FPGA Trojans through Detecting and Weakening of
Cryptographic Primitives

Pawel Swierczynski, Marc Fyrbiak, Philipp Koppe, and Christof Paar, Fellow, IEEE
Horst Gortz Institute for IT Security, Ruhr University Bochum, Germany

Abstract—This paper investigates a novel attack vector against
cryptography realized on FPGAs, which can pose a serious threat
to real-world implementations. We demonstrate how a simple
bitstream modification can seriously weaken crypto algorithms,
which we show by example of the AES and 3DES. The attack is
performed by modifying the FPGA bitstream that configures the
hardware elements during initialization. It has been known for a
long time that cloning of FPGA designs, even if the bitstream
is encrypted, is a relatively easy task. However, due to the
proprietary format of the bitstream, a meaningful modification
of an unknown FPGA bitstream is very challenging. While
some previous work had addressed bitstream reverse-engineering,
so far it has not been evaluated how difficult it is to detect
and modify cryptographic elements. We outline two possible
practical attacks that can lead to serious security implications.
We target the non-linear S-boxes of crypto algorithms of a
synthesized FPGA design that can be either implemented as
Boolean equations in look-up tables, or as precomputed set
of values that are stored in the memory of the FPGA. We
demonstrate that it is possible to detect and apply meaningful
changes to cryptographic elements inside an unknown propriety
and undocumented bitstream. Furthermore, we also show how
an AES Kkey can be revealed within seconds by modifying the
bitstream. Finally, we propose countermeasures that can raise
the bar for an adversary to successfully perform an attack.

Keywords—Hardware security, FPGAs, Trojans, bitstream ma-
nipulation, reverse-engineering, DES, AES.

I. INTRODUCTION

[ELD-Programmable Gate Arrays (FPGAs) play an im-

portant role in the field of embedded systems. They
are used in a wide spectrum of applications, e.g., computer
networks, data centers, signal processing, automation and the
automotive industry. Many of these application are security-
sensitive and use FPGAs for cryptographic operations such as
random number generation, key establishment, digital signa-
tures as well as encryption. Despite a large body of research
addressing various aspects of FPGAs and security [1], the
issue of maliciously manipulating the configuration data of
FPGAs has not been addressed to our knowledge. During
initialization, the so-called bitstream is loaded into the FPGA,
which configures the internal hardware elements. The majority
of FPGAs used in practice employ bitstreams that are stored
externally, e.g., on dedicated flash chips. This set-up provides
an unfortunate attack surface which allows to learn about
the security mechanisms implemented, and more damaging,

Part of the research was conducted at the University of Massachusetts
Ambherst.

to introduce Trojan-like manipulations of the hardware. Even
though the two market leaders, Altera and Xilinx, offer bit-
stream encryption as a security measure, the schemes of both
have been broken [2], [3], [4]. The attacks leak the symmetric
encryption keys stored inside the FPGA utilizing side-channel
analysis. After key extracting, the encrypted bitstream stored in
the external flash can be read and decrypted. It is also possible
to re-encrypt a modified bitstream and load it into the FPGA
to ultimately change its hardware configuration.

Even though it can be assumed that the bitstream is known
to an adversary, she still faces two major problems: She
has to overcome a considerably obfuscation hurdle and she
has to find the cryptographic components in a (large) FPGA
design. The bitstreams of all commercial FPGAs make use of
proprietary file formats. It is neither documented which parts
of the file belong to which hardware components within the
FPGA, nor how different bits of the file influence the specific
configuration. There has been research on bitstream reverse-
engineering, to uncover (some of) the bitstream features.
Nonetheless it is not publically documented what the bitstream
details of popular commercial FPGAs are. Even with a full
understanding of the bitstream, it poses a great challenge for
an attacker to detect and identify cryptographic components
within an unknown design. However, this is a prerequisite
for “meaningful” manipulations. To our best knowledge, the
only previous work in this direction is by Chakraborty et al
[5]. They proposed a technique which allows to merge new
logic into an existing bitstream. The inserted logic is restricted
to unused logic blocks, meaning the inserted logic has to be
completely distinct from the existing logic. The fundamental
limitation of the approach is the inability to interact with or
modify the existing design.

In this paper we introduce methods to detect and
manipulate crucial cryptographic components like S-boxes
in the bitstream. These can either be implemented as
lookup-table or they can be stored in the embedded memory.
The applied modifications serve the purpose to weaken the
cryptographic algorithm or leak (parts of) the key, while we
require no knowledge of the internal routing information. We
demonstrate our approach with AES, DES and Triple-DES.
The weakened algorithms are incompatible with their genuine
counterparts. Thus, the attack is limited to certain scenarios,
in which encryption and decryption are computed by the same
device, e.g., USB sticks, solid-state disks or in encrypted
cloud storage. Also, the manipulations can be used in systems
in which all involved devices can be altered. We practically
verified our techniques for a well known FPGA vendor.

Finally we propose countermeasures to raise the bar for an
attacker.

DISCLAIMER - We cannot publish detailed results
regarding bitstream reverse-engineering due to potential
legal issues. Hence we describe the technique in a generic
manner.

II. FIRST POINT OF ATTACK: LOOK-UP TABLES IN FIELD
PROGRAMMABLE GATE ARRAYS

Lookup-tables (LUTs) are one of several element types
embedded in an Field Programmable Gate Array (FPGA).
They are responsible for realizing the main logic of a design.
When combining LUTs with multiplexers an FPGA can
implement combinatorial and more complex logic functions.
FPGAs use thousands of LUTs that can implement either
logic functions or serve as distributed Random Access
Memory (RAM). Usually two or four LUTs are embedded
in a “logic block”. As depicted in Figure 1, a group of
logic blocks is connected to a switch-box. The switch-box is
used for managing all wire connections. The outputs of the
switch-boxes are connected with the input pins of the LUTs
or with the embedded multiplexers. Thus, the output of the
switch-box provides the permutation of the input bits of any
LUT.

Since LUTs represent the primary logic medium in an

FPGA, they are promising targets for an attacker that wants to
maliciously change the functionality of an FPGA design. This
is especially critical in cryptographic applications. Thus, it is
also quite important to analyze the LUT contents in terms of
security. In the real world an attacker usually only possesses
the bitstream of an FPGA design, but not the corresponding
netlist. We have practically verified that an attacker is able to
detect and modify the appropriate bits in order to change a
genuine bitstream to a malicious version.
For this purpose, an adversary needs to know details of the
(proprietary) bitstream mapping that is responsible for config-
uring the LUT contents. To be more precise, the bitstream file
format has to be partially reverse-engineered.

Section II-A provides detailed information of how to fully
reverse-engineer all LUT bit positions. Note that the LUT
bits are distributed over the bitstream following specific and
unknown patterns. We successfully obtained the patterns of
two Device Under Tests (DUTSs) that are based on a 4-bit-
to-1 bit and a 6-bit-to-1 bit LUT architecture. Note that the
following approach can be applied for most of those FPGAs
belonging to the same vendor.

A. Extracting the LUT Mapping From a Bitstream

First, we provide information about our DUT that uses a
6-bit-to-1 bit architecture. It has the following properties:

e Four 6-bit-to-1 bit LUTs are embedded in one logic

block with the ability to store 4x64 bits.

e Three multiplexers that can combine LUT outputs.

To extract the bitstream mapping of all LUTs, an attacker
can use the vendor’s tools. To our best knowledge, this can

be done for any FPGA that belongs to the same vendor.
The approach of reverse-engineering the LUT contents from a
bitstream relies on generating appropriate netlists that specify
the rules of reconfiguring the hardware. The netlist can be
used to manually configure any LUT with any arbitrary 6-
input Boolean function. It can be converted to the FPGA’s
bitstream using the vendor’s tool. To give an example, Listing 1
shows the configuration of four LUTs. LUT; implements a
6-input AND gate. The inputs are denoted by g, ...,71. The
&-character represents a logical AND, while a ~-character
represents a logical NOT. Note that the presented netlist uses
a fictional syntax, but it is very similar to the syntax of our
targeted vendor.

Listing 1: Netlist example for setting LUT contents

FPGA design "minimal lut_implementation" ...,

other configuration "...";
instance "logic block X Y",
config {
LUT; = {"il & i2 & i3 & 14 & 15 & i6"}
LUT2 = {"il & i5"}
LUT3 = {"i2 + i4 + i6"}
LUT4 = {"~i3 + (i5 & i6")}

As further illustrated by Listing 1, each LUT of one logic
block can be configured by specifying a Boolean equation.

In the following, we describe a reverse-engineering strategy
that reveals all LUT bit positions from a bitstream. Then,
all LUT contents can be easily dumped from a bitstream,
i.e., the corresponding dump reveals the FPGA’s synthesized
Boolean functions. This way, an attacker is able to search
for specific logic like cryptographic S-boxes. The idea is as
follows: An attacker configures two Boolean functions for
exactly one LUT, thus, he has to create two different netlists
(c.f., Listing 1). The first netlist configures a Boolean function,
whose output is always a logical zero for all 64 input values
(6-bit-to-1 bit architecture). It should be noted that for each
input value one output bit has to be stored. All outputs bits
together (64-bit) form a LUT content. In this case, 64 “0”-bits,
which is the resulting LUT content of the currently discussed
Boolean function, are stored in the bitstream. Analogously, in
a 4-bit-to-1 bit architecture (16 input values), only sixteen “0”’-
bits are stored in the bitstream due to less input value entries.

In the next step, a second netlist is created. The only
difference is the specified Boolean function. Instead of out-
putting zeros only, the function is chosen in such a way that it
always outputs a one regardless of the input value. Again, the
corresponding bitstream is generated. This leads to the storage
of 64 ”1*“-bits in the bitstream.

When comparing both bitstreams, one can observe that
exactly 64 bits toggle, while all other bits remain unchanged.
Therefore, one can easily determine and store the mapping
rules of all 64 bits that are related to one LUT, but obviously
the correct order of these 64 bits stays unclear. It is important
to know the correct order to be able to reconstruct the correct
Boolean function. Thus, an attacker has to extend the previous
approach: Now, the idea is to additionally create 64 bitstreams
from 64 different netlists.

Each netlist configures an appropriate Boolean function (c.f.
Table I) for the same LUT such that only one bit of the LUT
content is set, while all other 63 bits are cleared. Note that this
can be realized by configuring a 6-input AND as it is shown in
the table below. All 64 generated bitstreams can be compared
with the bitstream, whose LUT content bits are all cleared,
because then only one bit toggles.

To be more precise, each LUT content bit is recovered
separately by observing the toggling positions, and thus, the
correct order can be revealed. In a 6-bit-to-1 bit architecture,
one needs to generate 65 bitstream per LUT, while for a
4-bit-to-1 bit architecture only 17 bitstream generations are
sufficient. This approach has to repeated for all given LUT of
the underlying FPGA in order to be able to dump all LUT
contents from the bitstream.

Equations for Boolean functions LUT content
~ig & ~ig & ~ig & ~iz & ~ig & ~ip | 0x00000000000000001
~ig & ~ig & ~ig & ~ig & ~ig & i1 0x00000000000000002
~ig & ~ig & ~ig & ~ig & io & ~ig 0x00000000000000004
ig & is & 14 & i3 & 19 & ~ig 0x40000000000000000
& i5& & i3& ia& 1 0x80000000000000000
0 [0x00000000000000000

TABLE I: Setting boolean equations for LUT

Note that the bits of one LUT, as indicated by Table I, are
not stored next to each other in the bitstream. Rather, they are
distributed in the bitstream file by following specific offsets
rules. To give an example, the first bit of one LUT content
can be stored in the bitstream at position (byte Y, bit 0),
while the second bit may be located at position (byte Y-
8, bit 5). We were able to practically verify the correctness
of our recovered bitstream mapping for any single LUT.
This can be done by setting a random configuration for any
LUT (in a netlist describing all equations) and by creating
the corresponding bitstream. Then, the LUT contents can be
dumped from the bitstream and compared to the Boolean
functions of the previously generated netlist.

Algorithm 1 illustrates this straightforward and time-
consuming reverse-engineering approach in more detail. A
more sophisticated (and much faster) method is to learn the
offset patterns of one or several LUTSs that can be applied to all
other LUTs. For a mid-sized FPGA, the reverse-engineering
process, then, approximately takes 1-2 days, while the straight-
forward approach takes much longer. Note that several offset
patterns can be found, which depend on the LUT coordinates
in the FPGA’s grid. The paper’s intention is not to provide very
deep details of the bitstream file format. Rather, it illustrates
how basic the approach can be. This is supposed to raise
awareness of the moderate reverse-engineering effort of an
attacker. The next sections deal with the detection and impacts
of an adversary’s modification.

III. DETECTING DES S-BOXES

This section explains how to detect DES S-boxes from an
FPGA’s bitstream. The corresponding FPGA design is based
on a 6-bit-to-1 bit architecture. Note that the Data Encryption

Algorithm 1 LUT content extraction for a 6-bit-to-1 bit FPGA
architecture

1: Input: FPGA device file describing LUTs
2: Output: Bitstream position table of LUT content

bool_eq(-) generates the boolean equation (see Table I)
set_lut_content(-) sets the LUT content in netlist file
Bitstream bs_ref: Bitstream file with zeroised LUT content
Bitstream bs_mod: Modified LUT content

AN

>

for [ut_index = 0 to num_of_luts - 1 do
Create bitstream bs_ref with zeroised LUT content
for LUT [ut_index

9: for bit =0 to 26 — 1 do

®

10: lut_content = bool_eq(bit)

11: set_lut_content(bs_mod, lut_index, lut_content)
12: Synthesize bitstream bs_mod

13: Compare bs_ref and bs_mod

14: Store difference in position_table[lut_index][bit]
15: end for

16: end for

17: return position_table

Standard (DES) algorithm is described in Section V in more
detail. DES uses eight different predefined 6-bit-to-4 bit S-
boxes. Since our DUT provides 6-bit-to-1 bit LUTs, one DES
S-box column' fits into one LUT. Therefore, one complete S-
box (4 columns) can be realized by four LUTs. Because of that,
a round-based DES implementation, using 8 S-boxes, requires
an instantiation of 32 LUTs. A general 6-bit-to-4 bit LUT is
illustrated in Table II. Note that each column fi, fo, f3, and f4
stores a unique 64-bit sequence describing a Boolean equation.
These might be the fixed bit-sequences of a DES S-box.

Input values Output columns
ig is ia i3 i2 i1 f1 fa f3 fa
0 0 0 0 0 0 ay by cy dy
0 0 0 0 0 1 a bg C2 dg

1 1 1 1 1 1 ae4 b64 Ce4 d64

TABLE II: General shape of a 6-bit-to-4 bit S-box

To give an example, the four patterns of the first DES S-box
are as follows:

o fl(iﬁ, ...,il) = ae4...A1 = 0x869D497A86E67619
e fo(ig,...,11) = bgg...p1 = 0xBOCT871B497826BD
° fg(iﬁ, ,71) = Cg4...C1 = O0x27E9D492609F1F29

f4(i6, ...,il) = d64...d1 = 0x917BE9066F81B478

Note that each 64-bit pattern is unique for each DES S-
box. Because we were able to reverse-engineer the bitstream
mapping for each LUT, we can now analyze the corresponding
(dumped) LUT contents. As stated above, an attacker may

Tt is equal to the LUT content describing the Boolean function of one
output bit of the S-box. A (S-box) column might be fi(-) = a;i...ap4, c.f.,
Table II

search for the presented patterns. Additionally, all 6! permuta-
tions of a pattern have to be examined, because of the possible
input permutations.

The vendor’s tools determine an optimal routing path. For
this purpose, the tools permute the input bits of a LUT. Thus,
this also leads to permuted output bits. Due to this fact, the
LUT content has to be viewed as f(perm(ig,...,%1)) instead
of f(is,...,41). One may think that an attacker needs further
knowledge of the FPGA’s routing, but this is not necessary
due to the uniqueness of DES S-box patterns: The basic idea
is to compute all possible input permutations for all given
DES patterns and to compare them with all dumped LUTs.
The corresponding DES pattern search algorithm is depicted
in Algorithm 2.

Algorithm 2 DES S-box detection for a 6-bit-to-1 bit archi-
tecture
1: Inputs: Bitstream bs, Bitstream position table of LUT

content
2: Output: File with localized DES LUTs

Si(z), S2(x), ..., Sg(x) represent DES S-Boxes
S?(x) denotes to the j’th output bit of S;(z)
perm, (-) denotes the i’th permutation out of all 6!
mark_lut(-) writes the parameter to an output file

AN

//Generate DES search patterns
7: for sbox =1 to 8 do
8: for output_bit = 1 to 4 do

9: des_pattern[sbox]I[j(mtput_bit] = o
output_bit output_bit

10: Ssboz - (63)| e ‘Ssboz - (0)

11: end for

12: end for

13: LUT[num_of_luts] <— DumpLUT(bs)
//Search for DES pattern
14: for lut_index = 0 to num_of luts - 1 do

15: for perm_index = 1 to 6! do
16: for sbox = 11to 8 do
17: for output_bit = 1 to 4 do
18: if (perm,,,,,,_jnae(LUT[lut_index])
== des_pattern[sbox][output_bit]) then
19: mark_lut(lut_index, sbox, output_bit)
20: end if
21: end for
22: end for
23: end for
24: end for

In practice, we were able to detect all S-box instances of our
synthesized bitstream. Next to the exact location of LUTs on
the FPGA’s grid (belonging to DES S-boxes), we obtained
the exact permutation order of the corresponding input pins.
(without any knowledge of the routing) for every single S-box
column.

Note that the provided knowledge might be extremely useful
for an attacker, e.g., if side-channel attacks based on Elec-
tromagnetic Emanation (EMA) are used. Knowing the exact

location an attacker can try to locate the best probe position
for the measurement while a DUT performs its cryptographic
operations. The bitstream can also expose information about
the utilized architecture of the design. Knowing the architec-
ture can indicate, whether an implementation is round-based,
unrolled, or whether other (known) cryptographic instances run
in parallel. Table III illustrates that we were able to locate all
DES S-boxes from two of our FPGA implementations. Note
that one can also easily identify the S-boxes of a Triple-DES
(3DES) architecture.

Implementation | Architecture Found LUTs | Detection rate
#1 fully unrolled | 512 100 %
#2 round-based 32 100 %

TABLE III: Overview of evaluated DES implementations

The Algorithm 2 can also be applied to a 4-bit-to-1
bit LUT FPGA architecture. In this similar scenario, we
evaluated whether one can also detect the corresponding 4-bit-
to-4 bit S-boxes of the lightweight cipher PRESENT [6]. We
could again identify all S-box instances from the bitstream. As
long as a Boolean function candidate is known to an attacker,
he is able for search for it in the bitstream. Since the S-boxes
are usually the only non-linear function of a block cipher, they
represent a potential security risk, if they can be altered by
an attacker, but under certain conditions, the identification of
S-box columns can be more challenging. We discuss this in
Section III-A.

A. Generalization of Arbitrary y-bit-to-1 bit LUTs

If the FPGA’s architecture uses y-bit-to-1 bit LUTs and
z-bit-to-1 bit Boolean functions need to be synthesized, two
cases may occur:

a) Case 1: x < y: If = is less than or equal to y, then
the whole S-box column is placed in exactly one LUT. The
LUT contents can be matched with the reference patterns as
described in Algorithm 2. It is thus straightforward to detect
single x-bit-to-1 bit S-box columns.

b) Case 2: x > y: If © > y holds, then it is a more
challenging task to find z-bit-to-1 bit S-box columns. Due
to the dimensions, one S-box column must be split into
at least [7] LUTs that have to be multiplexed. We have
developed a search strategy for S-box columns that exceed
the common 16-bit (4-bit-to-1 bit) and 64-bit (6-bit-to-1 bit)
memory limitations of one LUT. This technique is described
for Advanced Encryption Standard (AES) in Section III-B.

B. Detection of AES

To detect decomposed AES? S-boxes (for a 6-bit-to-1 bit ar-
chitecture) within a bitstream, we first synthesized the corre-
sponding 8-bit-to-8 bit AES S-boxes. Thus, roughly speaking,
we have to handle the detection for Case 2 of the previous

2The AES is described in Section VL

Routed Wires <—>‘ Other Resources |

!

|

Logic Block

VAV

l
|
|

; Logic Block

§LUT1

]
.
]
]
]
.
]
] 2
I 0
]
]
]
.
]
]
"

“LuT2

Switch-box

o
i

“LUT3

Fig. 1: Simplified overview of a logic block realizing an 8-bit-to-1 bit Boolean function with four 6-bit-to-1 bit LUTs

section. In the next step, we analyzed the place and route
behavior of the underlying FPGA tool chain.

During this step, we observed that any 8-bit-to-1 bit function
is usually placed and routed as depicted in Fig. 1. Thus, for
the realization of one single AES S-box, eight of the illustrated
logic blocks need to be synthesized by the FPGA tool chain.
It seems that this is the most efficient way of realizing an
8-bit-to-1 bit Boolean function as otherwise the logic has to
be distributed over several logic blocks. To be more precise,
the FPGA’s architecture makes use of 8 - 4 LUTs and 8 - 3
multiplexers for implementing one AES S-box.

In the following we briefly explain what we could observe
from the FPGA’s tools. To be more precise, we show how an
8-bit-to-1 bit function is separated into four 6-bit-to-1 bit LUTs
and how they are multiplexed. One AES S-box output column
can be written as f(ig, i7, i, i5, i4, i3, 42, 11) = A256...a1. First,
two multiplexer inputs, denoted by mu; and mus, are selected
that control which LUT is selected as output, c.f. Fig. 1.
Without loss of generality, let mu; = ig and muy = i7. These
two multiplexer inputs are routed to the three multiplex units
inside the logic block. Note that there are (5) = 28 possibilities
to chose two input bits of the AES as multiplexer bits.

The 8-bit-to-1 bit function is divided into four [2207] = 4
LUTs that are denoted by LUT; (or: subfunctions f;) with
i = 1,2,3,4. Thus, the synthesizer has to pick 64 outputs
bits from ass6...a; that have to be stored together in one
LUT. Once the two multiplexer inputs have been chosen, it is
automatically arranged which 64 bits have to grouped together.
To give an example, with the previously defined multiplexer

configuration, the first 64 output bits ass6...a193 have to stored
in one LUT, while ajgs...a129 belong to a second LUT, etc.
For any multiplexer configuration, this is the way how the
output bits asse...a; have to be divided into four LUTs:

For any AES S-box input value z € {0, ..., 255}, for which
(muy, mug) = (0,0) holds®, add the corresponding AES S-
box output bit to the same LUT group. This is also repeated
for (muq, mug) € {(0,1),(1,0),(1,1)}. Note that all LUT;
contents can again be permuted by one out of 6! possible
permutations. Knowing this, one can see that for an 8-bit-
to-1 bit AES S-box column, there are (2) - 6! - 4 = 80640
patterns that have to be generated and searched for. To be able
to search for all AES S-box output columns, one needs to
generate 8- 80640 = 645120 patterns in total. Algorithm 3 (no
further explanation) provides the necessary steps for detecting
all AES S-boxes from a bitstream.

From an attacker’s point of view, it is an advantage that all
four LUTs are placed within one logic block. This property
simplifies the detection of one single AES S-box column.
This algorithm is a proof-of-concept that in many cases, an
attacker only has to reverse-engineer the LUT content part of
the bitstream and does not need any further knowledge about
the routing to be able to detect and modify S-boxes. Thus,
the reverse-engineering effort is minimal.

Note that in some attack scenarios an adversary needs
to figure out the exact input permutation and multiplexer
configuration of a logic block, while for some other attack
strategies this is not necessary at all. These scenarios are

3This is always the case for exactly 64 bits

Algorithm 3 AES S-box detection for a 6-bit-to-1 bit FPGA
architecture
1: Input: Bitstream bs, Bitstream position table of LUT

content
2: Output: File with localized AES LUTs

3: S7(x) denotes the j’th output bit of S(x)
4: perm,(-) denotes the 7’th permutation of all 6!
mark_lut(-) writes the parameter to output file

W

6: //Generate AES search patterns

7: for sbox_bit =1 to 8 do

8. for mux_cfg =1to (3) do

9: Pick muxer configuration (muy,mus)
10: Set cnt; to 0, 2 = 1,2,3,4

11: for i = 0 to 255 do

12: switch(get_mux_value(i))

13: case(0,0):

LUT; [mux_cfg][sbox_bit][cnt; ++] = S5bor-bit(j)
14: case(0,1):

LUT,[mux_cfg][sbox_bit][cnty++] = S5bom-bt(j)
15: case(1,0):

LUT;3[mux_cfg][sbox_bit][cntz++] = S§5bor-Lit(4)
16: case(1,1):

LUT4[mux_cfg][sbox_bit][cnty++] = Ssbor-bit(j)

17: end switch
18: end for

19: end for

20: end for

21: //Dump LUT content with Algorithm 2
22: LUT[num_of_luts] <— DumpLUT(bs)
23: //Search for AES pattern

24: for lut_index = 0 to num_of luts do
25: for sbox_bit =1 to 8 do

26: for mux_cfg =1 to (g) do

27: for perm_index =1 to 6! do

28: for 1 = 0 to 255 do

29: if permperm_index(LUT[lut_index])
== LUT; 64[mux_cfg][sbox_bit][: mod 64] then

30: mark_lut(lut_index, sbox_bit,

mux_cfg, perm_index)

31: end if

32: end for

33: end for

34: end for

35: end for

36: end for

discussed in Section VI and V in more detail.

To verify our results practically, we synthesized a publicly
available AES core on a 6-bit-to-1 bit FPGA in order to ana-
lyze the corresponding bitstream. With the help of Algorithm
3, we could identify all S-box instances. We synthesized also
one our own implementations and could identify exactly 640
LUTs that belong to AES S-boxes.

From this information, it can be inferred that a round-based
AES implementation is used since there are 20 = % S-
box instances of an AES S-box. By obtaining such a result,
it is very likely that sixteen S-boxes belong to the processing
of the AES SubBytes step, while the other four S-boxes are
synthesized for the key schedule step of AES. It should be
noted that we were also able to identify all sixteen inverse

S-boxes belonging to the AES decryption.

C. Measuring the Non-linearity of LUT Contents

In this section, we introduce another potential approach of
detecting decomposed S-boxes, by again targeting the LUT
contents. One advantage is that we do not have to consider
the permutation configuration of the input pins anymore. We
show that measuring the degree of linearity of all LUT contents
may also be helpful for obtaining information from unknown
FPGA designs.

As mentioned in the previous sections, the analysis of LUT
content of a bitstream can reveal valuable information for
an attacker. An algorithm can be implemented using several
strategies. Each implementation strategy has an inherent char-
acteristic that may be revealed through measuring the linearity.
For example, in an unrolled design, it is very common that
more S-box instances are utilized compared to the amount of
S-boxes used by an iterated design.

In the case of cryptographic applications the underlying S-
boxes have a very high degree of non-linearity. This is a
necessary characteristic in order to defeat crypt-analytical
attacks. Thus, the more S-box instances are used, the more
(decomposed) non-linear LUTs can be expected. We call a
LUT a “non-linear LUT”, if its corresponding content is non-
linear according to the Walsh Coefficient. A large amount of
non-linear LUTSs can already indicate the usage of S-boxes.
To measure the linearity of a LUT content, we use the Walsh
Coefficient. It is a well-established measure, thus, we introduce
the corresponding notation based on Leander et al. [7].

For two vectors a,b € 5, we denote the inner product of a
and b by

n—1
(a, b> = Z aibi
=0

For a Boolean function in n variables f: 'y — [Fy the Walsh
Coefficient is defined by

walp(a) = Y (=1)/Fan

z€FY

Note that the function f is the LUT content representation. For
an FPGA with 6-bit-to-1 bit LUTs, the function f is a boolean
function f: F§ — Fy. The linearity of the Boolean function f
is denoted by

Li = 1
in(f) = ma| wal (x)

If Lin(f) is large, this means that there exists an affine or
linear function that is a good approximation to the function
f. Having introduced the Walsh coefficient, we now use this
measure to evaluate the AES design of Section III-B.

1) Evaluation of an AES implementation on a 6-bit-to-1
bit Architecture: In order to evaluate the suitability of the
Walsh Coefficient, we provide the corresponding results for
our AES design that uses 20 S-box instances. The results are
depicted in Fig. 2. The x-axis represents the Walsh Coefficient
that ranges from 16 to 64. Note that a Walsh Coefficient of 16
represents a low degree of linearity, while in the opposite, a
value of 64 indicates a very high degree. Due to n = 6, only 24
possible Walsh Coefficients can occur. The y-axis provides the
number of occurrences regarding the LUTs of the underlying
FPGA design.

As one can see, there are given 728 LUTSs possessing a

700 681
600~
500

400

number of occurrences

193

239
162 171
86 82
65
. 19 28 18
23 oMo o ommt oM 1 4 o Ll

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
walsh coefficient

200

100
0

Fig. 2: Histogram of Walsh Coefficients evaluating the LUT
contents of a LUT-based AES implementation

mid-high non-linearity, because for these LUTs, the Walsh
Coefficient is smaller or equal to 28. Remember, that the
previous approach of Algorithm 3, for identifying S-boxes,
yielded 640 LUT belonging to AES S-boxes. With the help
of the detection approach of Alg. 3, we could only observe
two S-box LUTs having a higher linearity (Walsh Coefficient
of 26) than expected. Nevertheless, they basically fit into the
set of non-linear LUTS.

As it is quite likely that a LUT-based AES implementation
uses 32 LUTs per S-box instance (6-bit-to-1 bit architecture),
an attacker should be able to estimate the amount of utilized
S-boxes as [T2] = 22. Considering false positives and
implementation strategies for an AES design, an attacker could
gain information regarding the implementation.

During our experiments, we also found LUTs that simply pass,
e.g., a plaintext or ciphertext. The corresponding LUTs possess
a very high linearity. Such information may also reveal further
implementation details.

Measuring the degree of linearity can also be helpful in
other scenarios. Consider a proprietary encryption algorithm
that also uses proprietary S-boxes. Then, the approach with
search patterns cannot be applied, because the corresponding
S-box is unknown. In this case, the Walsh Coefficient may

indicate which LUTSs potentially implement a proprietary S-
box. The corresponding LUT may be an attractive target for
an attacker, who is able to modify the bitstream. To sum it up,
the presented approach may help in the following cases:
Identification of known S-boxes

Identification of proprietary S-boxes

Identification of key-dependent S-boxes

Make predictions regarding the implementation architec-
ture

Thus, the Walsh Coefficient can indeed be a helpful tool for an
attacker. The adversary is able to identify, whether a bitstream
contains non-linear parts like S-box instances and where they
are located on the FPGA’s grid.

IV. ANOTHER POINT OF ATTACK: EMBEDDED MEMORY
IN FPGAS

Another common implementation strategy for realizing
cryptographic S-boxes is to store them in the embedded mem-
ory of the FPGA. We briefly describe how the corresponding
bitstream mapping of the embedded memory can be obtained.
Knowing this mapping, critical data like cryptographic sym-
metric/asymmetric keys or S-boxes may be extracted from
the bitstream since one obtains the plain representation of the
embedded memory content.

Suppose that a fixed AES-{128,192,256} key with its corre-
sponding subkeys has been placed in the embedded memory.
An attacker then may easily find the corresponding main key
by searching XOR-dependencies. This can be done, e.g., with
a tool called aesfindkey written by Haldermann et al. [8].
For the reverse-engineering process, we need to create a Very
High Speed Integrated Circuit Hardware Description Language
(VHDL) file in order to derive the appropriate netlist that again
serves for reverse-engineering.

A. S-box Instances in Embedded Memory

A simplified VHDL code example, realizing an AES S-box,
is depicted in Code Listing 2.

Listing 2: AES S-box instantiation in the embedded memory

architecture rtl of sbox_bram is

type rom_array is array (0 to 255) of

std_logic_vector(7 downto 0);
signal ROM : rom_array := (
X||63", X"7C", XH’77", X"7B",

Cimon xmsan xvmee xvien

)i
process (clk)

if(rising_edge (clk)) then

data <= ROM (conv_integer (addr)) ;
end if;
end process;

When using Code Listing 2, the embedded memory of the
FPGA is filled with the specified bytes of the given signal
rom_array. In this case, it contains the S-box values of AES.

This kind of embedded memory requires to use a clock. The
S-box input is evaluated on the rising edge of the clock. The
corresponding netlist of this design can be generated from the
above VHDL file.

B. Extraction of Embedded Memory Content from FPGA
Bitstreams

The idea of obtaining the bitstream mapping of the em-
bedded memory is similar to the approach of extracting the
mapping of the LUT contents. Again, we create certain netlists,
for which, we change all memory values bitwise. For each
change, the bitstream is synthesized and the corresponding
toggling bits are observed. We implemented the steps that are
given in Algorithm 4 (no further explanation). Having obtained
the mapping, we verified the correctness for several FPGA
families. Note that there are certain set-ups for the memory
layout that can be chosen by the user. We could verify that the
contents of the embedded memory can be reverse-engineered
— regardless of the chosen memory layout. This can be done
with moderate programming efforts.

Algorithm 4 Extracting bitstream mapping of embedded mem-
ory content

1: Input: FPGA device file describing embedded memory
2: Output: Bitstream position table of embedded memory

set_bit_in_block(-) sets the memory content in netlist file
bs_ref: Reference file with zeroised memory content
bs_mod: Modfied embedded memory content

.net represents the netlist file

SANNANE

~

for block = 0 to num_of_memory_blocks - 1 do

8: Create bitstream bs_ref with zeroised memory content
for memory block block

9: for bit = 0 to num_of_bits_per_memory_block - 1 do

10: set_bit_in_block(bs_mod.net, block, bit)

11: Synthesize bitstream bs_mod

12: Compare bs_mod and bs_ref

13: Store difference bit in position_table[block][bit]

14: clear_bit_in_block(bs_mod.net, block, bit)

15: end for

16: end for

17: return position_table

Note that Algorithm 4 has to be executed only once per
device. With the help of the recovered bitstream mapping
describing the contents of the embedded memory, we were
practically able to extract and modify the contents using the
bitstream file.

C. Practical Evaluation of Open Cores

We evaluated several FPGA designs of the Advanced En-
cryption Standard that are offered by OpenCores*. After syn-
thesizing some of the designs, using the standard options, each

“http://opencores.org/

AES S-box instance was placed in the embedded memory. We
were able to extract all S-box bytes from the corresponding
bitstreams.

After having presented several detection approaches, we
describe the potential security issues, in the next sections, for
the case that an attacker is able to detect and modify S-boxes in
a bitstream that corresponds to a DES or AES implementation.

V. ANALYSIS OF DES

The Data Encryption Standard (DES) and especially the
Triple-DES (3DES) algorithms are still used nowadays. There-
fore, both algorithms represent an attractive target to be
weakened. This can be done, e.g., by directly modifying the
bits of the bitstream that are related to the DES S-boxes. As
we have demonstrated in the sections before, we can clearly
locate these bits.

Figure 3 shows the general Feistel structure of the DES al-
gorithm. The DES algorithm processes a 64-bit plaintext using
a 56-bit width main key. Sixteen subkeys are derived from the
main key by following a fixed scheduling plan. We demonstrate
how easy it may be for an attacker to cancel the influence of the
key by modifying the bitstream of the FPGA. Before doing so,
we have to take a look at the inner working of the f-function.

plaintext

main Key

)
Ke¥ Scheduling

16 rounds

ciphertext

Fig. 3: Overview of the DES encryption algorithm

The basic properties of diffusion and confusion are realized by
the f-function. More importantly, each subkey is usually pro-
cessed by this function. Figure 4 shows the internal structure of
the DES f-function. As can be seen, all eight S-boxes process
an intermediate value that has been previously XORed with a
subkey. Our goal is to directly modify the S-boxes in such a
way that a modified ciphertext — carrying a scrambled plaintext

state round key
!

RFLEL:
:

Fig. 4: DES round function f

— is computed. This automatically holds for all plaintext blocks
being encrypted by the modified algorithm.

A. Modification

If all S-boxes (S, ..., Sg) can be modified in such a way that
they always output a zero — regardless of all 64 possible input
values — an attacker has successfully performed a malicious
alteration to the DES algorithm. To be more precise, the
following equation has to be valid for all modified S-boxes:

S-boxPps(i) =0, Vie {0,...,63}

Due to the presented modification, the whole DES algorithm
turns into a (key-independent) permutation. The modified DES
is visible in Figure 5. Usually, in a normal operating f-
function, the S-box outcomes (32 bits) are permutated accord-
ing to the mapping rules of function P. The evaluated result
of P is concurrently the output of the function f. Since in the
modified version, all S-boxes outputs are zero, consequently,
the output of the permutation P is also completely zero. Hence,
the output of the function f also becomes zero. Because the
outcome (which is zero) of f is XORed with the left state L;,
L; remains unchanged.

Thus, the state after IP(:) is not affected after having
processed all 16 DES rounds. This is because the number of
swaps is even. In the end, a final swap is performed which is
followed by a permutation that we denote by TP~ ().

The following two equations compare the computations
steps of a normal DES encryption with those of a modified
DES-encryption using S—boxODES. The modified encryption
only applies three permutations on the plaintext that can be
easily inverted by an attacker.

DES}(-) = IP™ (Swap(Ri6.ky6 (- - - (R1 %, (IP(p)

DES},(-) = IP~' o Swap o IP(p)

An attacker has to perform the following computation to obtain
the plaintext from the ciphertext:

p = 1P~} (Swap(IP(c)))

plaintext

canceled
xor

16 rounds

ciphertext

Fig. 5: Modified DES with canceled f-function

This attacks works likewise for Triple-DES. As described
in [9], the 3DES encryption is computed as follows:

¢ = DESy, (DES;! (DESy, (p)))

A plaintext from the modified 3DES with a S-boxP g can
be computed as follows:

p =IP ™! (Swap(IP(
IP(Swap(IP~(
IP~!(Swap(IP(c)...)

As one can see, in this case, an attacker only has to mod-
ify eight S-boxes (or: 32 decomposed LUTs in a 6-bit-to-1
bit architecture) within the bitstream to significantly weaken
the DES algorithm. Moreover, the ciphertext appears to be a
true one as it possesses a random looking shape and cannot be
identified with visual inspection. We applied the S-box changes
directly on two bitstreams and were able to successfully alter
the design. The presented attack practically worked, either for
a LUT-based and a RAM-based implementation.

Due to the fact that the DES algorithm does not exhibit
any inverse S-boxes, the decryption also functions correctly.
This severe modification may remain undetected, if, e.g., the
bitstream encryption scheme is circumvented or if there are
not any further selftests or integrity checks.

/finvert DESy, (+)
/finvert DES;21(~)
/finvert DES, (+)

VI. ANALYSIS OF AES

The Advanced Encryption Standard is the most commonly
used symmetric cipher today. In this section, we present further

results of our analysis regarding malicious AES modifications.
Similar to DES, an attacker may be able to silently weaken
the algorithm such that the encryption and decryption process
still works. For this purpose, we again alter all S-box instances.
Furthermore, we discuss a key leakage approach, and in which
scenarios it is feasible.

As described in the previous sections, we are able to detect
any single S-box instance by reading in and analyzing the
corresponding bitstream of an FPGA. We fully control all
20 AES S-boxes, i.e., can perform any desired manipulation.
Because of that, we briefly introduce the AES algorithm [10].
Figure 6 shows an overview of the AES-{128,192,256} en-
cryption scheme. The algorithm supports three different key
sizes 128, 192, and 256 bit leading to the execution of 10, 12
and 14, respectively. One AES round consists of the operations

plaintext

AddRoundKey l

k—
v

SubBytes l
v

[ShiftRows l
v

I MixColumns l
v

r{ AddRoundKey I

main key—)[

I Key Scheduling l

Nr-1 rounds

T
v

I ShiftRows l

v

AddRoundKey l

ciphertext

Fig. 6: Overview of the AES encryption algorithm

SubBytes, ShiftRows, MixColumns, and AddRoundkey that are
executed consecutively. Thereby, the SubBytes step processes
sixteen intermediate bytes by calling a fixed S-box. It is
very common, for round-based implementations, to synthesize
multiple S-boxes such that each input byte can be processed
in parallel. In addition to that, the key scheduling also needs
to process four S-box instances. Section VI-A describes the
impact of replacing all S-boxes to an identity table, while
Section VI-B demonstrates the influence of setting all S-box
outcomes to zero.

A. Replacing S-boxes to the Identity Function

a) Impact of S-box modification to the AES encryption:
When setting all AES S-box instances to the identity mapping
like given in the equation below, the encryption and decryption
function turns into a linear bijection. The property of non-
linearity is then completely canceled. The corresponding mod-
ified AES can correctly encrypt and decrypt, but is extremely

vulnerable to cryptanalytical attacks.

S-boxig(i) =i, Vie GF(2%)

With the knowledge of at least one plaintext and ciphertext
pair, an attacker can decrypt all other ciphertext blocks. In
practice, this is an imaginable scenario, because there are a lot
of applications that include, e.g., fixed metadata or file header.

An attacker is able to decrypt all faulty ciphertext blocks,
because the altered AES can be described as:

&= AES,(p) = SR(... MC(SR(p & Ko) & K1) ...) & K1
=SR(...MC(SR(p)...)
@ SR(...MC(SR(Ky) ® K1) ...) ® Ko
=SR(...MC(SR(p)...) ® K

Note that p denotes by a plaintext, Ky, K1, ..., Ko denote by
faulty or normal subkeys, and ¢ denotes by a faulty ciphertext.
The above equation holds, because the MC(-) and the SR()
functions are linear as described below.

Va,b x 4 matrices with elements € GF(2°) :
MC(a @ b) = MC(a) ® MC(b)
SR(a ® b) = SR(a) ® SR(D)

It is important to understand that K can be expressed as XOR
sum of all subkeys. Note that the number of MC(-) and SR(-)
operations depend on the utilized AES mode. Knowing this,
we further describe how K can be recovered with the help of
one (p, ¢) pair. .

b) Recovering K: When an attacker can obtain one faulty
plaintext and ciphertext pair (p, ¢), for a specific AES mode, he
is then able to compute the secret K. For this purpose, he can
simply reconstruct SR(... MC(SR(p)...), and then compute
the following:

K =¢&® SR(MC(...MC(SR(p) ...) (1)

With the knowledge of K, an attacker can recover any
plaintext p from any faulty ciphertext ¢. To do so, the adversary
has to XOR the value ¢ with the previously recovered secret K.
Afterwards, the MC and SR have to be inverted. The inversion
differs depending on the AES mode and key size. Algorithm 6
illustrates this concept in more detail. As indicated above, this

Algorithm 5 Decrypt Faulty Ciphertexts

—_

Input Ciphertext ¢/ from a modified AES (S-box’s)
One prev10usly obtained (p, ¢) palr
Output: Plaintext p’ corresponding to ¢’

wpe

_/[Calculate K
4 K =c¢®SR(MC(SR(...
/[Cancel secret K
550K
//Calculate P’ dependmg on the number of rounds
P SR™YMCH(SR™I(...MC }(SR™(¢)...)

SR(p)...)

a

attack works regardless of the key schedule, because the secret

K can be canceled in any case. Thus, it does not matter how
the S-boxes are altered that are related to the key schedule.
Please note that this kind of attack works for all three AES
modes.

B. Replacing S-boxes to the Zero Function

Analogous to the DES modification of Section V, all syn-
thesized AES S-boxes can be reconfigured to always output a
zero — regardless of the input value — as it is depicted in the
following equation:

S-boxps(i) =0, Vi € GF(2%)

Obviously, after having altered all S-box instances in the
presented manner (means by modifying the corresponding
bitstream), the AES algorithm becomes unusable. That is
because any information regarding the plaintext becomes lost,
right after the first SubBytes step has been processed by the
modified AES instance. Considering the last AES round, c.f.
Fig. 6, the resulting ciphertext is equal to the last subkey. This
is case, if one only modifies the S-boxes that are related to the
SubBytes step.

Such kind of attack can be useful, if the underlying main key
is, e.g., hardcoded in the FPGA design and if it is not stored
in the embedded memory. Suppose, that a main key may be
securely transfered after the power-up of the FPGA, e.g., by
a Hardware Security Module (HSM), whose data bus cannot
be eavesdropped. With the help of the presented alteration, an
attacker though can obtain the key, if he is able to query the
AES instance with any arbitrary plaintext.

Since the S-boxes of the key schedule are usually not dis-
tinguishable from the SubBytes S-boxes, an attacker probably
has to modify all S-box instances to zero. Also, there are
given little differences between the AES modes. Thus, in the
following, we also deal with these cases. We further assume
that all SubBytes S-boxes are altered.

1) AES-128: In the case of AES-128, the main key K can
always be fully recovered. The steps are given in Algorithm 6.
In order to better understand Algorithm 6, the AES-128 key

| ,
S

[wol | wig [wa | wa |

m= BBl

[wiar | wst | wiel | win | (R~

32

Fig. 7: Key schedule of AES-128

Algorithm 6 Reconstruction of the AES-128 main key

1: Input: Ciphertext ¢ from modified AES (S-box}pg)
Output: Fully recovered 128-bit AES main key.

N

/[Load modified ciphertext
for i =0 to 3 do
w[43 — i) = ¢[3 — i
end for
/Mnvert the 128-bit key schedule
for : = 39 to 0 do
9: if i % 4==0 then
10: wli] = w[i + 4] & g(w[i + 3])
11: else
12: wli] = wli + 4] ® wli + 3]
13: end if
14: end for

AN A

schedule is depicted in Figure 7. The following cases may
occur:

e The subkeys are determined using normal AES S-boxes.
This can happen, if the round keys were computed before
the modification. In this case, Algorithm 6 immediately
reveals the full key.

e The subkeys are determined using only S—boxgES S-
boxes. In this case, the g-function only returns the
corresponding round constant RC[i], also padded with
three zeros. Code line 10 of Algorithm 6 should be then
changed to

wli| = wli + 4] ® RC[i]

in order to reveal the full key.
In the following, we also consider AES-192 and AES-256.

2) AES-192 and AES-256: Compared to AES-128, AES-192
and AES-256 only leak the key under special conditions. The
graphical representations of both key schedule functions are
shown in Figure 8 and 9. Similar to AES-128, two scenarios
can occur if we have already modified all SubBytes AES S-
boxes to zero:

a) The key schedule is calculated with normal AES
S-boxes: The following explanation refers to AES-192, but
also holds for AES-256.

If the round keys are calculated utilizing normal AES S-
boxes, then, w[42] cannot be calculated from the modified
ciphertext. This is because the output of the last g-processing is
unknown to an attacker. Therefore, in the set of w[36] — w[41]
only the words w([38] and w[39] are computable. The other
intermediate values belonging to the same set cannot be
computed, because w[42], w[46], and w[47] are unknown. The
last possible word that can be computed is w[33]. Hence, in
this case, not any single byte of the main key, can be recovered.
This fact also holds for AES-256.

[(wior | wig [wizt | wel | wiar [wis) |

s

0
0

+

[wel [winn [wisl [wiot [wizo) | wiy |

[wiar | wias | wisa) | wiss) | wisel | wian |

+

F—0

[wias) | wpaor | wiso | wisa |

Fig. 8: Key schedule of AES-192

[wor [wiy [wizt [wisl [wial | wisl [wiel [winl |
I + ni """""" s |
+ g TN A
P [eeleln)
[l S Hcichcicl

[(wisl | wiol [wino) [winn) [wizzy [wissy [wiza) [wis) |

[wias) | wiso) [wiso) [wisa) [wis2) [wiss) [wisa] [wiss) |

+

+

[(wissl | wisz [wissl | wisep |

Fig. 9: Key schedule of AES-256

b) KeyExpansion with S-box g: In the case that the key

schedule S-boxes are also set to zero, the first 128 bit of the
main key can be derived. The explanation is related to AES-
192, but also holds for AES-256.
The g-function returns the round constant value RC[i], if all
S-box outputs yield a zero (for every input), c.f. function g
of Figure 7. Hence w([42] is derivable and we know the left 4
words in the graphical representation of the key schedule. Even
if the right part is not known, the first 4 words w[0] — w|[3]
can be computed, c.f. Algorithm 7. The other bits cannot be
computed. Having discussed the potential attack vectors, in the
next section, we briefly describe some countermeasures.

Algorithm 7 Reconstruction of the AES-192 / AES-256 key

1: Input: Ciphertext ¢ from modfied AES with S-box\ g
2: Output: First 128 bit of 192/256 main key

3. N, « 51 for AES-192 (+ 59 for AES-256)
4 N « 6 for AES-192 (<« 8 for AES-256)

5: //Load the ciphertext
6: for i =0 to 3 do
7: W[Ny —] = ¢[3 — 1]
8: end for

9: //Invert the KeySchedule

10: for i = N,, to 0 do

11: if ¢ mod N > 4 then

12: continue

13: end if

14: if ¢ mod N == 0 then

15: w[z] Zw[i+Nk]€BRC[i]

16: else

17: wli] = wli + Ni| ® w[i + N — 1]
18: end if

19: end for

VII. COUNTERMEASURES

In this section, we discuss several countermeasures that may

be deployed in order to raise the bar for an adversary, who is
able to modify cryptographic S-boxes in FPGA designs.
In general, every obfuscation strategy helps to defeat such
kind of modification attacks, but if a strategy is known to
an attacker, it may be circumvented easily. In the following,
several ideas and their drawbacks are listed.

A. Integrated Selftest

A simple integrated selftest can be used to defeat the attacks
presented in this work. For example, one can check, if the
algorithm outputs the correct ciphertext for a fixed key and
plaintext. Such a selftest has several drawbacks as listed below:

e The integrity value has to be stored somewhere. An
adversary may be able to change it easily.

e The adversary could disable the selftest or modify it
in such a way that the test routine marks the test as
“passed®.

B. Forced Decomposition

Another approach targets the (decomposed) LUTs. They are
easily detectable, because of their unique output patterns. Criti-
cal Boolean equations, generating the LUT contents, should be
difficult to distinguish from other (linear) LUT patterns. This
could be achieved with further decomposing the LUTs along
its Disjunctive Normal Form (DNF). For example, in a 6-bit-
to-1 bit architecture, a 64-bit LUT content may be splitted into
8 LUTs. The output of each LUT can be OR-ed together to
compute the original LUT content. To give an example, assume
a Boolean function f(a,b,c) = ab + be + abe. Suppose that

this Boolean function is realized in one LUT. Following the
idea described above, this LUT is separated into three LUTs:

fi(a,b,c) = ab
fala,b,c) = be
fa(a,b,c) = abc

The result of every function f; is then OR-ed. Thus, it should
be more difficult to identify fi,fo, and f3 if this scheme is
unknown to an attacker. The decomposition to multiple LUTs
comes with a drawback, too:

e An adversary could look for these patterns or try to
modify a chosen set of candidate LUTs in the bitstream
and observe the FPGA’s output. This can be repeated
for several times until the S-box is detected.

Even, when the set of candidates is large for an adversary,
it is possible to obtain the correct set of LUTs belonging to
the S-box. The attacker’s effort depends on the decomposition
method and the corresponding parameters. For example, it
might be more challenging, if the number of split up LUTs
is chosen randomly for every S-box column.

C. Whitebox Cryptography

One could deploy whitebox cryptography as a counter-
measure. The main idea is to hide the secret key inside
the implementation [11]. Key-dependent LUTs together with
random transformations generate the masking of a fixed key.
Even for this kind of countermeasure there is one drawback:
An adversary could create a copy of the bitstream and use it
as an oracle to decrypt the ciphertext or encrypt the plaintext.
To sum it up, there are possibilities to defeat the attacks
proposed in this paper. Nevertheless, further research has to
be investigated. One needs to evaluate how an FPGA design
can be secured against bitstream modification attacks.

VIII. CONCLUSION

In this work, we have demonstrated how to detect and

modify cryptographic primitives in FPGA bitstreams. The tar-
geted cryptographic algorithms were DES and AES. We have
successfully modified and weakened several FPGA designs (IP
cores and own implementations) by altering the corresponding
bits of a bitstream. To mount this kind of attack, we only need
the FPGA'’s bitstream, which is a realistic scenario in the real
world. We briefly described how the bitstream of an FPGA
can be partially reverse-engineered with moderate efforts. We
have shown that an attacker can obtain valuable information
from a bitstream, which may help to improve side-channel
attacks. This is due to the recoverable information of the
design architecture and LUT localization inside the FPGA. We
verified our attacks practically for DES and AES on an FPGA
of a well-known vendor. For DES, we modified the bitstream
in such a way that the encryption becomes key-independent
and is altered to a revertible permutation.
The AES was first modified to leak (parts of) the AES main
key, and in a second similar attack, we turned the AES into
a simple linear function that produces weak ciphertexts, and
thus, it is behaving like a hardware Trojan.

This work should arise awareness that an attacker can modify
proprietary FPGA bitstreams by purpose. This must not nec-
essarily be a cryptographic function. Thus, it is important to
carefully check an Intellectual Property (IP) core, before using
it in high-security applications. Our results also highlight the
importance of integrity checks. Further, security mechanisms
must be deployed around the FPGA. Because the bitstream file
format cannot be completely changed anymore, future work
demands for the development of new (low-level) countermea-
sures.

ACKNOWLEDGMENT

The authors would like to thank Christian Kison for provid-
ing help with the VHDL implementation. This work has been
supported by the Hans L. Merkle Foundation.

REFERENCES

[1] S. Drimer, “Volatile FPGA design security — a survey (v0.96),” April
2008.

[2] A.Moradi, A. Barenghi, T. Kasper, and C. Paar, “On the vulnerability of
FPGA bitstream encryption against power analysis attacks: Extracting
keys from Xilinx Virtex-II FPGAs,” in CCS 2011. ACM, 2011, pp.
111-124.

[3] A. Moradi, M. Kasper, and C. Paar, “Black-Box Side-Channel Attacks
Highlight the Importance of Countermeasures - An Analysis of the
Xilinx Virtex-4 and Virtex-5 Bitstream Encryption Mechanism,” in CT-
RSA 2012, ser. LNCS, vol. 7178. Springer, 2012, pp. 1-18.

[4] A. Moradi, D. Oswald, C. Paar, and P. Swierczynski, “Side-channel
Attacks on the Bitstream Encryption Mechanism of Altera Stratix II:
Facilitating Black-box Analysis Using Software Reverse-engineering,”
in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA *13. New York, NY, USA:
ACM, 2013, pp. 91-100.

[5] R. Chakraborty, I. Saha, A. Palchaudhuri, and G. Naik, “Hardware
trojan insertion by direct modification of fpga configuration bitstream,”
Design Test, IEEE, vol. 30, no. 2, pp. 45-54, April 2013.

[6] A.Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in Cryptographic Hardware and Embedded Systems -
CHES 2007, ser. Lecture Notes in Computer Science, P. Paillier and
I. Verbauwhede, Eds. Springer, 2007, vol. 4727, pp. 450-466.

[7]1 Leander, G. and Poschmann, A., “On the Classification of 4 Bit S-
Boxes,” in Arithmetic of Finite Fields, ser. Lecture Notes in Computer
Science, C. Carlet and B. Sunar, Eds. Springer, 2007, vol. 4547, pp.
159-176.

[8] J. A.Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We
Remember: Cold-boot Attacks on Encryption Keys,” CACM, vol. 52,
no. 5, pp. 91-98, May 2009.

[9] NIST, FIPS-46-3: Data Encryption Standard (DES), National
Institute of Standards and Technology (NIST) Std., 1999,
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[10] NIST, “FIPS 197 Advanced Encryption Standard (AES),” 2001,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[11] H. J. Stanley Chow, Philip A. Eisen and P. C. van Oorshot, “White-
Box Cryptography and an AES Implementation,” SAC, vol. 2595, pp.
250-270, 2002.

