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An Equivalent Condition on the Switching
Construction of Differentially 4-uniform

Permutations on F22k from the Inverse Function
Xi Chen, Yazhi Deng, Min Zhu and Longjiang Qu**

Abstract

Differentially 4-uniform permutations on F22k with high nonlinearity are often chosen as Substitution
boxes in block ciphers. Recently, Qu et al. used the powerful switching method to construct such permutations
from the inverse function [9], [10]. More precisely, they studied the functions of the form G(x) = 1

x +f( 1
x ),

where f is a Boolean function. They proved that if f is a preferred Boolean function (PBF), then G is a
permutation polynomial over F2n whose differential uniformity is at most 4. However, as pointed out in [9],
f is a PBF is a sufficient but not necessary condition. In this paper, a sufficient and necessary condition
for G to be a differentially 4-uniform permutation is presented. We also show that G can not be an almost
perfect nonlinear (APN) function. As an application, a new class of differentially 4-uniform permutations
where f are not PBFs are constructed. By comparing this family with previous constructions, the number
of permutations here is much bigger. The obtained functions in this paper may provide more choices for
the design of Substitution boxes.

Index Terms

Differentially 4-uniform function, Substitution box, 4-Uniform BFI, Preferred Boolean function, Permu-
tation function

I. INTRODUCTION

In the design of many block ciphers, permutations with specific properties are chosen as Substitution

boxes (S-boxes) to bring confusion into ciphers. To prevent various attacks on the cipher, such permutations

are required to have low differential uniformity, high algebraic degree and high nonlinearity. Furthermore,

for software implementation, such functions are usually required to be defined on fields with even degrees,

namely F22k . Throughout this paper, we always let n = 2k be an even integer.
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It is well known that the lowest differential uniformity of a function defined on F2n can achieve is 2 and

such functions are called almost perfect nonlinear (APN) functions. On this aspect, they are the most ideal

choices for the design of Substitution boxes. However, it is very difficult to find APN permutations over F22k ,

which is called BIG APN Problem. Due to the lack of knowledge on APN permutations on F22k , a natural

trade-off solution is to use differentially 4-uniform permutations as S-boxes. Recently, many constructions

of differentially 4-uniform permutations were introduced [1]–[3], [5], [9]–[14]. In 2013, Qu et al. used the

powerful switching method [6] to successfully construct many infinite families of such permutations from

the inverse function [9], [10]. In the constructions, they introduced a type of functions [9], which they called

preferred Boolean functions. More precisely, they studied the functions with the form G(x) = 1
x + f( 1x),

where f is a Boolean function. They proved that if f is a preferred Boolean function (PBF), then G is a

permutation polynomial over F2n whose differential uniformity is at most 4. However, as pointed out in

[10], f is a PBF is only a sufficient but not necessary condition.

In this paper, a generalization of PBF which is called 4-uniform Boolean function with respect to the

inverse function (4-Uniform BFI for short) is presented. Then we find a sufficient and necessary condition

for G(x) = 1
x + f( 1x) to be a differentially 4-uniform permutation. We also show that G can not be an APN

function. As an application, a new class of differentially 4-uniform permutations where f are not PBFs

are constructed, the number of which is far more than before. Furthermore, we construct a new infinite

family of differentially 4-uniform permutations where f is not a PBF but a 4-Uniform BFI. The number

of permutations in this family is quite large. These functions may provide more choices for the design of

Substitution boxes.

II. NECESSARY DEFINITIONS AND USEFUL LEMMAS

In this section, we give necessary definitions and results which will be used in the paper.

Given two positive integers n and m, a function F : F2n → F2m is called an (n,m)-function. Particularly,

when m = 1, F is called an n-variable Boolean function, or a Boolean function with n variables. Clearly,

a Boolean function may be regarded as a vector with elements on F2 of length 2n by identifying F2n with

a vector space Fn2 of dimension n over F2. In the following, we will switch between these two points of

view without explanation if the context is clear.

Let f be a nonzero Boolean function. Define the set Supp(f) = {x ∈ F2n |f(x) = 1} and call it the

support set of f . The value |Supp(f)| is called the (Hamming) weight of f . Denote by Tr(x) =
∑n−1

i=0 x
2i

the absolute trace function from F2n to F2. Note that for the multiplicative inverse function x−1, we always

define 0−1 = 0 below.

Let F be an (n, n)-function. Then F can be expressed uniquely as a polynomial over F2n with degree at

most 2n − 1. It is called a Permutation Polynomial if it induces a permutation over F2n . Denote by F∗2n the

set of all nonzero elements of F2n . For any (a, b) ∈ F∗2n × F2n , define

δF (a, b) = ]{x : x ∈ F2n |F (x+ a) + F (x) = b}.
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Note that we denote the cardinality of S by ]S. The multiset {∗ δF (a, b) : (a, b) ∈ F∗2n × F2n ∗} is called

the differential spectrum of F . The value

∆F , max
(a,b)∈F∗

2n×F2n

δF (a, b)

is called the differential uniformity of F , or we call F a differentially ∆F -uniform function. In particular,

we call F almost perfect nonlinear (APN) if ∆F = 2. It is easy to see that APN functions achieve the

lowest possible differential uniformity for functions defined on fields with an even characteristic.

The following results are useful in our future discussion.

Result 2.1: [4] Let n be an even integer and f be an n-variable Boolean function. Then x + f(x) is a

permutation polynomial over F2n if and only if f(x) = f(x+ 1) holds for any x ∈ F2n .

Result 2.2: [8] For any a, b ∈ F2n and a 6= 0, the polynomial f(x) = x2 + ax+ b ∈ F2n [x] is irreducible

if and only if Tr( b
a2 ) = 1.

Result 2.3: [7, Lemma 4.1] Let b ∈ F2n \ F2. Then Tr(1b ) = 0 if and only if there exists α ∈ F2n \ F4

such that b = α+ α−1.

III. MAIN RESULTS

In this section, we give the definition of 4-Uniform BFI and an equivalent condition on the switching

construction of differentially 4-uniform permutations on F22k from the inverse function. As an application,

we present a new class of differentially 4-uniform permutations which can not be constructed from PBFs.

The number of them is far more than those in [9], [10].

A. Definition of 4-Uniform BFI

In [9] the authors introduced a type of functions called preferred Boolean functions, and then constructed

many infinite families of permutations whose differential uniformity are at most 4 of the form G(x) =
1
x + f( 1x).

Theorem 3.1: [9] Let n = 2k be an even integer and f be an n-variable Boolean function. Let ω be an

element of F2n with order 3. Then f is a PBF if and only if it satisfies the following two conditions: (1)

f(x+ 1) = f(x) for any x ∈ F2n ;

(2) f(0) + f(α+ 1
α) + f(ωα+ 1

ωα) + f(ω2α+ 1
ω2α) = 0 for any α ∈ F2n \ F4.

Theorem 3.2: [9] Let n = 2k be an even integer, I(x) = x−1 be the multiplicative inverse function and

f be a Boolean function with n variables. Define

H(x) = x+ f(x), and

G(x) = H(I(x)).

If f(x) is a PBF, then G(x) is a permutation polynomial on F2n whose differentially uniformity is at most

4.
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This theorem builds a bridge from PBFs to permutation polynomials with differentially uniformity at most

4. However, as pointed out in [10], f is a PBF is only a sufficient but not necessary condition. Then a natural

question is to search for an equivalent condition. For convenience, we introduce the following definition.

Definition 3.3: Let n = 2k be an even integer and f be an n-variable Boolean function. We call f a

4-uniform Boolean function with respect to the inverse function (4-uniform BFI for short) when G(x) =
1
x + f( 1x) is a permutation whose differential uniformity is at most 4.

Then a PBF is a 4-uniform BFI and not vice versa.

B. An Equivalent Condition

Now we introduce the main theorem of this paper. It is an equivalent condition on the switching con-

struction of differentially 4-uniform permutation on F22k from the inverse function.

Theorem 3.4: Let n be an even integer and f be an n-variable Boolean function. Let ω be an element

of F2n with order 3. Then G(x) = 1
x + f( 1x) is a differentially 4-uniform permutation over F2n if and only

if f(x) = f(x + 1) holds for any x ∈ F2n and for any z ∈ F2n \ F4, at least one of the following two

equations holds.

f(0) + f(z + 1
z + 1) + f(ωz + 1

ωz + 1) + f(ω2z + 1
ω2z + 1) = 0, (1)

f(0) + f(z + 1
z + 1) + f(ω(z + 1

z + 1)) + f(ω2(z + 1
z + 1)) = 1. (2)

Proof: It follows from Result 2.1 that G(x) is a permutation if and only if f(x) = f(x+ 1) holds for any

x ∈ F2n . Then we only need to compute the differential uniformity of G.

Sufficiency: Assume that the differential uniformity of G(x) = 1
x + f( 1x) is more than 4. Then there

exists a, b ∈ F2n and a 6= 0 such that

G(x+ a) +G(x) = b (3)

has more than 4 solutions in F2n . Since f is a Boolean function, we have{
1
x + 1

x+a = b

f( 1x) + f( 1
x+a) = 0,

(4)

or {
1
x + 1

x+a = b+ 1

f( 1x) + f( 1
x+a) = 1.

(5)

It is clear that Eq. (4) and Eq. (5) have no common solutions and each of them has at most 2 solutions

in F2n\{0, a}. Hence 0 is a solution of Eq. (4) or Eq. (5) and each of them has exactly 2 solutions in

F2n\{0, a}. The following proof is divided into two cases.

Case 1. 0 is a solution of Eq. (4)
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In this case, we have ab = 1 and

f(0) + f(
1

a
) = 0. (6)

Substituting ab = 1 into Eq. (4) and Eq. (5), we get{
1
x + 1

x+a = 1
a

f( 1x) + f( 1x + 1
a) = 0,

(7)

or {
1
x + 1

x+a = 1
a + 1

f( 1x) + f( 1x + 1
a + 1) = 1.

(8)

If x 6= 0 or a, then Eq. (7.1) is equivalent to x2 + ax+ a2 = 0, which always has 2 solutions x = a
ω and

x = a
ω2 .

Now we consider Eq. (8.1). It is clear that 0 and a are not the solutions of Eq. (8.1) and a 6= 1. Hence

Eq. (8.1) is equivalent to

x2 + ax+
a2

1 + a
= 0 (9)

It follows from Result 2.2 that Eq. (9) has a solution in F2n if and only if 0 = Tr( 1
a+1) = Tr( a

a+1) =

Tr( 1
1+ 1

a

), where the last second equality holds since n is an even integer. It follows from a 6= 0, 1 that

1 + 1
a ∈ F2n \ F2. Then according to Result 2.3, Tr( 1

1+ 1

a

) = 0 if and only if there exists z ∈ F2n \ F4 such

that 1
a + 1 = z+ 1

z . Hence Eq. (8.1) has a solution in F2n if and only if there exists z ∈ F2n \ F4 such that

a = 1
z+ 1

z
+1

.

Let x1 = 1
ωz+ 1

ωz
+1

. Then

1

x1 + a
=

1
1

ωz+ 1

ωz
+1

+ 1
z+ 1

z
+1

=
(ωz + 1

ωz + 1)(z + 1
z + 1)

ω2z + 1
ω2z

=
ωz2 + 1

ωz2

ω2z + 1
ω2z

+ 1 = ω2z +
1

ω2z
+ 1.

Hence

1

x1
+

1

x1 + a
= (ωz +

1

ωz
+ 1) + (ω2z +

1

ω2z
+ 1) = z +

1

z
=

1

a
+ 1,

which means that x1 = 1
ωz+ 1

ωz
+1

is a solution of Eq. (8.1). Clearly, x2 = x1 + a = 1
ω2z+ 1

ω2z
+1

is the other

solution of Eq. (8.1).

Substituting a = 1
z+ 1

z
+1

into Eq. (6), Eq. (7.2) and Eq. (8.2), one get the following equation system.
f(0) + f(z + 1

z + 1) = 0,

f(ω(z + 1
z + 1)) + f(ω2(z + 1

z + 1)) = 0,

f(ωz + 1
ωz + 1) + f(ω2z + 1

ω2z + 1) = 1.

(10)
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Hence there exists z ∈ F2n \ F4 such that neither Eq. (1) nor Eq. (2) holds, a contradiction.

Case 2. 0 is a solution of Eq. (5)

Similarly as Case 1, we have a(b+ 1) = 1 and there exists z ∈ F2n \ F4 such that a = 1
z+ 1

z
+1

. Then we

get


f(0) + f(z + 1

z + 1) = 1,

f(ω(z + 1
z + 1)) + f(ω2(z + 1

z + 1)) = 1,

f(ωz + 1
ωz + 1) + f(ω2z + 1

ω2z + 1) = 0.

(11)

Thus there exists z ∈ F2n \ F4 such that neither Eq. (1) nor Eq. (2) is hold, a contradiction.

Hence the differential uniformity of G is at most 4.

Now we prove that G can not be an APN function. Assume G(x) = 1
x + f( 1x) is an APN function, then

Eq. (3) has at most 2 solutions in F2n for any a, b ∈ F2n and a 6= 0.

As in the proof of Case 1, let a = 1
z+ 1

z
+1

and b = z+ 1
z + 1, where z be any element of F2n \ F4. Then

we can verify that x = 0, x = a, x = a
ω and x = a

ω2 are the solutions of Eq. (4.1), while x = 1
ωz+ 1

ωz
+1

,

x = 1
ω2z+ 1

ω2z
+1

are the solutions of Eq. (5.1). Since Eq. (3) has at most 2 solutions in F2n , at most one

equation of (10) holds.

Now we turn to Case 2. Let a = 1
z+ 1

z
+1

and b = z + 1
z . Similarly, at most one equation of (11) holds.

Hence at most two of the six equations of (10) and (11) hold. On the other hand, one and only one of

Eq. (10.1) and Eq. (11.1) holds since f is a Boolean function. By the same reason, exactly three of these

six equations hold, contradicts.

Hence G(x) = 1
x + f( 1x) is not an APN permutation but a differentially 4-uniform permutation.

Necessity: Assume, on the contrary, that there exists z ∈ F2n \ F4 such that neither Eq. (1) nor Eq. (2)

holds. Since f is a Boolean function, we have f(0) + f(z+ 1
z + 1) = 0 or 1. Here we only prove one case.

The proof for the other case is similar and is left to the interested readers.

Assume that f(0) + f(z + 1
z + 1) = 0. Then with the assumption that neither Eq. (1) nor Eq. (2) holds,

one can get the equation system Eq. (10). Let a = 1
z+ 1

z
+1

and b = z + 1
z + 1. It is clear that ab = 1 and

a 6= 0 since z ∈ F2n \ F4.

It follows from Eq. (10.1), Eq. (10.2) and a 6= 0 that x = 0, x = a, x = a
ω and x = a

ω2 are four different

solutions of Eq. (4). Similarly as in the sufficient part of the proof, one can verify that x = 1
ωz+ 1

ωz
+1

and

x = 1
ω2z+ 1

ω2z
+1

are two different solutions of Eq. (5). Obviously, Eq. (4) and Eq. (5) have no common

solutions. Hence Eq. (3) has at least 6 different solutions in F2n , a contradiction.

We finish the proof. �

We make two comments on Theorem 3.4. First, in the above proof the condition f(x) = f(x + 1) is

not used in the computation of the differential uniformity of G. Hence if we remove this condition in

the theorem, G is also a differentially 4-uniform function but may be not a permutation. This means that

Theorem 3.4 can be used to construct more differentially 4-uniform functions. Second, it is proved that
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G(x) = 1
x +f( 1x) constructed by 4-Uniform BFI is not an APN function. In particular, those G(x) construct

by PBF can not be APN functions either.

C. A New Infinite Family of Differentially 4-Uniform Permutations

In this subsection we construct a new infinite family of differentially 4-uniform permutations with Boolean

functions which are not PBFs but 4-Uniform BFIs. By comparing this family with previous constructions,

the number of permutations here is much bigger. We first introduce a lemma.

Lemma 3.5: Let ω be an element of F2n with order 3. If z ∈ F2n \ F4, then

1

z + 1
z + 1

+
1

ωz + 1
ωz + 1

+
1

ω2z + 1
ω2z + 1

= 0.

Proof. It is clear that 1 + ω + ω2 = 0 and z + 1
z /∈ {0, 1}. Then

1

ωz + 1
ωz + 1

+
1

ω2z + 1
ω2z + 1

=
z + 1

z

(ωz + 1
ωz + 1)(ω2z + 1

ω2z + 1)
=

z + 1
z

z2 + 1
z2 + z + 1

z

=
1

z + 1
z + 1

.

�

Theorem 3.6: Let n be an even integer. Let α, β ∈ F2n satisfying

α+
1

α
+ 1 = β +

1

β
∈ F2n \ F4, (12)

Tr( 1
ωα+ 1

ωα
+1

) = 1 and Tr( 1
ωβ+ 1

ωβ
+1

) = 1. Define two subsets of F2n as follows.

U := {α+
1

α
, α+

1

α
+ 1, ωα+

1

ωα
, ωα+

1

ωα
+ 1, ω2α+

1

ω2α
, ω2α+

1

ω2α
+ 1,

ωβ +
1

ωβ
, ωβ +

1

ωβ
+ 1, ω2β +

1

ω2β
, ω2β +

1

ω2β
+ 1.}

V := {ω(ωα+
1

ωα
+ 1), ω2(ωα+

1

ωα
+ 1), ω(ω2α+

1

ω2α
+ 1), ω2(ω2α+

1

ω2α
+ 1),

ω(ωβ +
1

ωβ
+ 1), ω2(ωβ +

1

ωβ
+ 1), ω(ω2β +

1

ω2β
+ 1), ω2(ω2β +

1

ω2β
+ 1).}

If U ∩ V = ∅, then we define

f(x) =

{
1, when x ∈ U ;

0, else.
(13)

Then f(x) is a 4-Uniform BFI but not a PBF. Hence G(x) = 1
x + f( 1x) is a differentially 4-uniform

permutation in F2n .

Proof. It is easy to verify that the elements of U are distinct and 0 /∈ U . Then f(0) = 0. Let z be any

element of F2n \ F4. According to Theorem 3.4, it suffices to prove that at least one of the following two
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equations holds.

f(0) + f(z + 1
z + 1) + f(ωz + 1

ωz + 1) + f(ω2z + 1
ω2z + 1) = 0, (14)

f(0) + f(z + 1
z + 1) + f(ω(z + 1

z + 1)) + f(ω2(z + 1
z + 1)) = 1. (15)

It follows from Eq. (12) and Result 2.3 that Tr( 1
α+ 1

α
+1

) = Tr( 1
β+ 1

β
+1

) = 0. By the assumption Tr( 1
ωα+ 1

ωα
+1

) =

Tr( 1
ωβ+ 1

ωβ
+1

) = 1 and Lemma 3.5, we have Tr( 1
ω2α+ 1

ω2α
+1

) = Tr( 1
ω2β+ 1

ω2β
+1

) = 1. Then it follows from

Result 2.3 that neither of ωα+ 1
ωα , ω

2α+ 1
ω2α , ωβ+ 1

ωβ , ω
2β+ 1

ω2β can equal to z+ 1
z+1. Hence z+ 1

z+1 ∈ U
if and only if z ∈ {α, 1α , β,

1
β , ωα,

1
ωα , ωβ,

1
ωβ , ω

2α, 1
ω2α , ω

2β, 1
ω2β}. It is also clear that z + 1

z + 1 ∈ U if

and only if ωz + 1
ωz + 1, ω2z + 1

ω2z + 1 ∈ U . The rest of the proof is split into two cases according to

whether z + 1
z + 1 ∈ U .

Case 1. z + 1
z + 1 /∈ U

Then f(z + 1
z + 1) = f(ωz + 1

ωz + 1) = f(ω2z + 1
ω2z + 1) = 0 since neither of z + 1

z + 1, ωz + 1
ωz +

1, ω2z + 1
ω2z + 1 is in U . Hence Eq. (14) holds.

Case 2. z + 1
z + 1 ∈ U

Contrary to Case 1, now Eq. (14) does not hold since z+ 1
z + 1, ωz+ 1

ωz + 1, ω2z+ 1
ω2z + 1 ∈ U . Hence

f is not a PBF. Now we need to prove that Eq. (15) must hold, or equivalently, to prove that

f(ω(z +
1

z
+ 1)) = f(ω2(z +

1

z
+ 1)). (16)

We distinguish two subcases.

Subcase 2.1. z ∈ {ωα, 1
ωα , ωβ,

1
ωβ , ω

2α, 1
ω2α , ω

2β, 1
ω2β}

It is clear that ω(z+ 1
z +1), ω2(z+ 1

z +1) ∈ V . Then it follows from the definition of f and the assumption

U ∩ V = ∅ that f(ω(z + 1
z + 1)) = f(ω2(z + 1

z + 1)) = 0, which means Eq. (16) is hold.

Subcase 2.2. z ∈ {α, 1α , β,
1
β}

Let U1 = {α + 1
α + 1 = β + 1

β , α + 1
α = β + 1

β + 1}, U2 = U\U1. Then one can easily verify that

u1 + u2 ∈ U2 holds for any u1 ∈ U1, u2 ∈ U2. Since z + 1
z + 1 ∈ F2n \ F4, we have ωi(z + 1

z + 1) /∈ U1,

i = 1, 2. Then ω(z + 1
z + 1) ∈ U2 if and only if ω2(z + 1

z + 1) = (z + 1
z + 1) + ω(z + 1

z + 1) ∈ U2, which

means f(ω(z + 1
z + 1)) = 1 if and only if f(ω2(z + 1

z + 1)) = 1. Hence Eq. (16) holds.

We finish the proof. �

Now we estimate the number of the permutations constructed in Theorem 3.6. Roughly speaking, for a

random element α ∈ F2n , the probability of Tr( 1
α+ 1

α
+1

) = 0 is around 1/2. If Tr( 1
α+ 1

α
+1

) = 0, then there

exists β ∈ F2n satisfying Eq. (12). Then there are about 2n−3 elements (α) in F2n satisfying Tr( 1
α+ 1

α
+1

) = 0,

Tr( 1
ωα+ 1

ωα
+1

) = 1 and Tr( 1
ωβ+ 1

ωβ
+1

) = 1. Since there are 8 pairs ((α, β), (α, 1β ), ( 1
α , β), ( 1

α ,
1
β ), (β, α), ( 1

β , α),

(β, 1α), ( 1
β ,

1
α)) corresponding to the same function f(x), any f(x) corresponds to 4 elements (α). Then there

are about 2n−5 functions f(x) satisfying the conditions of the Theorem 3.6. We use Magma to do an exhaust

search for F2n(6 ≤ n ≤ 18, n even). The experiment data is listed in the following table. It provides a
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positive evidence of this estimate number. We also list the number of the functions f(x) satisfying all the

conditions of Theorem 3.6 except U ∩ V = ∅. The result hints that the restriction U ∩ V = ∅ is quite weak.

TABLE I
NUMBER OF 4-UNIFORM PERMUTATIONS CONSTRUCTED BY THEOREM 3.6 FOR 6 ≤ n ≤ 18 (n IS EVEN)

f(x) satisfied all

The number conditions except

n of f(x) U ∩ V = ∅ 2n−5

6 3 0 2

8 6 0 8

10 30 0 32

12 126 1 128

14 525 0 512

16 2076 0 2048

18 8112 0 8192

In the end of this section, we will show that the number of differentially 4-uniform functions constructed

by 4-Uniform BFI is much bigger than those for previous constructions.

It is clear that f is a 4-Uniform BFI if and only if so is f + 1. For convenience, we assume that

f(0) = f(1) = 0 in the rest of the paper. Hence to determine f is equivalent to determine all the images

f(x) for x ∈ F2n \ F2. By abuse of notation, in the following, we still use f to denote the value vector of

f on F2n \ F2.

By the two conditions in Theorem 3.4, clearly we may obtain many such 4-Uniform BFIs by solving

linear equations as follows.

Define the following two sets:

Lx = {{x, x+ 1} : x ∈ F2n \ F2} ,

Lz = {{z +
1

z
+ 1, ωz +

1

ωz
+ 1, ω2z +

1

ω2z
+ 1} : z ∈ F2n \ F4}.

Clearly |Lx| = 2n−1−1. Note that when z ∈ F2n \F4, the elements z+ 1
z +1, ωz+ 1

ωz +1, ω2z+ 1
ω2z +1

are all distinct (since the sum of them is 1, and none of them can be 1). The six different elements

z, ωz, ω2z, 1z ,
1
ωz ,

1
ω2z leads to the same element of Lz , hence |Lz| = 2n−4

3·2 = 2n−1−2
3 .

Let L be a subset of F2n . Denote by vL its characteristic function. Let α, β ∈ F2n be a fixed pair satisfying

those conditions in Theorem 3.6. Define the following sets: Lzα = {α+ 1
α +1, ωα+ 1

ωα +1, ω2α+ 1
ω2α +1},

Lzβ = {β + 1
β + 1, ωβ + 1

ωβ + 1, ω2β + 1
ω2β + 1} ∈ Lz . Lyα = {α+ 1

α + 1, ω(α+ 1
α + 1), ω2(α+ 1

α + 1)},
Lyβ = {β + 1

β + 1, ω(β + 1
β + 1), ω2(β + 1

β + 1)}.
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Define a matrix Mα,β with the size of (|Lx|+ |Lz|+ 2)× (2n − 2) as follows:

Mα,β =



vLx

vLz\{Lzα ,Lzβ}

vLzα
vLzβ
vLyα
vLyβ


, (17)

where the columns and rows of Mα,β are indexed by the elements in F2n \ F2 and Lx ∪ Lz ∪ {Lyα , Lyβ}
respectively.

Proposition 3.7: Let α, β,Mα,β be defined as above and let f be an n-variable Boolean function with

f(0) = f(1) = 0. If f satisfies the equation

Mα,βf
T =



0
...

0

1

1

1

1


, (18)

then f is not a PBF but a 4-Uniform BFI. Further, the number of the Boolean functions satisfying (18) is

at least 2
2n−4

3 .

Proof. The first result follows directly from Theorem 3.4 and the proof of Theorem 3.6.

Since α, β are, by assumption, satisfying those conditions in Theorem 3.6, the linear equation system

(18) has at least one solution. Therefore the dimension of the set of 4-Uniform BFIs constructed above with

f(0) = 0 is 2n − 2− rank(Mα,β). It is clear that f + 1 is also a 4-Uniform BFI if f is a 4-Uniform BFI.

Hence altogether the dimension of 4-Uniform BFIs constructed above with α, β is 2n−2−rank(Mα,β)+1 =

2n − 1− rank(Mα,β). However,

rank(Mα,β) ≤ min{|Lx|+ |Lz|+ 2, 2n − 2} = min{2n+1 − 5

3
+ 2, 2n − 2} =

2n+1 + 1

3
.

Hence, the dimension of 4-Uniform BFI, which is one plus the dimension of the null space of Mα,β , is at

least 2n − 2− 2n+1+1
3 + 1 = 2n−4

3 . �

It is clear that Lzα is different from Lzβ when α 6= β. Thus we have about 2n−5 different linear equation

systems. Clearly, the solution sets for different linear equation systems are pairwise disjoint. Hence, the

number of 4-Uniform BFIs is at least 2n−5 × 2
2n−4

3 (we can get an exactly lower bound from Table I)

and none of them is a PBF. Then we find when n tends to infinity, the number of differentially 4-uniform

permutation constructed by 4-Uniform BFI is far more than those in [9] (about 2
2n+2

3 ). These functions may
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provide more choices for the design of Substitution boxes.

IV. CONCLUDING REMARKS

In this paper, an equivalent condition for the switching construction of differentially 4-uniform permu-

tations from the inverse function is presented. It is proved that any constructed function can not be an

APN function. A new infinite family differentially 4-uniform permutations is also constructed. The newly

obtained functions may provide more choices for the design of Substitution boxes. For further research, it

is interesting to find subclasses of the functions constructed by Theorem 3.4 with other good cryptographic

properties such as high nonlinearity. A more important challenge is the BIG APN Problem.
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