no distinguishing advantage
between these games since the new value is independent of anything else in the system bar the
verification key g(w) and hence looks random to an adversary with no additional information
(in particular, AV C does not see the challenge for the one-way function as this is played between
C and AABE).

Final Proof We now show that using AV C in Game 1, AABE can invert the one-way function
g – that is, given a challenge z = g(w) AABE can recover w. Specifically, during ProbGen, AABE
chooses the messages as follows:
• if F (x?) = 1, we implicitly set m1−b to be w and the corresponding verification key

component to be z. We randomly choose mb and compute the remainder of the verification
key as usual.
• if F (x?) = 0, we implicitly set mb to be w and set the verification key component to z.
m1−b is chosen randomly and the remainder of the verification key computed as usual.

Now, since AV C is assumed to be successful, it will output a forgery comprising the plaintext
that was encrypted under the unsatisfied function (F or F). By construction, this will be w
(and the adversary’s view is consistent since the verification key is simulated correctly using z).
AABE can therefore forward this result to C in order to invert the one-way function with the
same non-negligible probability that AV C has against the public verifiability game.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function is
hard-to-invert, then the RPVC as defined by Algorithms 1–9 is secure in the sense of selective,
semi-static Public Verifiability.

Lemma 2. The RPVC construction defined by Algorithms 1–9 is secure in the sense of selective,
semi-static Revocation (Game 5) under the same assumptions as in Theorem 1.

Proof. Let AV C be an adversary with non-negligible advantage against the selective, semi-static
Revocation game (Game 5) when instantiated by Algorithms 1–9. We define the following three
games:
• Game 0. This is the selective, semi-static Revocation game as defined in Game 5.
• Game 1. This is identical to Game 0 with the modification that ProbGen no longer

returns an encryption of m0 and m1. Instead, another random message m′ 6= m0,m1 is
chosen. If F (x?) = 1, ciphertext c1 is replaced by the encryption of m′, and otherwise c0
is set to be the encryption of m′.

25

• Game 2. This is as in Game 1 but m′ is set to be the challenge input w in the one-way
function game.

We show that an adversary that can distinguish Game 0 from Game 1 with non-negligible
advantage can be used to construct an adversary that inverts the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advan-
tage between Game 0 and Game 1, both instantiated with parameters (RPVC, F, qt, 1κ). For
contradiction, let AV C have non-negligible distinguishing advantage δ. We construct an adver-
sary AABE that uses AV C as a sub-routine to break the IND-sHRSS security of the indirectly
revocable KP-ABE scheme. Let C be a challenger playing the IND-sHRSS game (Game 10)
with AABE , who in turn acts as a challenger for AV C :

1. AV C selects a challenge input x?.
2. AABE chooses its own challenge input to be x? = x? ∪ f where f ∈ UF represents the

parameterised challenge function F . It also chooses the challenge time period to be t? = qt,
where AV C is parameterised by making exactly qt revoke queries.

3. C runs ABE.Setup to create MPK0
ABE,MSK0

ABE and sends MPK0
ABE to AABE .

4. AABE initializes the revocation list QRev = ε and sets t = 1. It simulates RPVC.Setup by
running Algorithm 1 as written, except for Line 2. Instead of initializing the first ABE
system itself, it sets MPK0

ABE to be that given by C. As it does not possess MSK0
ABE,

it will make use of oracle queries to C wherever this is needed.
5. AABE runs RPVC.FnInit as written. It sends PKF and PP to AV C , who declares a

revocation list R listing all servers that should be revoked when the challenge is created
in Line 9. AABE forwards R to C.

6. AV C may now perform oracle queries which AABE handles as follows:
• Queries to RPVC.FnInit and RPVC.Register are run as written in Algorithms 2 and 3.
• Queries of the form RPVC.Certify(S, F ′,MK,PP):
AABE checks whether the queried function F ′ is the challenge function F and if
the queried identity is not to be revoked at the challenge time i.e. S /∈ R. If both
conditions hold, AABE will return ⊥ (as issuing an evaluation key that will not be
revoked at the time of the challenge would be a trivial win). Similarly, AABE returns
⊥ if the current time period t is equal to the challenge time qt and if there is a
server (other than S) that is not currently revoked but should be in accordance with
AV C ’s challenge revocation list R (i.e. R * QRev \ S). If ⊥ has not been returned,
AABE checks whether the queried identity S is on the challenge revocation list R,
and returns ⊥ if so. The execution of RPVC.Certify is simulated as follows.
AABE runs Algorithm 4 as written with the exception that Lines 4 and 6 are simu-
lated using oracle queries to C. To simulate Line 4, AABE queries C forOKeyGen(S, F ′∧
f ′,MSK0

ABE,MPK0
ABE). C returns the decryption key unless x? ∈ F ′ ∧ f ′ (i.e.

F ′ ∧ f ′(x?) = 1) and S /∈ R′. Observe that x? /∈ F ′ ∧ f ′ unless F ′ = F (since there
is a bijection between attributes f ∈ UF and functions F ∈ F). Hence, C will always
return a valid key if F ′ 6= F . On the other hand, if the queried function F ′ = F ,
then by the checks performed by AABE at the beginning of the query, S is included
on R (else ⊥ would have been returned prior to this point). Therefore, even if the
challenge function is queried, C will return a key. In particular, note that C never
returns ⊥ in a manner inconsistent with that expected by AV C in accordance with
the Certify oracle.
To simulate Line 6, AABE makes a query toOKeyUpdate(QRev, t,MSK0

ABE,MPK0
ABE).

C returns a valid update key unless the current time is the challenge time qt and the
queried revocation list does not contain the challenge revocation list R. However,

26

if this was the case then AABE would already have returned ⊥. Therefore, C shall
always return an update key which AABE can use in the running of Certify.
• Queries of the form RPVC.Revoke(τθF (x)

,MK,PP): AABE first increments t. If
the token does not identify a server to revoke, it outputs ⊥ (as would the Revoke
algorithm). Otherwise, S is added to QRev. If the current time is qt, then AABE
returns ⊥ if QRev does not contain all servers listed on the challenge revocation list
R. AABE now simulates running the RPVC.Revoke algorithm by running Algorithm 9
as written with the exception of Line 6. To simulate this line, AABE makes a query
of the form OKeyUpdate(QRev, t,MSK0

ABE,MPK0
ABE). C returns a valid update key

unless t = qt and the queried revocation list does not contain the challenge revocation
list R. However, if this was so, AABE would have returned ⊥ above, and so a valid
update key is returned which AABE can forward to AV C .

7. Eventually (after qt Revoke queries), AV C finishes the query phase. AABE checks if AV C
has made suitable Revoke queries. If there exists an entity in R that is not currently
revoked (listed in QRev), it returns 0.

8. AABE must now generate a challenge for either Game 0 or Game 1.
It chooses three distinct random messages m0,m1 and m2, and chooses a random bit

RKF,x? = b
$← {0, 1}. It sends m0 and m1 to C as its choice of challenge. C chooses a

random bit b?
$← {0, 1} and returns CT ? ← ABE.Encrypt(mb? , x? = (x?∪f), qt,MPK0

ABE).
AABE sets cb = CT ? and generates c1−b ← ABE.Encrypt(m2, x? = (x?∪f), qt,MPK1

ABE).

AABE selects another bit s
$← {0, 1} and, if b = 0, sets V KF,x? = (g(ms), g(m2), LReg).

Otherwise, V KF,x? = (g(m2), g(ms), LReg). Note that s is AABE ’s guess for b?.
9. The resulting encoded input is sent to AV C who is also given oracle access. These queries

are handled in the same way as previously, and eventually AV C outputs its guess θ?.
10. Let y be the non-⊥ plaintext returned in θ?. If g(y) = g(ms), AABE guesses b′ = s. Else,
AABE guesses b′ = 1− s.

Observe that, if s = b? (the challenge bit chosen by C), then the distribution of the above
coincides with Game 0 (since the verification key comprises g(m′) where m′ is the message
a legitimate server could recover, and g(ms) where ms is the other plaintext). Otherwise,
s = 1 − b? the distribution coincides with Game 1 (since the verification key comprises the
legitimate message and a random message m1−s that is unrelated to the ciphertext).

Now, consider the advantage of AABE playing the IND-sHRSS game: By assumption, AV C
has a non-negligible advantage δ in distinguishing between Game 0 and Game 1 – that is

|Pr(Exp0
AV C [RPVC, F, qt, 1κ])− Pr(Exp1

AV C [RPVC, F, qt, 1κ])| > δ

where ExpiAV C [RPVC, F, qt, 1κ] denotes the output of running AV C in Game i.

Pr(b′ = b?) = Pr(s = b?) Pr(b′ = b?|s = b?) + Pr(s 6= b?) Pr(b′ = b?|s 6= b?)

=
1

2
Pr(g(y) = g(ms)|s = b?) +

1

2
Pr(g(y) 6= g(ms)|s 6= b?)

=
1

2
Exp0

AV C [RPVC, F, qt, 1κ] +
1

2
(1− Pr(g(y) = g(ms)|s 6= b?))

=
1

2
Exp0

AV C [RPVC, F, qt, 1κ] +
1

2

(
1−Exp1

AV C [RPVC, F, qt, 1κ]
)

=
1

2

(
Exp0

AV C [RPVC, F, qt, 1κ]−Exp1
AV C [RPVC, F, qt, 1κ] + 1

)
≥ 1

2
(δ + 1)

27

Hence,

AdvAABE ≥
∣∣∣∣Pr(b? = b′)− 1

2

∣∣∣∣
≥
∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2

Since δ is non-negligible, δ
2 is also non-negligible. If AV C has advantage δ at distinguishing

these games then AABE can win the IND-sHRSS game with non-negligible probability. How-
ever, since the ABE scheme was assumed IND-sHRSS secure, such an AV C cannot exist, and
therefore it is not possible to distinguish Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 straightforwardly sets the
new message m′ to be the challenge w in the one-way function inversion game (Game 12). An
adversary has no distinguishing advantage between these games as the new value is independent
of anything else in the system except the verification key g(w) (as was the case with m′ in Game
1, and hence looks random to an adversary with no additional information (in particular, AV C
does not see the challenge for the one-way function as this is played between C and AABE).

Final Proof We show that AABE can use AV C (running against Game 1 as a sub-routine
to invert the one-way function g – that is, given a challenge z = g(w) AABE can recover w.
Specifically, during ProbGen, AABE chooses the messages as follows:
• if F (x?) = 1, implicitly setm1−b = w and set the corresponding verification key component

to be z. As usual, mb is randomly chosen and the remainder of the verification key is
computed as usual.
• if F (x?) = 0, set mb to be w and set the verification key component to z. m1−b is chosen

randomly and the remainder of the verification key computed as usual.
Now, since AV C is assumed to be successful, it will output a forgery comprising the plaintext
that was encrypted under the unsatisfied function (F or F). By construction, this will be w
(and the adversary’s view is consistent since the verification key is simulated correctly using
z). AABE can therefore forward this result to C in order to invert the one-way function with
the same non-negligible probability that AV C has against the revocation game. We conclude
that if the ABE scheme is IND-sHRSS secure and the one-way function is hard-to-invert, then
the RPVC as defined by Algorithms 1–9 is secure in the sense of selective, semi-static Public
Verifiability.

Lemma 3. The RPVC construction defined by Algorithms 1–9 is secure against Vindictive
Servers (Game 6) under the same assumptions as in Theorem 1.

Proof. Let AV C be an adversary with non-negligible advantage against the Vindictive Servers
game (Game 6) when instantiated by Algorithms 1–9. We show that an adversary ASig with
non-negligble advantage δ in the EUF-CMA signature game (Game 11)can be constructed
using AV C . ASig interacts with the challenger C in the EUF-CMA security game and acts as
the challenger for AV C in the security game for Vindictive Servers for a function F as follows.
The basic idea is that ASig can create a VC instance and play the Vindictive Servers game with
AV C by executing Algorithms 1–9 himself. ASig will guess a server identity that he thinks the
adversary will select to vindictively revoke. The signature signing key that would be generated
during the Register algorithm for this server will be implicitly set to be the signing key in the

28

EUF-CMA game and any Compute oracle queries for this identity will be forwarded to the
challenger to compute. Then, assuming that ASig guessed the correct server identity, AV C will
output a forged signature that ASig may output as its guess in the EUF-CMA game.

1. C initializes Q = ε to be an empty list of messages queried to the Sig.Sign oracle and runs
Sig.KeyGen(1κ) to generate a challenge signing key SK and verification key V K. C sends
V K to ASig.

2. ASig chooses a function F on which to instantiate AV C .
3. ASig initializes the revocation list QReg = ε. Furthermore, it chooses a server identity

from UID \ AV C which will be denoted by S.
4. ASig runs RPVC.Setup(1κ) and RPVC.FnInit(F,MK,PP), as specified in Algorithms 1

and 2 and passes PKF and PP to the VC adversary AV C .
5. AV C may now perform oracle queries to RPVC.FnInit RPVC.Register RPVC.Certify and

RPVC.Revoke which ASig handles by running Algorithms 2, 3, 4 and 9 respectively.
6. Eventually, AV C finishes querying and declares the challenge input x?.
7. ASig runs RPVC.ProbGen on the challenge x? as specified in Algorithm 5.
8. AV C is given the values of PKF , PP , σF,x? , V KF,x? and RKF,x? . It is also given oracle

access to the following functions. ASig simulates these oracles and maintains a state of
the generated parameters for each query.
• FnInit(·,MK,PP): ASig runs this step as per Algorithm 2.
• Register(·,MK,PP): If, for a queried server S, S = S then return ⊥. Otherwise,
ASig makes queries to ORegister(S,MK,PP). If S has not been registered before
and therefore does not appear on the registration list QReg then the oracle returns
a signing key SKS for S and adds the pair (S, SKS) to QReg. Otherwise, the stored
signing key is returned.
• Certify(·, ·,MK,PP): ASig honestly runs Algorithm 4.
• Revoke(·,MK,PP): ASig operates as in Algorithm 9.
• Register2(·,MK,PP): ASig responds in the same way as for standard Register queries

above, but always returns ⊥ and not a signing key.
AV C eventually outputs a target server identity S̃.

9. If S̃ 6= S then ASig outputs ⊥ and stops. Else, AV C continues with oracle access as in
Step 8 as well as a Compute oracle. AV C submits queries OCompute(σF,x, EKF,S , SKS , PP)
for its choice of server S and σF,x(note that he may generate a valid σF,x using the public
delegation key). If S 6= S then ASig simply follows Algorithm 6 using the decryption and
signing keys generated during the oracle queries. Otherwise, S = S and ASig does not
have access to the signing key SKS . Thus, he runs the ABE.Decrypt operations correctly
to generate plaintexts d0 and d1, and submits m = (d0, d1, S) as a Sig.Sign oracle query
to C. C adds m to the list Q and returns γ ← Sig.Sign(m,SK), which ASig uses to return
θF (x) = (d0, d1, S, γ).

10. AV C finally outputs θ? which appears to be an invalid result computed by S̃. Thus, Verify
will output a reject token for S̃ and accept ← Sig.Verify((d0, d1, S̃), γ, V K). Thus, γ is a
valid signature under key SK.

11. ASig outputs m? = (d0, d1, S̃) and γ? = γ to C.
Note that due to Constraint 2 in Game 6, AV C is not allowed to have made a query for

OCompute(σx? , EKF,S̃ , SKS̃ , PP) and thus the forgery (m?, γ?) output by ASig will satisfy the

requirement in Game 11 that m? /∈ Q. We argue that, assuming S = S̃ (i.e. ASig correctly
guessed the challenge identity) then ASig succeeds with the same non-negligible advantage δ as
AV C . We assume that n = |UID| is polynomial (else the KDC could not efficiently search the

29

list LReg). The probability that ASig correctly guesses S = S̃ is 1
n and

AdvASig ≥
1

n
AdvAV C

≥ δ

n
≥ negl(κ)

We conclude that if AV C has a non-negligible advantage in the Vindictive Servers game
then ASig has the same advantage in the EUF-CMA game, but since the signature scheme is
assumed EUF-CMA secure, AV C may not exist.

We note that we lose a polynomial factor in the advantage due to having to guess the server
S̃ that the adversary will attempt to revoke. This factor could be removed if we formulated the
security model in a selective fashion such that AV C must declare up front which server he will
target, and then ASig can implicitly set the signing key for that server (in the Register step) to
be the challenge key in the EUF-CMA game and forward any Compute oracle requests to the
challenger.

Lemma 4. The RPVC construction defined by Algorithms 1–9 is secure in the sense of selective,
semi-static Vindictive Managers (Game 8) under the same assumptions as in Theorem 1.

Proof. Suppose AV C is an adversary with non-negligible advantage against the selective, semi-
static Vindictive Managers game (Game 8) when instantiated by Algorithms 1–9. We begin by
defining the following three games:
• Game 0. This is the selective, semi-static Vindictive Managers game as defined in

Game 8.
• Game 1. This is the same as Game 0 with the modification that in ProbGen, we no

longer return an encryption of m0 and m1. Instead, we choose another random message
m′ 6= m0,m1 and, if F (x?) = 1, we replace c1 by the encryption of m′, and otherwise
we replace c0. In other words, we replace the ciphertext associated with the unsatisfied
function with the encryption of a separate random message unrelated to the other system
parameters, and in particular to the verification keys.
• Game 2. This is the same as Game 1 with the exception that instead of choosing a

random message m′, we implicitly set m′ to be the challenge input w in the one-way
function game.

We aim to show that an adversary with non-negligible advantage distinguishing Game 0 and
Game 1 can be used to construct an adversary that may invert the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advantage
between Game 0 and Game 1, both with parameters (RPVC, F, qt, 1κ). Suppose otherwise,
that AV C can distinguish the two games with non-negligible advantage δ. We then construct
an adversary AABE that uses AV C as a sub-routine to break the IND-sHRSS security of the
indirectly revocable KP-ABE scheme. We consider a challenger C playing the IND-sHRSS
game (Game 10) with AABE , who in turn acts as a challenger for AV C :

1. AV C declares its choice of challenge input x?.
2. AABE transforms this into its own challenge input x? = x? ∪ f where f ∈ UF is the

attribute representing the challenge function F . It then sends this choice to C along with
a challenge time period t? = qt. It also computes r = F (x?) which will determine which of
the two ABE systems will be used for ‘positive’ functions and which for the complement
functions (since C will not issue a decryption key for a function satisfied by the challenge

30

input and so AABE must be sure that it will only be queried for the non-satisfied function).
In the following, let us use the notation F r as follows:
• If r = 0 then Fr = F and F1−r = F
• If r = 1 then Fr = F and F1−r = F .

That is, we choose r such that Fr(x
?) = 0.

3. C runs the ABE.Setup algorithm to generate MPKABE,MSKABE and sends MPKABE to
AABE .

4. AABE initializes QRev = ε and t = 1. It then simulates running RPVC.Setup by running
Algorithm 1 as written, with the exception that one of the sets of ABE system parameters
is assigned to be those generated by the challenger. Recall that r = F (x). AABE sets
MPKr

ABE to be the public parameters issued by C and MSKr
ABE is implicitly set to be

that held by C. It runs ABE.Setup to generate MPK1−r
ABE,MSK1−r

ABE as usual.
5. AABE runs RPVC.FnInit as written and gives PKF and PP to AV C , who returns a re-

vocation list R comprising servers that must be revoked at the challenge time. AABE
forwards this list to C.

6. AABE now provides oracle access to AV C as follows:
• Queries to RPVC.FnInit and RPVC.Register are performed as in Algorithms 2 and 3.
• Queries of the form RPVC.Certify(S, F ′,MK,PP): As specified in Oracle Query 1,
AABE will return ⊥ if the query is for the challenge function F and for a server S
that is not necessarily to be revoked at the challenge time (i.e. S /∈ R) to avoid trivial
wins. Similarly, ⊥ is returned if the current time period t is the challenge time qt and
there is a server (other than the queried S) that is not currently revoked but should
be in accordance with AV C ’s challenge revocation list R (i.e. R * QRev \ S). If ⊥
has not already been returned, AABE removes S from the list, QRev, of currently
revoked servers (if present) and then simulates running RPVC.Certify as follows.

– SKr
ABE is generated by issuing an oracle query to the ABE.KeyGen oracle on

parameters (S, F ′r∧f ′,MSKr
ABE,MPKr

ABE). Now, C will return a valid decryp-
tion key unless x? ∈ F ′r ∧ f ′ and S /∈ R. Recall that x? = x? ∪ f and hence if
F ′r 6= Fr then f ′ 6= f and x? /∈ F ′r ∧ f ′. On the other hand, if F ′r = Fr then
necessarily S ∈ R else AABE would have returned ⊥ previously. Hence, C will
always be able to return a valid decryption key SKr

ABE.
– SK1−r

ABE is generated by AABE running ABE.KeyGen using MSK1−r
ABE for the

function F1−r ∧ f as usual.
– UKr

LRev,t
is generated by making a query to the ABE.KeyUpdate oracle for pa-

rameters (QRev, t,MSKr
ABE,MPKr

ABE). C will return a valid update key unless
the current time period t is the challenge time qt and R 6⊆ QRev. However, if
this was the case then AABE would already have returned ⊥, and hence a valid
update key is always returned.

– UK1−r
LRev,t

is generated by AABE running ABE.KeyUpdate using MSK1−r
ABE as

usual.
– The remainder of the Certify algorithm is run as written.

• Queries of the form RPVC.Revoke(τθF (x)
,MK,PP): As stated in Oracle Query 2,

AABE will first increment the current time t and will return ⊥ if the query does not
request a revocation (as would the Revoke algorithm). It will also return ⊥ if the
time period is now the challenge time qt (i.e. this is the qtht Revoke query made by
AV C) and R 6⊆ QRev ∪ S (i.e. there exists a server other than S that is listed on
R but is not currently revoked). Otherwise, S is added to the list QRev and AABE
simulates running Revoke as written with the following exception:

– UKr
LRev,t

is generated by making a query to the ABE.KeyUpdate oracle for pa-

31

rameters (QRev, t,MSKr
ABE,MPKr

ABE). C will return a valid update key unless
the current time period t is the challenge time qt and R 6⊆ QRev. However, if
this was the case then AABE would already have returned ⊥, and hence a valid
update key is always returned.

7. Eventually (and in particular after qt Revoke queries), AV C finishes this query phase.
AABE then checks whether the queries made by AV C are consistent with the challenge
revocation list R chosen beforehand. If there is an entity listed within R that is not
currently revoked (i.e. listed in QRev) then AV C loses the game.

8. Otherwise, AABE must now generate a challenge encoded output and to do so it must
simulate a computation server. It first picks a server S which is not an identity on the
challenge revocation list R i.e. S 6∈ R. It then runs Algorithm 3 as written to register S
and then it must then simulate running the Certify algorithm for the sever S and challenge
function F . However, as it does not hold the full master secret key MK, it must use the
oracle access provided by C.
It will run Algorithm 4 as written with the following exceptions:
• SKr

ABE is generated querying the ABE.KeyGen oracle on (S, Fr∧f,MSKr
ABE,MPKr

ABE).
C will return a valid decryption key unless x? ∈ Fr ∧ f and S /∈ R. Recall that
x? = x? ∪ f so x? ∈ Fr ∧ f if and only if x? ∈ Fr. However, r was chosen such
that Fr(x

?) = 0 and hence x? /∈ Fr and so x? /∈ Fr ∧ f . Thus, C will return a valid
decryption key.
• SK1−r

ABE is generated by AABE running ABE.KeyGen using MSK1−r
ABE for the function

F1−r ∧ f as usual.
• UKr

LRev,t
is generated by making a query to the ABE.KeyUpdate oracle for parameters

(QRev, t,MSKr
ABE,MPKr

ABE). C returns a valid update key unless the current time
period t is the challenge time qt and R 6⊆ QRev. Now, by virtue of the fact that AV C
has finished its query phase and no further revocations have occurred, the time is
indeed qt. However, AABE ended the game in Step 7 if R 6⊆ QRev and hence a this
point, C will certainly return a valid update key.
• UK1−r

LRev,t
is generated by AABE running ABE.KeyUpdate using MSK1−r

ABE as usual.
9. AABE must now run ProbGen to generate a challenge for either Game 0 or Game 1. To

do so, it samples three distinct messages m0,m1 and m2 uniformly at random from the

message space, and flips a random coin RKF,x? = b
$← {0, 1}. It submits m0 and m1 as its

choice of challenge to C, and receives back the encryption, CT ?, of one of these messages

(mb? for b?
$← {0, 1}), under attributes x?, time t? = qt and public parameters MPKr

ABE.
AABE sets cr⊕b ← CT ? and c1−(r⊕b) ← ABE.Encrypt(m2, x?, t

?,MPK1−r
ABE).

AABE then selects a random bit s
$← {0, 1}. If b = 0, it sets V KF,x? = (g(ms), g(m2), LReg).

Otherwise, V K = F, x? = (g(m2), g(ms), LReg). Note that s is essentially AABE ’s guess
of the bit b? chosen by C.

10. AABE now simulates the server S performing the computation to output θF (x?) by running
Algorithm 6 as written, since valid keys have been generated for S in the preceding steps.

11. The resulting values σF,x? , θF (x?) and V KF,x? are sent to AV C who is provided with oracle
access. These queries are handled in the same way as before. and eventually AV C outputs
its guess RTF,x and τθF (x)

.
12. If g(RTF,x) = g(ms), AABE outputs a guess b′ = s. Else, AABE guesses b′ = 1− s.

Notice that if s = b?(the challenge bit chosen by C), then the distribution of the above
coincides with Game 0 (since the verification key comprises g(m′) where m′ is the message
a legitimate server could recover, and g(ms) where ms is the other plaintext). Otherwise,
s = 1 − b? the distribution coincides with Game 1 (since the verification key comprises the

32

legitimate message and a random message m1−s that is unrelated to the ciphertext).
Now, we consider the advantage of this constructed adversary AABE playing the IND-

sHRSS game: Recall that by assumption, AV C has a non-negligible advantage δ in distinguish-
ing between Game 0 and Game 1 – that is

|Pr(Exp0
AV C [RPVC, F, qt, 1κ])− Pr(Exp1

AV C [RPVC, F, qt, 1κ])| > δ

where ExpiAV C [RPVC, F, qt, 1κ] denotes the output of running AV C in Game i.

Pr(b′ = b?) = Pr(s = b?) Pr(b′ = b?|s = b?) + Pr(s 6= b?) Pr(b′ = b?|s 6= b?)

=
1

2
Pr(g(RTF,x) = g(ms)|s = b?) +

1

2
Pr(g(RTF,x) 6= g(ms)|s 6= b?)

=
1

2
Exp0

AV C [RPVC, F, qt, 1κ] +
1

2
(1− Pr(g(RTF,x) = g(ms)|s 6= b?))

=
1

2
Exp0

AV C [RPVC, F, qt, 1κ] +
1

2

(
1−Exp1

AV C [RPVC, F, qt, 1κ]
)

=
1

2

(
Exp0

AV C [RPVC, F, qt, 1κ]−Exp1
AV C [RPVC, F, qt, 1κ] + 1

)
≥ 1

2
(δ + 1)

Hence,

AdvAABE ≥
∣∣∣∣Pr(b? = b′)− 1

2

∣∣∣∣
≥
∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
≥ δ

2

Since δ is assumed non-negligible, δ
2 is also non-negligible. If AV C has advantage δ at

distinguishing these games then AABE can win the IND-sHRSS game with non-negligible
probability. Thus since we assumed the ABE scheme to be IND-sHRSS secure, we conclude
that AV C cannot distinguish Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is to simply set the value of m′

to no longer be random but instead to correspond to the challenge w in the one-way function
inversion game (Game 12). We argue that the adversary has no distinguishing advantage
between these games since the new value is independent of anything else in the system bar the
verification key g(w) and hence looks random to an adversary with no additional information
(in particular, AV C does not see the challenge for the one-way function as this is played between
C and AABE).

Final Proof We now show that using AV C in Game 1, AABE can invert the one-way function
g – that is, given a challenge z = g(w) AABE can recover w. Specifically, during ProbGen, AABE
chooses the message m1−r⊕b to be w and the corresponding verification key component to be z.
We randomly choose mr⊕b and compute the remainder of the verification key as usual. Now,
since AV C is assumed to be successful, it will output a retrieval key comprising the plaintext
that was encrypted under the unsatisfied function (F or F). By construction, this will be w
(and the adversary’s view is consistent since the verification key is simulated correctly using
z). AABE can therefore forward this result to C in order to invert the one-way function with

33

the same non-negligible probability that AV C has against the selective, semi-static Vindictive
Managers game.

We conclude that if the ABE scheme is IND-sHRSS secure and the one-way function is
hard-to-invert, then the RPVC as defined by Algorithms 1–9 is secure in the sense of selective,
semi-static Vindictive Manager.

Lemma 5. The RPVC construction defined by Algorithms 1–9 is secure against Blind Verifi-
cation (Game 9) under the same assumptions as in Theorem 1.

Proof. The proof follows from a standard probability argument. We first argue that the only
inputs that may reveal useful information to the adversary are θF (x) and V KF,x. We then show
that the adversarial view of these inputs does not provide an advantage at guessing the result.

The adversary is provided with the following inputs over the course of the game: PKF , PP ,
θF (x), V KF,x and the outputs from oracle queries. Now, in our construction, PKF = PP and as
this is just public parameters that is constant over all computations, this clearly does not reveal
any information about F (x). In particular, since the adversary does not see the encoded input
(ciphertexts) from the challenge computation, the ABE public parameters in PP are not helpful
(else the ABE scheme would not be IND-sHRSS secure), and neither is the time parameter
which just comprises a counter or the list LReg that contains only function lists and signature
verification keys.

The inputs θF (x) and V KF,x clearly do rely on the choice of x and hence of F (x) and we
will consider these shortly. We first consider the oracle access given to the following functions:
• FnInit(·,MK,PP): Queries of this form simply output the public parameters PP which

is already considered as an explicit input to the adversary.
• Register(·,MK,PP): Queries to this oracle will result in the output of a signing key for

a server S. However, this does not relate to the retrieval key and would be the same for
any choice of x.
• Certify(·, ·, ·,MK,PP): A call to this oracle will cause an additional label to be added to

the list LReg in PP , which as a simple function identifier does not yield useful information
about the challenge computation. It will also output two decryption keys and two update
keys from the underlying ABE systems. Again, as the adversary only sees plaintexts and
does not see the ciphertexts forming the challenge encoded input, such a key is not useful.
• Revoke(·, ·, ·,MK,PP): As with Certify queries, this results in update keys and decryption

keys for the ABE systems which do not help the adversary in this game.
Hence, providing oracle access to these functions does not help the adversary to distinguish
which input was selected and hence the value of F (x). Thus, the only inputs to the adversary
that depend on the choice of challenge input are θF (x) and V KF,x, and so we restrict our
attention to these. As observed in (1) in Section 4, a well-formed response by the server will be
either (mb,⊥) or (⊥,m1−b) according RKF,x. In detail this means, where RKF,x = b:

• if F (x) = 1, then θF (x) =

{
(m0,⊥), if b = 0

(⊥,m0), if b = 1

• if F (x) = 0, then θF (x) =

{
(⊥,m1), if b = 0

(m1,⊥), if b = 1

Finally note also that V KF,x = (g(mb), g(m1−b)) by definition (excluding LReg as this is
covered by the consideration of PP above). We introduce the notation V to denote the ad-
versary’s view of θF (x) and V KF,x – that is, V = (db, d1−b, g(mb), g(m1−b)) would imply that
θF (x) = (db, d1−b) and that V KF,x = (g(mb), g(m1−b)).

We show that the probability that the adversary outputs a correct guess of F (x) given
a particular set of inputs V is the same as his chance of guessing without seeing V. Thus,

34

he cannot guess F (x) with any advantage over what he knows about the distribution of F a
priori. The argument proceeds as follows. Let V1 = (m′,⊥, g(m′), g(m1−b)) and let V2 = (⊥
,m′′, g(mb), g(m′′)). Note that these are the two possible views – A sees one message (either m0

or m1, both of which are uniformly drawn from the same distribution) and the one-way function
applied to that message and the one way function applied to a different (unseen) message.

First observe that the value of F (x) and the value of b
$← {0, 1} are independent events,

Pr[b = 1] = 1
2 , and that Pr[F (x) = 0] + Pr[F (x) = 1] = 1 since F is a Boolean function and

must result in either 1 or 0. Then,

Pr[V = V1] = Pr[(F (x) = 1 ∧ b = 0) ∨ (F (x) = 0 ∧ b = 1)]

= Pr[F (x) = 1 ∧ b = 0] + Pr[F (x) = 0 ∧ b = 1]

= Pr[F (x) = 1] Pr[b = 0] + Pr[F (x) = 0] Pr[b = 1] since F (x) and b are independent

=
1

2
Pr[F (x) = 1] +

1

2
Pr[F (x) = 0]

=
1

2
(Pr[F (x) = 0] + Pr[F (x) = 1])

=
1

2
(2)

Now,

Pr[F (x) = 0|V = V1] =
Pr[F (x) = 0 ∧ V = V1]

Pr[V = V1]

=
Pr[F (x) = 0 ∧ b = 1]

Pr[V = V1]

=
Pr[F (x) = 0] Pr[b = 1]

Pr[V = V1]
since F (x) and b are independent

=
1
2 Pr[F (x) = 0]

1
2

by (2)

= Pr[F (x) = 0]

Similarly,

Pr[V = V2] = Pr[(F (x) = 1 ∧ b = 1) ∨ (F (x) = 0 ∧ b = 0)]

= Pr[F (x) = 1 ∧ b = 1] + Pr[F (x) = 0 ∧ b = 0]

= Pr[F (x) = 1] Pr[b = 1] + Pr[F (x) = 0] Pr[b = 0] since F (x) and b are independent

=
1

2
Pr[F (x) = 1] +

1

2
Pr[F (x) = 0]

=
1

2
(Pr[F (x) = 0] + Pr[F (x) = 1])

=
1

2
(3)

Now,

35

Pr[F (x) = 0|V = V2] =
Pr[F (x) = 0 ∧ V = V2]

Pr[V = V2]

=
Pr[F (x) = 0 ∧ b = 0]

Pr[V = V2]

=
Pr[F (x) = 0] Pr[b = 0]

Pr[V = V2]
since F (x) and b are independent

=
1
2 Pr[F (x) = 0]

1
2

by (3)

= Pr[F (x) = 0]

A symmetric argument holds for F (x) = 1, and hence we can conclude that knowledge of the
adversarial inputs does not provide any advantage in determining F (x) other than that which
could be guessed without that knowledge (i.e. the inputs leak no information about F (x)).

We conclude that combining the results of Lemmas 1–5 gives a proof of Theorem 1.

5 Conclusion

We have introduced the new notion of RPVC and provided a rigorous framework that we believe
to be more realistic than the purely theory oriented models of prior work, especially when the
KDC is an entity responsible for user authorization within a organization. We believe our model
more accurately reflects practical environments and the necessary interaction between entities
for PVC. Each server may provide services for many different functions and for many different
clients. The first model of Parno et al. [14] considered evaluations of a single function, while
their second allowed for multiple functions but required a more exotic type of ABE scheme.
This allowed a single ProbGen stage to encode input for any function, whilst in our model, we
also allow multiple functions but use a simpler ABE scheme that also permits the revocation
functionality. We require ProbGen to be run for each unique F (x) to be outsourced which we
believe to be reasonable. Additionally, in our model, any clients may submit multiple requests
to any available servers, whereas prior work considered just one server.

The consideration of this new model leads to new functionality as well as new security
threats. We have shown that by using a revocable KP-ABE scheme we can revoke misbehaving
servers such that they receive a penalty for cheating and that, by permuting elements within
messages, we achieve output privacy (as hinted at by Parno et al. although seemingly with
two fewer decryptions than their brief description implies). We have shown that this blind
verification could be used when a manager runs a pool of servers and rewards correct work –
he needs to verify but is not entitled to learn the result. We have extended previous notions
of security to fit our new definitional framework, introduced new models to capture additional
threats (e.g. vindictive servers using revocation to remove competing servers), and provided a
provably secure construction.

We believe that this work is a useful step towards making PVC practical in real environments
and provides a natural set of baseline definitions from which to add future functionality. For
example, in future work we will introduce an access control framework (using our scheme as a
black box construction) to restrict the set of functions that clients may outsource, or to restrict
(using the blind verification property) the set of verifiers that may learn the output. In this
scenario, the KDC entity may, in addition to certifying servers and registering clients, determine
access rights for such entities.

36

References

[1] N. Attrapadung and H. Imai. Attribute-based encryption supporting direct/indirect revo-
cation modes. In M. G. Parker, editor, IMA Int. Conf., volume 5921 of Lecture Notes in
Computer Science, pages 278–300. Springer, 2009.

[2] N. Attrapadung and H. Imai. Dual-policy attribute based encryption. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, ACNS, volume 5536 of Lecture
Notes in Computer Science, pages 168–185, 2009.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society, 2007.

[4] A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient revoca-
tion. In P. Ning, P. F. Syverson, and S. Jha, editors, ACM Conference on Computer and
Communications Security, pages 417–426. ACM, 2008.

[5] H. Carter, C. Lever, and P. Traynor. Whitewash: outsourcing garbled circuit generation
for mobile devices. In C. N. P. Jr., A. Hahn, K. R. B. Butler, and M. Sherr, editors,
Proceedings of the 30th Annual Computer Security Applications Conference, ACSAC 2014,
pages 266–275. ACM, 2014.

[6] S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable
computation. In TCC, pages 499–518, 2013.

[7] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In T. Rabin, editor, CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 465–482. Springer, 2010.

[8] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[9] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai, E. Shi, and
H. Zhou. Multi-input functional encryption. In P. Q. Nguyen and E. Oswald, editors,
Advances in Cryptology - EUROCRYPT 2014 - Proceedings, volume 8441 of Lecture Notes
in Computer Science, pages 578–602. Springer, 2014.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In A. Juels, R. N. Wright, and S. D. C. di Vimercati,
editors, ACM Conference on Computer and Communications Security, pages 89–98. ACM,
2006.

[11] M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of ABE cipher-
texts. In 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings. USENIX Association, 2011.

[12] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman & Hall/Crc Cryp-
tography and Network Security Series). Chapman & Hall/CRC, 2007.

[13] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic
access structures. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 195–203. ACM, 2007.

37

[14] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Ver-
ifiable computation from attribute-based encryption. In R. Cramer, editor, TCC, volume
7194 of Lecture Notes in Computer Science, pages 422–439. Springer, 2012.

[15] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167. IEEE Computer Society, 1986.

A Background

A.1 Cryptographic Primitives

In this section we introduce some cryptographic primitives that will be required in our construc-
tion of a VC scheme, namely Key-policy Attribute-based Encryption (KP-ABE), a revocable
extension of KP-ABE, digital signatures and one-way functions. For each, we also give a brief
insight into the intended purpose of these primitives in the VC construction to follow. These
remarks will become clearer in the remainder of the paper. We begin by providing an overview
of the notation used throughout the remainder of the paper.

A.1.1 Key-policy Attribute-based Encryption

Attribute-based encryption (ABE) is a public key, functional encryption primitive that allows
the decryption of a ciphertext if and only if some policy formula formed over the data and
decrypting entity is satisfied. More specifically, we define a universe U of “attributes” which
are labels that may describe data or entities. We then form a set of attributes A ∈ 2U and a
policy A ∈ 22

U
. Then decryption may succeed if and only if A ∈ A. Variants of ABE include

Key-policy ABE (KP-ABE) [10] where the policy is associated with the decryption key and
a set of attributes is associated with each ciphertext; Ciphertext-policy ABE (CP-ABE) [3]
where the policy is attached to a ciphertext and decryption keys are associated with sets of
attributes; and Dual-policy ABE (DP-ABE) [2] in which both ciphertexts and decryption keys
are associated with both a policy and an attribute set, and the key attributes must satisfy the
ciphertext policy and vice versa. In this paper we will focus only on KP-ABE.

More concretely, in KP-ABE, each private key is associated with some family of attribute
sets A = {A1, . . . , Am}, while each ciphertext is computed using a single, system-wide public
key and associated with a single subset of attributes A. Decryption succeeds if the private key
includes the attribute set under which the message was encrypted: that is Ai = A for some
i ∈ [m]. The set of attribute sets defining a private key is usually called an access structure
and, in most schemes, is monotonic, meaning A′ ∈ A whenever there exists A ⊂ A′ such that
A ∈ A. A notable non-monotonic scheme was given by Ostrovsky et al. [13].

A KP-ABE scheme comprises the following algorithms:

• (PP ,MK)← ABE.Setup(1κ): a randomized algorithm that takes a security parameter as
input and outputs a master key MK and public parameters PP
• CT ← ABE.Encrypt(m,A,PP): a randomized algorithm that takes as input a message m,

a set of attributes A and the public parameters PK, and outputs a ciphertext CT
• SKA ← ABE.KeyGen(A,MK,PP): a randomized algorithm that takes as input an access

structure A, the master key MK and the public parameters PP , and outputs a private
decryption key SKA
• m or ⊥← ABE.Decrypt(CT, SK,PP): takes as input a ciphertext CT of a message m

associated with a set of attributes A, a decryption key SK with embedded access structure
A, and the public parameters. It outputs the message m if A ∈ A, and ⊥ otherwise.

38

We do not give the correctness or security properties in this background section as we will
be interested in using a revocable extension of KP-ABE. The reader is referred to the cited
prior literature for more details. ABE has previously been used primally as a means of cryp-
tographically enforcing access control – for example, with KP-ABE objects are encrypted and
a descriptive set of attributes attached, while entities are certified and issued a key containing
a policy defining the types of objects they may access; decryption of an object succeeds if and
only if the access control policy is satisfied by the requested object’s attributes. In this work,
we use KP-ABE in a different setting as a proof that a policy has been satisfied by a set of
input values.

A.1.2 Revocable KP-ABE

To enable the revocation of malicious computation servers, we require a KP-ABE scheme that
supports entity revocation (as opposed to attribute revocation). Revocable ABE schemes can
support two different modes [1]:
• Direct revocation allows users to specify a revocation list at the point of encryption. This

means that periodic rekeying is not required but the encryptors must have knowledge of,
or be able to choose, the current revocation list.

• Indirect revocation requires ciphertexts to be associated with a time period (as an addi-
tional attribute) and for a key authority to issue key update material at each time period
which enables non-revoked users to update their key to be functional during that time
period. A revoked user will not be able to use the update material and thus their key will
not succeed at decrypting ciphertexts associated with the current time period attribute.
With indirect revocation, users need only know the current time attribute during encryp-
tion, but increased communication costs are incurred due to the dissemination of the key
update material.

In this paper we use the indirect revocable KP-ABE scheme given by Attrapadung et al. [1],
itself a more formal definition of that given by Boldyreva et al. [4]. This choice is primarily
due to our assumption that the KDC should be the authority on trusted servers (since it is
the KDC that certifies them in the first place) and that client devices should have the least
amount of work to do and therefore shouldn’t be required to maintain the revocation list, and
to synchronise it with that held by other clients. However, due to the largely black-box use of
this primitive, it should be easy to change to an alternate revocation scheme.

These schemes work by defining the universe of attributes to be U = Uattr ∪ UID ∪ Utime

where Uattr is the normal attribute universe for describing ciphertexts and forming access control
policies, Utime comprises attributes for time periods, and UID contains an attribute per server
identity. They then use the following algorithms:
• (PP ,MK)← ABE.Setup(1κ,U): This randomised algorithm takes the security parameter

and the universe of attributes as input and outputs public parameters PP and master
secret key MK.
• CT ← ABE.Encrypt(t, A,m, PP): The randomised encryption algorithm takes the current

time period t ∈ Utime, an attribute set A ⊂ Uattr, a message m and the public parameters,
and outputs a ciphertext that is valid for time t.
• SKid,A ← ABE.KeyGen(id,A,MK,PP): The randomised key generation algorithm takes as

input an identity id ∈ UID for a user, an access structure encoding a policy, as well as the
master secret key and public parameters. It outputs a decryption key for the user id.
• UKR,t ← ABE.KeyUpdate(R, t,MK,PP): This randomised algorithm takes a revocation

list R ⊆ UID containing the identities of revoked entities, the current time period, as well
as the master secret key and public parameters. It outputs updated key material UKR,t.

39

• m or ⊥← ABE.Decrypt(CT, SKid,A, PP , UKR,t): The decryption algorithm takes a ci-
phertext, a decryption key, the public parameters and an update key as input. It outputs
the plaintext m if the attributes associated with CT satisfy A and the value of t in the
update key matches that specified during the encryption of CT , and outputs ⊥ otherwise.

Correctness of a revocable KP-ABE scheme is defined as follows:

Definition 8. A revocable KP-ABE scheme is correct if for all m ∈ M, id ∈ Uid,R ⊆ Uid,A ∈
2Uattr,A ⊂ Uattr, t ∈ Utime, if A ∈ A and id /∈ R, then

Pr[(PP ,MK)← ABE.Setup(1κ), SKid ← ABE.KeyGen(id,A,MK,PP),

CT ← ABE.Encrypt(t, A,m, PP),m← ABE.Decrypt(CT, SKid,A, PP , UKR,t)]

= 1− negl(κ),

The schemes cited above use the Complete-subtree method to arrange users as the leaves of
a binary tree such that the required key-update material can be reduced from the naive method
of O(n−r) where n is the number of users and r is the number of revoked users, to O(r log(n2)).
This approach works as follows for a revocation list R. For a leaf node l ∈ UID, let Path(l) be
the set of nodes on the path between the root node and l inclusively. Then, for each l ∈ R, mark
all nodes in Path(l). Define Cover(R) to be the set of all unmarked children of marked nodes,
and generate update keys for these nodes. In this paper we use a permitted list rather than a
revocation list and thus this algorithm will be adjusted accordingly, as discussed in Section ??.

Note that the time parameter in the above algorithms could be a literal clock value where
all entities have access to some synchronised clock. In this case, rekeying must occur at every
time period regardless of whether a revocation has occurred in the prior period. Alternatively,
the time parameter could simply be a counter that is updated when a revocation takes place
and the ABE.KeyUpdate algorithm is run. This would be more akin to a “push” system where
entities should be notified by the key authority when newly updated key material is required.
For generality, in our instantiation we will assume a time source T from which the current time
period t (be that a literal time value or counter etc.) may be efficiently sampled as t← T.

The security property we consider in this paper for revocable KP-ABE is indistinguishability
against selective-target with semi-static query attack (IND-sHRSS), presented in Game 10 [1].
This is a selective notion where the adversary must declare at the beginning of the game the set
of attributes (t?, x?) to be challenged upon. He is then given access to the public parameters
and must choose a target revocation set R which is the set of entities that should be in a
revoked state at time t?. The adversary is then given oracle access to the ABE.KeyGen and
ABE.KeyUpdate functions as specified in Oracle Queries 7 and 8. To prevent trivial wins, for
a Key Generation query, the adversary may not query for any key SKid,A where the target
attribute set x? satisfies A and the identity is not revoked at time t?. Similarly, for an Update
Key request, the adversary is prevented from learning an update key UKR,t? for the challenge
time period t? for a less restrictive revocation list R than the challenge list R. As in a standard
IND-CPA notion, the adversary outputs two messages and the challenger chooses one of them
at random to encrypt and passes the resulting ciphertext to the adversary. The adversary then
guesses which message was encrypted. The advantage of the adversary is given in Definition 9.

Definition 9. The advantage of an adversary A running in probabilistic polynomial time (PPT)
is defined as:

AdvIND-sHRSS
A (ABE , 1κ) = Pr[ExpIND-sHRSS

A [ABE , 1κ] = 1]− 1
2 .

A revocable KP-ABE scheme is secure in the sense of indistinguishability against selective-target
with semi-static query attack (IND-sHRSS) if for all PPT adversaries A, AdvIND-sHRSS

A (ABE,
1κ) ≤ negl(κ).

40

Game 10 ExpIND-sHRSS
A [ABE , 1κ]:

1: (t?, x?)← A(1κ);
2: (PP ,MK)← Setup(1κ);
3: R← A(PP);

4: (m0,m1)← AO
KeyGen(·,·,MK,PP),OKeyUpdate(·,·,MK,PP))(R,PP);

5: b
$← {0, 1};

6: CT ? ← Encrypt(t?, x?,mb, PP);

7: b? ← AOKeyGen(·,·,MK,PP),OKeyUpdate(·,·,MK,PP))(R,PP);
8: if (b′ = b) return 1;
9: else return 0;

Oracle Query 7 OKeyGen(id,A,MK,PP):

1: if x? ∈ A then
2: if id /∈ R then
3: return ⊥
4: SKid,A ← KeyGen(id,A,MK,PP)
5: return SKid,A

Oracle Query 8 OKeyUpdate(R, t,MK,PP):

1: if t = t? then
2: if R 6⊆ R then
3: return ⊥
4: UKR,t ← KeyUpdate(R, t,MK,PP)
5: return UKR,t

A.1.3 Digital Signatures

Digital signatures provide a proof message integrity, as well as data origin authentication (since
keys can be associated to particular users). We require a message to be signed using a private
signing key owned by a particular entity, and using a public verification key we can verify
that the signature was actually generated using the given signing key and that the contents of
the message has not changed since the signature was computed. We will use this primitive to
provide a means of validating that the result of a computation was computed by the claimed
server and that it has not been maliciously altered.

A digital signature scheme Sig comprises three polynomial-time algorithms Sig.KeyGen, Sig.Sign
and Sig.Verify defined as follows [12]:
• (SK, V K) ← Sig.KeyGen(1κ): The probabilistic KeyGen algorithm takes as input the

security parameter and generates a signing key SK and a verification key V K.
• γ ← Sig.Sign(m,SK): The probabilistic Sign algorithm takes as input a message to be

signed and the signing key, and outputs a signature γ of m.
• accept or reject← Sig.Verify(m, γ, V K): The deterministic Verify algorithm takes as input

a message and corresponding signature to be verified as well as the verification key, and
outputs accept if γ is a valid signature on m and reject otherwise.

Definition 10. A signature scheme is correct if for all (SK, V K) pairs generated by Sig.KeyGen(1κ)
and every message m in the message space, Sig.Verify(m,Sig.Sign(m,SK), V K) = 1.

We define a signature scheme to be existentially unforgeable under an adaptive chosen
message attack (EUF-CMA) if an adversary, given polynomially many signatures on messages
of its choice, cannot create a message m? with a valid signature where m? was not one of the

41

Game 11 ExpEUF-CMA
A [Sig, 1κ]:

1: Initialise Q = ε to be an empty list
2: (SK, V K)← Sig.KeyGen(1κ)

3: (m?, γ?)← AOSig.Sign(·,SK)(V K)
4: if (accept← Sig.Verify(m?, γ?, V K) and m? /∈ Q) return 1;
5: else return 0;

Oracle Query 9 OSig.Sign(m,SK):

1: Q = Q ∪m
2: return Sig.Sign(m,SK)

Game 12 ExpInvertA [g, 1κ]:

1: w ← {0, 1}κ
2: z = g(w)
3: w′ ← A(1κ, z)
4: if (g(w′) = z) return 1;
5: else return 0;

messages that it saw a signature for. More formally, this is defined in Game 11 where A has
access to a Sig.Sign oracle which is handled by the algorithm given in Oracle Query 9.

Definition 11. The advantage of an adversary A running in probabilistic polynomial time
(PPT) is defined as:

AdvEUF-CMA
A (Sig, 1κ) = Pr[ExpEUF-CMA

A [Sig, 1κ] = 1].

A digital signature scheme Sig is existentially unforgeable under an adaptive chosen message
attack (EUF-CMA) if for all PPT adversaries A, AdvEUF-CMA

A (Sig, 1κ) ≤ negl(κ).

A.1.4 One-way Functions

A one-way function g is characterized by having the properties of being easy to compute,
but hard to invert. The first condition is given by the requirement that g is computable in
polynomial time. The second condition is formalized by requiring that it is infeasible for any
probabilistic polynomial-time algorithm to invert g (that is, to find a pre-image of a given
value y) except with negligible probability. This requirement will be captured in the inverting
experiment (Game 12) where we consider the experiment for any algorithm A, any value κ for
the security parameter, and the function g : {0, 1}? → {0, 1}?. Note that it suffices for A to find
any value of x′ for which g(x′) = y = g(x) in the experiment.

Here we give a definition what it means for a function g to be one-way [12].

Definition 12. A function g : {0, 1}? → {0, 1}? is one-way if the following two conditions hold.
1. (Easy to compute.) There exists a polynomial-time algorithm Mg computing g; i.e.

Mg(w) = g(w) for all w.
2. (Hard to invert.) For every PPT algorithm A, there exists a negligible function negl such

that

Pr[ExpInvertA [g, 1κ] = 1] ≤ negl(κ).

42

Abstract PVC parameter Parameter in KP-ABE instantiation

EKF SKAF
PKF Master public key PP
σF,x Encryption of m using PP and Ax
θF (x) m or ⊥
V KF,x g(m)

Table 1: PVC using KP-ABE

A.2 PVC using KP-ABE

Parno et al. [14] provide a instantiation of PVC using KP-ABE6 for the case when F is a Boolean
function [14]. Define a universe U of n attributes and associate V ⊆ U with a binary n-tuple
where the ith place is 1 if and only if the ith attribute is in V . We call this the characteristic
tuple of V . Thus, there is a natural one-to-one correspondence between n-tuples and attribute
sets; we write Ax to denote the set associated with x. An alternative way to view this is to
let U = {A1, A2, . . . , An}. Then, a bit string v of length n is the characteristic tuple of the set
V ⊆ U if V = {Ai : vi = 1}. A function F : {0, 1}n → {0, 1} is monotonic if x 6 y implies
F (x) 6 F (y), where x = (x1, . . . , xn) is less than or equal to y = (y1, . . . , yn) if and only if
xi 6 yi for all i. For a monotonic F : {0, 1}n → {0, 1}, the set AF = {x ∈ {0, 1}n : F (x) = 1}
defines a monotonic access structure. The mapping between PVC and KP-ABE parameters is
shown in Table 1.Informally, for a Boolean function F , the client generates a private key SKAF
using the KeyGen algorithm. Given an input x, a client encrypts a random message m “with”
Ax using the Encrypt algorithm and publishes V KF,x = g(m) where g is a suitable one-way
function (e.g. a pre-image resistant hash function). The server decrypts the message using the
Decrypt algorithm, which will either return m (when F (x) = 1) or ⊥. The server returns m
to the client. Any client can test whether the value returned by the server is equal to g(m).
Note, however, that a “rational” malicious server will always return ⊥, since returning any
other value will (with high probability) result in the verification algorithm returning a reject
decision. Thus, it is necessary to have the server compute both F and its “complement” (and
for both outputs to be verified). We revisit this point in Sect. 4. The interested reader may also
consult the original paper for further details [14]. Note that, to compute the private key SKAF ,
it is necessary to identify all minimal elements x of {0, 1}n such that F (x) = 1. There may be
exponentially many such x. Thus, the initial phase is indeed computationally expensive for the
client. Note also that the client may generate different private keys to enable the evaluation of
different functions.

6If input privacy is required then a predicate encryption scheme could be used in place of the KP-ABE scheme.

43

