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Abstract. As far as the Differential Cryptanalysis of reduced round Grain v1 is concerned, the best results
were those published by Knellwolf et al. in Asiacrypt 2011. In an extended version of the paper, it was shown
that it was possible to retrieve (i) 5 expressions in the Secret Key bits for a variant of Grain v1 that employs
97 rounds (in place of 160) in its Key Scheduling process using 227 chosen IVs and (ii) 1 expression in Secret
Key bits for a variant that employs 104 rounds in its Key Scheduling using 235 chosen IVs. However, the
second attack on 104 rounds, had a success probability of around 50%, which is to say that the attack
worked for only around one half of the Secret Keys.

In this paper we propose a dynamic cube attack on 105 round Grain v1, that has a success probability
of 100%, and thus we report an improvement of 8 rounds over the previous best attack on Grain v1 that
attacks the entire Keyspace. We take the help of the tool ∆GrainKSA, proposed by Banik at ACISP 2014, to
track the differential trails induced in the internal state of Grain v1 by any difference in the IV bits, and we
prove that a suitably introduced difference in the IV leads to a distinguisher for the output bit produced
in the 105th round. This, in turn, helps determine the values of 6 expressions in the Secret Key bits.
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1 Introduction

The Grain v1 stream cipher, designed by Hell, Johansson and Meier in 2005 [18], is in the hardware
profile of the eStream portfolio [1]. It is a synchronous bit oriented cipher designed so as to minimize
hardware complexity. After two attacks [7, 22] on the initial design of the cipher were published, the
modified version Grain v1 [18] was proposed. Later, the designers came up with a second version of
Grain, i.e., Grain-128 [19] that uses a 128 bit Key. Thereafter, the cipher Grain-128a [2] was designed for
the dual purpose of message authentication alongside message encryption. For detailed cryptanalytic
results related to this family, the reader may refer to [4–6,8–10,15,17,20,25] and the references therein.

Cube attacks were first introduced by Dinur and Shamir in [13] and have been used extensively
to attack reduced round variants of the Grain family. Although the attack paradigm can be used to
cryptanalyze any symmetric key cryptosystem with manipulatable public variables, we shall focus on
stream ciphers in this paper, in which the IV plays the role of the public variable. A cube attack on a
stream cipher proceeds in the following manner (for a detailed description of cube attacks, kindly refer
to [13,14]).

A. The attacker chooses any non-empty subset C of the IV bit variables, commonly called cube
variables. All the IV bits outside of C assigned to some constant, usually zeros.

B. The attacker enumerates 2|C| IVs by assigning the cube variables to all possible values. He then
obtains a segment of keystream bits produced by some fixed Secret Key K and each of the 2|C| IVs
enumerated above.

C. If the attacker is able to determine that the sum of all the corresponding keystream bits produced
by the 2|C| IVs leads to a linear equation on the Secret Key bits of K, then he effectively obtains
one linear equation on the Secret Key variables. If not, he discards the cube set C, and starts step
A with another randomly generated cube set.



Ideally, the attacker would continue this process until he obtains sufficient number of linear equa-
tions to solve for the Secret Key, but in many practical cube attacks published so far [11–13, 16] the
attacker is only able to determine a fraction of the the Secret Key bits. This is because when the
attacker starts with a random cube set C, it very rarely leads to a linear equation on the Secret Key
bits. As a result, the attacker needs to test a lot of random cube sets before he is able to arrive at one
in which the cube sum is a linear equation on the Secret Key variables. This process is usually quite
time consuming and can even take weeks to complete [13]. Very recently, a Moebius-transform based
approach was adopted in [16], that was able to find 12 such cube sets (that lead to linear equations in
Secret Key bits) for a version of Trivium reduced to 799 initialization rounds, in just about 2 hours.

On the other hand, Dynamic Cube Attacks, are a class of cube attacks that aim to establish if by
stipulating some algebraic relation between the Secret Key and IV variables, one is able to observe
some testable non-random property in the cube sum. In this type of attack, some of the IV variables
outside the cube set are chosen as dynamic cube variables. Each dynamic cube variable ν is related to
one or more expressions in the Secret Key bits. The attacker first has to guess the values of each of
these expressions correctly to compute the value of ν. Thereafter he performs the cube sum, and tests
it for some non-random property. The attack parameters should be designed in a manner so that, if the
values of the Secret Key expressions are guessed correctly, then the attacker would be able to detect
some non-randomness in the cube sum, and not otherwise. This would therefore enable the attacker to
determine the values of each of those Secret Key expressions. So, if there are e number of expressions
to be guessed, the cube sum needs to be computed 2e times, once for each of the guesses.

In [11,12], dynamic cube attacks have been used to successfully cryptanalyze reduced-round variants
as well as full Grain 128. In [21], cube distinguishers were used to distinguish a variant of Grain-128a,
that employs 189 out of the 256 rounds in the Key Scheduling process. However, due to the relative
complex nature of the component functions used in the design of Grain v1, there have not been many
advances in this direction against it. The best published work on Grain v1 is by Knellwolf et al [24],
an extended version of which appeared in [23, Chapter 3.4]. The attack, which can be best described
as a dynamic cube attack over a single-dimensional cube (i.e., the cardinality of the cube set is one),
achieves the following objectives:

a) It retrieves 5 expressions in the Secret Key bits for a variant of Grain v1 that employs 97 rounds
(in place of 160) in its Key Scheduling process using 227 chosen IVs.

b) It retrieves 1 expression in Secret Key bits for a variant that employs 104 rounds in its Key
Scheduling using 235 chosen IVs. However, as reported in [23, Chapter 3.4], this attack has a
success probability of around 50%, which is to say that the attack works for only around one half
of the Secret Keys.

The values of these Secret Key expressions are deduced by observing certain non-randomness in the
keystream bits generated by the chosen IVs. More specifically, the authors could enumerate a set of
IVs for which, the sum of the output bits over the single dimensional cube were biased towards 0. Very
recently, some work has been done in [3], towards proving the theoretical correctness of these attacks.
In this work a tool called ∆GrainKSA was proposed to track the differential trails introduced in the
internal state of Grain v1 by any difference in the IV bits. Using the tool, the theoretical correctness
of the work presented in [24] was proven.

1.1 Contribution and Organization of the paper

In this work, we make use of the tool ∆GrainKSA to further improve the work presented in [24]. We
first outline a heuristic algorithm that enables us to determine a suitable single dimensional cube (i.e,
the 61st IV bit). We show that a differential introduced via the 61st IV bit in Grain v1, leads to
a distinguisher for the keystream bit produced in the 105th round in Grain v1, if certain algebraic
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conditions involving the Secret Key and the IV bits are satisfied. This, in turn, leads to the deduction
of 6 expressions in the Secret key bits. This amounts to an improvement of 8 rounds over the previous
best attack on Grain v1 that works for any Key in the Keyspace.

In Section 2, we give the complete mathematical description of Grain v1. In Section 3, we give a
brief description of the tool ∆GrainKSA as reported in [3]. In Section 4, we will outline how the above
tool can be used to attack on Grain v1, and thereafter enumerate the algebraic details of the attack.
Section 5 concludes the paper.

2 Description of Grain v1

The exact structure of the Grain family is explained in Figure 1. It consists of an n-bit LFSR and
an n-bit NFSR. Certain bits of both the shift registers are taken as inputs to a combining Boolean
function, whence the key-stream is produced. The update function of the LFSR is given by the equation
yt+n = f(Yt), where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the tth

clock interval and f is a linear function on the LFSR state bits obtained from a primitive polynomial in
GF (2) of degree n. The NFSR state is updated as xt+n = yt⊕ g(Xt). Here, Xt = [xt, xt+1, . . . , xt+n−1]
is an n-bit vector that denotes the NFSR state at the tth clock interval and g is a non-linear function
of the NFSR state bits. The output key-stream is produced by combining the LFSR and NFSR bits as
zt = h′(Xt, Yt) =

⊕
a∈A xt+a ⊕ h(Xt, Yt), where A is some fixed subset of {0, 1, 2, . . . , n− 1}.

Grain v1 uses an n = 80-bit key K, and an m = 64-bit initialization vector IV . The key is loaded
in the NFSR and the IV is loaded in the 0th to the (63)rd bits of the LFSR. The remaining bits of the
LFSR are loaded with the all one pad 0x ffff. Hence at this stage, the 2n bit initial state is of the
form K||IV ||P .

Key Scheduling Algorithm (KSA) For the first 2n clocks, the key-stream bit produced by the
cipher is XOR-ed to both the LFSR and NFSR update functions, i.e., during the first 2n clock inter-
vals, the LFSR and the NFSR bits are updated as yt+n = zt ⊕ f(Yt), xt+n = yt ⊕ zt ⊕ g(Xt).
Pseudo-Random key-stream Generation Algorithm (PRGA) After the completion of the KSA,
zt is used as the Pseudo-Random key-stream bit. It is no longer XOR-ed to the LFSR and the NFSR.
Therefore during this phase, the LFSR and NFSR are updated as yt+n = f(Yt), xt+n = yt ⊕ g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

Fig. 1. Structure of Stream Cipher in Grain Family

2.1 Mathematical description of Grain v1

Grain v1 consists of an 80 bit LFSR and an 80 bit NFSR. It uses an 80-bit Key and a 64-bit IV, and
a 16-bit pad P = 0x ffff. Certain bits of both the shift registers are taken as inputs to a combining
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Boolean function, whence the key-stream is produced. The update function of the LFSR is given by
the equation

yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕ yt+13 ⊕ yt
∆
= f(Yt).

The NFSR state is updated as follows

xt+80 = yt ⊕ g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33, xt+28, xt+21, xt+15

xt+14, xt+9, xt),

where g(xt+63, xt+62, . . . , xt)

∆
= g(Xt) = xt+62 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28 ⊕ xt+21 ⊕ xt+14 ⊕ xt+9 ⊕ xt⊕

xt+63xt+60 ⊕ xt+37xt+33 ⊕ xt+15xt+9 ⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21⊕
xt+63xt+45xt+28xt+9 ⊕ xt+60xt+52xt+37xt+33 ⊕ xt+63xt+60xt+21xt+15⊕
xt+63xt+60xt+52xt+45xt+37 ⊕ xt+33xt+28xt+21xt+15xt+9⊕
xt+52xt+45xt+37xt+33xt+28xt+21.

The output key-stream is produced by combining the LFSR and NFSR bits as follows

zt =
⊕
a∈A

xt+a ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
∆
=
⊕
a∈A

xt+a ⊕ h(Xt, Yt)

where A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4) = s1⊕s4⊕s0s3⊕s2s3⊕s3s4⊕s0s1s2⊕s0s2s3⊕
s0s2s4 ⊕ s1s2s4 ⊕ s2s3s4.

3 The tool ∆GrainKSA

3.1 Generalized Grain cipher

For completeness of this paper, we will discuss in brief the tool ∆GrainKSA which was discussed in [3].
The primary purpose of such a tool is to track the differential trails in the internal state of the cipher
during the KSA phase, which is introduced due a difference in the IV bits. First a generalized Grain
stream cipher is defined which covers the descriptions of Grain v1, Grain-128 and Grain-128a as well.
Any cipher in the Grain family consists of an n-bit LFSR and an n-bit NFSR (n = 80, 128, 128 for
Grain v1, Grain-128 and Grain-128a respectively). The update function of the LFSR is given by the
equation

yt+n = f(Yt) = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa ,
where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the tth clock interval
and f is a linear function on the LFSR state bits obtained from a primitive polynomial in GF (2) of
degree n. The NFSR state is updated as

xt+n = yt ⊕ g(Xt) = yt ⊕ g(xt, xt+g1 , xt+g2 , . . . , xt+gb)

= yt ⊕ xt ⊕ xt+g1 ⊕ · · · ⊕ xt+gb0 ⊕ g
′(xt+gb0+1

, xt+gb0+2
, . . . , xt+gb)

Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that denotes the NFSR state at the tth clock interval
and g is a non-linear function of the NFSR state bits in which the NFSR locations 0, g1, g2, . . . , gb0 only
contribute linearly. The output key-stream is produced by combining the LFSR and NFSR bits as

zt = xt+l1 ⊕ xt+l2 ⊕ · · · ⊕ xt+lc ⊕ yt+i1 ⊕ yt+i2 ⊕ · · · ⊕ yt+id⊕
h(yt+h1 , yt+h2 , . . . , yt+he , xt+j1 , xt+j2 , . . . , xt+jw).

Here h is another non-linear combining Boolean function. Note that Grain v1, Grain-128 and Grain-
128a are particular instances of the generalized Grain cipher.
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3.2 ∆GrainKSA

Let S0 = [X0||Y0] ∈ {0, 1}2n be the initial state of the generalized Grain KSA and Sφ0 = [Xφ
0 ||Y

φ
0 ] be

the initial state which differs from S0 in some LFSR location φ ∈ [0,m− 1], where m is the length of
the IV (m = 64, 96, 96 for Grain v1, Grain-128 and Grain-128a respectively).

The tool ascertains how the corresponding internal states in the tth round St and Sφt differs from
each other, for some integer t > 0. In the original definition of ∆GrainKSA described in [3], the engine
takes as input the difference location φ ∈ [0,m − 1] and the value r of the number of rounds, and
returns the following:

(i) a set of r integer arrays χt, for 0 ≤ t < r, each of length c+ d,

(ii) a set of r integer arrays Υt, for 0 ≤ t < r, each of length e+ w and

(iii) an integer array ∆Z of length r.

We will modify the definition of the routine so that the engine additionally returns three other sets of
integer arrays given by (the definition of these arrays will be given shortly)

(iv) a set of r integer arrays Ft, for 0 ≤ t < r, each of length a+ 1,

(v) a set of r integer arrays Glin,t, for 0 ≤ t < r, each of length b0 + 1 and

(vi) a set of r integer arrays Gnlin,t, for 0 ≤ t < r, each of length b− b0

Note that as already defined in the description of generalized Grain, d, c are the number of LFSR,
NFSR bits which are linearly added to the output function h. And e, w are the number of LFSR, NFSR
bits that are input to the function h, a+ 1 is the number of LFSR bits input to the function f , b0 + 1
is the number of NFSR bits in the linear part of the function g and b+ 1 is the total number of inputs
of g.

A generalized differential engine ∆φ-GrainKSA with an n-cell LFSR ∆L and an n-cell NFSR ∆N
is defined. All the elements of ∆L and ∆N are integers. The tth round state of ∆L is denoted as
∆Lt = [ut, ut+1, . . . , ut+n−1] and that of ∆N is denoted as ∆Nt = [vt, vt+1, . . . , vt+n−1]. Initially all
the elements of ∆N,∆L are set to 0, with the only exception that – the cell numbered φ of ∆L is set
to 1. The initial states ∆N0, ∆L0 are indicative of the difference between S0 and Sφ0 and the tth states

∆Nt, ∆Lt are indicative of the difference between St and Sφt .

The update functions of the registers L,N are defined in the following manner. The function
lin : ∪∞i=1Zi+ → {0, 1, 2} is defined as follows. (where Z+ is the set of non negative integers)

lin(q1, q2, . . . , qi) =

{
q1 + q2 + · · ·+ qi mod 2 if max(q1, q2, . . . , qi) ≤ 1,
2, otherwise.

Define the vectors Ft,Glin,t,Gnlin,t as follows: Ft = [ut, ut+f1 , . . . , ut+fa ], Glin,t = [vt, vt+g1 , · · · , vt+gb0 ],
and

Gnlin,t = [vt+gb0+1
, vt+gb0+2

, . . . , vt+gb ]

The intermediate variables `t, rt, Ωt are defined as `t = lin (Ft), rt = lin (ut,Glin,t), Ωt = 2·OR(Gnlin,t).
Here OR is a map from ∪∞i=1Zi+ → {0, 1} which roughly represents the logical ‘or’ operation and is
defined as

OR(q0, q1, . . . , qi) =

{
0, if q0 = q1 = q2 = · · · = qi = 0,
1, otherwise.

Define the following vectors:

χt = [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id ], Υt = [ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw ].
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Note that χt(Υt) is the set of cells in ∆φ-GrainKSA which corresponds to the bits which are linearly added
to the output function h (input to h) in the tth KSA stage of the actual cipher. The tth key-stream
element πt produced by this engine is given as (the term exception will be explained shortly)

πt =

{
1 if χt, Υt throws up an exception
lin (lin(χt), 2 · OR(Υt)) otherwise.

Now∆L updates itself as ut+n = lin(`t, πt). And similarly,∆N updates itself as vt+n = lin(rt, Ωt, πt).
It has been argued in [3], that the values in the registers Lt, Nt in ∆GrainKSA represent the differences

in the corresponding algebraic systems St and Sφt , which are the tth round internal states of the
Generalized Grain initialized by two IVs that differ in the φth bit. Similarly the output element πt
represents the difference between the output bits zt and zφt produced in the tth rounds by St and Sφt
respectively. In particular if ut (resp. vt, πt) is equal to

→ 0, the difference between yt and yφt (resp. xt, x
φ
t and zt, z

φ
t ) is always 0.

→ 1, the difference between yt and yφt (resp. xt, x
φ
t and zt, z

φ
t ) is always 1.

→ 2, the difference between yt and yφt (resp. xt, x
φ
t and zt, z

φ
t ) is probabilistically either 0 or 1 and the

exact value would depend on the exact value of the initial vector S0 and actual update functions.

Before we proceed to the actual attack, we make a note that the definition of πt has the term
exception in it. This term is necessary as sometimes due to the nature of the function h used in the
actual implementation of any version of Grain, πt might fail to capture the difference between zt, z

φ
t .

For example, in Grain v1, for φ = 37, and t = 30, the values of χt and Υt are as follows:

t = 30 : χt = 0, Υt = [ut+3 = 0, ut+25 = 0, ut+46 = 0, ut+64 = 1, vt+63 = 0]

Here 0 is the all zero vector.This implies that if we introduce an IV differential at location 37 then at
KSA round 30, all state bits in S30 and S37

30 involved in the computation of their respective keystream
bits are equal except the bits yt+64 and y37t+64, which are deterministically unequal, i.e., y94 = 1 ⊕ y3794
always holds. Then, it follows that

z30 ⊕ z3730 = h(y33, y55, y76, y94, x93)⊕ h(y33, y55, y76, 1⊕ y94, x93)
= y33y76 ⊕ y33 ⊕ y76x93 ⊕ y76 ⊕ x93 = 1.

The above follows because y76 is initialized to 1 as it is a part of the 0x ffff padding that is used
in Grain v1. Thus, z30 and z3730 are deterministically unequal. But had we not checked for this, during
the calculation of πt, the value of π30 would be computed as 2. An event of this type is termed an
exception, and it occurs due to the nature of the function h used in the design of Grain v1. To prevent
a situation like this one must always check if for some t, the values of χt and Υt throw up an exception.
If it does, the value 1 is assigned to πt. The algorithm is presented formally in Algorithm 1.

3.3 Using ∆φ-GrainKSA to model Knellwolf ’s attack [23, Chapter 3.4]

The basic philosophy of the attack in [23, Chapter 3.4] is as follows. The attacker introduces a difference
in the internal states of two initializations of the Grain v1 cipher via the 37th IV bit. Thereafter, by
imposing several algebraic conditions of Type 1 and 5 conditions of Type 2 between the Secret Key
and the IV variables the attacker prevents the propagation of this difference into the NFSR at KSA
rounds t = 12, 34, 40.

Type 1 conditions are of the form F1(IV ) = 0 which involve only the IV bits.
Type 2 conditions are of the form F2(K, IV ) = 0 which involve both the Key and IV bits.
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Input: φ: An LFSR location ∈ [0,m− 1], an integer r(> 0);

Output: An integer array ∆Z of r elements;

Output: Two integer arrays χt, Υt for 0 ≤ t < r ;

[u0, u1, . . . , un−1]← 0, [v0, v1, . . . , vn−1]← 0, t← 0, uφ = 1;

while t < r do

Υt ← [ut+h1 , ut+h2 , . . . , ut+he , vt+j1 , vt+j2 , . . . , vt+jw ] ;

χt ← [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id ];

`t ← lin(ut, ut+f1 , ut+f2 , . . . , ut+fa);

rt ← lin(ut, vt, vt+g1 , · · · , vt+gb0 );

Ωt ← 2 · OR(vt+gb0+1 , vt+gb0+2 , . . . , vt+gb);

if χt, Υt throws up an exception then
πt ← 1

end
else

πt ← lin (lin(χt), 2 · OR(Υt))
end
ut+n ← lin(πt, `t), vt+n ← lin(πt, rt, Ωt);

/*Any modification goes here */;0.1

t = t+ 1;
end
Return [χ0, χ1, . . . , χr−1], [Υ0, Υ1, . . . , Υr−1], ∆Z = [∆z0,∆z1, . . . ,∆zr−1], [F0,F1, . . . ,Fr−1]

Return [Glin,0,Glin,1, . . . ,Glin,r−1], [Gnlin,0,Gnlin,1, . . . ,Gnlin,r−1]

Algorithm 1: ∆φ-GrainKSA

The attacker observes that if all the Type 2 conditions are satisfied then

Pr[z97 ⊕ zφ97 = 0] =
1

2
+ ε, (ε ≈ 0.0014) (1)

Since the Secret Key is unknown to the attacker, any random IV that he picks is unlikely to satisfy
all the Type 2 conditions. The attacker then enumerates 32 different sets of IVs Ti, 0 ≤ i ≤ 31,
such that all the five Type 2 conditions are satisfied in exactly one of the sets Ti. The attacker then
computes the probability Pr[z97⊕ zφ97 = 0] in each of the 32 sets. The Set Ti in which he obtains a bias
ε reveals the value of the 5 expressions in the Secret Key bits.

Prior to the work in [3], there was no theoretical proof of this attack, i.e. the attack was supported
by experimental evidences only. In [3], the author uses a modified form of ∆φ-GrainKSA to model
Knellwolf’s system. Note that [23] imposes specific algebraic conditions to stop the propagation of the
differential into the NFSR at KSA rounds t = 12, 34, 40. This was modeled by modifying the definition
of ∆φ-GrainKSA at line no 0.1 of Algorithm 1 by including the following code snippet.

if t ∈ {12, 34, 40} : vt+n ← 0

Thereafter the distributions of the differences of several internal variables were computed by utilizing
the outputs of ∆37-GrainKSA and Equation (1) was proven.

4 Dynamic Cube attack on Grain v1

One of the reasons that the authors of [23, 24] had given for choosing φ = 37 (i.e., the IV location
where the single bit difference was introduced) was that due to the positioning of the tap locations in
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the design of Grain v1, a difference placed in this location would be contained in the LFSR for the
longest number of KSA rounds. This is a valid approach to look at differential cryptanalysis of Grain
v1, since as the differences propagate into the NFSR, they become difficult to control and predict.
However, given the fact that we have a tool to track the differential trails in Grain v1, one could try
to see if any differential introduced at an arbitrary IV bit location φ, (0 ≤ φ < 64) leads to a bias in

the distribution of Pr[zt ⊕ zφt ] for any t > 104.
Before we outline the process of searching for a suitable difference location φ let us state the

following Lemma.

Lemma 1. Let λ1, λ2, . . . , λn+1 be independent random variables over GF (2). Let λi ∼ Ber(12 + εi).
Where each εi is some real number in [−1

2 ,
1
2 ] and Ber(·) denotes the Bernoulli distribution (we will

call |εi| the bias in the variable λi) Let γ1 = ⊕ni=1λi and γ2 = ⊕n+1
i=1 λi. Let γ1 ∼ Ber(12 + δ1) and

γ2 ∼ Ber(12 + δ2). Then we must have |δ1| ≥ |δ2|.

Proof. By the Piling-up lemma, it is easy to see that Pr[λ1⊕λ2⊕ · · ·⊕λn = 0] = 1
2 + 2n−1

∏n
i=1 εi and

so we have γ1 ∼ Ber(12 + 2n−1
∏n
i=1 εi) and similarly we have γ2 ∼ Ber(12 + 2n

∏n+1
i=1 εi). Assuming

that all εi 6= 0, we have

|δ1|
|δ2|

=

∣∣∣∣∣2n−1
∏n
i=1 εi

2n
∏n+1
i=1 εi

∣∣∣∣∣ =
1

2|εn+1|
≥ 1

The above inequality follows since 2|εn+1| ≤ 1. If some εi = 0, for 0 ≤ i ≤ n, then δ1 = δ2 = 0, and if
εn+1 = 0 and all other εi are non zero, we will have δ2 = 0, while |δ1| is a positive real number and so
the lemma is proven. ut

So if λ1, λ2, . . . , λn are independent variables, each approximately biased towards zero by some
positive quantity |ε| (i.e. each λi ∼ Ber(12 + ε)), a corollary of the above result is that the GF (2) sum
of any n1 variables λi is likely to be more biased than the GF (2) sum of any n2 variables λi, if n1 < n2.
We will use the result of the previous lemma as a heuristic argument to arrive at a suitable difference
location φ. Note that the difference in the keystream bits at round t in Grain v1, given by zt ⊕ zφt
is the GF (2) sum of eight random variables γ1, γ2, . . . , γ8 over GF (2) which are given as follows. For

i = 1, 2, . . . , 7, we have γi = xt+li ⊕ x
φ
t+li

, where l1 = 1, l2 = 2, l3 = 4, l4 = 10, l5 = 31, l6 = 43, l7 = 56.
The last variable γ8 is given as

γ8 = h(yt+3, yt+25, yt+46, yt+64, xt+63)⊕ h(yφt+3, y
φ
t+25, y

φ
t+46, y

φ
t+64, x

φ
t+63).

Consider the case when for some value of φ, ∆φ-Grain outputs the following values:

χt1 : [vt1+1 = 0, vt1+2 = 0, vt1+4 = 0, vt1+10 = 0, vt1+31 = 1, vt1+43 = 0, vt1+56 = 2]

Υt1 : [ut1+3 = 0, ut1+25 = 1, ut1+46 = 2, ut1+64 = 2, vt1+63 = 2]

and

χt2 : [vt2+1 = 0, vt2+2 = 0, vt2+4 = 2, vt2+10 = 2, vt2+31 = 2, vt2+43 = 2, vt2+56 = 2]

Υt2 : [ut2+3 = 0, ut2+25 = 1, ut2+46 = 2, ut2+64 = 2, vt2+63 = 2]

Note that the values of χt1 and Υt1 indicate that in two instances of Grain v1 initialized by the states

S0 and Sφ0 , (note that these states differ only in the φth LFSR bit, introduced by a difference in the

φth IV bit), the following events occur: at KSA round t1, xt1+1 = xφt1+1, xt1+2 = xφt1+2, xt1+4 = xφt1+4,

xt1+10 = xφt1+10, xt1+10 = xφt1+10, xt1+31 = 1 ⊕ xφt1+31, yt1+3 = yφt1+3, yt1+25 = 1 ⊕ yφt1+25 holds with
probability 1. The differences of the remaining variables involved in the computation of the keystream

8



bit will be either 0 and 1 and depending on the exact value of S0 used to initialize the cipher. Similar
inferences may be made at round t2, after looking at the values of χt2 , Υt2 . Now, the difference of the
keystream bit at round t1 is given by

zt1 ⊕ z
φ
t1

=
⊕
i∈A

(
xt1+i ⊕ x

φ
t1+i

)
⊕
(
h(yt1+3, yt1+25, . . . , xt1+63)⊕ h(yφt1+3, y

φ
t1+25, . . . , x

φ
t1+63)

)
= 1⊕ (xt1+56 ⊕ xφt1+56)⊕

(
h(yt1+3, yt1+25, . . . , xt1+63)⊕ h(yφt1+3, y

φ
t1+25, . . . , x

φ
t1+63)

)
= 1⊕ λ11 ⊕ λ12

Here, λ11 = (xt1+56⊕ xφt1+56) and λ12 = h(yt1+3, yt1+25, . . . , xt1+63)⊕ h(yφt1+3, y
φ
t1+25, . . . , x

φ
t1+63). Simi-

larly at round t2, we have

zt2 ⊕ z
φ
t2

=
⊕
i∈A

(
xt2+i ⊕ x

φ
t2+i

)
⊕
(
h(yt2+3, yt2+25, . . . , xt2+63)⊕ h(yφt2+3, y

φ
t2+25, . . . , x

φ
t2+63)

)
=

⊕
i∈{4,10,31,43,56}

(xt2+i ⊕ x
φ
t2+i

)⊕
(
h(yt2+3, yt2+25, . . . , xt2+63)⊕ h(yφt2+3, y

φ
t2+25, . . . , x

φ
t2+63)

)
= λ21 ⊕ λ22 ⊕ λ23 ⊕ λ24 ⊕ λ25 ⊕ λ26

where the values of λ2i
′s have been assigned as at round t1. Note that the randomness in zt1⊕z

φ
t1

comes

from only two random variables λ11 and λ12 whereas the randomness in zt2 ⊕ z
φ
t2

comes from 6 random
variables. Now this is certainly not a conclusive proof (as we still do not know the quantity of the bias
of each variable λ1i/λ2i or if they are independent or not), but one can make a heuristic argument that
if the biases in the λ1i

′s and λ2i
′s are not too different, and if one can intuitively/empirically determine

that the λ1i
′s, λ2i

′s are independent, then the bias of the variable zt1 ⊕ z
φ
t1

is likely to be much higher

than that of zt2 ⊕ z
φ
t2

, following the arguments outlined immediately after Lemma 1.

4.1 Search for a suitable candidate for φ

Given two distributions Ber(12 + ε) and Ber(12) (i.e., the Uniform distribution over GF (2)) and an
efficient algorithm to extract multiple samples from these distributions, it usually takes number of
samples proportional to

(
1
ε

)2
to distinguish these with a constant probability of success. Therefore our

goal was to find some φ ∈ [0, 63] so that the bias of zt⊕ zφt , for some t > 104, would be around 2−14 to
2−15, so that it would be possible to distinguish it from samples generated from a uniformly random
distribution by employing at most 228 to 230 pairs of chosen IVs differing only at bit location φ.

One way of searching for such a φ, is by executing the engine ∆φ-GrainKSA for all φ ∈ [0, 63], and
examining the χt vector output by the engine for every t > 104. The vector χt contains 7 elements, if
the number of probabilistic elements (i.e. number of 2′s) in χt, (for some t > 104 and φ ∈ [0, 63]) is
less (say not more than 1 or 2), then as per the arguments outlined in the previous subsection, φ and

t are likely to be good candidates for performing the attack, as in such a case zt ⊕ zφt is likely to have
some non-negligible bias which can in all likelihood be detected within 230 pairs of chosen IVs differing
at bit position φ. However there are several practical difficulties in running such an Algorithm.

1. For t > 104, the number of 2′s in χt is usually never less than 4, for any value of φ ∈ [0, 63].

2. This being the case one needs to impose Type 1 and Type 2 conditions on the Secret Key and
IV bits to prevent the propagation of differences to the NFSR whenever possible, much like the
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ones mentioned in Section 3.3. Thus, as mentioned in Section 3.3, to model this event, one needs
to modify the routine ∆φ-GrainKSA by inserting code snippets in Line 0.1 in Algorithm 1.

3. During the state updates of the LFSR, NFSR in the KSA, the keystream bit zt is summed with the
feedback functions of both the LFSR and NFSR. Thus in the earlier KSA rounds, whenever zt⊕ zφt
is probabilistic (this occurs when the keystream element πt produced by ∆φ-GrainKSA is equal to 2),
the differential is likely to propagate to the NFSR. In this case, we should try to impose the Type
1 and Type 2 conditions to prevent the propagation. Thus for an arbitrary φ, the code snippet to
be inserted in Line 0.1 in Algorithm 1 is as follows:

if πt = 2 : vt+n ← 0

4. As a case in point, one can examine the attack presented in [23, 24], in which the attacker stops
the propagation of the differential at 3 KSA rounds t = 12, 34, 40. To do so, the attacker needed to
impose 27 Type 1 conditions which set individual bits of the IV to 0/1. This reduced the effective
IV space to {0, 1}64−27 = {0, 1}37. Thus, this tells us that imposing Type 1/2 conditions at more
than 3 to 4 KSA rounds may well shrink the effective IV space to below {0, 1}30, and in such a case

we will not have enough IVs to detect any bias in zt ⊕ zφt . Thus preventing the propagation of the
difference at more than 4 KSA rounds is not feasible.

5. As we shall see shortly, another fundamental requirement to mount the attack, is the ability to
enumerate the explicit algebraic expressions of zt⊕zφt (in terms of the Secret Key and IV variables)
at all the rounds t where the propagation of a difference to the NFSR is to be prevented. Thereafter
our goal would be to express certian internal variables of the cipher in the form F3(K) ⊕ F4(V ),
where F3, F4 are functions on only the Secret Key bits and the IV bits repectively. Using Computer
Algebra Systems like SAGE [26], we were able do this for KSA rounds upto t = 45 on a system
running on a 3.2 GHz processor and 8 GB of internal memory. Thus we did not attempt to prevent
the propagation of the difference at any round t > 45.

6. Finally, we would also like to note that it is not necessary to run the engine ∆φ-GrainKSA with all
the modifications and constraints listed above, for all values of φ ∈ [0, 63]. For example, due to the
state updates in Grain v1, it is easy to see that ∆36-GrainKSA at KSA round t − 1, will give the
same result as ∆37-GrainKSA at round t. Thus it is sufficient to run the engines at all values of φ
just before the tap locations i.e., for values equal to 2, 12, 22, 24, 37, 45, 50, 61, 63.

By running the engine ∆φ-GrainKSA, under the aforementioned modifications and restrictions, for
the values of φ listed above, we were able to determine that for φ = 61 and t = 105, and after preventing
the propagation of the differential at KSA rounds t = 15, 36, 39, 42, the value of χ105 was obtained as
follows.

χ105 = [v106 = 1, v107 = 0, v109 = 0, v115 = 0, v136 = 0, v148 = 2, v161 = 2]

Since there are only two 2′s in this vector, this seemed to be a good choice of the attack parameters
and we proceeded to mount the attack from here.

4.2 Algebraic Details of the attack for φ = 61

Algebraically speaking, introducing a difference at the 61st bit position of the IV is equivalent to
analyzing two initializations of the Grain v1 cipher, one with the initial state equal to

X0 = [k0, k1, . . . , k79], Y0 = [ν0, ν1, . . . , ν61, . . . , ν63, 1, 1, . . . , 1],
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and the other with the initial state equal to

Xφ
0 = [k0, k1, . . . , k79], Y φ

0 = [ν0, ν1, . . . , 1⊕ ν61, . . . , ν63, 1, 1, . . . , 1].

where K = [k0, k1, . . . , k79], V = [ν0, ν1, . . . , ν61, . . . , ν63], V
φ = [ν0, ν1, . . . , 1 ⊕ ν61, . . . , ν63] are the

formal notations for the Secret Key and the two IVs that differ in the 61st bit position. The primary
task of cryptanalysis is to monitor the propagation of the differentials across the internal states in the
tth KSA round, i.e., between St = Xt||Yt and Sφt = Xφ

t ||Y
φ
t . During the execution of ∆61-GrainKSA,

we had chosen to halt the propagation of the differentials at t = 15, 36, 39, 42. Let us now enumerate
the algebraic conditions one would need to impose to halt the propagation of the differential at these
rounds. We will again take help of the outputs of the modified ∆61-GrainKSA to do so.

1. t = 15: At this round χt = Glin,t = Gnlin,t = 0, ut = 0 and Υt = [ut+3 = 0, ut+25 = 0, ut+46 =

1, ut+64 = 0, vt+63 = 0]. This implies that of all state bits of St, S
φ
t at t = 15 involved in the

computation of xt, x
φ
t , only y64 = 1⊕ yφ64 holds deterministically and all the differences of all other

state bits is deterministically 0. So we have

x80+15 ⊕ xφ80+15 = [ g(X15)⊕ y15 ⊕ z15 ]⊕ [ g(Xφ
15)⊕ y

φ
15 ⊕ z

φ
15 ] = z15 ⊕ zφ15

= h(y18, y40, y61, y79, x78)⊕ h(y18, y40, 1⊕ y61, y79, x78)
= ν18(1⊕ ν40 ⊕ k78)⊕ ν40k78 ⊕ k78 ⊕ 1

To prevent the propagation of the differential x80+15 ⊕ xφ80+15 must be set to 0 by imposing Type

1/2 conditions. Note that if we set ν18 = 1, ν40 = 0, then x80+15⊕ xφ80+15 becomes identically zero.
Thus we have imposed two Type1 conditions at this round.

2. t = 36: At this KSA round we again have χt = Glin,t = Gnlin,t = 0, ut = 0 and Υt = [ut+3 =
0, ut+25 = 1, ut+46 = 0, ut+64 = 0, vt+63 = 0]. This implies that

x80+36 ⊕ xφ80+36 = [ g(X36)⊕ y36 ⊕ z36 ]⊕ [ g(Xφ
36)⊕ y

φ
36 ⊕ z

φ
36 ] = z36 ⊕ zφ36

= h(y39, y61, y82, y100, x99)⊕ h(y39, 1⊕ y61, y82, y100, x99)
= 1⊕ ν39y82 ⊕ y82x99

To halt the differential we need ν39 = 0, y82 = 1, x99 = 1. The first is a simple Type 1 condition
but the remaining conditions need further investigation. If we set ν48 = 0, the algebraic expression
for y82 becomes:

y82 = k3 ⊕ k4 ⊕ k6 ⊕ k12 ⊕ k33 ⊕ k45 ⊕ k58 ⊕ ν2 ⊕ ν5 ⊕ ν15 ⊕ ν25 ⊕ ν27 ⊕ ν53 ⊕ 1.

Therefore if we set the following Type 2 condition y82 becomes identically 1.

C1 : ν15 ⊕ ν2 ⊕ ν5 ⊕⊕ν25 ⊕ ν27 ⊕ ν53 ⊕K1 = 0, (2)

where K1 = k3 ⊕ k4 ⊕ k6 ⊕ k12 ⊕ k33 ⊕ k45 ⊕ k58. Now to set x99 = 1, we need to impose the
following Type 1 conditions ν2 = ν47 = ν49 = ν22 = ν44 = ν5 = ν27 = 0, and the following Type
2 condition.

C2 : ν3 ⊕ ν1 ⊕ ν4 ⊕ ν6 ⊕ ν16 ⊕ ν19 ⊕ ν28 ⊕ ν41 ⊕ ν54 ⊕K2 = 0, (3)

here K2 is an expression in the Secret Key bits of algebraic degree 10 and 177 monomials.
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3. t = 39: At this round we have χt = Glin,t = Gnlin,t = 0, ut = 0 and Υt = [ut+3 = 0, ut+25 =
0, ut+46 = 0, ut+64 = 1, vt+63 = 0]. Therefore we have,

x80+39 ⊕ xφ80+39 = [ g(X39)⊕ y39 ⊕ z39 ]⊕ [ g(Xφ
39)⊕ y

φ
39 ⊕ z

φ
39 ] = z39 ⊕ zφ39

= h(y42, y64, y85, y103, x102)⊕ h(y42, y64, y85, 1⊕ y103, x102)
= ν42 ⊕ y85 ⊕ x102 ⊕ ν42y85 ⊕ y85x102

To set this to zero we need to impose ν42 = 0, y85 = 0, x102 = 0. Again the first is a simple Type
1 condition. To set the other variables to zero we need to do the following: if we set ν51 = 0, the
expression for y85 becomes

y85 = k6 ⊕ k7 ⊕ k9 ⊕ k15 ⊕ k36 ⊕ k48 ⊕ k61 ⊕ ν8 ⊕ ν28 ⊕ ν30 ⊕ ν43 ⊕ ν56

Thus if the following Type 2 condition is applied then y85 becomes identically zero.

C3 : ν43 ⊕ ν8 ⊕ ν28 ⊕ ν30 ⊕ ν56 ⊕K3 = 0, (4)

where K3 = k6 ⊕ k7 ⊕ k9 ⊕ k15 ⊕ k36 ⊕ k48 ⊕ k61. If we now set ν8 = ν30 = ν25 = ν50 = ν52 = 0, and
the following Type 2 condition C4 then x102 also is nullified.

C4 : ν57 ⊕ ν4 ⊕ ν6 ⊕ ν7 ⊕ ν9 ⊕ ν19 ⊕ ν31 ⊕K4 = 0, (5)

K4 is an expression in the Secret Key bits of algebraic degree 15 and 2612 monomials.

4. t = 42: At this KSA round we again have χt = Glin,t = Gnlin,t = 0, ut = 0 and Υt = [ut+3 =
0, ut+25 = 0, ut+46 = 0, ut+64 = 1, vt+63 = 0]. This implies that

x80+42 ⊕ xφ80+42 = [ g(X42)⊕ y42 ⊕ z42 ]⊕ [ g(Xφ
42)⊕ y

φ
42 ⊕ z

φ
42 ] = z42 ⊕ zφ42

= h(y45, y67, y88, y106, x105)⊕ h(y45, y67, y88, 1⊕ y106, x105)
= ν45 ⊕ y88 ⊕ x105 ⊕ ν45y88 ⊕ y88x105

Again we need to set ν45 = 0, y88 = 0, x105 = 0 to nullify this difference. If we set ν54 = 0, the
expression for y88 becomes

y88 = k9 ⊕ k10 ⊕ k12 ⊕ k18 ⊕ k39 ⊕ k51 ⊕ k64 ⊕ ν11 ⊕ ν21 ⊕ ν31 ⊕ ν33 ⊕ ν46 ⊕ ν59 ⊕ 1

Therefore to nullify y88 we apply the following Type 2 condition.

C5 : ν46 ⊕ ν11 ⊕ ν21 ⊕ ν31 ⊕ ν33 ⊕ ν59 ⊕K5 = 0, (6)

where K5 = k9⊕k10⊕k12⊕k18⊕k39⊕k51⊕k64⊕ 1. Now if we set ν11 = ν33 = ν28 = ν53 = ν55 = 0
and the following Type 2 condition C6, then x105 is also nullified.

C6 : ν60 ⊕ ν1 ⊕ ν4 ⊕ ν7 ⊕ ν9 ⊕ ν10 ⊕ ν12 ⊕ ν26 ⊕ ν34 ⊕K6 = 0, (7)

where K6 is an expression in the Secret Key bits of algebraic degree 15 and 2620 monomials.

The six Type 2 relations C1, C2, . . . , C6 obtained in Equations (2)-(7) are crucial to the Key
recovery attack. We note that due to the several Type 1 relations, a total of 25 of the IV bits are
assigned either 0 or 1 and hence the effective IV space is reduced to {0, 1}39. In fact, many of the
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IV bits that appear in the expressions for the Type 2 conditions, are later set to zero in one of the
following KSA rounds. So we rewrite the final expressions for the Type 2 conditions.

C1 : ν15 ⊕K1 = 0,

C3 : ν43 ⊕ ν56 ⊕K3 = 0,

C5 : ν46 ⊕ ν21 ⊕ ν31 ⊕ ν59 ⊕K5 = 0,

C2 : ν3 ⊕ ν1 ⊕ ν4 ⊕ ν6 ⊕ ν16 ⊕ ν19 ⊕ ν41 ⊕K2 = 0,

C4 : ν57 ⊕ ν4 ⊕ ν6 ⊕ ν7 ⊕ ν9 ⊕ ν19 ⊕ ν31 ⊕K4 = 0,

C6 : ν60 ⊕ ν1 ⊕ ν4 ⊕ ν7 ⊕ ν9 ⊕ ν10 ⊕ ν12 ⊕ ν26 ⊕ ν34 ⊕K6 = 0.

Now since the attacker does not know the values of the six expressions K1,K2, . . . ,K6, he will need
to guess them in order to satisfy the Type 2 conditions. Let {ν15, ν3, ν43, ν57, ν46, ν60} be the set of
dynamic cube variables. We will partition the IV space (which now has 239 elements) into 26 disjoint
sets Ti, 0 ≤ i < 63 as follows. Let U = [K1,K2,K3,K4,K5,K6]. Then, for each U ∈ {0, 1}6 the set
TU is generated as follows:

1. Define the Set

TU ← {V ∈ {0, 1}64 | ν18 = 1, ν40 = 0, ν39 = 0, ν48 = 0, ν2 = 0, ν47 = 0, ν49 = 0, ν22 = 0,

ν44 = 0, ν5 = 0, ν27 = 0, ν42 = 0, ν51 = 0, ν8 = 0, ν30 = 0, ν25 = 0,

ν50 = 0, ν52 = 0, ν45 = 0, ν54 = 0, ν11 = 0, ν33 = 0, ν53 = 0, ν55 = 0, ν28 = 0}

2. For all V ∈ TU, adjust ν15, ν3, ν43, ν57, ν46, ν60 according to the guessed value of U:

ν15 ← K1,

ν43 ← ν56 ⊕K3,

ν46 ← ν21 ⊕ ν31 ⊕ ν59 ⊕K5,

ν3 ← ν1 ⊕ ν4 ⊕ ν6 ⊕ ν16 ⊕ ν19 ⊕ ν41 ⊕K2,

ν57 ← ν4 ⊕ ν6 ⊕ ν7 ⊕ ν9 ⊕ ν19 ⊕ ν31 ⊕K4,

ν60 ← ν1 ⊕ ν4 ⊕ ν7 ⊕ ν9 ⊕ ν10 ⊕ ν12 ⊕ ν26 ⊕ ν34 ⊕K6.

Note that if V ∈ TU for some V and U, then V φ ∈ TU. As it turns out, if the conditions C1 to
C6 are all satisfied then the distribution of z105 ⊕ zφ105 exhibits appreciable bias. It was experimentally
observed that

Pr
[
z105 ⊕ zφ105 = 0 | Ci is satisfied ∀ i ∈ [1, 6]

]
≈ 1

2
+ 0.0002, (8)

where the probability was calculated by the randomness generated over the Key and IV space. For
a proof of Equation (8), please refer to Appendix A. Now to mount the attack, the attacker tries

to compute the distribution of z105 ⊕ zφ105 in each of the 64 sets TU. Note that all the conditions
C1, C2, . . . , C6 are satisfied in only one of these sets TU0 where U0 is the correct value of U. The attacker
will therefore be able to observe the bias in the set TU0 , and by standard randomness assumptions,
he should not be able to detect any bias in the other sets, thereby determining the values of the six
expressions K1,K2, . . . ,K6.

4.3 Further Issues

We have just stated that ideally the attacker should not be able to detect any bias in any set TU′ such
that U′ 6= U0. But as it turns out, he will be able detect some bias in three sets other than TU0 . These
sets are those where a) C5 is not satisfied but C6 is, b) C6 is not satisfied but C5 is and c) Neither C5 nor
C6 is satisfied. is satisfied. This points to the fact that even if we had not halted the difference propaga-
tion at t = 42, we would have obtained some bias in the distribution of z105⊕zφ105. In fact, if we had run
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the engine ∆61-GrainKSA and opted to nullify the difference at rounds t = 15, 36, 39 only, we would still
have obtained the value of χ105 = [v106 = 1, v107 = 0, v109 = 0, v115 = 0, v136 = 0, v148 = 2, v161 = 2].

However, in spite of this, nullifying the difference at t = 42, results in much higher bias in z105 ⊕ zφ105.
This is because the bias in the random variable h(y108, y130, . . . , x168)⊕ h(yφ108, y

φ
130, . . . , x

φ
168) is much

higher if the difference is nullified at t = 42. As a result although the attacker detects bias in three sets
other than TU0 , the bias in these sets is usually much lower than in TU0 . So the attacker can compute

the distribution of z105⊕ zφ105 in all the 64 sets and deduce that the set in which he obtains the highest

bias of z105 ⊕ zφ105 to be the correct value of U.

Although each set Ti contains 232 pairs of IVs (i.e., V and V φ), it has been observed that one need

not use all the IV pairs in each Ti to compute the distribution of z105 ⊕ zφ105. Instead one can do the
following. Out of the 64 IV bits, we know that 25 have been assigned with constants via the Type
1 conditions, 6 are dynamic variables attached to the Type 2 conditions, and 1 (i.e. ν61) is variable

over which we are computing the cube sum z105 ⊕ zφ105. This leaves us with 32 ‘free’ IV variables. The
attacker can further set some n1 of these 32 free variables to constants and reconstruct all the Sets Ti,
as per the methods outlined in the previous Subsection. This method reduces the cardinality of each
set Ti by a factor of 2n1 . But for small n1 (≤ 5), the attacker should be able to detect maximum bias
in the correct set TU0 .

4.4 Experimental Results

We experimented with the value of n1 = 5, with around 1000 randomly generated Secret Keys. Thus
the complexity of our algorithm was 232−n1+6+1 = 239−n1 evaluations of the Grain v1 KSA function
reduced to 105 rounds using chosen IVs. The experiments were run on a 3.2 GHz Intel Xeon processor
and took around 23 hours to complete for each Secret Key. The results are tabulated in Table 1. It
can be seen that all the expressions K1,K2, . . . ,K6 are determined correctly for around 92% of the
Secret Keys. In the remaining cases there may be error in determining K5 and/or K6. In any case, the
Algorithm always determines the value of K1,K2,K3,K4 correctly.

Table 1. Experimental results for n1 = 5

Results Percentage

All K1,K2, . . . ,K6 determined correctly 92%

K1,K2, . . . ,K5 determined correctly but K6 determined incorrectly 3%

K1,K2, . . . ,K4,K6 determined correctly but K5 determined incorrectly 3%

K1,K2, . . . ,K4 determined correctly but K5,K6 determined incorrectly 2%

5 Conclusion

In this paper we provide a framework to attack reduced round Grain v1. Selecting cubes for single
or higher dimensional differential cube attacks, is not an exact science, and generally the attacker is
able to arrive at a suitable cube by aid of intuition or testing a lot of random cubes. In this work, we
have made a primitive attempt to provide some structure to the search for suitable cubes as far as
the stream cipher Grain v1 is concerned. Our attack retrieves 6 expressions in the Secret Key bits (of
which three are linear and three of higher algebraic degree) for a version of Grain v1 in which the KSA
is reduced to 105 (out of 160) initialization rounds. The attack uses 239−n1 evaluations (here n1 ≈ 5) of
the 105 round KSA function of Grain v1 with chosen IVs and takes around 23 CPU hours to complete.
This is an improvement of 8 KSA rounds over the previously best attack published against this cipher.
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2. M. Ågren, M. Hell, T. Johansson and W. Meier. A New Version of Grain-128 with Authentication. Symmetric Key

Encryption Workshop 2011, DTU, Denmark, February 2011.
3. S. Banik. Some Insights into Differential Cryptanalysis of Grain v1. To appear in ACISP 2014.
4. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on Grain family under reasonable assumptions. In

Indocrypt 2012, LNCS, Vol. 7668, pp. 191-208, 2012.
5. S. Banik, S. Maitra and S. Sarkar. A Differential Fault Attack on the Grain Family of Stream Ciphers. In CHES

2012, LNCS, Vol. 7428, pp. 122-139, 2012.
6. S. Banik, S. Maitra, S. Sarkar and M. S. Turan. A Chosen IV Related Key Attack on Grain-128a. In ACISP 2013,

LNCS, Vol. 7959, pp. 13-26, 2013.
7. C. Berbain, H. Gilbert and A. Maximov. Cryptanalysis of Grain. In FSE 2006, LNCS, Vol. 4047, pp. 15–29, 2006.
8. A. Berzati, C. Canovas, G. Castagnos, B. Debraize, L. Goubin, A. Gouget, P. Paillier, S. Salgado. Fault Analysis of

Grain-128. In: IEEE International Workshop on Hardware-Oriented Security and Trust, pp. 7–14, 2009.
9. T. E. Bjørstad. Cryptanalysis of Grain using Time/Memory/Data tradeoffs (v1.0 / 2008-02-25). Available at http:

//www.ecrypt.eu.org/stream.
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Appendix A: Computing the distribution of z105 ⊕ zφ105 for φ = 61 if all
C1, C2, . . . , C6 are satisfied

We will prove the bias in the distribution of z105 ⊕ zφ105 along similar lines of the proof of the bias of
z97 ⊕ z3797 reported in [3]. The probability values we calculate are computed over the randomness due
to the Key bits and the those IV bits not assigned by the Type 1, 2 relations. However, these results
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also hold, even if the Key is fixed, and the randomness comes only from the IV bits. First we state a
straightforward lemma without proof.

Lemma 2. Let F be an i-variable Boolean function, with wt(F ) = w. If the vector X is chosen
uniformly from {0, 1}i then Pr[F (X) = 0] = 1− w

2i
.

We begin by inspecting the output of ∆61-GrainKSA at round t = 105, in which the difference is
nullified at rounds t = 15, 36, 39, 42. At t = 105, we have

χ105 = [v106 = 1, v107 = 0, v109 = 0, v115 = 0, v136 = 0, v148 = 2, v161 = 2]

Υ105 = [u108 = 1, u130 = 1, u151 = 2, u169 = 2, v168 = 2]

This implies that of all the bits of S105, S
φ
105 involved in the computation of z105 and zφ105 respec-

tively, the relations between only i) x148, x
φ
148 ii) x161, x

φ
161 iii) y151, y

φ
151 iv) y169, y

φ
169 v) x168, x

φ
168 are

probabilistic. Therefore we have

z105 ⊕ zφ105 = 1⊕ [x148 ⊕ xφ148]⊕ [x161 ⊕ xφ161] ⊕

[h(y108, y130, y151, y169, x168)⊕ h(1⊕ y108, 1⊕ y130, yφ151, y
φ
169, x

φ
168)]

(9)

We assume that the random variables x148⊕xφ148, x161⊕x
φ
161, y151⊕y

φ
151, y169⊕y

φ
169 and x168⊕xφ168 are

statistically mutually independent of one another. It is difficult to prove this assumption theoretically
but extensive computer simulations have shown that one can make this assumption.

Calculating Pr[x148 ⊕ xφ
148 = 0]

To find this distribution we need to look at the state of our modified ∆61-GrainKSA at t = 148−80 = 68.
At this we have u68 = 0, Υ68 = 0, Glin,68 = [v68 = 0, v82 = 0, v130 = 1],Gnlin,68 = 0, and

χ68 = [v69 = 0, v70 = 0, v72 = 0, v78 = 0, v99 = 0, v111 = 0, v124 = 2]

So we have

x148 ⊕ xφ148 = [g(X68)⊕ y68 ⊕ z68]⊕ [g(Xφ
68)⊕ y

φ
68 ⊕ z

φ
68]

= 1⊕ (x124 ⊕ xφ124)

So in order to compute the above probability we need to compute the distribution of (x124⊕xφ124) first.
At t = 124 − 80 = 44, we have u44 = 0, Υ44 = [u47 = 0, u69 = 0, u90 = 1, u108 = 1, v107 = 0], χ44 =
0, Glin,44 = [v44 = 0, v58 = 0, v106 = 1],Gnlin,68 = 0. Note that y47 = ν47 = 0 according to one of the
Type 1 conditions, and y69 = 1 as defined by the padding rule of Grain v1. So we have

x124 ⊕ xφ124 = [g(X44)⊕ y44 ⊕ z44]⊕ [g(Xφ
44)⊕ y

φ
44 ⊕ z

φ
44]

= 1⊕ h(y47, y69, y90, y108, x107)⊕ h(y47, y69, 1⊕ y90, 1⊕ y108, x107)
= x107 ⊕ y90 · x107 ⊕ y90 ⊕ y108 · x107 ⊕ y108

Since x107⊕y90 ·x107⊕y90⊕y108 ·x107⊕y108 is a Boolean Function of weight 6, assuming independence
of the component variables we have Pr[x124⊕xφ124 = 0] = 1− 6

8 = 1
4 . This implies that Pr[x148⊕xφ148 =

0] = 3
4 .
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Calculating Pr[y151 ⊕ yφ151 = 0]

To find this distribution we need to look at the state of our modified ∆61-GrainKSA at t = 151−80 = 71.
At this we have Υ71 = [u74 = 0, u96 = 0, u117 = 0, u135 = 2, v134 = 2], F71 = 0, χ71 = 0. So we have

y151 ⊕ yφ151 = [f(Y71)⊕ z71]⊕ [f(Y φ
71)⊕ z

φ
71]

= h(y74, y96, y117, y135, x134)⊕ h(y74, y96, y117, y
φ
135, x

φ
134)

Define the set of functions hij = h(y74, y96, y117, y135, x134) ⊕ h(y74, y96, y117, y135 ⊕ i, x134 ⊕ j), for
i, j ∈ {0, 1}. Now assuming independence or the random variables involved, we can write,

Pr[y151 ⊕ yφ151 = 0] =
∑
i,j

Pr[hij = 0] · Pr[y135 ⊕ yφ135 = i] · Pr[x134 ⊕ xφ134 = j] (10)

To compute this probability, we would need to calculate the individual probabilities Pr[y135⊕ yφ135 = 0]

and Pr[x134⊕xφ134 = 0]. At t = 135− 80 = 55, we have F55 = [u55 = 0, u68 = 0, u78 = 0, u93 = 0, u106 =
1, u117 = 0], χ55 = 0, Υ55 = [u58 = 0, u80 = 0, u101 = 0, u119 = 1, v118 = 0]. So we have

y135 ⊕ yφ135 = [f(Y55)⊕ z55]⊕ [f(Y φ
55)⊕ z

φ
55]

= 1⊕ h(y58, y80, y101, y119, x118)⊕ h(y58, y80, y101, 1⊕ y119, x118)
= 1⊕ y58y101 ⊕ y58 ⊕ y101x118 ⊕ y101 ⊕ x118

This represents a Boolean Function of weight 2, and hence we have Pr[y135 ⊕ yφ135 = 0] = 1 − 2
8 = 3

4 .
Now at t = 134 − 80 = 54, we have χ54 = 0, Glin,54 = 0, u54 = 0, Υ54 = [u57 = 0, u79 = 0, u100 =
0, u118 = 1, v117 = 0] and all elements of Gnlin,54 are zeros except v106 = 1. So we have

x134 ⊕ xφ134 = [g(X54)⊕ y54 ⊕ z54]⊕ [g(Xφ
54)⊕ y

φ
54 ⊕ z

φ
54]

= [g(. . . , x106, . . .)⊕ g(. . . , 1⊕ x106, . . .)]⊕
[h(y57, y79, y100, y118, x117)⊕ h(y57, y79, y100, 1⊕ y118, x117)]

We have to set x99 = 1, in the above equation since it is one of the conditions imposed at t = 36 to
nullify a difference. Hence we have Pr[y135⊕ yφ135 = 0] = 35

64 . Now turning back to our original problem,
we know that Pr[h00 = 0] = 1, Pr[h01 = 0] = 1

2 , Pr[h10 = 0] = 1
4 , Pr[h11 = 0] = 1

2 . Putting these values

in Equation (10), we get Pr[y151 ⊕ yφ151 = 0] ≈ 0.6709.

Calculating Pr[y169 ⊕ yφ169 = 0], Pr[x168 ⊕ xφ
168 = 0] and Pr[x161 ⊕ xφ

161 = 0]

To compute these probabilities, we will need to look at outputs of ∆61-GrainKSA at t = 81, 88, 89.
However at these rounds both χt and Υt have many elements equal to 2 and hence at this point we
have to delve into several lower KSA rounds and compute the distributions of several intermediate
variables and work our way up from there. Since this is slightly tedious, we omit extensive analysis of
these two distributions and simply state the results.

Pr[y169 ⊕ yφ169 = 0] = 0.5015, Pr[x168 ⊕ xφ168 = 0] = 0.5, Pr[x161 ⊕ xφ161 = 0] = 0.495
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Calculating Pr[h(y108, y130, y151, y169, x168) ⊕ h(1 ⊕ y108, 1 ⊕ y130, y
φ
151, y

φ
169, x

φ
168) = 0]

For the sake of conciseness, let this expression be denoted by the symbol H, and define the Boolean
Functions Hijk = h(y108, y130, y151, y169, x168) ⊕ h(1 ⊕ y108, 1 ⊕ y130, i ⊕ y151, j ⊕ y169, k ⊕ x168), for all
i, j, k ∈ {0, 1}. Assuming independence, it is easy to see that

Pr[H = 0] =
∑
i,j,k

Pr[Hijk = 0] · Pr[y151 ⊕ yφ151 = i] · Pr[y169 ⊕ yφ169 = j] · Pr[x168 ⊕ xφ168 = k]

As it turns out, all the functions Hijk are balanced except H011 and Pr[H011 = 0] = 3
4 . By plugging

these values into the above equation we get Pr[H = 0] ≈ 0.542.

Calculating Pr[z105 ⊕ zφ105 = 0]

From Equation (9), we can write

Pr[z105 ⊕ zφ105 = 0] = 1−
∑

i⊕j⊕k=0

Pr[x148 ⊕ xφ148 = i] · Pr[x161 ⊕ xφ161 = j] · Pr[H = k]

≈ 0.5002

This concludes our proof for the distribution of z105 ⊕ zφ105 = 0.
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