
The Multiple Number Field Sieve with Conjugation Method

Cécile Pierrot∗

Laboratoire d’Informatique de Paris 6
UPMC, Sorbonne Universités

August 20, 2014

Abstract

In this short paper, we propose a variant of the Number Field Sieve to compute
discrete logarithms in medium characteristic finite fields. We propose an algorithm
that combines two recent ideas, namely the Multiple variant of the Number Field
Sieve taking advantage of a large number of number fields in the sieving phase and
the Conjugation Method giving a new polynomial selection for the classical Number
Field Sieve. The asymptotic complexity of our improved algorithm is Lpn(1/3, (8(9 +
4
√

6)/15)1/3), where Fpn is the target finite field and (8(9+4
√

6)/15)1/3) ≈ 2.156. This
has to be compared with the complexity of the previous state-of-the-art algorithm for
medium characteristic finite fields, the Number Field Sieve with Conjugation Method,
that has a complexity of approximately Lpn(1/3,2.201).

1 Introduction
Public key cryptosystems are designed around computational hardness assumptions
related to mathematical properties, making such protocols hard to break in practice by
any adversary. Algorithmic number theory provides most of those assumptions, such
as the presumed difficulty to factorize a large integer or to compute discrete logarithms
in some groups. Given an arbitrary element h of a cyclic group, the discrete logarithm
problem consists in recovering the exponent x of a generator g such that gx = h. We
focus here on the multiplicative group of the invertible elements in a finite field.

Current discrete logarithms algorithms for finite fields vary with the relative sizes
of the characteristic p and the extension degree n. To be more precise, finite fields
split into three families and so do the related algorithms. When p is small compared
to n, the best choice is to apply the recent Quasi-Polynomial algorithm [BGJT14].
Medium and high characteristics share some properties since we use in both cases
variants of the Number Field Sieve (NFS) that was first introduced to discrete loga-
rithms computations in prime fields in 1993 by Gordon [Gor93] and then extended to
all medium and high characteristic finite fields in 2006 by Joux, Lercier, Smart and
Vercauteren [JLSV06]. For the past few months, discrete logarithm in finite fields has
been a vivid domain and things change fast – not only for small characteristic.

In February 2014, Barbulescu and Pierrot [BP14] presented the Multiple Number
Field Sieve (MNFS) that applies both in the medium and high characteristic cases.
The main idea used in both cases is to go from two number fields, as in the classical
NFS, to a large number of number fields, making the probability to obtain a good
relation in the sieving phase higher. Yet, the sieving phase differs between medium
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and high characteristic, due to the fact that the parameters of the two first polynomials
defining the number fields are equal in the medium case but unbalanced in the high
case. Let us recall the notation Lq(α, c) = exp(c + o(1)(log q)α(log log q)1−α) to be
more precise about complexities, and focus on the high characteristic case. Due to
unbalanced degree of the first two polynomials, the variant proposed by Barbulescu
and Pierrot is dissymmetric. It means that they select in the sieving phase only
elements that are small in some sense in the first number field and in at least another
number field, giving to the first number field a specific role with regards to the others.
With this high characteristic Multiple variant, the asymptotic complexity to compute
discrete logarithms in a finite field Fpn of characteristic p = Lpn(lp, c) is the same as
the complexity for factoring an integer of the same size. Namely, it is:

Lpn

⎛
⎝

1
3
,(2 ⋅ (46 + 13

√
13)

27
)

1/3⎞
⎠
.

In the medium case, the polynomial selection of the classical Number Field Sieve allows
to construct two polynomials with same degrees and same sizes of coefficients. Making
linear combination, MNFS creates then a lots of polynomials with equal parameters.
Thanks to this notion of symmetry, the sieving phase of the Multiple variant consists
in keeping elements that are small in any pairs of number fields, making the probability
growing further.

Yet, few months later, in August 2014, Barbulescu, Gaudry, Guillevic and Morain
detailed in a preprint [BGGM14] some practical improvements for the classical Number
Field Sieve. They gave besides a new polynomial selection method that has a nice
theoretical interest too since it leads to the best asymptotic heuristic complexity known
in the medium characteristic case, overpassing the one given in [BP14] that was the
current state-of-the-art algorithm in this case until this month. This new polynomial
selection also called Conjugation Method permits to create one polynomial with a
small degree and high coefficients and another one with high degree and constants
coefficients. Finally, the authors obtain the asymptotic complexity:

Lpn (1
3
,(96

9
)

1/3
) .

We propose here to adapt the Multiple variant to this very recent algorithm. At
first sight, one could fear that the parameters of the two polynomials given with the
Conjugation Method could act as a barrier, since their unbalanced features differ from
the ones used in the medium characteristic case of [BP14]. Moreover, following the
high characteristic dissymmetric sieving phase of [BP14] and creating the remaining
polynomials with linear combination would mean spreading both high coefficients and
high degrees on the polynomials defining the various number fields. This clearly would
not be a good idea, since all the NFS-based algorithms require to create elements
with small norms. However, remarking that this Conjugation Method may allow the
selection of more than two polynomials, it is possible to astutely set up the remaining
polynomials. Indeed, the idea is to try to keep the advantage of this kind of balanced
dissymetry brought by the two polynomials with small-degree-high-coefficients/high-
degree-small-coefficients.

We explain in Section 2 how to take advantage of this remark to construct a
dissymetric Multiple Number Field Sieve. The asymptotic complexity analysis is
given in Section 3. In a nutshell, the Multiple Number Field Sieve with Conjuga-
tion Method (MNFS-CM) becomes the best current algorithm to compute discrete
logarithms in medium characteristic finite fields since it has complexity:

Lpn

⎛
⎝

1
3
,(8 ⋅ (9 + 4

√
6)

15
)

1/3⎞
⎠
.

This has to be compared with the complexity given in [BGGM14]. Our second constant
is such that (8 (9 + 4

√
6)/15)1/3 ≈ 2.156 whereas (96/9)1/3 ≈ 2.201.
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2 Combining the Multiple variant of the Number
Field Sieve with the Conjugation Method
Let Fpn denote the finite field we target, p its characteristic and n the extension degree
relatively to the base field. We propose an algorithm to compute discrete logarithms
in Fpn as soon as p can be written as p = Lpn(lp, cp) with 1/3 ⩽ lp ⩽ 2/3. In this
case we say that the characteristic has medium size. In Section 2.1 we explain how
to represent the finite field and to construct the polynomials that define the large
number of number fields we need. In Section 2.2 we give details about the variant of
the Multiple Number Field Sieve we propose to follow.

2.1 Polynomial Selection
Basic idea: large numbers of polynomials with a common root in Fpn

To compute discrete logarithms in Fpn , all algorithms based on the Number Field
Sieve start by choosing two polynomials f1 and f2 with integers coefficients such that
the greatest common divisor of these polynomials has an irreducible factor of degree n
over the base field. If m denote a common root of these two polynomials in Fpn

and Q(θi) denote the number field Q[X]/(fi(X)) for each i = 1,2, i.e. θi is a root
of fi in C, then we are able to draw the commutative diagram of Figure 1.

Z [X]

Q [X] /(f1(X)) Q [X] /(f2(X))

Fpn

X ↦ θ1

X ↦ θ2

θ1 ↦m

θ2 ↦m

Figure 1: Commutative diagram of NFS.

Since the Multiple variant of NFS require to have a large number of number fields,
let say V number fields, then we have to construct V −2 other polynomials that share
the same common root m in Fpn . The commutative diagram that is the cornerstone
of all Multiple Number Field Sieve is then:

Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV −1) Q (θV )

Fpn

X ↦ θi

θi ↦m

Figure 2: Commutative diagram of Multiple variant of NFS

Settings: Construction of V polynomials with the Conjugation Method
We start with the Conjugation Method given in [BGGM14, Paragraph 6.3] to construct
the first two polynomials. The idea is as follows.
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We create two stand-in polynomials ga and gb in Z[X] with small coefficients such
that deg ga = n and deg gb < n. We search then for a polynomial X2 + uX + v, where
u and v are integers of constant sizes, that is irreducible over Z[X] and has its roots
λ and λ′ in Fp. Since we seek for a degree n irreducible polynomial over Fp[X] to
construct the finite field, we keep the polynomial X2 + uX + v if either ga + λgb or
ga + λ′gb is irreducible over Fp[X]. When we have found such parameters, we choose
our first polynomial f1 ∈ Z[X] such that:

f1 = g2
a − ugagb + vg2

b .

Equivalently, f1 is defined in [BGGM14] as equal to ResY (Y 2+uY +v, ga(X)+Y gb(X)).
Since λ and λ′ are roots of X2+uX+v in Fp, we have that f1 ≡ g2

a−(λ+λ′)gagb+λλ′g2
b

mod p. In other words, f1 ≡ (ga+λgb)(ga+λ′gb) mod p. Thus we have a polynomial f1
of degree 2n with coefficients in O(1) that is divisible by ga + λgb in Fp[X].

Let us construct the next two polynomials. Thanks to continued fractions we can
write:

λ ≡ a
b
≡ a

′

b′
mod p

where a, b, a′ and b′ are of the size of √p. We underline that these two reconstructions
(a, b) and (a′, b′) of λ are linearly independent over Q. We set then:

f2 = bga + agb and f3 = b′ga + a′gb.

Note that the Conjugation Method ends with the selection of f1 and f2 and does
not use the second reconstruction. It is clear that both f2 and f3 have degree n
and coefficients of size √

p. Furthermore, we notice that f2 ≡ b(ga + λgb) mod p and
similarly f3 ≡ b′(ga + λgb) mod p, so they share a common root with f1 in Fpn .

We finally set for all i from 4 to V :

fi = αif2 + βif3

with αi and βi of the size of
√
V . Thanks to linear combination, for all 2 ⩽ i ⩽ V ,

fi has degree n, coefficients of size √
p and is divisible by ga + λgb in Fp[X].

2.2 A dissymmetric Multiple Number Field Sieve
As any Index Calculus algorithm, the variant we propose follows three phases: the
sieving phase, in which we create lots of relations involving only a small set of elements,
the factor base ; the linear algebra, to recover the discrete logarithms of the elements of
the factor base ; and the individual logarithm phase, to compute the discrete logarithm
of an arbitrary element of the finite field.

We propose to sieve as usual on high degree polynomials φ(X) = a0 +⋯+at−1X
t−1

with coefficients of size bounded by S. Let us recall that, given an integer y, an
integer x is called y-smooth if it can be written as a product of factors less than y.
We collect then all polynomials such that, first, the norm of φ(θ1) is B-smooth and,
second, there exists (at least) one number fieldQ(θi) with i ⩾ 2 in which the norm φ(θi)
is B′-smooth. In other simpler words, we create relations thanks to polynomials that
cross over the diagram of Figure 3 in two paths: the one on the left side of the drawing
and (at least) another one among those on the right. If we set that the factor base
consists in the union of all the prime ideals in the rings of integers that have a B-or-
B′-smooth norm, the smoothness bound depending on the number field, then we keep
only relations that involve these factor base elements.

After the same post-processing as in [JLSV06] or as detailed in [BGGM14] more
recently, each such polynomial φ yields a linear equation between “logarithms of ideals”
coming from two number fields. Hence, from each relation we obtain a linear equation
where the unknowns are the logarithms of ideals. Let us remark that by construction
each equation involves few unknowns only.
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Z [X]

Q (θ1) Q (θ2) . . . Q (θi) . . . Q (θV )

Fpn

X ↦ θ2

θ2 ↦m

Figure 3: Commutative diagram for the dissymmetric Multiple Number Field Sieve with
Conjugation Method

The sparse linear algebra and individual logarithm phases run exactly as in the
classical Number Field Sieve of [JLSV06]. Even if there exists a specific way to manage
the last phase with a multiple variant as detailed in [BP14], taking advantage of the
large number of number fields again, we do not consider it here. In fact, the runtime
of the classical individual logarithm phase is already negligible with regards to the
total runtime of the algorithm, as proved by Barbulescu and Pierrot in their article.

3 Asymptotic Complexity Analysis
Let us fix the notations and write the extension degree n and the characteristic p of
the target finite field FQ as:

n = 1
cp

( logQ
log logQ

)
1−lp

and p = exp(cp(logQ)lp(log logQ)1−lp)

with 1/3 ⩽ lp ⩽ 2/3. The parameters that take part in the heuristic asymptotic
complexity analysis of our Multiple Number Field Sieve with Conjugation Method
are the sieving bound S, the degree of the polynomials we are sieving over t − 1,
the number of number fields V , the smoothness bound B related to the first number
field and the smoothness bound B′ related to the others number fields. The analysis
works by optimizing the total runtime of the sieving and linear algebra phases while
complying with two constraints.

Balancing the cost of the two first phases
We first require that the runtime of the sieving phase St equals the cost of the linear
algebra. Since the linear system of equations we obtain is sparse, the cost of the
linear algebra is asymptotically (B + V B′)2. Similarly to balancing the runtime of
the two phases, we require that B = V B′. Thus, leaving apart the constant 4 that is
clearly negligible with regards to the sizes of the parameters, the first constraint can
be written as:

St = B2. (1)

Balancing the number of equations with the number of unknows
To be able to do the linear algebra phase correctly, we require that the number of
unknows, that is approximately B, is equal to the number of equations produced in
the sieving phase. If we note P the probability that a polynomial give a good relation
then we want to have StP = B. Combining it with the constraint (1), it leads to:

B = 1/P.
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3.1 General Medium Characteristic Case
We continue the analysis for the large range of finite fields where the characteristic
can be written as p = LQ(lp, cp) with 1/3 ⩽ lp < 2/3.

Evaluating the probability of smoothness
To evaluate the probability P we need to recall some tools about norms in number
fields. For fi ∈ Z[X] an irreducible polynomial, θi a complex root of fi, and for any
polynomial φ ∈ Z[X], the norm N(φ(θ)) satisfies Res(φ, fi) = ±ldegφ

i N(φ(θ)), where li
is the leading coefficient of fi. Since we treat li together with small primes, we make no
distinction in smoothness estimates between norms and resultants. If ∥fi∥∞ denotes
the largest coefficients of fi in absolute value then we have the upper bound on the
resultant:

∣Res(φ, fi)∣ ≤ (deg fi + degφ)! ⋅ ∥fi∥degφ
∞

⋅ ∥φ∥deg fi
∞

.

Thus, recalling that f1 is of degree 2n and has constant coefficients and that every
other polynomials fi has degree n and coefficients of the size √

p, we obtain that the
norm of a polynomial φ in the sieving is bounded by S2n in the first number field and
by Snpt/2 in every other number fields.

To evaluate the probability of smoothness of this norms with regards to B and B′,
the main tool is the following theorem:

Theorem 1 (Canfield, Erdős, Pomerance [CEP83]). Let ψ(x, y) denote the number of
positive integers up to x which are y-smooth. If ε > 0 and 3 ≤ u ≤ (1−ε) logx/ log logx,
then ψ(x,x1/u) = xu−u+o(u).

Yet, this result under this form is not very convenient. If we write the two integers x
and y with the Lq-notation, we obtain a more helpful corollary:

Corollary 1. Let (α1, α2, c1, c2) ∈ [0,1]2×[0,∞)2 be four reals such that α1 > α2. Let
P denote the probability that a random positive integer below x = Lq(α1, c1) splits into
primes less than y = Lq(α2, c2). Then we have P−1 = Lq (α1 − α2, (α1 − α2)c1c

−1
2 ) .

So we would like to express both norms and sieving bounds with the help of this
notation. As usual, we set:

t = ct
cp

( logQ
log logQ

)
2/3−lp

, St = LQ(1/3, csct), B = LQ(1/3, cb) and V = LQ(1/3, cv).

With this in hands, the first constraint can be rewritten as:

csct = 2cb (2)

We apply besides the Theorem 1 to reformulate the other constraint. Let us note
LQ(1/3, pr) (respectively LQ(1/3, pr′)) the probability to get a B-smooth norm in the
first number field (respectively a B′-smooth norm in at least one other number field).
The second constraint becomes cb = −(pr + pr′). Using equation (2), the constants in
the probabilities can be written as:

pr =
−2cs
3cb

= −2(2/ct)cb
3cb

and pr′ = cv −
(2/ct)cb + ct/2

3(cb − cv)
.

That leads to require cb = −(−4/(3ct) + cv − (4cb + c2
t )/(6ct(cb − cv))) and afterwards

6ct(c2
b − c2

v) = 8(cb − cv) + 4cb + c2
t . Finally we would like to have:

(6ct)c2
b − 12cb − 6ctc2

v + 8cv − c2
t = 0 (3)
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Optimizing the asymptotic complexity
We recall that the complexity of our algorithm is given by the cost of the linear
algebra LQ(1/3,2cb), since we equalize the runtime of the sieving and linear algebra
phases. Hence we look for minimizing cb under the above constraint (3). The method
of Lagrange multipliers indicates that cb, cv and ct have to be solutions of the following
system:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2 + λ(12ctcb − 12) = 0
λ(−12cvct + 8) = 0
λ(6c2

b − 6c2
v − 2ct) = 0

with λ ∈ R∗. From the second row we obtain ct = 2/(3cv) and from the third one we
get cb = (c2

v + 2/(9cv))1/2. Together with equation (3), it gives the equation in one
variable: 405c6

v + 126c3
v − 1 = 0. We deduce that cv = ((3

√
6− 7)/45)1/3 and we recover

cb = ((9 + 4
√

6)/15)1/3. Finally, the heuristic asymptotic complexity of the Multiple
Number Field Sieve with Conjugation Method is:

LQ
⎛
⎝

1
3
,(8 ⋅ (9 + 4

√
6)

15
)

1/3⎞
⎠

This has to be compared with the Number Field Sieve with Conjugation Method
proposed in [BGGM14] that has complexity LQ(1/3, (96/9)1/3). Our second constant
is (8(9 + 4

√
6)/15)1/3 ≈ 2.156, whereas (96/9)1/3 ≈ 2.201.

3.2 The Boundary Case p = LQ(2/3, cp).
The analysis made in this case follows the previous one except for the fact that we have
to reconsider the parameter t. We consider here a family of algorithms indexed by the
degree t − 1 of the polynomials of the sieving. We compute so the final complexity of
each algorithm as a function of cp (and t). Moreover, we underline that the round off
error in t in the computation of the norms is no longer negligible.

Sieving on Polynomials of Degree t − 1
Again, to easily evaluate the probability of smoothness of norms, we set the following
parameters:

V = LQ(1/3, cv), B = LQ(1/3, cb), B′ = LQ(1/3, cb − cv) and S = LQ(1/3, cs).

With these notations, the first constraint becomes:

cst = 2cb (4)

Moreover, the norms are upper-bounded by S2n = LQ(2/3,2cs/cp in the first number
field and by Snp(t−1)/2 = LQ(2/3, cs/cp+cp(t−1)/2) in all the other number fields. We
apply the Canfield-Erdős-Pomerance theorem, and, with the same notation as in the
previous paragraph, we obtain pr = −2cs/(3cbcp) in one hand and pr′ = cv − (cs/cp +
cp(t − 1)/2)/(3(cb − cv)) in the other hand. Using equation (4), the second constraint
cb = −(pr +pr′) can be rewritten as 3tcp(cb − cv)(cb + cv) = 4(cb − cv)+2cb + t(t−1)c2

p/2
and finally:

(6tcp)c2
b − 12cb − 6tcpc2

v + 8cv − t(t − 1)c2
p = 0 (5)

We recall that we want to minimize 2cb under the constraint (5). The method of
Lagrange multipliers shows that we need that the derivative of (6tcp)c2

b−12cb−6tcpc2
v+

8cv−t(t−1)c2
p with respect to cv is equal to 0. This leads to require that cv = 2/(3tcp).

Putting this value in equation (5) we get:

(18t2c2
p)c2

b − (36tcp)cb + 8 − 3t2(t − 1)c3
p = 0
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Finally, solving this equation in cb we deduce that cb = (6+(20+6t2(t−1)c3
p)1/2)/(6tcp).

Consequently, the asymptotic complexity of the Multiple Number Field Sieve with
Conjugation Method in this boundary case is:

LQ (1
3
,

2
cpt

+
√

20
(9cpt)2 +

2
3
cp(t − 1))

where t − 1 is the degree of the polynomials we are sieving on. Figure 4 compares
our MNFS-CM with previous and various algorithms in this boundary case. For all
variants of the Number Field Sieve presented in this figure (namely NFS, MNFS, NFS-
CM and MNFS-CM), each hollow in the curve corresponds to a particular degree of
the polynomials we are sieving on.

Figure 4: Asymptotic complexities LQ(1/3,C(cp)) in the boundary case, as a function of
cp with p = LQ(2/3, cp). The purple curve represents the complexities obtained with our
Multiple Number Field Sieve with Conjugation Method while the red, green, blue, brown
and orange ones represent respectively the complexities of NFS, MNFS, PiRaTh, General
Joux-Lercier method [BGGM14] and NFS-CM.

Remark 1. This boundary case has been the scene of various recent improvements
but, as far as we know, all of them are not yet published nor available on the Internet.
This is in particular the case of the so-called PiRaTh algorithm, presented at the
DLP conference in May 2014 by Pierrick Gaudry, Razvan Barbulescu and Thorsten
Kleinjung.
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The best asymptotic complexity of any variant of the Number Field
Sieve: MNFS-CM with Sieving on Linear Polynomials
According to Figure 4, sieving on linear polynomials seems to be the way to obtain the
best complexity, as usual in this boundary case. Let us make a more precise analysis
of the optimal case reached by our Multiple Number Field Sieve with Conjugation
Method. We consider now cp as a variable and we would like to find the minimal
complexity obtained by each algorithm. Namely, we want to minimize:

C(cp) =
2
cpt

+
√

20
(9cpt)2 +

2
3
cp(t − 1).

The derivative of this function with respect to cp vanishes when 2 ⋅92 t cp(20/(9 cp t)2+
(2/3)cp(t − 1))1/2 = −20 + 27(t − 1)t2c3

p. This leads to the quadratic equation in c3
p:

36t4(t− 1)2c6
p − 24 33 43 t2(t− 1)c3

p − 26 ⋅ 5 ⋅ 19 = 0. Thus, the optimal value comes when
cp = (2/3) ⋅ ((43+ 18

√
6)/(t2(t− 1))1/3. We get for this value the minimal complexity:

LQ
⎛
⎝

1
3
,
⎛
⎝

9 +
√

177 + 72
√

6
3 ⋅ (43 + 18

√
6)1/3

⎞
⎠
⋅ ( t − 1

t
)

1/3⎞
⎠
.

It is clear that the best possible complexity is obtained when t = 2, i.e. when we
sieve on linear polynomials. Interestingly enough, we conclude that we have with our
MNFS-CM the best complexity of any medium, boundary and high characteristics
cases, which is:

LQ
⎛
⎝

1
3
,

9 +
√

177 + 72
√

6
3 ⋅ (2 ⋅ (43 + 18

√
6))1/3

⎞
⎠
.

The approximation of the second constant in the complexity is given by (9+
√

177 + 72
√

6)⋅
3−1 ⋅(2⋅(43+18

√
6))−1/3 ≈ 1.659. It is obtained when p can be written as LQ(1/3,1.86).
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