
Round-Optimal Password-Protected Secret Sharing and T-PAKE

in the Password-Only model

Stanislaw Jarecki∗ Aggelos Kiayias† Hugo Krawczyk‡

Abstract

In a Password-Protected Secret Sharing (PPSS) scheme with parameters (t, n) (formalized
by Bagherzandi et al. [2]), a user Alice stores secret information s among n servers so that she
can later recover the information solely on the basis of her password. The security requirement
is similar to a (t, n)-threshold secret sharing, i.e., Alice can recover her secret as long as she can
communicate with t+ 1 honest servers but an attacker gaining access to t servers cannot learn
information about the secret. In particular, the system is secure against off-line attacks by an
attacker controlling up to t servers. On the other hand, accounting for inevitable on-line attacks
one allows the attacker an advantage proportional to the fraction of dictionary passwords tested
in on-line interactions with the user and servers.

We present the first round-optimal PPSS scheme, requiring just one message from user to
server, and from server to user, and that works in the password-only setting where users do not
have access to an authenticated public key. The scheme uses an Oblivious PRF whose security
we define using a UC-style ideal functionality and denote as V-OPRF due to its verifiability,
and for which we show concrete, very practical realizations in the random oracle model, as well
as standard-model instantiations. As an important application we use this scheme to build
the first single-round password-only Threshold-PAKE protocol in the CRS and ROM models
for arbitrary (t, n) parameters with no PKI requirements for any party (clients or servers) and
no inter-server communication. Our T-PAKE protocols are built by combining suitable key
exchange protocols on top of our V-OPRF-based PPSS schemes. We prove T-PAKE security
via a generic composition theorem showing the security of any such composed protocol.

1 Introduction

Remarkably, passwords have become a fundamental pillar of electronic security. That’s quite a
high task for these low-entropy easily-memorable easily-guessed short character strings. In spite
of repeated evidence of their vulnerability to misuse and attack, passwords are still in widespread
use and will probably remain as such for a long while. The portability of passwords make them
ubiquitous keys to access remote services, open computing devices, decrypt encrypted files, protect
financial and medical information, etc. Replacing passwords with long keys requires storing these
keys in devices that are not always available to the user and are themselves at risk of falling in
adversarial hands, hence endangering these keys and the data they protect.

An increasingly common solution to the problem of data security and availability is to store the
data itself, or at least the keys protecting its security, at a remote server, which in turn is accessed
using a password. This requires full trust in this single server and the one password. In particular,
compromising such a server (or just its password file) is sufficient to crack most passwords stored
at it through an off-line dictionary attack. Indeed, loss of millions of passwords to such attacks

∗U. California Irvine. Email: stasio@ics.uci.edu.
†National and Kapodistrian University of Athens. Email: aggelos@kiayias.com. Research partly supported by

ERC project CODAMODA.
‡IBM Research. Email: hugo@ee.technion.ac.il

1

are common news nowadays [41]. Unfortunately, off-line attacks are unavoidable in single-server
scenarios. A natural approach to solving this problem is to distribute the above trust over a set
of servers, for example by sharing information among these servers using a secret sharing scheme.
However, how does the user access these servers? Using the same password in each of these servers
makes the off-line password recovery attack even worse (as it can be performed against any of these
servers) while memorizing a different password for each server is impractical.

PPSS. The above problem and a framework for solution is captured by the notion of Password-
Protected Secret Sharing (PPSS) that originates with the work of Ford and Kaliski [23] and Jablon
[29] and recently formalized by Bagherzandi et al. [2]. In such a scheme, parametrized by a pair of
variables (t, n), a user Alice has some secret information sc that she wants to store and protect, and
be able to later access on the basis of a single password pw. (Secret sc can represent any form of
information, but it is best to think of it as a cryptographic key which protects some cryptographic
capability.) The scheme has an initialization phase where Alice communicates with each one of a
set of n servers S1, . . . , Sn after which each server Si stores some information ωi associated with
user Alice (ωi is a function of the secret sc, the password pw and server name Si). When Alice
needs to retrieve sc, she performs a reconstruction protocol by interacting with a subset of at least
t+ 1 servers where the only input from Alice is her password pw.

The main requirements from this protocol are, informally: (i) an attacker breaking into t servers
cannot gain any information on sc other than by correctly guessing Alice’s password and running
an on-line attack with it (more on this below). It follows, in particular, that off-line attacks on the
password are not possible as long as the attacker has not compromised more than t servers. In this
case, the only avenue of attack against the secrecy of sc is for the attacker to select one value pw′

from a given dictionary D of passwords (from which the user has selected a password at random)
and check its validity by interacting with the user and servers using pw′ as the password. If the
overall number of interactions between the attacker and the user, and between the attacker and the
servers, is q then we allow the attacker to break the semantic security of sc with advantage q/|D|
(plus negligible). Moreover, we will require that “testing” a guessed password by impersonating
the user to the servers will require interacting with t + 1 different servers. (ii) Soundness: Even
the compromise of all servers cannot lead to the user reconstructing the wrong secret except with
probability proportional to the number of on-line interactions between the attacker and the user.
This is a necessary exception as the attacker can isolate the user and simulate a run with the
servers with a password pw′ and secret sc′ chosen by the adversary; what’s required is that only if
pw′ happens to be the user’s password will the attack succeed. Additionally, a desirable property
is (iii) Robustness: Alice can correctly reconstruct sc as long as (a) no more than t servers are
corrupted and (b) Alice communicates without disruptions with at least t+ 1 honest servers. Note
that robustness can only be achieved if 2t + 1 ≤ n while the other properties do not impose such
intrinsic limitation.

T-PAKE. While PPSS schemes have many uses such as for retrieving keys, credentials, data, and
so on, the main PPSS application is for bootstrapping a Threshold Password-Authenticated Key
Exchange (T-PAKE) [37]. In a (t, n) T-PAKE protocol, a user with a single password is to establish
n authenticated keys with n servers, such that security of the keys established with uncorrupted
servers is guaranteed as long as there are no more than t corrupted servers. PPSS schemes make it
possible to build T-PAKE protocols by combining the PPSS scheme with a regular key exchange
protocol in a modular and generic way. This allows one to focus on the PPSS design which by
virtue of being a much simpler primitive, e.g., avoiding the intricacies of the security of (password)
authenticated key exchange protocols, is likely to result in simpler and stronger solutions, as is
indeed demonstrated by our results below.

2

Prior Work and Our Contributions

For the general case of (t, n) parameters, Bagherzandi et al. [2] showed a PPSS scheme in the
random oracle model (ROM) where the reconstruction protocol involves three messages between
the user and a subset of t+1 servers (effectively 4 messages in the typical case that the user initiates
the interaction). However, if any of these servers deviate from the correct execution of the protocol,
a protocol needs to be re-run with a new subset of servers, which potentially increases the number
of protocol rounds to O(n). Another shortcoming of the PPSS solution from [2] is that it is secure
only in the PKI model, where the user can authenticate the public keys of the servers. Indeed, if the
attacker can induce the user to run the protocol on an incorrect server’s public key, the protocol of
[2] becomes completely insecure. Thus, [2] leaves at least two open questions: Do PPSS protocols
with optimal single-round communication exist (i.e., requiring a single message from user to server
and single message from server to user), and can such protocols work in the password-only model,
namely when the user does not have a guaranteed authentic public key.

Our main contribution is a PPSS protocol with optimal single-round communication (in ROM)
which works in the password-only model. Concurrently to our work, Camenisch et al. [10] present
a PPSS for the general (t, n) setting which also works in the password-only model (and ROM).
However, their protocol sends 10 messages between the user and each server and its total communi-
cation complexity is O(n2). Moreover, its robustness is fragile in the same way as that of [2], i.e. the
user runs the reconstruction protocol with a chosen subset of t+ 1 players, and the protocol must
be re-started if any server in this chosen group deviates. By contrast, the protocol we present has
2 messages and O(n log n) communication complexity, which can be further reduced to O(n) if the
user caches O(n) data between reconstruction protocol instances. Our protocol also has stronger
robustness guarantee, namely Alice is guaranteed to recover her shared secret sc in the single pro-
tocol instance as long as it has unobstructed communication with at least t+ 1 honest servers and
if 2t + 1 ≤ n. On the minus side, unlike [10] who formalize a UC functionality for PPSS (which
they call “TPASS”) and whose protocol realizes this functionality, we model the security of a PPSS
scheme in the password-only setting with a game-based notion. Still, we show that our game-based
security notion is strong enough to imply the security of a natural T-PAKE construction built on
top of a PPSS scheme.

Since our PPSS construction is based on a novel version of so-called Oblivious Pseudorandom
Function (OPRF) [24], our contributions are threefold touching on three distinct elements, OPRF’s,
PPSS, and T-PAKE’s, which we discuss separately below.

OPRF. The basic building block of our PPSS construction is a Verifiable Oblivious PRF (V-
OPRF). Oblivious PRF (OPRF) was defined [24, 30] as a protocol between two parties, a server
and a user, where the first holds the key k for a PRF function f while the latter holds an argument
x on which fk(·) should be evaluated. At the end of the protocol the user learns fk(x) and is
convinced that such value is properly evaluated while the server learns nothing. Formalizing the
OPRF primitive in a way that can serve our application is not trivial. Indeed, the intuitive definition
of OPRF [24, 30] as the secure computation of a two-party functionality which on input pair (k, x)
returns an output pair (⊥, fk(x)), is limiting for at least three reasons: (1) It does not imply security
when several OPRF instances are executed concurrently, as is the case in our PPSS construction; (2)
It does not apply to our setting where the existence of authenticated channels cannot be assumed;
and (3) It is not clear how to instantiate such functionality in the concurrent setting without on-
line extractable zero-knowledge proofs of knowledge, which would add a significant overhead to any
OPRF instantiation.

We overcome these issues via a novel formalization of the verifiable version of the OPRF prim-
itive, V-OPRF, as an ideal functionality in the Universal Composability (UC) framework [13] for

3

which we show several very efficient instantiations. Expressing V-OPRF in the UC framework is a
delicate task, especially in the setting of interest to us where there are no authenticated channels.
Our formalism enforces that the server who generates the PRF key k also produces a function
descriptor π, which fixes a determnististic function fπ. (For honest servers, π is a commitment to
k and the fixed function fπ is equal to the PRF fk.) Then, in any (non-rejecting) execution of the
V-OPRF protocol executed given the function descriptor π, the V-OPRF functionality verifies that
the user’s output is computed as fπ(x). This ensures, in particular, that repeated V-OPRF runs
with the same parameter π and same input x always produce the same output. In other words, the
V-OPRF functionality ensures consistency between V-OPRF instances executed under the same
function descriptor π as well as verifiability that the output value is computed using the committed
function fπ.

Our UC V-OPRF formalization bears interesting similarities to UC blind signatures [35, 22, 1].
In a nutshell, instead of on-line extraction of argument x from the (potentially malicious) client in
every V-OPRF instance, a V-OPRF functionality issues a ticket for every instance executed under
a given descriptor π. The user (or adversary) can then use these tickets to evaluate function fπ
on inputs of their choice, but with the constraint that m tickets cannot be used to compute fπ
values on more than m distinct arguments. Not surprisingly given this similarity, we observe that
an efficient realization of V-OPRF can be achieved (in ROM) by hashing a deterministic blind
signature-message pair.

We present three highly efficient variants of this design strategy, which provide three single-
round V-OPRF instantiations in ROM, and we prove them UC-secure under “one-more” type of
assumptions [4, 31]. Specificially, we show such V-OPRF instantiations in ROM under a one-
more Gap DH assumption on any group of prime order, a similar assmuption on the group with
a bilinear map, and a one-more RSA assumption. We also provide an efficient standard model
V-OPRF construction for the Naor-Reingold PRF [40], based on the honest-but-curious OPRF
protocol given by [25]. Our protocol has two rounds (four messages) and is secure under Strong-
RSA and the Decisional Composite Residuosity assumptions. Note that a single round protocol is
theoretically feasible in the standard (CRS) model, e.g., by encrypting the user input with fully
homomorphic encryption and having each server apply a PRF program over the ciphertext and
supply a UC NIZK proof, e.g. [28], that this computation was performed correctly using a function
committed in π. However, such generic solution is likely to be much less efficient compared to the
Naor-Reingold based construction we present.

We note that the UC formalization of the Verifiable Oblivious PRF functionality that is at the
core of our security treatment is likely to have applications beyond this work. Indeed, OPRF’s
have been shown to be useful in a variety of scenarios, including Searchable Symmetric Encryption
(SSE) schemes, e.g. [18, 14], and secure two-party computation of Set Intersection [24, 30, 31].

PPSS. Armed with our V-OPRF constructions, we proceed to solving PPSS. Our PPSS protocol
is password-only in the Common Reference String (CRS) model, i.e. the user needs no other inputs
except of her password and a CRS string defining an instance of a non-malleable commitment
scheme, which can be embedded in the user’s V-OPRF software. Our PPSS protocol is single-
round in the hybrid model where parties can access the V-OPRF functionality. Given the V-OPRF
instantiations discussed above, this implies three different instantiations of a single-round (i.e.
two-message) PPSS schemes in ROM based on different one-more type of assumptions, and a
four-message PPSS scheme in the CRS model.

Our PPSS construction follows the strategy of the early protocols of Ford and Kaliski [23] and
Jablon [29] who treated the case of t = n: Secret-share the secret sc into shares (s1, . . . , sn), let
each server Si pick key ki for a PRF f , and let c = (e1, . . . , en) where ei is an encryption of si under

4

ρi = fki(pw). Each server Si stores1 (ki, c), and in the reconstruction protocol the user re-computes
each ρi via an instance of a V-OPRF protocol with each server Si on its input pw and Si’s input
ki. If the user also gets string c from the servers, the user can decrypt shares si using the ρi’s and
interpolate these shares to reconstruct sc. The first thing to note is that ciphertexts ei must not be
committing to the encryption key ρi. Otherwise, an adversary could test a password guess pw∗ in
an interaction with a single V-OPRF instance (instead of t+1 instances with t+1 different servers),
by computing ρ∗i = fki(pw∗) and testing if decryption of ei under ρ∗i returns a plausible share value.
We prevent such tests by sharing sc over a binary extension field F = GF (2`), choosing a PRF f
which maps onto `-bit strings, and setting ei to si ⊕ fki(pw). Secondly, the above simple protocol
can allow a malicious server Si to find the user’s password pw if Si is not forced to use the same
function fπi in each V-OPRF instance. Consider the OPRF protocol of [24] for the Naor-Reingold
PRF fki(x) = gv where v = ki,0 ·

∏
xj=1 ki,j for ki = (ki,0, . . . , ki,`) [40]. If in some PPSS instance, a

misbehaving Si uses key k′i which differs from ki on one index j, i.e. in one component ki,j , Si can
conclude that the j-th bit of pw is 0 if the user recovers its secret correctly from such PPSS instance.
Note that the adversary can learn whether user’s secret is reconstructed correctly by observing any
higher-level protocol which uses this secret, e.g. a T-PAKE protocol discussed below. We counter
this attack by using the verifiability property of our V-OPRF functionality, which ensures that Si
computes the function committed in πi, and by extending the user-related information stored by
each server to ω = (π, c, C) where π is a vector of function descriptors π1, . . . , πn of each server,
and C is a non-malleable commitment to the values π, c and user’s password pw. This commitment
is the basis for ensuring that the on-line attacker playing the role of the servers can test at most
one password guess per one reconstruction protocol instance.

With our efficient instantiations of V-OPRF in ROM we achieve a remarkably efficient recon-
struction protocol. The user runs an optimal 2-message protocol with t + 1 (or more) servers,
and in the case of our V-OPRF construction based on the one-more Gap DH assumption on a
prime-order group, the protocol involves just 2 exponentiations by the server and 2t + 3 multi-
exponentiations for the user, employing the optimized ROM-based NIZK for discrete logarithm
equality of [15], plus one hashing onto the prime-order subgroup, a few symmetric key operations,
and a polynomial interpolation operation. The (one-time) initialization stage is also very efficient,
involving 2n + 1 exponentiations for the user and 3 exponentiations per each server. Note that
there is no inter-server communication in the protocol and that the user can communicate with
each server independently, so it can be done in parallel and/or in any order without the servers
being aware of each other. Moreover, the user can initiate the V-OPRF protocol with more than
t+ 1 servers, and it will reconstruct secret sc as long as t+ 1 contacted servers reply with correct
triple ω = (π, c, C) and complete the V-OPRF instances on function descriptors πi in π, provided
that the honest servers constitute the majority in the group of servers with whom the user initiates
the reconstruction protocol.

Note that a PPSS protocol in the password-only setting enjoys the following security hedging
property. While avoiding the need to rely on the authenticity of the servers’ public keys held
by the user is an important security property, when such public keys are available they can add
significant security, because they render on-line attacks against a user ineffective and strengthen
both the security and the soundness properties of the PPSS scheme.2 Thus, to get the benefits of
both worlds, i.e. with and without the correctly functioning PKI, our password-only PPSS protocol
can be easily amended to achieve the following: If the user happens to have the public keys of the

1Note that this requires O(n) storage but it is trivial to bring down to O(logn) using Merkle trees.
2Namely, they remove factor qU from eq. 1 in Def. 1, and they make the upper-bound on the soundness error (i.e.

the probability that any URec instance outputs K′ which is neither ⊥ nor K output in UInit) to be negligible. (See the
definitions of PPSS security and soundness in Section 4.)

5

scheme (t+ 1, n) range ROM/std client inter-server msgs total comm. computation C | S
BJKS[8] (2, 2) ROM PKI PKI 7 O(1) O(1)
KMTG [32] (2, 2) Std/ROM CRS sec.chan. ≥ 5 O(1) O(1)
CLN [11] (2, 2) Std/ROM CRS PKI 8 O(1) O(1)
DRG [21] t < n/3 Std CRS sec.chan. ≥ 12 O(n3) O(1) | O(n2)
MSJ [37] any ROM PKI PKI 7 O(n2) O(1) | O(n)
BJSL [2] any ROM PKI PKI 3 O(n) 8t+ 17 | 16
CLLN [10] any ROM Std PKI 10 O(n2) 14t+ 24 | 7t+ 28
Our PPSS #1 any ROM CRS none 2 O(n) 2t+ 3 | 3
Our PPSS #2 any Std CRS none 4 O(n`) O(n`) | O(l)

Figure 1: Comparison between PPSS/T-PAKE schemes. “Our PPSS #1” and “Our PPSS #2”
refer to our PPSS construction of Section 5 with V-OPRF instantiated, respectively, with protocol
2HashDH-NIZK of Section 3 (this instantiation is spelled out in Appendix B), and with protocol
NR-V-OPRF of Section 3.2. The last column counts (multi)exponentiations in a prime-order group
performed by the client and each server in the reconstruction protocol (except for “our PPSS #2”
where exponentiations are modulo a Paillier modulus). The costs in the last four rows refer to
an optimistic scenario with no adversarial interference. With worst-case adversarial interference,
assuming n = 2t + 1, for schemes MSJ and BJSL all costs (including rounds and communication
complexity) grow by the factor of t + 1, while for our schemes in the last two rows only the
client costs grow, and only by the factor of 2. The “total comm.” column counts the number
of transmitted group elements and objects of length polynomial in the security parameter, like
public-key signatures. Variable ` denotes the length of the password string (or its hash).

servers, she gets the additional security benefits stated above. However, if she does not have access
to servers’ public keys, or if some of these keys have been replaced by fake ones, she still enjoys the
full security of the password-only setting.

T-PAKE. When composed with regular key exchange protocols, our PPSS scheme leads to the
most efficient T-PAKE protocols to date even when compared to protocols that assume that the
user carries a public key that it can use to authenticate the servers. Figure 1 summarizes the state
of the art in T-PAKE protocols and how our protocols compare to this prior work. Interestingly,
while there is a large body of work on single-server PAKE protocols (e.g. [5, 33, 34, 7]) that has
produced remarkable schemes, including one-round password-only protocols in the standard model,
threshold PAKE has seen less progress, with most protocols showing disadvantages in different areas
as shown in the above table. In particular, before our work, no single-round (t, n)-PAKE protocol
was known, not even in the ROM. Most protocols assume a public key carried by the client (making
them non password-only) and all assume secure channels (or PKI) between servers. To improve
complexity, several works treated the specific case of n = t = 2 but even in these cases no one-round
protocol was known and all require inter-server secure channels. Our work improves on all these
parameters achieving the best known properties in all the aspects reflected in the table.

In particular, we achieve single-round password-only protocol in the CRS and ROM models for
arbitrary (t, n) parameters with no PKI requirements for any party and no inter-server commu-
nication (secure communication is only assumed when a user first registers with the servers). In
addition, the protocol is computationally very efficient (and more so than any of the previous pro-
tocols, even for the (2,2) case). We also exhibit a password-only standard-model implementation
of our scheme requiring two rounds of communication (4 messages in total) between client and
servers. Our T-PAKE protocols are built by combining (existing) suitable key exchange protocols

6

on top of our V-OPRF-based PPSS scheme. We prove T-PAKE security via a generic composition
theorem showing the security of any such composed protocol.

Organization. In Section 2 we present the formalization of the V-OPRFfunctionality in the UC
setting and in Section 3 we present efficient realizations of this functionality in the random-oracle
model as well as in the standard (CRS) model. In Section 4 we define and formalize the PPSS
primitive in the password-only model and in Section 5 we present a realization of such a scheme
based on the V-OPRFfunctionality (i.e., the hybrid UC model). Finally in Section 6 we consider
T-PAKE schemes obtained by composing a PPSS scheme with a regular key-exchange protocol and
prove a general security composition theorem. We illustrate the advantages of this composition
approach by showing how to obtain single-round T-PAKE protocols in the password-only model
with the remarkable properties discussed above. For concreteness, Appendix B includes a full
specification of our most efficient instantiation of the PPSS and T-PAKE protocols.

2 Functionality FVOPRF

Functionality FVOPRF

Key generation: Upon receiving (KeyGen, sid) from sender S, forward (KeyGen, sid , S) to ad-
versary A∗.
Upon receiving (Parameter, sid , S, π,M) from A∗, ignore this call if param(S) is already de-
fined. Otherwise, set param(S) = 〈π〉 and initialize tickets(π) = 0, and hist(π) to the empty
string. If S is honest send (Parameter, sid , π) to party S, else parse M as a polynomial-size
circuit with `-bit output and insert (π,M) in CorruptParams.

V-OPRFevaluation: Upon receiving (Eval, sid, S, x) from party U for sender S, record (U, x) and
forward (Eval, sid, U, S) to A∗.
Upon receiving (SenderComplete, sid , S) from A∗ for some honest S output
(SenderComplete, sid) to party S and set tickets(π) = tickets(π)+1 for π s.t. 〈π〉 = param(S).

Upon receiving (UserComplete, sid, U, π, flag) from A∗, recover (U, x) and proceed as follows:

• If flag = > and 〈π〉 = param(S) for some honest S then: If tickets(π) ≤ 0 ignore the
UserComplete request of A∗, otherwise proceed as follows. If hist(π) includes a pair
〈x, ρ′〉, set ρ = ρ′, else sample ρ at random from {0, 1}` and enter 〈x, ρ〉 into hist(π). Set
tickets(π) = tickets(π)− 1 and output (Eval, π, ρ) to party U .

• Else, if flag = ⊥ then return (Eval, π,⊥) to U .

• Else, if flag = > and π is such that (π,M) ∈ CorruptParams for some circuit M , compute
ρ = M(x) and enter 〈x, ρ〉 in hist(π). Output (Eval, π, ρ) to party U .

Figure 2: Verifiable Oblivious PRF functionality FVOPRF.

We introduce the FVOPRF functionality in Figure 2. It represents the notion of a “verifiable
oblivious pseudorandom function” as discussed in the introduction. We refer to the holder of
function’s key as the sender and the party providing the input as the user, and identify them with
S and U monikers, respectively. The functionality is reactive allowing senders and users to interact
multiple times. For simplicity, and without loss of generality, we will specify FVOPRF assuming each
sender S registers a unique function, identified via a parameter π, and each user U evaluates a single

7

value x. We will refer to the parameter π as a “function descriptor”. (In all our implementations
of FVOPRF functionality, π is a commitment to a PRF key.)

The FVOPRF functionality can be thought of as a collection of tables that are indexed by “labels”
denoted by the function parameters π. Users may obtain values from these tables on inputs x of
their choice without leaking any information about these inputs (and corresponding outputs) to
the adversary. FVOPRF generates these tables dynamically and fills them with random values on
demand. Each table is associated by the functionality with a specific sender. In addition to the
tables registered to honest senders, the adversary is allowed to register with FVOPRF its own tables.
Interacting with an adversary-registered table does not jeopardize the privacy of the user’s input
but naturally FVOPRF will provide no pseudorandomness guarantee for the output derived from
such tables. However, FVOPRF will ensure that all adversarial tables are completely determined
according to a deterministic function that is committed by the adversary at the time of the table’s
initialization in the form of a circuit M .

The V-OPRF evaluation cycles through three activations of the functionality: Eval that defines
the input to a V-OPRF computation and two activations, SenderComplete and UserComplete,
that signal the completion of the V-OPRF computation by a sender and user, respectively. Refer
to Figure 2 for the details of each such activation. Next, we present the rationale for the actions
triggered by these activations.

A major consideration in our definition of FVOPRF is to avoid the need for input extractability
(from dishonest users) in the real-world realizations of the functionality. Such need is common in
UC-defined functionalities but in our case it would disqualify the more efficient instantiations of
FVOPRF presented here. Thus, instead of resorting to input extraction requirements, we define a
“ticket mechanism” that increases a ticket upon function evaluation at a sender and decreases it
when this value is computed at the user (or the adversary). The functionality guarantees that tickets
remain non-negative, namely, for any function parameter π registered with a honest sender S, the
number of inputs on which users compute the function π is no more than the number of evaluations
of the function at S. Thus, in FVOPRF, each time that a user completes an interaction with an
honest sender, the functionality increases the ticket count associated with the corresponding table of
the sender indicating that there is a certain value of that table that is currently being transmitted.
Such tickets are redeemed within FVOPRF via either one of two possible routes: the first is when
an honest user completes her interaction and receives the value, the other is when the ideal world
adversary decides to obtain such a value. This second occurrence reflects the fact that a real world
adversary may generate an arbitrary number of malicious users that interact with honest servers
and hence the ideal world adversary should be capable of probing the honest tables maintained by
FVOPRF (but only up to the number of tickets issued for the given table). Thanks to the ticket
mechanism, in the case of malicious users, the ideal world adversary has to merely inform FVOPRF

that an honest sender completed a user interaction (via a SenderComplete message) without
the necessity of submitting a proper Eval action on behalf of the malicious user. Regarding
party corruption, the functionality keeps track of honest and corrupted parties and makes decisions
according to their status. We only consider static corruptions.

Another important aspect of our FVOPRF formalism is the way we handle the 1-1 relationship
between a sender S and its function parameter π, where S is used to identify a sender and π
describes this sender’s committed function. The unique sender-function binding that is known
to the functionality cannot be enforced in a real-world setting where users cannot validate such a
binding as is the case when no authenticated channels (or other forms of authenticated information)
are available to the user. Since these settings are common in our applications, we define FVOPRF so
that the user can provide a name of a sender whose function it intends to compute but the result
returned to the user applies a function π determined by the attacker, and possibly different than the

8

function associated to the requested S. For example, in the PPSS application this corresponds to
a setting where the user is given a network address for contacting a server but she cannot validate
that this is indeed a server that holds a share of her secret, let alone test which function parameter
corresponds to this server. The PPSS protocol needs to make sure that the ability of the attacker
to re-route requests to different servers does not break the security of the PPSS scheme. Therefore,
while in an Eval call the value of S is specified, the UserComplete response that sets the output
for this call lets the adversary choose π even if this is different than the parameter assigned to S
by FVOPRF.

In spite of the above, note that if FVOPRF is used in a context where the user knows a-priori
a correspondence between S and π, the user can reject responses that are not consistent with it.
For instance, suppose the user knows that π corresponds to S and after sending (Eval, sid, S, x)
to FVOPRF, she receives a successful output (π′, ρ) with π 6= π′. In this case the user can choose
to abort, despite the fact that FVOPRF successfully completes. In our PPSS constructions in the
FVOPRF-hybrid model, we make essential use of this ability of the user to abort during PPSS
initialization upon an identified mismatch with an expected value of π. Finally, note that FVOPRF

guarantees that the value ρ obtained by the user is in the table π even though such table may
not have been the user’s original target. This provides FVOPRF with a verifiability property but
one that is verifier-dependent and may not be transferable to others; in particular, it is a weaker
guarantee than the verifiability propery of verifable random functions [39].

3 Efficient Realizations of FVOPRF

In this section we show efficient realizations of the FVOPRF functionality which we later use as the
basis for our instantiations of the PPSS and T-PAKE schemes. We present constructions in the
Random Oracle model as well as in the CRS model.

3.1 Realizing FVOPRF in the Random Oracle Model

We present a class of constructions for realizing FVOPRF in the random oracle model. Our construc-
tions share the following general structure: the receiver hashes and blinds her input and requests
the sender’s secret-key application on this blinded value. The receiver verifies the sender’s response
and then obtains the V-OPRF output via applying a second hash function. Due to the double hash-
ing action (which is essential in the security proof) we term the constructions with the “2Hash”
prefix.

The 2HashDH construction relies on a group of prime order m with a generator denoted g. The
secret key is k chosen at random in Zm, and the public key y is set to y = gk. The function is
defined as fk(x) = H2(π, x,H1(x)k), where π = (g,m, y) and H1 and H2 are hash functions onto,
respectively, the group 〈g〉 and {0, 1}λ where λ is a security parameter. The associated V-OPRF
protocol is simple: the client sends a = H1(x)r to the sender and the sender after checking that
a ∈ 〈g〉, it responds by (y, b = ak). The protocol terminates with the client returning the value
H2(π, x, b

1/r) after checking that the tuple 〈g, y, a, b〉 is a valid DDH tuple (which implies that
〈g, y,H1(x), b1/r〉 is a valid DDH tuple). There are two alternatives for the client to achieve the
latter test. First assuming that a DHg,y(·, ·) oracle is available to the client (such oracle returns 1 if
and only if when given (a, b) it holds that loga b = logg y and can be implemented e.g., if a bilinear

map exists for the underlying group) it is possible to test directly the tuple 〈g, y,H1(x), b1/r〉. If
such an oracle is not available to the client then the sender transmits a NIZK for equality of discrete
logarithms, specifically showing that the tuple 〈g, y, a, b〉 satisfies the relation logg y = loga b. This

9

is a standard protocol that we recall for completeness: the sender selects t ∈R Zm and computes
w = H3(g, y, a, b, g

t, at) as well as s = t + w · k mod m. The proof is the pair ζ = (w, s) which we
denote as NIZKH3

EQ [g, y, a, b]. The receiver verifies ζ by testing w = H3(g, y, a, b, g
sy−w, asb−w). We

present this latter NIZK version as our first FVOPRF realization in figure 3.

Parameters: generator g of cyclic group of order m and three hash functions H1(·), H2(·), H3(·).

Key Generation: Upon receiving (KeyGen, sid), pick k ∈R Zm and set y = gk and π = y. Return
(Parameter, sid, π).

V-OPRF Evaluation: Upon receiving (Eval, sid, S, x) pick r ∈R Zm and transmit H1(x)r to S.

Upon receiving a message a = H1(x)r from some network entity U check if a ∈ 〈g〉, compute
b = ak, and ζ = NIZKH3

EQ [g, y, a, b]. Send to U the message 〈y, b, ζ〉.
Upon receiving a message 〈y, b, ζ〉 from a party S verify the NIZK ζ and that b ∈ 〈g〉. If the tests
pass return (Eval, y,H2(y, x, b1/r)), else return (Eval, y,⊥).

Figure 3: Protocol 2HashDH-NIZK.

We will argue the security of the construction employing the following assumption: the (N,Q)
One-more Gap DH assumption, states that for any PPT A it holds that the following probability
is negligible:

Prob[A(·)k,DDH(·,·,·,·)(g, gk, g1, . . . , gN) = {(gjs , gkjs) | s = 1, . . . , Q+ 1}]

where Q is the number of queries that A poses to the (·)k oracle. The probability is taken
over all choices of gk, g1, . . . , gN which are assumed to be random elements of 〈g〉. We denote
by εomdh,G(N,Q) the maximum advantage of any PPT adversary against the assumption.

Theorem 1 The 2HashDH-NIZK protocol over a group G of order m UC-realizes FVOPRF per
Fig. 2 in the random oracle model assuming (i) the existence of PRF functions, (ii) the (N,Q)
One-More Gap DH assumption on G where Q is the number of V-OPRF executions and N = Q+q1
where q1 is the number of H1(·) queries.

More precisely, for any adversary against 2HashDH-NIZK there is an ideal-world adversary
(simulator) that produces a view in the ideal world that no environment can distinguish with advan-
tage better than qS · εomdh,G(N,Q) + q3/m

2 + 2 · qU/m+N2/m+ εPRF(q2) where qS is the number of
senders, qU the number of users, q2, q3 are the number of queries to the H2(·), H3(·) oracle respec-
tively and εPRF(q2) is the security of the PRF function against polynomial-time adversaries posing
q2 queries.

Proof: In Figure 2 we describe the simulator SIM that interacts with the adversary A and the
ideal functionality FVOPRF. We assume without loss of generality that A is a dummy adversary,
i.e., it is merely a pass-through machine that outsources all its computation to the environment Z.
We describe the simulator in Figure 2. The simulator uses a PRF function family {fk(·)}k that has
output range equal to the output range of the FVOPRF. For simplicity, we will first assume that
fk(·) is substituted by a random function R(·) and we will prove that the simulator can simulate
the view of any environment ZH1(·),H2(·),H3(·) that interacts with protocol 2HashDH-NIZK. In this
argument R(·) will be a random function that it will not be available directly as an oracle to the

10

environment Z who will access it implicitly via its own random oracles. After we establish this
fact (which will be the main challenge of the proof), we will substitute R(·) back to fk(·) and thus
demonstrate that 2HashDH-NIZK UC-realizes FVOPRF in the random oracle model.

One can examine that SIM is a valid ideal model adversary against the UC functionality FVOPRF

and that the simulation of A by SIM is identical to a real run by A with two possible exceptions:
The choice of outputs for honest and dishonest users and the fact that SIM may end with output
fail, fail′ in Steps 5 and 7 (such events obviously do not exist in the execution of A in the real
world). Thus, we need to show that the outputs of honest users in the simulated run are identical
to those assigned by FVOPRF to these users, the dishonest users’ view is indistinguishable between
real and ideal and that the events fail, fail′ happen with negligible probability.

We start with an analysis of the NIZK employed in the protocol. We observe that in step 5.I,
the simulator will output fail if it happens that c 6= vk. This happens when an honest user receives
a message (y, b′, ζ ′), the proof ζ ′ is valid but it happens that (b′)1/r 6= vk where v, r come from the
values (v, a, r) that SIM has stored for that user instance. Observe that 〈g, y, v, c〉 is a DDH tuple if
and only if 〈g, y, a, b′〉 is a DDH tuple. In the identified circumstance we have that the verification
equation w = H3(g, y, a, b

′, gsy−w, as(b′)−w) passes but 〈g, y, v, c〉 is not a DDH tuple. Suppose
that (g, y, a, b′, gsy−w, as(b′)−w) was never queried to the oracle H3 at the time that the honest
user (played by SIM) performs the verification step. The probability of the verification equation
to be successful is 1/m. On the other hand, suppose that (g, y, a, b′, e1 = gsy−w, e2 = as(b′)−w)
was queried by the adversary at some point prior to delivery to the honest user. It is easy to see
that given 〈g, y, a, b′〉 is not a DDH tuple and w is random over {0, 1}m the probability of success
is 1/m. We conclude that the event fail happens with probability at most 2/m.

We continue an analysis of the outputs assigned by SIM to honest users in order to prove their
equivalence to the FVOPRF output. These outputs in the real world are produced by the hash
function H2 on inputs of the form (π, x, u) for u = hk where h is the response to H1(x) and k is
the secret key defined in π. In the simulated world the values h are elements gj taken from SIM’s
gseq sequence. Inputs to H2 which are not of the above form are answered at random by SIM.

The consistency between outputs of honest users in the ideal world and the simulated world
needs to be ensured for the cases handled in step 5 of SIM. In the ideal world, these are cases where
the user receives output (triggered by the UserComplete commands) while in the real world they
correspond to cases where users receive the correct value b′, namely, b′ = ak where a was chosen
by the user and k is defined by the incoming parameter π. The parameter π can correspond to a
honest sender or a corrupt sender, two cases hadled by Step 5.I and 5.III, respectively.

In the case of step 5.I, SIM simulates the actions of user U by generating the outgoing value a
as grj for random r and gj chosen from the gseq sequence. If at any point the input x of user U is
queried from H1, SIM responds (according to SIM Step 2) with the next available element of gseq,
say gj′ . This, however, will be different than the above gj chosen to generate U ’s value a. Yet, this
inconsistency is perfectly hidden from the environment and the attacker since all they see is grj for
r that remains independently random from the adversarial views.

Continuing with step 5.I, SIM will use the UserComplete to ask FVOPRF to deliver output
to the user. Contrary to the real world setting, SIM will ask FVOPRF to fix the value of the
PRF function on this x without necessarily fixing the corresponding value in the table of H2 that
corresponds to (π, x, gj′). This generates a situation that does not happen in the real world but
however is undetectable to the adversary and environment. This is due to the fact that the only
way to detect it is via querying (π, x, gj′) to H2(·). In such a case (if it ever happens), SIM using the
power of the DH(·) oracle will be able to detect that such a critical value is queried to H2(·) and as
described in Step 7, it will query the functionality FVOPRF on this input via a rapid succession of
Eval,UserComplete commands on behalf of the corrupted user U∗ in order to match the proper

11

1. Upon receiving (KeyGen, sid , S) from FVOPRF, it computes y = gk for a random k drawn from
Zm and returns (Parameter, sid , S, π = y,>) to FVOPRF. It stores (S, k).

2. SIM chooses a sequence gseq = (g1, . . . , gN) of random elements in 〈g〉 with gj = grj which
it uses for answering H1 queries and for choosing gj values in Step 3 below. SIM initializes a
counter j at 1 and when an element from gseq is needed, gj is selected and counter j is increased
by 1. In addition, SIM maintains a table for the random oracle H1. It answers a new query
by selecting an element from gseq as above (repeated queries get the same answer). Tables for
H2, H3 are also maintained as explained below.

3. Upon receiving (Eval, sid , U, S) from FVOPRF. Let gj be the next unused value in gseq. The
simulator picks a random element r of Zm, stores 〈U, v = gj , a = grj , r〉 and sends a = grj to A
as the user U ’s message intended for S.

4. Upon receiving a message a′ from A as a message from an honest user U to honest sender S,
it recovers the corresponding 〈U, v, a, r〉 stored entry, retrieves S’s function descriptor π = (y)
with y = gk, checks that a′ ∈ 〈g〉 and computes b = (a′)k and a proper NIZK ζ (it ignores
the message if a′ 6∈ 〈g〉). It augments the user U ’s entry to 〈U, v, a, r, a′, S, b, ζ〉, returns to
A the value (π, b, ζ) as the response of S intended for the user U , and simultaneously returns
(SenderComplete, sid , S) to FVOPRF.

5. Upon receiving a message (π, b′, ζ ′) from A as a message from some sender back to user U , it
recovers the corresponding stored entry for U which is either 〈U, v, a, r, a′, S, b, ζ〉 or 〈U, v, a, r〉,
checks b′ ∈ 〈g〉 and computes c = (b′)1/r. It parses π = (y) and proceeds as follows.

Case I. If ζ ′ is valid and the parameter π is registered to some honest sender, then it checks
that c = vk for the corresponding key k and thus b′ = vrk = ak. In this occasion we have
a proper completion of the user protocol and S transmits (UserComplete, sid , U, π,>) to
FVOPRF. Given that v = gj for some j the simulator records the triple (π, j, c) = (π, j, gkj). If

c 6= vk then return fail to the environment.

Case II. If ζ ′ is invalid and the parameter π is registered to some honest sender, then S
transmits (UserComplete, sid , U, π,⊥) to FVOPRF.

Case III. If π is not registered with any honest sender then if π has not been seen before, it picks
a new sender tag S, stores (S, π) and sends (Parameter, sid , S, π,M fk(·)) to FVOPRF where
M fk(·) is the TM that given x returns fk(π, x). Then, it forwards (UserComplete, sid , U, π, flag)
to FVOPRF where flag = >,⊥ depending on whether ζ ′ is valid or invalid.

6. Upon receiving a message a′ from A as a message from a corrupt user U for honest sender S, it
checks a′ ∈ 〈g〉 and returns to A the value (π, b = (a′)k, ζ), where π, is the parameter of S and
ζ a proper NIZK and sends to FVOPRF the message (SenderComplete, sid , S).

7. It maintains a table for the random oracle H2(·) defining responses to queries (as usual, repeated
queries are answered identically). Entries for queries not previously answered are set to random
elements of {0, 1}`, except in the following case. If the query is of the form (π, x, u), where
π = (y) and for some j the pair (x, gj) belongs to the H1(·) table and (g, y, gj , u) is a DDH-
tuple (which can be tested via u = yrj), then:

Case I. If π = (y) = (gk) is a parameter assigned to an honest sender S, then SIM sends
(Eval, sid , S∗, x) on behalf of a corrupted user U∗ directed to an arbitrary sender S∗ and
immediately follows it with (UserComplete, sid, U∗, π,>). If the UserComplete is ignored
then SIM outputs fail′ and terminates. Otherwise it sets the H2(·) query to be equal to the
response of FVOPRF and records the triple (π, j, u) = (π, j, gkj).

Case II. If π = (y) is not assigned to an honest sender, SIM sets its response to the H2(·) query
to be equal to fk(π, x).

Figure 4: The Simulator SIMfk(·) for the 2Hash-NIZK protocol where {fk(·)}k is a PRF.
12

output that was (potentially earlier) assigned to x by the FVOPRF. The DH(·) oracle is available
to SIM since it selects the value key k for each sender. Note that the Eval,UserComplete rapid
command succession issued on behalf of the corrupted user U∗ also sets the value of the function
on x if this value was not set before. Therefore, there is no problem of SIM having to set H2 on a
point for which FVOPRF will only generate an output in the future.

In summary it is evident that SIM jointly with FVOPRF pick values for the table of H2(·) and
SIM is capable of querying FVOPRF whenever it needs to answer a H2(·) query that potentially is
set already by the ideal functionality via a rapid succession of Eval,UserComplete commands
on behalf of a corrupted user. Note that getting a response from FVOPRF on a query of the form
(π, x,H1(x)k) is always contingent on tickets(π) > 0 but we will show below (with the analysis of
the fail′ event) that the probability that this condition is violated is negligible.

The case of 5.III corresponds to an honest user U on input x completing an interaction with
a corrupt sender with parameter π′ (and corresponding exponent k′). In this case, FVOPRF sets
the value of the function on x using the Turing machine M provided by the attacker and which
is defined by SIM in step 5.III. The way this TM is defined ensures that the value given to this
point is consistent with previous values of the function table corresponding to π′. In particular,
if H2 was previously set by SIM for the triple (π′, x,H1(x)k

′
) then FVOPRF will set the function

to this value. This is important since it is possible for the attacker to query this input before a
UserComplete for this x is issued (e.g., even before a user in the ideal world queried x). Note
that the ideal functionality chooses values for inputs not already set by H2 and therefore SIM needs
a way to query the value of the function on x when presented with input (π′, x,H1(x)k

′
). For this

task, SIM uses the rapid succession of Eval,UserComplete on behalf of the corrupted user U∗

in step 7.
Regarding cases where PRF output is not generated, we have the case at step 5.II where SIM

asks from FVOPRF to return ⊥ to the user. Finally, we consider the output generated by the sender
which is a mere acknowledgement symbol produced in step 4 or 6. The generation of these messages
coincides with the termination of the sender to user communication in the real world (as simulated
by SIM) hence also indistinguishable from real world execution.

Finally, the adversary is able to produce PRF values via the control of adversarial users. The
view of dishonest users is provided in two different steps in the operation of SIM. First in step 6,
SIM responds to an adversarial user in a way that is indistinguishable to the real world operation
of an honest sender. Second, an adversarial user may seek to complete the evaluation of a PRF
value via a suitable query to the H2(·) oracle. As stated already, SIM, via the DH(·) oracle,
has the ability to detect such critical queries to the H2(·) oracle and using a rapid succession of
Eval,UserComplete command on behalf of a corrupted user U∗ it can respond properly in a
way that is indistinguishable from real world execution. As mentioned the successful simulation of
this step, is contingent on not producing the event fail ever which is something we argue about
next.
Note. The above hypothetical lines of attack where the attacker presents “problematic” queries
based on the knowledge of honest users’ inputs are possible in the UC setting. The environment
knows (and even chooses) these queries so it can communicate them to the attacker before or after
the user was activated with them.

We now show that the probability of SIM outputting fail′ in step 7 is related to the One-More
DH assumption and is therefore negligible for groups where this assumption holds.

Note that fail′ happens when SIM calls FVOPRF with a rapid succession of Eval,UserComplete
commands with argument π on behalf of corrupted user U∗ but the value of tickets(π) is below
1. We observe several properties of the variable tickets. It is only defined and operated for honest
π (i.e., π owned by a honest sender), its value is never less than zero (it starts at zero and it is

13

decreased only if its current value is positive). The only command in FVOPRF that triggers an
increase is SenderComplete which SIM calls in Steps 4 and 6. These calls cover all cases where
SIM computes a (·)k operation for some honest parameter k. The only FVOPRF command that
triggers a decrease of tickets is UserComplete with M = > and an honest function parameter π.
SIM calls this command in Steps 5.I and Step 7.I, respectively. In each of these calls, SIM records a
triple (π, gj , g

k
j) for gj ’s from the gseq sequence. In the case of step 5.I, DDH(g, y, v, c) holds where

v = gj for gj chosen and recorded as v in Step 3. In the case of step 7.I, the gj value is an element
from gseq that was chosen as the output of H1(x) upon a query by the adversary A on input x.
Note that the sets of gj ’s used in the 5.I and 7.I cases respectively correspond to different index
sets within the gseq sequence.

Now, assume a run of SIM where event fail′ occurs for tickets(π), π = (y = gk). Denote by Q
the total number of times tickets(π) is increased in that run. Consider the call to UserComplete
by SIM that produces the fail′ event. Let (π, x, v) be the query to H2 that generates this call and
let g∗j be such that gj∗ = H1(x) and v = gkj∗ . At the time the call happens the value of tickets(π)
is zero; hence there were Q instances where tickets(π) was increased and Q instances where it
was decreased. By the above observations, and assuming there are no collisions between the gseq
elements, these instances correspond to exactly Q invocations of (·)k and to the production of Q
triples (π, j, gkj) by SIM with different indexes j. The latter triples do not include (π, j∗, v = gkj∗),

hence considering this triple we have a total of Q + 1 triples (π, j, gkj) produced by SIM with only

Q invocations of (·)k. Given that the event of a collision among the gseq elements is bounded by
N2/m we can condition the simulation on the complement of this event with a failure probability
bounded by that (negligible) amount.

Thus, we can build an attacker against the One-More DH (OMDH) assumption as follows. Let
(q, g, y, g1, . . . , gN) define an instance of the One-More DH problem. We run the above simulator
SIM against the given adversary, choosing one of the honest senders at random and setting its
parameter π∗ = (y = gk

∗
) using the inputs from the above OMDH instance. In addition, we set

the gseq sequence to the values g1, . . . , gN from that instance too. SIM runs as before except that
each time a (·)k∗ computation is required we invoke the given OMDH oracle. The NIZK proofs
on behalf of the (·)k∗ sender will have to be simulated by exploiting the fact that SIM controls the
H3(·) oracle. Such proof is generated by choosing s, w at random and inserting in the H3(·) table
the value 〈(g, y, a, b′, gsy−w, asb′−w), w〉. The simulator may fail here in case such value was already
submitted by the adversary to the oracle H3(·) (and thus corresponded to a different output). This
means that If q3 is the number of queries to the H3(·) oracle performed, there is a probability q3/m

2

to encounter such event (independently of the choice of the sender).
Finally observe that at step 5.III and step 7 the SIM is supposed to verify that a certain sequence

of the form (g, y, gj , u) is a DDH-tuple. In the original version of the simulator this was feasible
due to the fact that the simulator knows the value rj = logg gj . Nevertheless, now that the value
gj is determined according to the OMDH challenge this validity test cannot be supported by SIM
in the same way. However, observe that given that the simulator acts as an OMDH attacker in
the Gap setting it therefore has access to an DDH(·) oracle. Hence SIM can invoke this oracle to
complete these tests.

By the above analysis, the probability that we find Q + 1 distinct pairs (j, gk
∗
j) when we only

queried Q times the OMDH oracle (·)k∗ , is the same as the fail′ probability. Hence, this probability
is upper bounded by the assumed security of the OMDH instance. Note that since the simulator
guesses the sender to plug in the OMDH challenge a factor of qS will be also accrued.

We complete the argument by summarizing the steps that are required in order to show the
upper bound in the distance between the real and ideal world. First we have three types of failing

14

events: (i) failing the simulation of the NIZK proofs for honest senders, (ii) accepting a invalid
statement from an impersonated honest sender (the event fail in the simulation), and (iii) collision
between the gseq elements. These three events have probability upper bounds q3/m

2, 2qU/m,N
2/m

respectively. Conditional on any of them not happening, we can argue a bound for the probability
α of fail′. As shown above with probability α/qS we successfully break the OMDH assumption,
hence α ≤ qS · εomdh,G(N,Q). This completes the proof that SIMR(·) interacting with the ideal
functionality simulates the view of ZH1(·),H2(·),H3(·). We complete the proof of the theorem by
substituting back R(·) with the PRF fk(·). Based on the PRF function property we can easily
show that the statistical distance between the executions of ZH1(·),H2(·),H3(·) when interacting with
SIMR(·) and ZH1(·),H2(·),H3(·) when interacting with SIMfk(·) is bounded by εPRF(q2). �

Parameters: generator g of cyclic group of order q and two hash functions H1(·), H2(·)

Key Generation: Upon receiving (KeyGen, sid), pick k ∈R Zm and set y = gk and π = y. Return
(Parameter, sid, π).

V-OPRF Evaluation: Upon receiving (Eval, sid, S, x) pick r ∈R Zm and transmit H1(x)r to S.

Upon receiving a message a = H1(x)r from some network entity U compute b = ak. Send to U
the message 〈y, b〉.
Upon receiving a message 〈y, b〉 from a party U test that DDH(g, y, a, b) is true. If the test
passes return (Eval, y,H2(y, x, b1/r), else return (Eval, y,⊥).

Figure 5: Protocol 2HashDH-GAP.

Parameters: Public-key length 1λ and two hash functions H1(·), H2(·).

Key Generation: Upon receiving (KeyGen, sid), pick e, n RSA public-key and return
(Parameter, sid, π), for π = (e, n). Store locally d = e−1 mod φ(n).

V-OPRF Evaluation: Upon receiving (Eval, sid, S, x) request the parameters of S.

Upon receiving a message asking the parameter from some U transmit π = (e, n).

Upon receiving π = (e, n) from some S compute a = H1(x)re mod n and transmit a back to S.

Upon receiving a from some U compute b = ad mod n and send to U the message 〈π, b〉.
Upon receiving a message 〈π, b〉 from some S with π = (e, n) test that be mod n = a is true. If
the test passes return (Eval, n, e,H2(n, e, x, b · r−1 mod n)), else return (Eval, y,⊥).

Figure 6: Protocol 2HashRSA.

Following the same logic as the above proof we can prove that two further protocols, 2HashDH-
GAP and 2HashRSA, shown in the two figures above, are secure respectively under the One-More
Diffie-Hellman Assumption over gap-groups and under the One-More RSA Assumption.

Corollary 2 The 2HashDH-GAP protocol over a gap group G of order m (resp. the 2HashRSA
protocol) UC-realizes FVOPRF per Fig. 2 in the random oracle model assuming the (N,Q) One-

15

More DH assumption on group G (resp. the One-More RSA assumption) where Q is the number
of V-OPRF executions and N = Q+ q1 where q1 is the number of H1(·) queries.

More precisely, for any adversary there is an ideal-world adversary (simulator) that produces a
view in the ideal world that no environment can distinguish with advantage better than qS ·ε(N,Q)+
εPRF(q2) where ε(N,Q) is the advantage of the corresponding assumption, qS is the number of
senders, q2 is the number of queries to the H2(·) oracle and εPRF(q2) is the security of the PRF
function against polynomial-time adversaries posing q2 queries. In the case of the One-More DH
assumption the collision probability N2/m is also added to the above.

Proof: We provide a brief sketch of the proof. The simulation argument is essentially the same
as that of theorem 1 with some simplifications. First due to the fact that honest users (and the
simulator SIM) can verify the validity of the response the sender, the use of NIZK’s and NIZK
simulation is obviated. This affects step 4, where SIM does not need to compute ζ as well as step
5, where SIM decides the three cases based on the validity of the sender’s response (via checking
either the bilinear map equation or the verification of the RSA signature). The event fail in step
5.I is infeasible since the verification check precludes it entirely (so the soundness of the underlying
interaction is perfectly upheld). Similarly, step 7 is simplified given that SIM can recognize the
critical area of the domain of H2(·) using the verification check. This has the simplification that it
is unnecessary to program the random oracle H1(·) and the responses can be raw random values
from the appropriate domain depending on the scheme (either group elements of 〈g〉 or Z∗n). The
event fail′ will still of relevance and will provide the reduction to the corresponding one-more
assumption. Note that during this step the simulation of NIZK’s on behalf of the selected sender
whose parameter is used for the reduction is also obviated. �

3.2 Realizing FVOPRF in the Common Reference String model

We next demonstrate how to efficiently realize FVOPRF in the common reference string model
without assuming random oracles. Our construction requires 4 communication moves and com-
munication complexity of O(` · λ) where λ is the security parameter and ` the number of bits in
the domain of the PRF. The construction builds on top of the Naor Reingold (NR) PRF [40] that
has been suggested before in the context of V-OPRF [25] but without providing verifiability or a
UC-level of security. We recall briefly the NR function: the sender’s key is equal to a secret vector

a1, . . . , a` ∈ Zm and the function is defined as g
∏`

j=1 a
xj
j where x1, . . . , x` are the ` bits of the input

string x ∈ {0, 1}`. Building an V-OPRF from the NR function is suggested in [25] by having the
sender transmit A = g1/r1...r` for some random masking values r1, . . . , r` ∈ Zm. Subsequently the
sender and receiver engage in ` oblivious transfers from which the receiver obtains the ` values
a
xj
j rj mod m where xj ∈ {0, 1} is the private input of the receiver. Given these values and A it is

straightforward for the receiver to extract the value g
∏`

j=1 a
xj
j .

It is worth noting that the above construction cannot realize FVOPRF even when composed on
top of a UC-secure oblivious transfer protocol. The main reason is that the sender is not required
to commit to a function by providing a function descriptor π against which the receiver can verify
the protocol output (see the explicit attack mentioned in the introduction). It follows that in order
to implement FVOPRF we need to provide a sender parameter π against which the sender will
have to demonstrate the correctness of the computed value. We can easily achieve this as follows.
The sender determines its public parameter to be a sequence ga0 , ga1 , . . . , ga` . The underlying

PRF function is then defined as ga0
∏`

j=1 a
xj
j and a proof of correct evaluation is also added to the

16

requirements of the sender side. Note that the revelation of π does not hurt the pseudorandomness
of the underlying PRF function since without loss of generality the parameters ga0 , . . . , ga` can be
thought of as `+1 evaluations of a NR-PRF with domain {0, 1}`+1. We combine the above ideas in
a protocol that uses 4 communication moves and relies on the existence of a short common random
string.

The main idea of the protocol is as follows. In the first move, the receiver encrypts using Paillier
encryption a sequence of “indicator ciphertexts” containing either (0, 1) or (1, 0) according the bits
of x ∈ {0, 1}`. The receiver sends those ciphertexts and commits to a first move ζR,1 of a Σ-proof for
the consistency of these ciphertexts. The sender chooses the blinding factors r1, . . . , r` and prepares
the values a′j = ajrj mod m for j = 1, . . . , `. The indicator ciphertexts are subsequently used by the
sender on the pairs of values (rj , a

′
j), an operation that results in a sequence of ` pairs of ciphertexts

so that each pair contains the values {0, rja
xj
j mod m}). However, the sender should not send these

ciphertexts yet. Indeed, the sender runs the risk that the original ciphertexts pairs submitted by
the receiver are malformed. For this reason, the sender simply commits to the ciphertext pairs (as
well as to the first move ζS,1 of a Σ-protocol for the correctness of these ciphertexts) and provides
a challenge for the Σ-protocol started by the receiver. The commitment used by the sender is a
perfectly hiding equivocal commitment; at this stage it ensures that no information is leaked. The
receiver now opens the commitment for its proof in the first move and the ciphertexts that enable
the calculation of the values {rja

xj
j mod m}`j=1 which together with A facilitate the computation

of the PRF value. It also provides the final move of the proof ζR,2. The sender verifies the proof
and opens its own commitment along with its final move ζS,2. Observe that it is possible for the
simulator to extract any malicious sender’s key by equivocating the commitment and cheating in
the proof of consistency of the indicator ciphertexts. Specifically, the simulator can choose all
ciphertexts to encode the value 1, something that will permit the recovery of the sequence of values
rj , a

′
j . In this case, the simulator can extract the sender’s key by computing aj = a′j(rj)

−1 mod m
for j = 1, . . . , `.

A parallel composition of a number of Σ-proofs are necessary for the completion of the protocol.
We first describe the necessary Σ-protocol components. We use the notation Ca for some a ∈ Zm to
denote a commitment of the form grha (where the values g, h will be placed in the crs). Furthermore
we use enc(·) for the variant of Paillier encryption [43] that was proposed in [12]. Ciphertexts are of
the form enc(m; ρ) = 〈gρ, yρ(1 +n)m〉 where all operations are taken modulo ñ2 (we do not require
the CCA2 secure version). As in the case of Paillier the scheme is additively homomorphic and
can be decrypted by the application of logg y. We note that we will place the modulus ñ in the crs
and we will select it to be “safe”, i.e., a product of two safe primes. This does not prevent a party
from generating a public-key g, y as it can choose random x ∈ [0, bn/4c] and set y = gx mod ñ2.
However it should be noted that the small order elements {−1, 1} in Z∗ñ2 are known to all parties
and hence it is possible to choose public-keys of the form y = −gx mod ñ2 or ciphertexts of the
form 〈gr,−hr(1 + n)m〉. This can be problematic in some cases, e.g., when a party computes a
ciphertext ψ′ = (enc(v; r))a · enc(0; r) (here “·” is component-wise multiplication within Z∗ñ2). Note
that assuming an honestly generated ψ, the value ψ′ would be identically distributed to a ciphertext
encrypting v · a mod ñ, however for a maliciously generated ciphertext ψ the computation of ψ′

potentially leaks a bit of a. This can be easily fixed by squaring all untrusted elements of Z∗ñ2 .
Note that this will introduce a factor of 2 in all plaintexts but this can be easily removed after
decryption by the receiver since gcd(2, n) = 1.

We present the protocol in Figure 7. For readability we abstract some of the operations including
the ciphertext encryption and decryption operation as well as the zero-knowledge proofs executed
by the two players. Below we list in detail the Σ-protocols that we require in the construction.

17

Parameters: Public-key length 1λ, parameters for a perfectly binding commitment (com, open) over
Zm, verification key vk for a digital signature scheme, safe RSA moduli n, ñ = pq with p =
2p′ + 1, q = 2q′ + 1 and element g̃ of order p′q′ in Z∗n2 . Denote enc(v; ρ) = (g̃ρ, h̃ρ(1 + n)v).

Key Generation: Pick a0, a1, . . . , a` ∈R Zm and set π = (ga0 , . . . , ga`).

V-OPRF Evaluation: Upon receiving (Eval, sid, S, x) choose pk for enc(·), a one-time signature
key vkR and form the values ψ0,j = enc(xj ; ρ0,j) and ψ1,j = enc(1−xj ; ρ0,j). Prepare a first step
of a proof ζR,1 that ψ0,j , ψ1,j are correctly formed, i.e., they encode {xi, 1 − xi} and transmit
(pk, ψ, vkR, ζR,1).

Upon receiving a message (pk, ψ = 〈ψ0,j , ψ1,j〉`j=1, vkR, ζR,1) from some network entity U , choose

one-time signature key vkS and r1, . . . , r` ∈R Zm and compute a′j = (aj · rj mod m) and ψ̃0,j =

enc(xj ; ρ0,j)
rj ·enc(0; ρ̃0,j). ψ̃1,j = enc(a′j ; ρ1,j)

rj ·enc(0; ρ̃1,j). Then, compute the commitments:

Caj , Crj , Ca′j and the value A = ga0/r` as well as the first move of the proof that they are

correctly formed as ζS,1. Collect all commitments and values ψ̃ = (ψ̃0,1, ψ̃1,1, . . . , ψ̃0,`, ψ̃1,`, A)

as well as ζS,1 and commit to them into CS . Finally transmit (CS = com(π, ψ̃, ζS,1), chS , vkS),
where chS is the sender’s challenge.

Upon receiving 〈CS , chS , vkS〉 from the network entity S compute the response ζR,2 to the proof
of well formedness for ψ as well as a signature σR under vkR on the whole communication
transcript; transmit (open(CR), ζR,2, chR, σR) where chR is the receiver’s challenge.

Upon receiving 〈ζR,2, chR, σR〉 from party U verify the proof [ζR,1, chS , ζR,2] as well as the
signature σR and if the test passes then compute the proof ζS,2 using chR as the challenge;
send to U the message 〈open(CS), ζS,2, σS〉 where the signature σS signs the communication
transcript under vkS .

Upon receiving a message 〈open(CS), ζS,2, σS〉 from a party S verify the proof
[ζS,1, chR, ζS,2], and the signature σ under vkS . If the test passes, decrypt all cipher-

texts (ψ̃0,1, ψ̃1,1, . . . , ψ̃0,`, ψ̃1,`) in order to obtain the plaintexts {0, a′1, . . . , a′`} and return

(Eval, π, Aa
′
1·...·a

′
`). Else, return (Eval, π,⊥).

Figure 7: Protocol NR-V-OPRF: The Naor-Reingold based FVOPRF.

18

1. A proof of knowledge Πsig of a signature on a public-message w.r.t. a given public-key vk.
Many digital signature schemes accept such proof of knowledge, including the standard DSA
algorithm [42], however since we will utilize the Strong-RSA assumption we opt to employ as
an underlying digital signature scheme of Cramer-Shoup [17].

2. A proof Πmult that Ca, Cb, Cc satisfy c = a · b mod m. A Σ-protocol for this is standard, see
[16].

3. A proof Πcross that the commitment Ca and the ciphertext ψ′ = ψa · enc(0; ρ) mod n2 are
consistent for some integer a where ψ is a given ciphertext. Observe that the relation here is
discrete-log based, and hence a Σ-protocol can be constructed using a so-called generalized
Schnorr proof, see [9]. Such proofs rely on integer commitments [26, 19] and have a special
soundness property that only holds computationally under the Strong-RSA assumption with
respect to the RSA modulus n that is placed in the crs. Note that for this protocol, the
soundness property that is provided cannot preclude the existence of small order elements
of Z∗ñ2 to be present in ψ′ (note −1 is the only such element that is computable by the
parties since the factorization of ñ is unknown); nevertheless this small soundness deviation
is inconsequential. In addition it cannot be precluded that ψ′ contains a value that is of the
form a+ µ ·m for some small integer µ. This soundness deviation is also inconsequential for
our purposes: when the ciphertext ψ′ will be decrypted, the plaintext will be reduced modulo
m.

4. A proof Πmult′ that Ca and gx, gc satisfy that c = a · x mod m. A Σ protocol for this can be
easily constructed from the protocol of case 1 above.

5. A proof that the ciphertext enc(a) is valid and encrypts a specific value a (denoted by Πa
cons) or

some value a ∈ {0, 1} (denoted by Π
{0,1}
cons). A Σ protocol can be easily derived from standard

proofs of consistency for Paillier ciphertexts, see [3] and also [12].

We now detail how the (ζS,1, ζS,2) and (ζR,1, ζR,2) proofs are determined (refer to figure 7 for
the protocol).

For the sender’s proof (ζS,1, ζS,2), we utilize the compiler of [27] to obtain a universally simulation
sound zero-knowledge proof from a Σ-protocol. Specifically, the proof (ζS,1, ζS,2) will be a Σ-protocol
that either demonstrates correctness of a sequence of statements detailed below or the knowledge
of a signature on the one-time signature key vkS . First, the sender executes of Πmult for the triple
Caj , Crj , Ca′j for j = 1, . . . , `. For each ψ̃0,j he will show that it is appropriately computed based on

ψ0,j and Crj executing Πcross and respectively for ψ̃1,j he will show that it is appropriately computed
based on ψ1,j and Ca′j . For each j > 1, the sender also computes rj = r1 . . . rj mod m with r1 = r1
and produces the commitments Crj . He will also commit to Crj−1·rj and will show that this value
is consistent with Crj−1 and Crj by executing Πmult for each triple j = 2, . . . , `. Finally, the sender
shows that that the value v committed in Crj satisfies that v = logg A · a0 mod m using the proof
Πmult′ .

We now turn to the case of the receiver proof (ζR,1, ζR,2). As before the receiver will perform
an OR-proof to show that she either knows a signature on vkR under vk or 3` Σ-protocols defined
below. Recall, that the receiver will need to show that the ciphertext pairs (ψ0,j , ψ1,j) encrypt the

two values {0, 1} (in some arbitrary hidden order). This can be done via executing the proof Π
{0,1}
cons

for each ciphertext of (ψ0,j , ψ1,j). Then it will combine the two ciphertexts ψ0,1,j = ψ0,j · ψ1,j ·
enc(0; ρj) mod ñ2 and show that the ciphertext ψ0,1,j contains the value 1 via the proof Π

{1}
cons.

19

Theorem 3 The NR-V-OPRF protocol UC-realizes FVOPRF per Fig. 2 in the common reference
string model assuming the (i) strong-RSA assumption, (ii) Decisional composite residuosity as-
sumption, (iii) the hiding and binding property of the commitment com, open.

Proof: We sketch the simulation argument. With respect to the CRS, our simulator SIM will
possess the signing key sk that corresponds to vk, and the factorization of the modulus ñ. This
knowledge endows SIM with important capabilities: (i) first using the signing key sk, SIM can fake
all proofs it performs on behalf of an honest sender or receiver. Using this capability means that
it is easy for SIM to craft a fake proof that the sequence of ciphertexts ψ0,j = enc(1; ρ0,j), ψ1,j =
enc(1; ρ1,j) contain the {0, 1} elements. Observe that this leads to a complete loss of privacy for
any malicious sender: the PRF keys a1, . . . , a` can be reconstructed. The use of the Decisional-
Composite Residuosity assumption is critical here as in this step the simulator deviates from the
real world by removing the dependency to honest user input and fixing the ciphertext to constant
plaintext values. Given this extractability capability, SIM is capable of registering the precise NR
instance that is associated with each parameter π; specifically, for all malicious parameters, SIM
can construct the TM that implements the NR function for a1, . . . , a` and ga0 and deposit it at
FVOPRF with a (Parameter, ·) statement. This ensures that FVOPRF will produce the correct
output to honest users interacting with malicious sender parameters. (ii) Using the signing key sk
that corresponds to vk the simulator can also fake the consistency proof on behalf of any honest
sender. This is a critical feature since the values a1, . . . , a` will be unknown to SIM when it is
transformed to a reduction for the pseudorandomness of the Naor-Reingold PRF. The techniques
of [27] apply here and we can show that the adversary will be unable to generate an invalid proof
even after seeing an unbounded number of fake proofs generated by SIM. The special soundness of
the sub-protocols in (ζS,1, ζS,2) is relevant here since in case of a fake proof the simulator will fork
a random malicious sender and obtain via special soundness a forgery on the underlying signature
scheme. Nevertheless, this step is complicated by the fact that due to proof Πcross special soundness
is only computationally ensured. However it is possible to modify the forking argument of [27] and
consider two events as follows: either the generation of a forgery is produced via special soundness,
or the recovery of an integer value that prevents witness reconstruction in Πcross takes place. In this
latter case it follows that one can directly break the Strong-RSA assumption w.r.t. the crs modulus
used for integer commitments (cf. [26, 19, 9]). Due to the fact that a digital signature scheme based
on Strong-RSA is used we deduce that simulation-soundness is preserved under the strong-RSA
assumption. Using this simulation strategy, SIM can interact with any malicious user on behalf of
an honest sender. Nevertheless, there is still an important consideration requiring another simula-
tor capability: (iii) given that SIM will be providing a completely fake transcript to the adversary
on behalf of an honest sender, it must ensure that proper output to the malicious users will be
provided in all cases. This can be achieved via extracting the malicious user input from ciphertexts
ψ0,j , ψ1,j utilizing the global encryption trapdoor enabled by the knowledge of the factorization of
ñ. It follows that for any malicious user that completes an interaction with an honest sender, SIM
will be capable of querying FVOPRF via a rapid succession of Eval,UserComplete on behalf of a
corrupted user in order to obtain the proper output. It is straightforward to see that it is possible for
SIM to choose the value A so that the output of the malicious user will be equal to target value ρ. �

4 Password-Protected Secret Sharing: Definitions

Our definition of PPSS adapts the PPSS notion of [2] to the CRS model, but also re-defines PPSS
in terms of a key derivation mechanism rather than an encryption-style notion used in [2]. In other

20

words, rather than used directly to semantically protect any message, a PPSS will generate and
protect a random key. This change allows for better modularity, because the resulting key can
be used not only for message encryption (and authentication), but also e.g. for an Authenticated
Key Exchange. A Password-Protected Secret Sharing (PPSS) scheme in the CRS model is a
protocol involving n + 1 parties, a user U, and n servers S1, . . . ,Sn. A PPSS scheme is a tuple
(ParGen, SKeyGen, Init,Rec), where ParGen and SKeyGen are randomized algorithms and Init and
Rec are multi-paty protocols with the following syntax:

• Algorithm ParGen generates public parameters CRS for a given security parameter τ .

• Each Si runs SKeyGen(CRS) to generate its private state σi and a public parameter πi.

• Protocol Init is executed by U and servers S1, . . . ,Sn, where U runs algorithm UInit on inputs
a password pw ∈ {0, 1}τ , global parameters CRS, and a vector of server’s public parameters
π = (π1, . . . , πn), while each Si runs algorithm SInit on input (CRS, σi, πi). The outputs of Init
is a τ -bit key K for U and a user-specific information ωi for each server Si.

• Protocol Rec is executed by U and servers S1, . . . ,Sn, where U runs algorithm URec on (CRS,
pw), and each Si runs algorithm SRec on (CRS, σi, πi, ωi). Protocol Rec generates no output
for the servers, while U outputs K ′ which is either a τ -bit string or a rejection symbol ⊥.

The correctness requirement on a PPSS is that Rec returns the same key K which was generated
in Init, i.e. that for any τ , any CRS generated by ParGen(1τ), any (σi, πi) output by n instances of
SKeyGen(CRS), and any pw ∈ {0, 1}τ , if (K,ω1, . . . , ωn) is the vector of outputs of Init executed on
inputs (pw,CRS,π) for U and (CRS, σi, πi) for each Si, then U’s local output in an instance of Rec
executed on inputs (CRS, pw) for U and (CRS, σi, πi, ωi) for each Si, is equal to K.

Server’s User-Related State. We stress that the state (σi, πi, ωi) of each server Si is stored for
each user separately, and the PPSS security notion we define below assumes that each Si stores
a separate (σi, πi, ωi) tuple for each user account. Indeed, the security of the PPSS protocol we
present in Section 5 would be decreased if Si re-uses the same OPRF key, stored in σi in this PPSS
protocol, across multiple user accounts. (Technically, the adversary would get additional oracle
access to the same S�Rec oracle, see below, for each user account on which the server re-uses the
same (σi, πi) pair.) Consequently, if Si wants to provide PPSS service to multiple users, it has to
generate a separate (σi, πi) pair for each user (these per-user keys can be derived internally by Si
using a PRF and a global PRF key applied to a user’s identifier).

Security. We define security of a PPSS scheme in terms of adversary’s advantage in distinguishing
the key K output by U from a random string. We assume that the adversary sees CRS and the
vector of server’s public parameters π used in the initialization instance, as well as the private states
σB , {σi}i∈B and ωB , {ωi}i∈B for some set B of corrupted servers, and that it has concurrent
oracle access to instances of URec(CRS, pw) and SRec(CRS, σi, πi, ωi), for i in B , {1, ..., n} \ B. We
denote as U�Rec(CRS, pw, b,K(0)) an oracle which executes the interactive algorithm URec(CRS, pw),
and when this algorithm terminates with a local output K, the U�Rec oracle (re-)sets K to K(0)

if b = 0 and K 6=⊥, and then returns K to the caller. However, if b = 1 or K =⊥ then the
caller receives the unmodified value K (to which we will refer as K(1)) as it was output by the
URec instance. We denote as S�Rec(CRS,σB,π,ωB) an oracle which on input i ∈ B executes the
interactive algorithm SRec(CRS, σi, πi, ωi).

Intuitively, we should call an (t, n)-threshold PPSS scheme secure if for any password dictionary
D, if pw is randomly chosen in D then the adversary’s advantage in distinguishing the PPSS-
protected key K from a random string (i.e., guessing b) is at most negligibly above 1/|D|, the

21

probability of guessing the password, times qu + bqs/(t− t′+ 1)c, where qu and qs are the numbers,
respectively, of the URec and SRec protocol instances the adversary can interact with, and t′ ≤ t is the
number of corrupted servers. Factor 1/|D|∗bqs/(t−t′+1)c corresponds to an inherent vulnerability
due to on-line dictionary attacks: An adversary who learns the shares of t′ ≤ t servers can test any
password p̃w in D by running the user’s protocol on p̃w interacting with t−t′+1 uncorrupted servers.
Factor 1/|D| ∗ qu corresponds to an inherent vulnerability of password-authenticated protocols in
the CRS model, because the adversary can run the initialization protocol Init on a password guess
p̃w and then run the servers’ protocol interacting with the user: If the user does not reject (by
outputting ⊥), the adversary can conclude that p̃w = pw.

To make the PPSS notion easier to use in applications it is important that the adversary sees the
key-pseudorandomness challenge, either a real key or a random key, already after the initialization
protocol Init, rather than only when this key is reconstructed in protocol Rec. (Our own Threshold
PAKE protocol in Section 6 relies on this property of a PPSS scheme.) To make sure that the
PPSS-protected key remains pseudorandom in each key usage, whether after the initialization or
after each reconstruction instance, we let the adversary see the key generated by Init as well as
the key(s) output by every Rec instance. That is, at the end of Init and after each Rec instance
the attacker is given K(0) if b = 0, but if b = 1 then the attacker is given the actual value of
the key output by, respectively, UInit or URec. Note that K(0) does not change across different
reconstructions because it is fixed at the start of the experiment, while K(1) is determined by the
actual outputs of UInit and URec instances. Importantly, note that this definition implies that in
the real execution the reconstruction instances must output the same key that was created in the
initialization or the attacker can trivially guess b. We further discuss this soundness property below.

Definition 1 A PPSS scheme is (T, qu, qs, ε)-secure (for fixed threshold parameters (t, n) if for any
D ⊆ {0, 1}τ , any set B s.t. t′ ≤ t where t′ , |B|, and any algorithm A with running time T , we
have

Advppss
A ≤

(
qu +

⌊
qs

t− t′ + 1

⌋)
∗ 1

|D|
+ ε (1)

where Advppss
A = |p(1)A −p

(0)
A | and p

(b)
A = Pr[b′ = 1] in the following experiment defined for b ∈ {0, 1}:

(1) Choose pw at random in D, generate CRS ← ParGen(1τ) and (σi, πi) ← SKeyGen(CRS) for
i ∈ B. Give CRS and {πi}i∈B to A and let A generate {πi}i∈B.
(2) Run an instance of Init between U, which executes protocol UInit(CRS, pw, π1, . . . , πn), and the
servers, where each Si for i ∈ B executes protocol SInit(CRS, σi, πi), while servers Si for i ∈ B are
controlled by adversary A. The protocol proceeds on public channels, with A playing a man-in-the-
middle on all communications. Denote U’s output in this Init instance as K(1), and denote Si’s
output, for i ∈ B, as ωi. Choose K(0) at random in {0, 1}τ . Give key K(b) to A.
(3) Let A interact with qu instances of U�Rec(CRS, pw, b,K(0)) and qs instances of S�Rec(CRS,σB,π,ωB).
Let b′ be the final output of A.

Secure Initialization. Note that in the above definition we assume that in the initalization
protocol U runs the UInit procedure on input a vector of public parameters π = (π1, . . . , πn) where
πi for each i ∈ B is the true output of SKeyGen executed by server Si. In other words, we assume
that the user runs the initialization procedure on correct (i.e. authentic) values πi for the honest
servers. This is equivalent to assuming that the user can authenticate, e.g. via the PKI, the servers
with whom it wants to initialize the PPSS scheme. The requirement of authenticated channels
between the user and the honest servers during the initialiation protocol is indeed necessesary, or
otherwise the adversary would be able to pose as t + 1 servers among S1, . . . ,Sn and recover U’s

22

secret sc from the initialization protocol. (A similar assumption on authenticity of servers’ public
keys in the initialization is also made in [10].)

Soundness. The above definition captures also a soundness property of a PPSS scheme, because
it implies an upper-bound on the probability that an adversary causes any URec instance to output
K ′ 6∈ {K,⊥} where K was an output of UInit. Assume algorithm A which outputs 0 if every key
returned by U�Rec oracle is either equal to K(b) which was output by UInit, or to ⊥. Note that in

the security experiment with b = 0, oracle U�Rec always returns K(0) or ⊥, so p
(0)
A = 0. The security

definition implies that p
(1)
A ≤

(
qu +

⌊
qs

t−t′+1

⌋)
∗ 1
|D| + ε, hence this is also an upper-bound on the

probability that any URec instance outputs K ′ which is neither ⊥ nor K output in UInit.

Robustness. Another desirable property of a PPSS scheme is robustness, which requires that a
user reconstructs the key created in Init as long as (1) it has unobstructed communication channels
with at least t+ 1 non-corrupt servers (both in the Init and the Rec protocols), and (2) the upper-
bound on the number of corrupt servers, t, satisfies the constraint that 2t + 1 ≤ n. (These two
constraints ensure that the majority of servers U accesses without obstruction in both the Init and
the Rec protocols is uncorrupted.) This property is distinct from soundness in that it assumes that
the adversary lets the user communicate with t + 1 non-corrupt servers without interference. On
the other hand, it requires not only that the user does not reconstruct an incorrect key, i.e. that
K ′ ∈ {K,⊥}, but that it does output the correct one, i.e. that K ′ = K. We call a (t, n)-threshold
PPSS scheme robust if, except for negligible probability, URec outputs the key K generated by UInit

as long as the set B of corrupted servers and corrupted communication links to honest servers which
U contacts in the URec protocol, is less than t+1, while the number of uncorrupted servers whom U
contacts over uncorrupted links is at least t+ 1. Note that this implies that |B| < min(t+ 1, n− t),
which means that |B| can be equal to t only if t < n/2, a restriction which is not imposed by either
the security or the soundness properties above. We stress that when considering robustness we need
to count in set B both corrupt servers and corrupted links to honest servers. This is in contrast
to the definition of security (and soundness) above, where B stands only for corrupted servers, and
the adversary is assumed to play a man-in-the-middle on all communications.

5 A PPSS protocol in the FVOPRF-hybrid world

We show a PPSS protocol based on any realization of the FVOPRF functionality. The protocol is
shown in Figure 8 in the FVOPRF-hybrid model (a specific instantiation based on the 2HashDH-
NIZK V-OPRF of Section 3.1 is presented in Appendix B). The protocol is secure in the CRS model
and it assumes a pseudorandom generator and a computationally hiding, computationally binding,
and non-malleable (with respect to decommitment) commitment scheme, which can be realized
e.g. by a CCA-secure public key encryption, or by a hashing the message together with a random
nonce in ROM. The simplified version of the protocol in Figure 8 works as follows: In SKeyGen,
each server Si picks its public parameter πi as the V-OPRF function descriptor, which in all our
V-OPRF instantiations is a commitment to the private key of the underlying PRF (see Section 2).
In protocol Init, on U’s inputs a password pw and a vector of function descriptors π = (π1, . . . , πn),
which are authentically delivered to the user, user U picks a random key K, secret-shares it into
shares s1, . . . , sn, and then encrypts each si using one-time pad encryption under key ρi = Fπi(pw),
computed in a V-OPRF instance with server Si. The vector of function descriptors π = (π1, . . . , πn)
and the ciphertexts c = (c1, . . . , cn), where ci = si ⊕ Fπi(pw), is public, and given to each server.
At reconstruction the servers send these two vectors to U, who can recover t + 1 shares si, and

23

interpolate them to recover K, after t + 1 V-OPRF instances in which U recomputes the values
ρi = Fπi(pw) for t+ 1 different i’s.

As we explain in the introduction, if the attacker learns whether the receiver recovers the shared
key K correctly, the above protocol would enable a malicious server Si to get information about
user’s password pw (including recovering it completely using binary search in an OPRF based on the
Naor-Reingold PRF), by manipulating the function descriptor πi in each OPRF instance executed
by Si in this reconstruction protocol. In fact, in the PPSS security model defined in section 4,
the above simplified protocol allows a malicious server to recover π through an off-line dictionary
search after a single instance of PPSS reconstruction. Note that our PPSS security model reveals
the whole key K output in a PPSS reconstruction to the adversary, which models putting this key
to an arbitrary usage by the higher-level protocol, e.g. by the T-PAKE scheme built from PPSS in
Section 6. Now, if A sends to URec a vector of function descriptors π∗i which correspond to PRF
keys k∗i which A creates, and if A learns the key K output by this URec instance, then A can stage
an off-line dictionary attack running the user’s reconstruction algorithm for every guess p̃w in the
password dictionary D, and locally computing values Fπ∗i (p̃w) using the PRF keys k∗i . This is yet
another reason why we need to extend the above protocol by adding a non-malleable commitment
C that binds user’s password pw to the reconstructed secret K. We accomplish this binding as
follows: The CRS string will include an instance of a non-malleable commitment scheme COM. In
the initialization procedure, the user secret-shares not the key K directly, but a random value s,
and then it uses s as a PRG seed to derive the key K together with the commitment randomness
r, and sets each state ωi given to Si to (π, c, C) where C = COM((pw,π, c); r). By the binding
property of commitment COM, the adversary playing the role of the servers must commit to a
password guess p̃w in value C it sends to the user, and the reconstruction procedure rejects unless
the guess was right, i.e. unless p̃w = pw, disabling the off-line dictionary attack above. We need the
non-malleability of the commitment scheme to forestall the possibility that the adversary modifies
either the vector of function descriptors π or the ciphertexts c, and hence in particular modifies
the reconstructed key K, without guessing the password.

Communication Complexity. In Figure 8 we show a PPSS scheme whose communication com-
plexity is O(n2 · poly(τ)) where τ is a security parameter, because the protocol starts with each
server Si sending to U a tuple ω which contains n function descriptors πi and n field elements ci.
The reason we do this is simplicity, plus we suspect that in most applications the number of servers
n will be small enough that the O(n2) cost of this communication will not be significant in practice.
However, for large n we can reduce the communication to O(n log n) using a Merkle Tree hash [38].
Each server Si would then send only its own πi, ci values together with the co-path in the hash tree
which allows U to agree on the set of t+ 1 servers whose tree co-paths hash to the same root value.
In practice U could also cash the ω vector as it does not change between Rec protocol instances, in
which case the communication cost becomes O(n).

Security Discussion. Before formally analyzing the security of the PPSS protocol in Figure 8,
we summarize the capabilities of the adversary defined by the security game, and see what these
capabilities are for the case of the above PPSS scheme: (1) In the server initialization stage,
the adversary registers the corrupt servers’ parameters πi and the corresponding Turing machines
Mπi , for i ∈ B, with the FVOPRF functionality. This effectively sets values ρi = Fπi(pw) which
U computes via V-OPRF evaluation during the initialization protocol as ρi = Mπi(pw) for i ∈ B,
while for i ∈ B, ρi’s are sampled by FVOPRF as random τ -bit strings. After completing all the
V-OPRF instances, the adversary then sees vector ω = (π, c, C) which U sends to every Si. (2)
The adversary can then interact with qu user instances U(CRS, pw). In each such execution, which
we equate with a single execution of Step 2 in the U protocol in Figure 8, the user settles on some

24

Parameters: Security parameters τ and `, binary extension field F = GF (2`), session ID
sid = (S1, . . . ,Sn), threshold parameters t, n ∈ N.

ParGen(τ): Sets CRS as an instance of a non-malleable commitment COM.

SKeyGen(CRS): Si sends (KeyGen, sid) to FVOPRF and sets πi to π it receives in the response
(Parameter, sid , π) from FVOPRF. The private state σi of Si is the unique handle “Si” has
to the V-OPRF function Fπi implemented by the ideal FVOPRF functionality. (In all our
V-OPRF instantiations σi is a PRF key and the function descriptor πi is a commitment to it.)

UInit(CRS, pw, π1, . . . , πn)
 {SInit(CRS, σi, πi)}ni=1:
Step 1. User U picks s← F and generates (s1, . . . , sn) as a (t, n) Shamir’s secret-sharing of s
over field F. (Indices 0, 1, . . . , n used in Shamir’s secret-sharing are encoded as some distinct
field elements 〈0〉F, 〈1〉F, . . . , 〈n〉F.) For i = 1 to n, U sends (Eval, sid ,Si, pw) to FVOPRF.
Step 2. User U collects FVOPRF responses (π′1, ρ1), . . . , (π

′
n, ρn), and aborts if π′i 6= πi for

any i. If all parameters π′i match those in the inputs, U computes ci ← si ⊕ ρi for i = 1
to n, c ← (c1, . . . , cn), π ← (π1, . . . , πn), [r||K] ← G(s), C ← COM((pw,π, c); r), sends
ω = (π, c, C) to each Si, and outputs K as a local output.

URec(CRS, pw)
 {SRec(CRS, σi, πi, ωi)}i∈S :
For each i = 1, . . . , n, user U sends (Eval, sid ,Si, pw) to FVOPRF and initiates a run of the
protocol Rec with Si.
Each Si responds by sending ωi to U and (SenderComplete, sid ,Si) to FVOPRF, and U
collects FVOPRF responses (π′i, ρi) and ωi for each i ∈ S.
Let S be a subset of servers such that: (i) |S| = t + 1; (ii) there exists ω = (π, c, C) with
π = (π1, . . . , πn) and c = (c1, . . . , cn) such that ωi = ω for all Si ∈ S; (iii) for all Si ∈ S,
π′i = πi and ρi 6=⊥. If no such subset exists output ⊥ and halt.
Reconstruction: Set ui ← ci ⊕ ρi for all i ∈ S. Interpolate points {(〈i〉F, ui)}i∈S with a
polynomial U ∈ F[x], and set s← U(〈0〉F). Compute [r||K]← G(s). If COM((pw,π, c); r) = C
then output K, else output ⊥.

Figure 8: A PPSS scheme in the FVOPRF-hybrid-model.

ω∗ = (π∗, c∗, C∗) tuple, which w.l.o.g. is decided by the adversary. When the user issues the Eval
requests to the FVOPRF, it will except the returned πi’s to match those specified in π∗. Since we do
not assume authenticated channels, the adversary can choose π∗ vector at will. Some π∗i ’s in π∗ can
match πi’s of uncorrupted servers, others can be chosen by the adversary, e.g. they can correspond
to the keys of the corrupted servers (but there is no limit on how many such keys the adversary
effectively uses). By the rules of the FVOPRF functionality, whenever π∗i = πi for some uncorrupted
server Si, the adversary can only choose whether or not to allow the Eval request to output the
correct PRF value ρi = Fπi(pw), or ⊥. For π∗i ’s chosen by the adversary, the adversary decides
on function Fπ∗i in the form of a Turing Machine Mπ∗i

which will be evaluated on pw by FVOPRF.
By the rules of FVOPRF, every function descriptor π has a fixed Turing machine Mπ corresponding
to it, but the adversary can use different π∗i ’s in different U(CRS, pw) calls, including the πi’s it
chose for the corrupted servers, i ∈ B, during the server initialization stage. (3) The adversary can
also interact with qs instances of uncorrupted servers. Each server Si will provide the string ω and
engage in the server-side V-OPRF protocol, which enables the adversary to evaluate function Fπi
on an input of his choice.

Intuitively, if we show that the adversary cannot learn anything useful from interacting with

25

the user, then in the FVOPRF-hybrid world values c1, . . . , cn hide the secret-shared “master secret”
value s as long as the adversary does not engage t−t′+1 distinct uncorrupted servers in a V-OPRF
protocol on input the correctly guessed user’s password pw. This is because, due to the properties
of FVOPRF, the adversary learns only irrelevant information in every V-OPRF instance to which he
inputs x 6= pw. Consequently, if the adversary does not make t− t′+ 1 server queries on the correct
pw, the only information related to pw and s in the adversary’s view is the commitment C. However,
assuming the pseudorandomness of G, which is used to derive r from s, and assuming computational
hiding of the commitment scheme, this commitment offers no help, except for negligible probability
in deriving any additional information on pw and/or s or K. Therefore, for pw chosen at random
the probability that there are t− t′+ 1 server queries on pw among qs queries the adversary makes,
is at most bqs/(t− t′ + 1)c ∗ (1/|D|) plus a negligible factor. As for the interactions with the user,
the only way such interaction might return anything but ⊥ is when the adversary sends to the
user a tuple ω∗ = (π∗, c∗, C∗) s.t. C∗ is a commitment to the correct password pw. If C∗ = C
then the adversary is also bound to the V-OPRF parameters π = (π1, . . . , πn) and ciphertexts
c = (c1, . . . , cn) which were committed in C in the initialization protocol. By the consistency of
the FVOPRF functionality, if the user runs a V-OPRF protocol with server Si on input pw, and it
rejects any response (π′i, ρi) s.t. π′i 6= πi, then the only two possible values for ρi are ⊥ and ci ⊕ si
where si is the secret-sharing share U picked in the Init protocol. Therefore the only secret the user
can reconstruct in this case, without breaking the binding property of the commitment scheme,
is the value s created in the initialization, which leads the user to reconstruct the key K created
in the initialization. On the other hand, by the non-malleability of the commitment scheme, the
probability that the adversary creates a new commitment C∗ 6= C which commits to the same value
pw in any of the qu user sessions, is at most qu ∗ (1/|D|) plus a negligible factor.

5.1 Security proof for the PPSS construction.

We present the formal argument for the security of the PPSS protocol from Figure 8 that formalizes
the intuition given above. In particular, the two key events defined below, ES and EU , correspond
to the two succesful attack conditions discussed earlier: that the adversary queries t − t′ + 1
uncorrupted servers on the correct password pw and that the adversary initializes a user instance
on ω∗ containing C∗ 6= C which is a committment to pw.

Theorem 4 (PPSS Security) Assuming commitment scheme COM is computationally hiding,
computationally binding, and non-malleable (with respect to decommitment), and that G is a pseudo-
random generator, the PPSS scheme in Figure 8 is (T, qu, qs, ε)-secure for ε = εH+εB+qu·εNM+4εG,
where εH , εB, εNM and εG are the bounds implied by, respectively, computational hiding of COM,
copmutational binding of COM, non-malleability of COM with respect to decommitment, and the
pseudorandomness of G, on input sizes implied by the usage of COM and G in the PPSS scheme,
for adversaries whose time is bounded by T plus the time taken by a single instance of Init, qu
instances of URec, and qs instances of SRec.

Proof: Take any n, t s.t. t < n, and let A be an adversarial algorithm in the PPSS security
experiment, whose running time is bounded by T , and who corrupts a set B of t′ ≤ t servers. Let
T ′ be T plus the time taken by a single instance of Init, qu instances of URec and qs instances of
SRec. Recall that the security experiment starts by choosing pw at random in D, where D is an
arbitrary subset of τ -bit strings, choosing b as a random bit, K(0) as a random τ -bit string, and
generating CRS, which in the case of our PPSS protocol consists of a description of the extension
field F = GF (2`), session parameter sid = (S1, . . . ,Sn), and integers t, n.

26

Server Initialization. AdversaryA first participates in the servers’ initialization step. Namely, A
receives (KeyGen, sid ,Si) from FVOPRF for every i 6∈ B and sets πi via command (Parameter, sid ,Si, πi)
to FVOPRF. Note that parameters πi for i 6∈ B serve as tags which identify functions Fπi , but that
each Fπi for i ∈ B is a random function: Its values are randomly sampled by FVOPRF in response
to A’s (UserComplete, sid ,U, πi,>) calls In addition, for every i ∈ B, A registers the parameters
of the corrupted server Si, by issuing the (Parameter, sid ,Si, πi,Mπi) command, thus registering
some Turing Machine Mπi corresponding to Si’s parameter πi. Let π = (π1, . . . , πn) be the vector
of parameters defined in this step.

Initialization Protocol. Without loss of generality we can consider A’s which do not cause the
instance of UInit(CRS, pw,π) executing in the Init protocol to abort (as in that case A gets no
information about b). By the rules of FVOPRF functionality, the only way U can not abort is if
A lets U evaluate the V-OPRF on pw for all n parameters πi in π. In other words, U’s ρi values
will be set as ρi ← Mπi(pw) for each i ∈ B and for i ∈ B values ρi = Fπi(pw) will be sampled as
random τ -bit strings by FVOPRF. The initialization defines ω = (π, c, C) where c = (c1, . . . , cn) for
ci = ρi ⊕ si for all i, and C = COM((π, c, pw); r) for [r||K] = G(s), and A gets ω and K if b = 1
or K(0) if b = 0.

User and Server Queries. A then interacts with qu instances of user oracle U�Rec(CRS, pw, b,K(0))
and qs instances of server oracle S�Rec(CRS,σB,π, ω), and decides its output bit b′. Recall that in
each instance of URec(CRS, pw) triggered by U�Rec(CRS, pw, b,K(0)), the adversary effectively decides
on ω∗ = (π∗, c∗, C∗) and a set of server indexes S which URec will use in the reconstruction protocol.
Let π∗ = (π∗1, . . . , π

∗
n) and c∗ = (c∗1, . . . , c

∗
n). Recall that by the FVOPRF rules, the only thing that

A can decide with respect to each V-OPRF instance which U will execute, is whether it results in U
getting the value ρi = Fπ∗i (pw) (if A lets this V-OPRF instance proceed on π∗i) or that U will strike
out this index i from S (if A blocks this instance or makes it execute on some function descriptor
different than π∗i). Since A learns no further information during this process beyond its view when
it decided on ω∗ and S, we can assume that A straight away decides on the final make-up of S for
which U reconstructs ρi = Fπ∗i (pw) values, and that |S| = t+ 1 since otherwise U aborts.

Let K(1) denote K output by U in the Init instance. Let G0 denote the game defined by the
security experiment in the PPSS security definition. Let UncParams denote the set of parameters
of the uncorrupted servers, {πi}i∈B.

Define event ES as A making a (UserComplete, sid , U∗, πi,>) query where (Eval, sid , S∗, p̃w)
was previously submitted by corrupted user U∗ and p̃w = pw for t − t′ + 1 distinct parameters
πi ∈ UncParams. Note that if ES happens the adversary can learn that its guess p̃w for pw was
correct, and thus recover K: Recall that A knows t′ = |B| turing machines Mπi which define
functions Fπi , so A can locally compute Fπi(p̃w) for all p̃w ∈ D (assuming w.l.o.g. that D is small
enough that this can be done within time T). For each such p̃w, if A additionally learn t − t′ + 1
values fπi(p̃w) for t− t′+ 1 different parameters πi ∈ UncParams, then A can xor these values with
corresponding ci’s in c, interpolate the resulting points with a polynomial Ũ , compute s̃ ← Ũ(0),
derive [r̃||K̃]← G(s̃), and confirm if p̃w = pw and K̃ = K(1) by checking if C = COM((π, c, p̃w); r̃).

Define event EU that some instance of URec(CRS, pw) triggered by A’s call to the U�Rec oracle
with input ω∗ = (π∗, c∗, C∗) s.t. (1) ω∗ 6= ω, (2) A allows some set S of t + 1 V-OPRF instances
triggered by this URec instance to proceed correctly on parameters π∗i in π∗, and (3) URec outputs
K 6=⊥ in this instance. Note that this happens if and only if C∗ = COM((π∗, c∗, pw); r) for r
computed by URec’s procedure on inputs pw, π∗, c∗ and values ρi = Fπ∗i (pw) for i ∈ S computed
via the V-OPRF instances. Note that in our PPSS protocol U chooses the (t+1)-element set S
arbitrarily among the servers who respond correctly in their V-OPRF instances, but w.l.o.g. we can
assume that S is chosen by A together with ω∗. The reason this event is crucial is that if EU happens

27

then the adversary who created C∗ with the knowledge of (p̃w, r) s.t. C∗ = COM((π∗, c∗, p̃w); r),
can conclude that p̃w = pw (or there is a break in commitment binding), in which case A could
turn around and use pw in t− t′+ 1 V-OPRF sessions with uncorrupted servers, which allows A to
learn K(1) as described above. We will break even EU into mutually exclusive components, EU,C and
EU,NC , where EU,C is defined as the event that EU happens for C∗ in ω∗ s.t. C∗ = C, while EU,NC
is the case of cEU for C∗ 6= C. Note that if ω∗ 6= ω and C∗ = C then (π∗, c∗) 6= (π, c) therefore
event EU,C corresponds to a break in commitment binding, whereas event EU,NC will correspond to
a break in commitment non-malleability.

Consider a modification G1 of game G0, in which the U�Rec oracle returns K(b) whenever an
instance of URec is started on ω∗ = ω and there exists a set S of t + 1 servers for which A allows
the V-OPRF instances to proceed on πi’s in ω, and otherwise the U�Rec oracle returns ⊥. Note that
under condition ¬EU game G1 is identical to G0.

Consider a modification G2 of game G1 in which the UInit algorithm creates ~s as a (t, n) Shamir’s
secret-sharing of 0 in F instead of s. However, s is still used to generate [r||K] ← G(s). Note
that under condition ¬ES , game G2 is identical to G1: Assuming ¬ES , adversary’s view includes
information about at most t shares in ~s = (s1, . . . , sn) defined in UInit, even if A knew (or guessed)
pw. Note that given pw, A can compute ρi = Fπi(pw) for the t′ indexes i ∈ B, and under ¬ES
it can compute up to t − t′ values ρi = Fπi(pw) for i ∈ B, but this is the only information on ~s
it sees. By FVOPRF rules, values of Fπi(x) for x 6= pw and πi ∈ UncParams are independent from
values Fπi(pw), and in game G1 the user oracle U�Rec does not depend on the information gained
from the V-OPRF evaluations on pw: It replies ⊥ or K(b) based solely on whether ω∗ = ω and
whether A allowed |S| = t+ 1 V-OPRF instances to go through correctly, so U�Rec oracle execution
can be perfectly simulated without information on Fπi(pw)’s. Let E = ES ∪ EU . It follows that
under condition ¬E , games G2 and G0 are identical. Therefore Pr[E in G0] = Pr[E in G2] and
Pr[¬E in G0] = Pr[¬E in G2]. Moreover, since G0 and G1 are identical under ¬E we also get that
Pr[b′ = b | ¬E in G0] = Pr[b′ = b |¬E in G2]. Combining the last two equations implies that

Pr[b′ = b ∧ ¬E in G0] = Pr[b′ = b ∧ ¬E in G2] (2)

Let G3 be a modification of G2 in which [r||K] is chosen as a random bistring rather than as
G(s). Consider two events, E and b = b′ ∧ ¬E . We claim that if G is a (T ′, εG)-secure PRG, i.e. no
algorithm running in time T ′ has advantage better than εG in distinguishing G(s) for random s in
F from a random string, then

Pr[E in G2] ≤ Pr[E in G3] + εG (3)

Pr[b = b′ ∧ ¬E in G2] ≤ Pr[b = b′ ∧ ¬E in G3] + εG (4)

In both cases the reduction R, given the PRG challenge [r||K], picks pw at random in D, b as a
random bit, ~s as a secret-sharing of 0, as in game G2, and K(0) as a random string. R then assigns
K(1) ← K, and goes through the server initialization step and the Init protocol with A, performing
the steps of FVOPRF, which determines π = (π1, . . . , πn) and ρ = (ρ1, . . . , ρn), and therefore also
c = (c1, . . . , cn). R then computes C = COM((π, c, pw); r) and gives ω = (π, c, C) and K(b) to
A. R then performs the code of S�Rec and U�Rec oracles, executing the code of FVOPRF whenever
FVOPRF is called, consulting A whenever needed according to the rules of FVOPRF. Importantly,
R does not immediately answer the U�Rec calls as in game G1, i.e. based only on whether ω∗ = ω
and A allows t+ 1 V-OPRF calls to proceed on the parameters in π. Instead, if ω∗ 6= ω and yet A
allows t+ 1 V-OPRF calls to proceed on the parameters in π∗ in ω∗, R follows the URec algorithm
and tests whether event EU occurs. If it does, R outputs 1 and halts. Otherwise, it outputs ⊥.
Note that this way R can test for EU , but until it occurs R proceeds as G2 does. R can also

28

output 1 whenever ES occurs, which it can test for because R knows pw and it monitors A’s calls
to FVOPRF. Finally, R can also test whether b′ = b when A halts. Therefore R can test both for
event E and for event b = b′ ∧ ¬E , implying both inequalities above.

Note that in game G3, the adversary gets no information about bit b because both K(0) and
K(1) are random strings independent of everything else. Therefore the probability that b′ = b is
independent of A’s view, and therefore it is independent of any event, e.g. ¬E , which is a function
of A’s view. It follows that

Pr[b′ = b ∧ ¬E in G3] = Pr[b′ = b in G3] · Pr[¬E in G3] = 1/2 · Pr[¬E in G3] (5)

Consider game G4 in which the UInit procedure skips generating si’s, ignores ρi values it receives
from FVOPRF, and picks values c1, . . . , cn directly as n random τ -bit strings. Under condition ¬ES ,
game G4 is identical to game G3 because unless ES occurs, game G3 reveals to A information about
at most t values ρi = Fπi(pw) which mask the secret-shares si.

We will argue that if the commitment scheme COM is (T ′, εB)-binding then the following in-
equality holds:

Pr[EU,C ∧ ¬ES in G4] ≤ εB (6)

The reduction R from commitment binding is straightforward: Reduction R, on input CRS, follows
the server initialization procedure, interacting withA and performing the code of FVOPRF, to choose
elements in π, then it picks random pw in D, random r, and random elements in c, as is done
in G4, computes C ← COM((pw,π, c); r) and sends it to A and to all Si’s for i ∈ B. When A
makes queries to S�Rec and U�Rec oracles, these are serviced by R. In particular, R can test if event
ES happens. Also, if A triggers a URec instance, R performs the code of U to verify if event EU,C
happens. If it does, R can output two different decommitments of C.

Secondly, we will argue that if COM is (T ′, εNM)-non-malleable (with respect to decommitment)
[20] then:

Pr[EU,NC ∧ ¬ES in G4] ≤ qu/|D|+ qu · εNM (7)

The non-malleability assumption implies that the probability of the following event is at most
1/|D| + εNM for any algorithm R running within time T ′: On input a randomly generated CRS
and a commitment C = COM((z, pw); r), where pw is chosen at random in D, r is random, and
z is generated (by some algorithm) independently from pw, r, R outputs (z′, r′, C∗) s.t. C∗ 6= C
and C∗ = Com((z′, pw); r′). Let E iU,NC stands for even EU,NC occuring in the i-th instance of

URec which A triggers. We will argue that for any i, the probability of E iU,NC∧ 6= ES is upper-

bounded by 1/|D| + εNM . Since EU,NC is a union of qu events E iU,NC ’s, inequality 7 fill follow.
The reduction R, on randomly generated CRS, follows the server initialization procedures which
determines elements in π, then it chooses elements in c at random and sends π, c to the COM non-
malleability challenger, which chooses pw at random in D and a random r and returns C computed
as C ← COM((π, c, pw); r). Given C, R can simulate the rest of game G4 to A (assuming 6= ES),
until the i-th query A makes to U�Rec oracle, i.e. the i-th instance of URec. When that instance is
triggered, A triggers it on some input ω∗ = (π∗, c∗, C∗). If C∗ = C, R aborts. Otherwise R asks
the non-malleability challenger to provide a decommitment to C, i.e. R receives (pw, r). Having
received pw from the non-malleability challenger, R can run URec protocol on ω∗ a(and on set S
determined w.l.o.g. by A). If E iU,NC happens, then R computes r′ s.t. C∗ = COM((π∗, c∗, pw); r′)
and therefore can provide decommitment (π∗, c∗, pw, r′) to the non-malleability challenger. As
argued above, this implies inequality 7.

Since EU = EU,C ∪EU,NC , inequalities 6 and 7 together imply that Pr[EU∧ 6= ES] ≤ qu/|D|+ qu ·
εNM + εB. Moreover, since under condition ¬ES game G4 is identical to G3, this iimplies:

Pr[EU ∧ ¬ES in G3] ≤ qu/|D|+ qu · εNM + εB (8)

29

Consider game G5 which proceeds as G4 except that C is a commitment to a fixed bitstring.
If the commitment scheme COM is (T ′, εH)-hiding, an easy reduction shows that Pr[ES in G4] is
upper-bounded by Pr[ES in G5] + εH . Since A’s view in game G5 does not depend on pw, it follows
that Pr[ES in G5] ≤ bqs/(t− t′ + 1)c ∗ (1/|D|). Taking the two facts together we conclude that
Pr[ES in G4] ≤ bqs/(t− t′ + 1)c ∗ (1/|D|) + εH . Finally, since under condition ¬ES game G4 is
identical to G3, we get that

Pr[ES in G3] ≤ bqs/(t− t′ + 1)c ∗ (1/|D|) + εH (9)

The theorem follows because Advppss
A = |Pr[b′ = 1 | b = 1]−Pr[b′ = 1 | b = 0]| = 2·Pr[b′ = b]−1,

and because we can bound Pr[b′ = b] in G0 as follows:

Pr[b′ = b in G0] ≤ Pr[E in G0] + Pr[b′ = b ∧ ¬E in G0] (10)

= Pr[E in G2] + Pr[b′ = b ∧ ¬E in G2] (11)

≤ Pr[E in G3] + Pr[b′ = b ∧ ¬E in G3] + 2εG (12)

= Pr[E in G3] + 1/2 · Pr[¬E in G3] + 2εG (13)

= 1/2 + 1/2 · Pr[E in G3] + 2εG (14)

≤ 1/2

(
1 +

(
qu +

⌊
qs

t− t′ + 1

⌋)
· 1

|D|
+ εH + εB + qu · εNM + 4εG

)
(15)

Where equation (11) is implied by equation (2) and by the fact that G0 and G2 are identical under
¬E ; inequality (12) is implied by inequalities (3) and (4); equality (13) is implied by equality (5);
and inequality (15) is implied by the fact that E = EU ∨ ES is a union of disjoint events (EU ∧¬ES)
and ES , whose probability in G3 is upper-bounded by inequalities (8) and (9). �

Robustness. The PPSS scheme in Figure 8 is robust: If the number of honest players a user
instance URec interacts with is at least t + 1, this instance will run on the tuple ω which was
generated by UInit. By the rules of the FVOPRF functionality, the only thing a corrupt server Si for
i ∈ B can do is for U to output either ⊥ or Fπi(pw). In either case, since U will reconstruct correct
values Fπi(pw) for at least t+ 1 honest servers i ∈ G, the user will reconstruct the same polynomial
which was created in the secret-sharing step of UInit, and hence the user will reconstruct the same
[r||K] string, use it verify the commitment C in ω, and output K.

Note that our robustness notion requires URec to output the correct key only if URec connects
without obstructions with at least t + 1 honest servers and with at most t corrupted connections,
namely connections where the incoming information is corrupted. However, we can extend this
property without limiting the number of corrupted connections over which URec tries to connect to
the servers. Note that when an instance of URec rejects after receiving consistent ω values from at
least t + 1 servers, it can do so for two reasons: Either the V-OPRF protocol went through with
fewer than t+ 1 servers for the parameters specified in the π vector in ω, or the V-OPRF protocol
succeeded for at least t + 1 parameters in π but the commitment verification step failed. In the
latter case U can conclude that ω was wrong, and it can run another instance of URec excluding
the servers which supplied this wrong ω in the previous URec instance. In the first case, U can just
re-run the URec with a larger set of servers. In this way the user will eventually find the set of
uncorrupted t+ 1 servers with unobstructed communication channels (if such set exists), and run
a URec instance with a server subset in which they constitute a majority.

30

6 From PPSS to Single-Round T-PAKE

In this section we show that the composition of a secure PPSS with a (regular) key-exchange (KE)
scheme results in a secure T-PAKE protocol. As a consequence, we can combine the PPSS scheme
from Section 5, implemented with the 2Hash-DH-NIZK V-OPRF, together with a simple one-round
key-exchange protocol to obtain a very efficient one-round T-PAKE protocol in the password-only
CRS model (no PKI or secure channels between servers are assumed) with arbitrary threshold
parameters. A full specification of this protocol is presented in Appendix B.

We start by recalling the security models of T-PAKE and Authenticated Key Exchange (with a
detailed T-PAKE model presented in Appendix A). Then we define a generic composition of PPSS
and KE protocols to obtain T-PAKE schemes from which the one-round protocols are derived.
Finally, we prove the security of the T-PAKE protocols obtained via the above generic composition
and establish the security bounds of such protocols when instantiated with our V-OPRF-based
PPSS scheme.

6.1 Security Models for T-PAKE and KE

We want to show that a PPSS scheme can be composed with a KE protocol to obtain a secure
T-PAKE scheme. For this we need security models for both T-PAKE and Authenticated Key
Exchange (KE). In Appendix A we present a detailed model for T-PAKE security based on the
work of MacKenzie et al. [37] which in turn extends the PAKE model of Bellare et al. [5] to the
threshold case. Our model introduces some modifications intended at some simplifications as well
as for a more careful counting of online password-guessing attempts by the attacker.

For KE security (i.e., a key exchange setting where parties have strong random secrets and
there is no threshold component) we consider a model similar to the one used for T-PAKE but
stripped off of the elements related to the threshold setting (e.g., the client ring and parameters
(t, n)) and the password setting (e.g., adversary’s advantage is required to be negligible). The
model obtained after stripping off the threshold elements is essentially a close variant of [5] while
further eliminating the password elements results on a variant of the [6] model (with matching
sessions defined via matching session identifiers rather than by equality of transcripts). Note that
while T-PAKE protocols assume a client-server model, PAKE and KE protocols do not usually
assume that and neither do we in our treatment here.

Client keystores. A PPSS scheme allows a client C to retrieve a secret key from a set of servers
IC . In order to augment the PPSS scheme into a T-PAKE protocol, the client will use the retrieved
secret, call it KC , as a way to bootstrap KE sessions with its servers. Usually, however, there is
more information that the client needs for completing the KE, such as servers identities, public
keys, certificates, additional secret keys, etc. In this case, C will store, and later retrieve, this
extra information at the same set of servers IC , and will use the secret KC to protect (encrypt and
authenticate) this information. We refer to the information stored at the servers as a keystore and
denote it by keystoreC . When defining a KE protocol for use in conjunction with a PPSS protocol
(for obtaining a T-PAKE) one needs to specify the information included in the keystore and how
this information is protected using the client’s secret KC . We use KE+ to refer to a KE protocol
augmented with a definition of a keystore.

6.2 A generic T-PAKE protocol from PPSS and KE

Given a PPSS scheme P = (ParGen, SKeyGen, Init,Rec) with threshold parameters (t, n) and a key
exchange protocol (with clients keystores) KE+, we build a T-PAKE protocol T as follows. The

31

protocol participants are a set of clients and a set of servers. Each client C is associated with a
subset of n servers called the client’s ring and denoted as IC = {S1, . . . ,Sn} (for simplicity, we
assume global parameters (t, n) but one could have different parameters for different clients).

Protocol T initialization. The following operations are assumed to be performed at initialization
and communication run over secure channels (these procedures can be used to initialized new
parties at any time but we assume for simplicity that they are initialized at the onset of the
protocol execution). They represent operations performed once when a user register for and joins
the system.

1. A global crs with a given security parameter κ is generated using ParGen. This crs is input
to each procedure below (except for actions specific to the key exchange protocol P).

2. For each client C, an instance of the PPSS scheme P is initialized between C and each server
in IC . Namely, each server Si ∈ IC runs the SKeyGen procedure to create its secret and
public parameters, σi(C) and πi(C), and then Init is run between C and these servers. The
latter procedure uses as input the client’s password pwC and the servers’ parameters, and it
generates a random κ-long key KC and per-server client information ωi(C) stored at server
Si. We note that a server can participate in the ring of more than one client. However, we
assume the parameters σi(C), πi(C) to be unique and independent for each client.

3. In addition to the the above initialization of P between each client and its servers’ ring,
all parties initialize and share any information required by the key exchange protocol KE
(including parties’ shared and/or public keys assumed by KE - although no trusted third
party is assumed). From this information, and according to the specification of protocol
KE+, the client C produces keystores keystorei(C), i = 1, . . . , n, and stores them at the
corresponding server Si together with ωi. The generation of keystores uses the key KC

created in step 2 above as the client local generating key. Each server Si also stores ζi(C)
that includes the long-term state information required for running KE with client C (this
may include keying material used by Si with all its clients, e.g., a private-public key pair).

Note: To ensure modular composition, we assume that the server and client keys/parameters
for the key exchange protocol KE are chosen independently of those of the PPSS scheme.

4. At the end of the initialization stage, each server Si ∈ IC stores the tuple (σi, πi, ωi, ζi, keystorei)
associated with C while the client only stores its password pw. As said, servers may partic-
ipate in the ring of more than one client in which case they store the above information for
each such client.

Establishing sessions. Here clients and servers interact over insecure, adversarially controlled
channels as specified in the T-PAKE security model (Appendix A).

1. When a client instance ΠC
i is created with input I ⊂ IC via a send(C, i, null, I, init) query,

C performs the PPSS Rec procedure with the servers in I and also retrieves the keystore(C)
values stored at these servers. If the PPSS reconstruction fails (i.e., its output is ⊥), ΠC

i

aborts, otherwise C uses the reconstructed key KC to process the retrieved keystore values.

2. ΠC
i runs a KE -session with each S1 ∈ I using the reconstructed key KC and the information

from the retrieved keystore keystoreC , while server Si uses the long-term state ζi(C).

32

6.3 Single-round T-PAKE from single-round PPSS

We illustrate the above composition of PPSS and regular KE protocols for obtaining T-PAKE
protocols with two examples. In particular, they show how using our single-round PPSS scheme
from Section 5 (implemented with the 2Hash-DH V-OPRF from Section 3.1) one obtains very
efficient single-round T-PAKE protocols in the CRS (password-only) model with no PKI or secure
channel requirements for clients or servers (other than the assumed secure initialization phase) and
with arbitrary (t, n) threshold parameters.

T-PAKE via PPSS and symmetric-key KE. Let P be a (t, n)-PPSS protocol in the CRS
model. To bootstrap a (t, n)-TPAKE protocol using P , each server Si, i = 1, . . . , n, generates
its state pair (σi, πi) and runs with client C the Init procedure of protocol P . As a result a
user’s secret, which we call KC , is (t, n)-secret-shared among these servers under the protection of
the PPSS scheme and the client’s password pw. Next, client C uses key KC to compute n keys
Ki = fKC

(i), i = 1, . . . , n, where f is a pseudorandom function3, and transmits each Ki (protected
under the secure communication assumed at initialization) to the corresponding Si who stores Ki

in its client-specific ζi(C) state. In this case, the client’s keystore is empty. Later, when a T-PAKE
session at C is invoked, C runs the Rec procedure of protocol P with a sufficient number of servers
to obtain KC . C uses KC to compute K1, . . . ,Kn and uses these keys as shared keys with the
corresponding servers to exchange a session key. Any KE protocol that assumes pre-shared keys
between pairs of parties can be used for this purpose. For example, C and Si can compute their
session key as fKi(nC , nSi , idC , idSi) where idC , idSi stand for the identities of C and Si respectively,
and nC , nSi are nonces exchanged between these parties that also serve as session identifiers. Note
that when using a one-round PPSS scheme, the exchange of nonces can be piggybacked on top of
the PPSS messages hence preserving the single round complexity of the protocol (with one additional
message from C to Si if key confirmation is desired). A full specification of this protocol based on
the 2HashDH-NIZK V-OPRF of Section 3.1 is presented in Appendix B. One can also add forward
secrecy to the protocol by using the shared key to authenticate a Diffie-Hellman exchange (also
piggybacked on top of the two PPSS messages to preserve the single-round complexity).

T-PAKE via PPSS and public-key KE. The above scheme provides a full T-PAKE protocol
with very little extra cost over the PPSS scheme. Its relative drawback is (as in any pre-shared key
scheme) that the server needs to keep a per-client secret4 and also that it requires secrecy for the
transmission of key Ki to Si (otherwise, our PPSS scheme only needs authenticated channels during
initialization). To avoid these secrecy requirements, key exchange protocols based on public keys of
the parties can be accommodated on top of a PPSS as follows. At initialization, the client generates
a pair of private and public keys and stores in its keystore the client’s private key (encrypted under
a key derived from KC), the client’s public key, and each server’s public key (which C learns during
the secure initialization). In addition, all the information in keystore is authenticated with an
authentication key derived from KC . C stores keystore with all servers in its ring. In addition, each
server Si in C’s ring stores C’s public key in ζi(C). When a T-PAKE session is invoked at C, the
client retrieves keystore from the servers and, after reconstructing KC , uses this key to check the
integrity of keystore and to decrypt its private key. With this information and the (authenticated)
public keys of the servers contained in keystore, C is ready to perform the key exchange protocol.
Similarly, the servers can use C’s public key stored in ζi(C) to bootstrap the public-key based

3Index i is used to uniquely identify server Si but this can be replaced with actual (unique) server identities.
4We assume servers have per-client secret parameters (to limit the opportunities for online attacks against any

given client) but an implementation can keep a single “master key” at the server from which per-client keys are
derived. This is not the case for the key Ki shared with each client in the above protocol that needs to be stored
separately.

33

key exchange. In particular, using a single-round implicitly-authenticated protocol, where the KE
messages do not depend on the parties’ private or public key (such as HMQV [36]), one obtains a
single-round T-PAKE by piggy-backing the KE messages on top of the PPSS ones.

6.4 The Security of PPSS-derived T-PAKE

Here we prove that the generic composition described in Section 6.3 of a PPSS protocol P and a
(regular) key exchange protocol KE (augmented with client keystores) results in a secure T-PAKE
protocol T . We consider an attacker T against the T-PAKE protocol T which targets a particular
client. Namely, the attacker’s goal is to break the security of the T-PAKE protocol in an instance
of this client. This modeling has two reasons. One is to capture the extreme scenario in which
the attacker corrupts all clients except one, in which case the protocol should still ensure security
for the one uncorrupted party. Second, since the main challenge in building PAKE protocols is to
show that there is no shortcut to breaking security other than attempting online guessing attacks
against the victim, focusing on one client let us count the number of such attempts against this
specific client.

Theorem 5 Let T be a T-PAKE protocol built from a PPSS scheme P with parameters (t, n) and
a key exchange protocol KE as described in Section 6.3. Assume that any attacker running time
tppss (resp. tke) has advantage at most Advppss (resp. Advke) in breaking the security of P (resp.
KE). Then for any attacker T against T running time min{tppss/2, tke/2} we have

1. Pr [T succeeds] ≤ 1/2 + Advppss + Advke. More specifically,

Pr [T succeeds] ≤ 1

2
+

(
qrog(U) +

qrog(IU)

t− t′ + 1

)
· 1

|D|
+ Advke

where D is the password dictionary, qrog(U) is the number of rogue P-send queries with U as
recipient, qrog(IU) the number of rogue P-send queries with sender U and recipient S ∈ IU,
and t′ is the number of corrupted parties in IU (P-send refers to send queries related to the
actions of subprotocol P).

2. Protocol T is correct, i.e., matching sessions compute the same session keys, except with
probability εppss.

Proof: We first prove a security bound for the composed protocol and then we show correctness.
Given an attacker T against the composed T-PAKE protocol T , we build an attacker P against

the underlying PPSS scheme P . Attacker T targets a specific uncorrupted client, that we will
denote by U, and whom will be chosen by T as the test session’s client. Other parties in protocol
T can be corrupted and controlled by the attacker or uncorrupted and simulated by P.

The goal of P is to attack a given instance (U, {S′1, . . . ,S′n}) of the PPSS protocol P . It starts
by orchestrating a run of the T protocol in which it embeds the given PPSS instance and runs
attacker T against it. P uses party U from the PPSS instance to simulate the actions of party U
in protocol T , and it uses servers {S′1, . . . ,S′n} from the PPSS instance to simulate the servers in
U’s ring IU. Specifically, P uses its P-oracle U�Rec to simulate the actions of U and uses the oracle
S�Rec to simulate the actions of servers in IU. More precisely, P uses the server oracles only for
simulating the actions of the servers in IU that are uncorrupted. Servers in IU that are corrupted
by T in T are also corrupted by P in P . In addition, P schedules actions and delivers messages
in P in accordance to the actions and messages of T in T .

34

Parties in T other than the client U and servers in IU are either corrupted and controlled by T
or they are fully simulated by P who chooses their secret keys and public parameters. In particular,
P chooses the passwords of uncorrupted clients other than U and also any secret keys generated by
uncorrupted servers in the set IU for use with clients other than U (the secret keys used by these
servers with U are defined in the PPSS game and unknown to P).
P starts the simulation with the initialization procedure in T , initializing all the uncorrupted

parties. For initializing U and its ring IU, P follows the initialization procedure of instance
(U, {S′1, . . . ,S′n}) in P via the U�Rec and S�Rec oracles. It then obtains the real-or-random chal-
lenge key K∗ from the PPSS experiment and uses K∗ to generate any keys and information needed
to produce keystorei(U), including choosing any private/public keys for S′1, . . . ,S

′
n as required by

the key-exchange protocol KE .
When an instance ΠU

i of U is created by T with server set I ⊂ IU, P triggers a reconstruction
procedure in P between U and the servers in I, and simulates this actions in T . Let K∗i be the
challenge key given to P by the PPSS experiment as the real-or-random key for the reconstructed
key in the PPSS run used to create ΠU

i (recall that in our model the PPSS adversary receives
a real-or-random challenge key K∗ at the onset of the protocol and also such a key with each
reconstruction). If K∗i =⊥ then ΠU

i aborts. Otherwise P uses K∗i as the reconstructed key for
all the actions of instance ΠU

i for establishing KE sessions with the servers in the specified set I
(including keystore verification).

In addition, P responds to all send and reveal queries issued by T during the protocol. P can
do so as it has full information of the secrets and internal state of uncorrupted parties. This is the
case also for information related to protocol KE generated in U instances since P chooses all the
KE -related information for U and the uncorrupted subset of IU.

When T issues the test session at an instance of U or with U as the peer to the session (we may
assume, wlog, that T follows the rules in choosing the test session), P responds to the query by
choosing a bit v at random and outputting the corresponding session key (which P knows) if v = 1
and outputting a random key otherwise.

Eventually, when T stops and outputs its guess v′, P stops and outputs b′ = 1 if v′ = v
(indicating a guess for “real”) and outputs b′ = 0 otherwise.

We consider two cases depending on the outcome of the real-or-random PPSS experiment,
namely, whether b = 1 or b = 0.

• If b = 1 then all keys K∗i provided to P by the PPSS experiment for each reconstruction are
the real ones, namely, those output by the reconstruction procedure. (Note that these keys
are all equal to each other and equal to the original K∗ key received by P at the onset of the
protocol, except if soundness was broken in one of these reconstructions; but even in these
cases P uses the provided K∗i for simulating the corresponding instance). Hence, in this case,
the simulation of the T game by P is perfect and the probability of T to win in the simulated
game is exactly the same as the probability of T to win against a real run of protocol T .

• If b = 0 then K∗ is random (and independent of the key initialized by U) and K∗i = K∗ for
all instances ΠU

i (except for instances where the reconstruction procedure outputs ⊥). In this
case, we have a hybrid T-PAKE/KE game where all sessions involving clients other than U
perfectly follow the T protocol while the sessions of U run as a pure KE+ protocol (with
a random key KU and correct keystorei(U)). We will refer to this game as hybrid and will
analyze it below.

35

Based on these observations, we analyze the success probability of P in the above simulation.

AdvppssP = 2 · Pr [P wins P]− 1

= 2 · (Pr [P wins and K∗ real] + Pr [P wins and K∗ random])− 1

= Pr [P wins : K∗ real] + Pr [P wins : K∗ random]− 1

= Pr [P outputs 1: K∗ real] + Pr [P outputs 0 : K∗ random]− 1

= Pr [T wins: K∗ real] + Pr [T loses: K∗ random]− 1

= Pr [T wins in T]− Pr [T wins: K∗ random]

= Pr [T wins T]− Pr [T wins in hybrid]

Thus,

Pr [T wins T] = AdvppssP + Pr [T wins in hybrid]

Thus, to complete the proof of security we need to show that Pr [T wins in hybrid] ≤ 1/2 + Advke.
For this we first recall the hybrid game. The participants are the same parties as in the T-PAKE
protocol T and they all follow that protocol except for party U and its ring of servers IU. Sessions
with U are generated independently of the PPSS component of T but rather follow the key exchange
protocol KE with key material generated in accordance to the KE+ spec. Namely, the keystore
of U is generated and verified on the basis of a random generating key K∗U (chosen independently
of any other action in T), hence resulting in key material exactly as prescribed in KE . The keys
for uncorrupted servers in IU are generated according to protocol KE and validated (in the case
that KE uses public keys) via the verification of U’s keystore.

It is now easy to see that an attacker T against the hybrid game can be transformed into an
attacker A against protocol KE . A will run against an instance of protocol KE with parties U and
the servers in the set IU; we denote this instance by (U, IU)ke. A invokes T on a simulated run of
hybrid where A controls all the parties not corrupted by T . For parties other than U and the set IU,
A chooses all secret information and can answer all queries by T . For U and the uncorrupted servers
in IU, A chooses all the information corresponding to the PPSS component, i.e., U’s password, the
servers’ keys, and the key KU initialized at U by the PPSS protocol P - note that in the hybrid
game KU and K∗U are chosen independently.

For all the session actions in hybrid that follow the KE specification and have U as a sender or
receiver, A uses her (U, IU)ke instance to generate the corresponding messages and transfer them
to the simulation of the hybrid run. Any queries by T regarding these sessions are responded by A
by issuing the corresponding queries to (U, IU)ke. In particular, when T chooses a test session in
the simulated run of hybrid with client U and one of the uncorrupted servers in IU, A issues a test
session query at the corresponding session in the KE instance (U, IU)ke and returns the answer to
T . When T exits with bit b′, A outputs the same bit and stops.

The above represents a perfect simulation by A of a run of T against the hybrid game where the
sessions of U are exactly the same as the ones generated by the KE instance (U, IU)ke. In particular,
the value of the key in the test session is the same in the simulated hybrid game and in the run of
the KE instance (U, IU)ke, and so the response to the test query in hybrid is correct if and only if
the same bit is correct in KE . We get that the probability of A to guess the right bit in the KE
game against instance (U, IU)ke is the same as the probability of T guessing it in the hybrid game.
In other words, Pr [T wins in hybrid] = Pr [A wins in KE] =≤ 1/2 + AdvkeA/2 ≤ 1/2 + Advke.

This completes the proof of security. Note that the explicit bound in the theorem in terms of
qrog only considers rogue send messages from the P component of the protocol. Indeed, this comes

36

from the AdvP term in the bound expression hence it only needs to count rogue messages sent
during the initialization and reconstruction procedures of U.

To show correctness, we observe that as long as soundness is not violated then the reconstructed
key is either ⊥ (indicating a reconstruction failure, in which case the instance aborts and no sessions
are created) or it is the correct key KU, namely the one initialized by U. In the latter case, if the
retrieved keystores keystorei(U) values pass validation (using KU), then U reconstructs the correct
key material and the correctness of T follows from the correctness of the KE protocol KE . Thus,
we have that the protocol is correct except in the event of a successful soundness attack against
P’s PPSS instance. The probability of such event is the same as Advppss (see section 4). �

Application to the V-OPRF-based PPSS scheme. We note that when one applies the bound
in the above theorem to a scheme that uses the V-OPRF-based PPSS scheme from Section 5, the
term qrog(U) can be reduced by a factor of t− t′ + 1 since it takes such a number of messages sent
to U with a common rogue value of ωi for the attacker to test one password.

References

[1] M. Abe and M. Ohkubo. A framework for universally composable non-committing blind signatures. In
M. Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 435–450.
Springer, 2009.

[2] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret sharing. In ACM Con-
ference on Computer and Communications Security, pages 433–444, 2011.

[3] O. Baudron, P.-A. Fouque, D. Pointcheval, J. Stern, and G. Poupard. Practical multi-candidate election
system. In A. D. Kshemkalyani and N. Shavit, editors, PODC, pages 274–283. ACM, 2001.

[4] M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko. The one-more-rsa-inversion problems
and the security of chaum’s blind signature scheme. J. Cryptology, 16(3):185–215, 2003.

[5] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against dictionary
attacks. pages 139–155, 2000.

[6] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Proto-
cols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[7] F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New techniques for sphfs
and efficient one-round pake protocols. In R. Canetti and J. A. Garay, editors, CRYPTO (1), volume
8042 of Lecture Notes in Computer Science, pages 449–475. Springer, 2013.

[8] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo. A new two-server approach for authentication with
short secrets. In 12th USENIX Security Symp, pages 201–213, 2003.

[9] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized schnorr proofs. In A. Joux,
editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages 425–442. Springer,
2009.

[10] J. Camenisch, A. Lehmann, A. Lysyanskaya, and G. Neven. Memento: How to reconstruct your secrets
from a single password in a hostile environment. In J. A. Garay and R. Gennaro, editors, CRYPTO
(2), volume 8617 of Lecture Notes in Computer Science, pages 256–275. Springer, 2014.

[11] J. Camenisch, A. Lysyanskaya, and G. Neven. Practical yet universally composable two-server password-
authenticated secret sharing. In ACM Conference on Computer and Communications Security, pages
525–536, 2012.

[12] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In
CRYPTO, pages 126–144, 2003.

37

[13] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. pages
136–145, 2001.

[14] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. Crypto’2013. Cryptology ePrint Archive, Report
2013/169, Mar. 2013. http://eprint.iacr.org/2013/169.

[15] S. Chow, C. Ma, and J. Weng. Zero-knowledge argument for simultaneous discrete logarithms. In
M. Thai and S. Sahni, editors, Computing and Combinatorics, volume 6196 of Lecture Notes in Computer
Science, pages 520–529. Springer Berlin Heidelberg, 2010.

[16] R. Cramer and I. Damg̊ard. Zero-knowledge proofs for finite field arithmetic; or: Can zero-knowledge
be for free? In H. Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 424–441. Springer, 1998.

[17] R. Cramer and V. Shoup. Signature schemes based on the strong rsa assumption. In ACM Conference
on Computer and Communications Security, pages 46–51, 1999.

[18] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. pages 79–88, 2006.

[19] I. Damg̊ard and E. Fujisaki. A Statistically-Hiding Integer Commitment Scheme Based on Groups with
Hidden Order. In ASIACRYPT’02, volume 2501 of LNCS, pages 125–142. Springer, 2002.

[20] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable commitment. In
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pages 141–
150, New York, NY, USA, 1998. ACM.

[21] M. Di Raimondo and R. Gennaro. Provably secure threshold password-authenticated key exchange. J.
Comput. Syst. Sci., 72(6):978–1001, 2006.

[22] M. Fischlin. Round-optimal composable blind signatures in the common reference string model. In
C. Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 60–77. Springer,
2006.

[23] W. Ford and B. S. K. Jr. Server-assisted generation of a strong secret from a password. In WETICE,
pages 176–180, 2000.

[24] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom
functions. pages 303–324, 2005.

[25] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and oblivious pseudorandom
functions. In J. Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer Science, pages 303–324.
Springer, 2005.

[26] E. Fujisaki and T. Okamoto. Statistical Zero Knowledge Protocols to Prove Modular Polynomial
Relations. In CRYPTO ’97, volume 1294 of LNCS, pages 16–30, 1997.

[27] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signatures.
In E. Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 177–194.
Springer, 2003.

[28] C. Gentry, J. Groth, Y. Ishai, C. Peikert, A. Sahai, and A. Smith. Using fully homomorphic hybrid
encryption to minimize non-interative zero-knowledge proofs. Journal of Cryptology, pages 1–24, 2014.

[29] D. Jablon. Password authentication using multiple servers. In CT-RSA’01: RSA Cryptographers’ Track,
pages 344–360. Springer-Verlag, 2001.

[30] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive OT and
secure computation of set intersection. pages 577–594, 2009.

[31] S. Jarecki and X. Liu. Fast secure computation of set intersection. pages 418–435, 2010.

38

[32] J. Katz, P. Mackenzie, G. Taban, and V. Gligor. Two-server password-only authenticated key exchange.
In Proc. Applied Cryptography and Network Security ACNS05, 2005.

[33] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated key exchange using human-
memorable passwords. In Advances in Cryptology - EUROCRYPT 2001, International Conference on
the Theory and Application of Cryptographic Techniques, 2001.

[34] J. Katz and V. Vaikuntanathan. Round-optimal password-based authenticated key exchange. J. Cryp-
tology, 26(4):714–743, 2013.

[35] A. Kiayias and H.-S. Zhou. Equivocal blind signatures and adaptive uc-security. In R. Canetti, editor,
TCC, volume 4948 of Lecture Notes in Computer Science, pages 340–355. Springer, 2008.

[36] H. Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In CRYPTO, pages 546–566,
2005.

[37] P. D. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key exchange.
J. Cryptology, 19(1):27–66, 2006.

[38] R. Merkle. A digital signature based on a conventional encryption function. In C. Pomerance, editor,
Advances in Cryptology CRYPTO 87, volume 293 of Lecture Notes in Computer Science, pages 369–378.
Springer Berlin Heidelberg, 1988.

[39] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. pages 120–130, 1999.

[40] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions. In
FOCS, pages 458–467. IEEE Computer Society, 1997.

[41] New York Times. Russian Hackers Amass Over a Billion Internet Passwords.
http://www.nytimes.com/2014/08/06/technology/russian-gang-said-to-amass-more-than-a-

billion-stolen-internet-credentials.html? r=0, August 5, 2015.

[42] NIST. Digital signature standard (DSS). Technical Report 169. National Institute for Standards and
Technology, August 30, 1991.

[43] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

A T-PAKE Security Model

We present a security model for T-PAKE protocols based on the model of MacKenzie, Shrimpton
and Jakobsson [37] which in turn is based on the PAKE model of Bellare, Pointcheval and Rogaway
[5]. The model extends authenticated key exchange models to account for the inherent vulnerability
of password protocols to online guessing attacks and to formalize the notion that other than these
attacks the adversary’s advantage should be negligible as in regular KE protocols.

We change some aspects of the formalism with respect to [37] to carefully capture the minimally
possible security loss due to online guessing attempts as well as to simplify and/or refine some
properties of the model. See remark on changes at the end.

Protocol participants. There are two types of parties participating in a T-PAKE protocol, clients
and servers, individually denoted C and S, respectively. Each client has a secret password pw chosen
at random from a fixed dictionary D (other source distributions for passwords are possible but the
above choice simplifies presentation). Parties may have additional keying material (e.g., certified
public keys of each other) but the basic model does not assume such keys. Each client C will have
an associated set of servers, denoted IC and referred to as C’s ring, with which C is initialized to
share its password-based authentication capability. Associated to C’s ring IC are the parameters
t, n where n = |IC | and t is the maximal number of servers in IC that can be corrupted by an

39

adversary before C’s security is compromised. In particular, C will need to interact with at least
t + 1 servers before it can establish keys with any server in IC . The parameters (t, n) can differ
from client to client, but for simplicity we fix them as global parameters for all clients. We also
assume that a client C will only establish session keys with servers in its ring IC . This restriction
simplifies the model but it can be lifted, although establishing keys with servers outside the ring
would still require prior interaction with servers in IC .

Protocol execution. A T-PAKE protocol has two phases: initialization and key exchange. In the
initialization phase each client C chooses a random password pwC from a dictionary D and then it
interacts with each server S in IC producing output ωC(S) that S (but not C) stores. In the CRS
model, C only stores its password (fixed global parameters such the CRS, t, n, can be seen as part
of C’s code). Initialization is assumed to be executed securely, e.g., over secure channels. In the
key exchange phase, clients interact with servers over insecure (adversary-controlled) channels to
establish session keys. Each client may execute the protocol multiple times with different sets of
servers in its ring and in a concurrent fashion. Each such execution defines a client instance, denoted
ΠC
i , where i serves to differentiate between instances of same C. A client instance is associated

with a subset I ⊂ IC of size at least t+ 1, where the intention is to establish session keys with all
the servers in I. Servers also have instances denoted ΠS

i with each instance associated with a single
client.

Each party’s instance produces one or more sessions, a local object to the party capturing the
execution of the protocol with another party, referred to as the session’s peer and denoted by a
session variable pid . A client instance ΠC

i produces |I| sessions, one with each server S in the set
I associated with this instance as a peer. A session for instance ΠS

i is unique and has a client as
the peer. The output of a session at party P is a session key sk which is set to ⊥ if the party
aborts the session (e.g., in case that authentication fails, a misformed message is received, etc.)
When a session outputs sk 6=⊥ we say the session accepts. Sessions have unique identifiers, denoted
sid, defined by the protocol. This is usually defined as some session-specific fresh information
transmitted during the session such as the concatenation of random nonces or other information in
the protocol transcript (sometimes defined as the full transcript of a protocol execution) plus the
identities of involved parties. The sid main purpose is to define a correspondence between sessions
as formally captured by the notion of matching sessions defined below.

T-PAKE Security. To define security we consider a probabilistic attacker A which schedules
all actions in the protocol and controls all communication channels with full ability to transport,
modify, inject or drop messages at will. The model defines the following queries with which the
adversary interacts with the protocol’s parties.

send(P, i, P ′,M, tag): causes message M to be delivered to instance ΠP
i purportedly coming from

P ′, with an optional value tag used to denote a message context or identifier. In response to
a send query the instance takes the actions specified by the protocol and outputs a message
given to A. When a session accepts, a message indicating acceptance is provided to A. A send
query can also be used to create a new instance of party P . Specifically, send(C, i, null, I, init)
creates a new instance i of client C with the message specifying the set of servers I ⊂ IC with
which C is to share new session keys. Similarly, send(S, i, C,M, init) creates a new instance
ΠS
i with incoming message M and intended peer C. Note that this formalism assumes that

protocol exchanges are initiated by clients with servers as responders (which is the operational
setting in T-PAKE).

reveal(C, i,S): if instance ΠC
i has accepted a session with peer S, this query causes the output of

the corresponding session key sk; otherwise the output is ⊥.

40

reveal(S, i): if instance ΠS
i has accepted, this query causes the output of the corresponding session

key sk; otherwise the output is ⊥.

test(C, i,S): if instance ΠC
i has accepted a session with peer S, this query causes ΠC

i to flip a
random bit b. If b = 1 the corresponding session key sk is output and if b = 0 a string drawn
uniformly from the space of session keys is output.

test(S, i): if instance ΠS
i has accepted, this query causes ΠS

i to flip a random bit b. If b = 1 the
corresponding session key sk is output and if b = 0 a string drawn uniformly from the space
of session keys is output.

We note that reveal queries are used to model an adversary who obtains information on session
keys in some sessions while the test query is a technical tool to define security based on the indis-
tinguishability of session keys from random. A test query may be asked at any time during the
execution of the protocol, but may only be asked once (either from C or S).

Corruptions. The attacker A can corrupt parties meaning that the party is fully controlled by
A (and all its secret information is chosen and/or known to A). Since we only consider static
corruptions we can assume without loss of generality that corruptions are chosen by A at the onset
of the protocol. Both clients and servers can be corrupted by A. In addition, a client C is considered
corrupted if more than t of the servers in IC are corrupted.

Rogue send queries: The following notion is needed to accurately capture and count attempts at
online password guesses, and is used in our definition of security. We say that a send(P, i, P ′,M, tag)
query is rogue if it was not generated and/or delivered according to the specification of the protocol,
namely, the message M has been changed or injected by the attacker, or the delivery order differs
from what is stipulated by the protocol. We also consider as rogue any send(P, i, P ′,M, tag) query
where P is uncorrupted and P ′ is corrupted. In addition, we say that a rogue send(P, i, P ′,M, tag)
query to be against client C if the query is rogue and one of the following two conditions hold: P = C
and P ′ is a server in IC or P ′ = C and P is a server in IC . (We assume that a send(P, i, P ′,M, tag)
query for which P is a client and P ′ is not in IP or where P is a server and P is not in IP ′ are
discarded by the recipient.)

Matching sessions. A session in instance ΠC
i and a session in instance ΠS

j are said to be matching
if both have the same session identifier sid, the first has pid = S, the second has pid = C and both
have accepted.

Fresh sessions. A session at instance ΠP
i with peer P ′ is called fresh if neither P or P ′ are

corrupted and no reveal query was issued against the session or against its matching session, if such
session exists.

Correctness. Matching sessions between uncorrupted peers output the same session key.

Attacker’s advantage. Let T be a T-PAKE protocol and A be an attacker with the above
capabilities running against T . Assume that A issues a single test query against a fresh session at
a client or server and ends its run with an output bit b′. We say that A wins if b′ = b where b is
the bit chosen internally by the test session. The advantage of A against T is defined as

AdvTA = 2 · Pr [A wins against T]− 1.

We are now ready to define security of a T-PAKE protocol. The definition requires correctness
as well as a small attacker’s advantage beyond the inevitable online guessing attacks. Below we say
that C is the “test session’s client” if the test session belongs to a instance ΠP

i where P = C or P
is a server and C is the sessions peer.

41

Definition 2 A T-PAKE protocol T with threshold parameters (t, n) is (t, n, T, qrog, ε)-secure if it
is correct and for any password dictionary D, and any attacker A that runs in time T and issues

at most qrog rogue send queries against the test session’s client, it holds that AdvTA ≤ qrog/|D|+ ε.

The above bound based on qrog represents a liberal choice. It accepts a protocol where the
attacker can test a different password with each protocol message the attacker tampers with and
which has the test session’s client as sender or receiver. This is needed in order to keep the definition
as general as possible without making any assumptions on the mechanics of the T-PAKE protocol.
We will see that for PPSS-based schemes as those we build one can do significantly better, requiring
several rogue send messages to test a single password. Another aspect of the definition that is worth
highlighting is the requirement to only count rogue send’s that have the target client C as sender or
recipient. This is intended to force the attacker to disclose the identity of the client being attacked
in an online guessing attempt. This allows servers to count rogue messages targeted at a particular
client and limit the number of such messages. This leads to the requirement in our V-OPRF-based
T-PAKE schemes that servers use independent per-client V-OPRFkeys (note that adding the client
identity as an input to the V-OPRFwould not solve this issue).

Note (changes with respect to the model of MacKenzie et al [37]). For reference, we list some of
the changes we made to the model of [37]. These include allowing multiple sessions under a single
client instance, the removal of the ”Execute” command (which was used to represent sessions in
which the attacker does not modify the messages or the sessions flow but which fails to account for
adversarial scheduling of sessions and the interleaving between messages of different sessions), the
definition of rogue send queries (and counting only these queries targeted at the test client), the
modeling of server rings that can change from client to client (which allows to deal with individually
compromised rings rather than having all system compromised when t+ 1 servers are corrupted),
and adding an explicit correctness requirement to avoid trivial protocols (without it, a protocol
where each party chooses an independent random key as the session key would be secure).

B DH-based Instantiation of the PPSS and T-PAKE Protocols

For illustration and for the reader’s convenience we describe in Figure 9 the specific instantiation
of the PPSS and T-PAKE protocols based on the 2HashDH-NIZK V-OPRF, with the NIZK for
DL equality implemented as in [15], and a symmetric-key KE scheme. We comment on some of
our choices for this illustration. The initialization is presented for the case in which the client
generates the servers’ V-OPRF keys and computes all the values in the ω vector by itself. Another
option, more in line with the formal description of the PPSS protocol from Figure 8, is for the
servers to choose their own V-OPRF keys and engage in an V-OPRF computation with the client
for generating the pads used to encrypt the shares si. One advantage of the latter option is that
servers can save in the amount of secret memory and derive the V-OPRF keys for each user U
using a single key MK and a PRF F , i.e., as kU = FMK(U) (we are abusing the symbols U and Si
to denote the identities of these parties). This option is more useful with a PK-based KE, where
servers do not need to store user-specific secrets (in contrast, the protocol from Figure 9 requires the
server storing the session key with each user). User performance during reconstruction is improved
by choosing a common value ρ for blinding the H1(pw) value sent to all servers. We stress that
while we specifiy the actions of honest servers, corrupted ones can deviate from the protocol in
any way they choose to. Finally, note that the protocol as presented does not include an explicit
authentication mechanism. This can be easily added, for example, by server Si adding the value

42

fKi(0, µi, µ
′
i)) to its message and by U adding a third message with value fKi(1, µ

′
i, µi)) (in this

case, the session key could be derived as SKi = fKi(2, µi, µ
′
i,U,Si)).

43

Parties: User U, Servers S1, . . . ,Sn.

Public parameters and components: Security parameters τ and `, threshold parameters t, n ∈
N, t ≤ n, field F = GF (2`), cyclic group of prime order m with generator g; hash functions
H1, H2, H3, H4, H5 with ranges 〈g〉, {0, 1}`, {0, 1}τ , Zm, Zm, respectively; pseudorandom gen-
erator G and pseudorandom function family f .

Initialization (secure channels between U and each server Si are assumed only through initial-
ization): User U performs the following steps:

1. Chooses s ∈R F and generates shares (s1, . . . , sn) as a (t, n) Shamir’s secret-sharing of s
over field F.

2. For i = 1, . . . , n, U chooses value ki ∈R Zm and sets πi = gki and
ci = si ⊕H2(πi, pw, (H1(pw))ki).

3. Sets c = (c1, . . . , cn), π = (π1, . . . , πn), [r||K] = G(s), C = H3(r, pw,π, c);
For i = 1, . . . , n, sets Ki = fK(Si).

4. For i = 1, . . . , n, sends to server Si the values ω = (π, c, C), ki,Ki.

5. U memorizes pw and erases all other information.

Each server Si, i = 1, . . . , n, stores ω, ki, yi = gki ,Ki in its U-specific storage ζi.

Reconstruction/Key Exchange (black text describes the reconstruction protocol; red additions
are for key exchange):

− User U initiates a key exchange session with servers S1, . . . ,Sn by sending to each Si the
value a = (H1(pw))ρ with ρ ∈R Zm and a nonce µi ∈R {0, 1}τ .

− Upon receiving (a, µi), server Si checks that a ∈ 〈g〉 and if so, Si retrieves ki and yi = gki

from its U-related storage ζi(U), picks z ∈R Zm, and computes bi = aki , γ = H4(g, yi, a, bi),
vi = H5(g, yi, a, bi, (g · aγ)z), and ui = z + vi · ki mod m. Si sends to U the values yi, bi, ui, vi
as well as a nonce µ′i ∈R {0, 1}τ and the value ωi stored in ζi(U). Si computes the session
key with U as SKi = fKi(µi, µ

′
i,U, Si).

− Upon receiving values bi, ui, vi, ωi, µ
′
i from Si, U proceeds as follows:

• U chooses a subset of servers S for which the following conditions hold: (i) there is a
value ω = (π, c, C) with π = (π1, . . . , πn) and c = (c1, . . . , cn) such that ωi = ω for all
Si ∈ S; (ii) yi = πi for all Si ∈ S; (iii) bi ∈ 〈g〉 and the equality vi = H5(g, yi, a, bi, (g ·
aγ)ui · (yi · biγ)−vi) for γ = H4(g, yi, a, bi) holds for all Si ∈ S; (iv) |S| = t+ 1.

• If no such subset exists U aborts. Otherwise, set si = ci ⊕ H2(yi, pw, b
1/ρ
i), for each

Si ∈ S, and reconstruct s from these si shares using polynomial interpolation.

• Compute [r||K] = G(s). If C 6= H3(r, pw,π, c) then U aborts.

• For each Si ∈ S, set Ki = fK(Si) and compute SKi = fKi(µi, µ
′
i,U,Si).

Figure 9: DH-based PPSS and T-PAKE Protocols (red color indicates key-exchange specific op-
erations on top of PPSS)

44

