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1 Introduction

Despite its allegedly waning cryptanalytic importance, integer factorization is still an inter-
esting subject and it remains relevant to test the practical value of promising approaches that
have not been tried before. An example of the latter is Coppersmith’s by now classical sug-
gestion to amortize the cost of a precomputation over many factorizations [8]. The reason for
the lack of practical validation of this method is obvious: achieving even a single “interesting”
(i.e., record) factorization usually requires such an enormous effort [20] that an attempt to
use Coppersmith’s idea to obtain multiple interesting factorizations simultaneously would be
prohibitively expensive, and meeting its storage requirements would be challenging.

But these arguments apply only to general numbers, such as RSA moduli [31], the context
of Coppersmith’s method. Given long-term projects such as [10, 11, 6] where many factoring-
enthusiasts worldwide constantly busy themselves to factor many special numbers, such as
for instance small-radix repunits, it makes sense to investigate whether factoring efforts that
are eagerly pursued no matter what can be combined to save on the overall amount of work.
This is what we set out to do here: we applied Coppersmith’s factorization factory approach
in order to simultaneously factor seventeen radix-2 repunits, so-called Mersenne numbers.
Except for their appeal to makers of mathematical tables, such factorizations may be useful
as well [18].

Let S = {1007, 1009, 1081, 1093, 1109, 1111, 1117, 1123, 1129, 1147, 1151, 1153, 1159, 1171,
1177, 1193, 1199}. For all n ∈ S we have determined the full factorization of 2n − 1, using
the method proposed in [8, Section 4] adapted to the special number field sieve (SNFS, [23]).
Furthermore, for two of the numbers a (new, but rather obvious) multi-SNFS approach was
exploited as well.

Most of our new factorizations soundly beat the previous two SNFS records, the full
factorizations of 21039−1 and 21061−1 reported in [1] and [7] respectively. Measuring individual
(S)NFS-efforts, factoring 21193−1 would require about 20 times the effort of factoring 21039−1
or more than twice the effort of factoring the 768-bit RSA modulus from [20]. Summing the
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individual efforts for the seventeen numbers involved would amount to more than one hundred
times the (21039 − 1)-effort. Extrapolating our results, sharing the work à la Coppersmith
allowed us to do it in about 50 times that effort. The practical implications of Coppersmith’s
method for general composites remain to be seen.

Although the factoring efforts reported here shared parts of the sieving tasks, each factor-
ization still required its own separate matrix step. With seventeen numbers to be factored,
and thus seventeen matrices to be dealt with, this gave us ample opportunity to experiment
with a number of new algorithmic tricks in our block Wiedemann implementation, following
up on the work reported in [1] and [20]. While the savings we obtained are relatively modest,
given the overall matrix effort involved, they are substantial in absolute terms. Several of the
matrices that we have dealt with are considerably larger than the one from [20], the largest
published comparable matrix problem before this work.

Section 2 gives background on the (S)NFS and Coppersmith’s method as required for the
paper. Section 3 introduces our two sets of target numbers to be factored, while sections 4
and 5 describe how the two main steps of the SNFS here applied to these numbers. The
newly found factors are presented in Section 6 and Section 7 concludes the paper with a few
remarks.

All core years reported below are normalized to 2.2 GHz cores.

2 Background on (S)NFS and Coppersmith’s method

2.1 Number field sieve

To factor a composite integer N in the current range of interest using the number field sieve
(NFS, [23]), a linear polynomial g ∈ Z[X] and a degree d > 1 polynomial f ∈ Z[X] are
determined such that g and f have, modulo N , a root m ≈ N1/(d+1) in common. For any m
one may select g(X) = X −m and f(X) =

∑d
i=0 fiX

i where N =
∑d

i=0 fim
i and 0 ≤ fi < m

(or |fi| ≤ m
2 ) for 0 ≤ i ≤ d. Traditionally, everything related to the linear polynomial g is

referred to as “rational” and everything related to the non-linear polynomial f as “algebraic”.
Relations are pairs of coprime integers a, b with b ≥ 0 such that bg(a/b) and bdf(a/b)

have only small factors, i.e., are smooth. Each relation corresponds to the vector consisting
of the exponents of the small factors (omitting details that are not relevant for the present
description). Therefore, as soon as more relations have been collected than there are small
factors, the vectors are linearly dependent and a matrix step can be used to determine an
even sum of the vectors: each of those has probability at least 50% to lead to a non-trivial
factor of N .

Balancing the smoothness probability and the number of relations required (which both
grow with the number of small factors) the overall heuristic expected NFS factoring time is
L((64/9)1/3) ≈ L(1.923) asymptotically for N →∞, where

L(c) = L[
1

3
, c] and L[ρ, c] = exp((c+ o(1))(log(N))ρ(log(log(N)))1−ρ)

for 0 ≤ ρ ≤ 1 and the degree d is chosen as an integer close to ( 3 log(N)
log(log(N)))

1/3. A more careful

selection of g and f than that suggested above (following for instance [19]) can lead to a
substantial overall speed-up but has no effect on the asymptotic runtime expression.

For regular composites the fi grow as N1/(d+1) which is only No(1) for N → ∞ but in
general not O(1). Composites for which the fi are O(1) are “special” and the SNFS applies: its
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heuristic expected runtime is L((32/9)1/3) ≈ L(1.526) asymptotically for N →∞, where the

degree d is chosen as an integer close to ( 3 log(N)
2 log(log(N)))

1/3. Both asymptotically and in practice
the SNFS is much faster than the NFS, with a slowly widening gap: for 1000-bit numbers
the SNFS is more than ten thousand times faster, for 1200-bit numbers it is more than 30
thousand times faster.

The function L(c) satisfies various useful but unusual properties, due to the o(1) and
N →∞: L(c1)L(c2) = L(c1 + c2), L(c1) + L(c2) = L(max(c1, c2)), and for c > 0 and fixed k
it is the case that (log(N))kL(c) = L(c)/ log(L(c)) = L(c).

2.2 Relation collection

We briefly discuss some aspects of the relation collection step that are relevant for the re-
mainder of the paper and that apply to both the NFS and the SNFS. Let N be the composite
to be factored, c = (64/9)1/3 (but c = (32/9)1/3 if N is special), and assume the proper
corresponding d as above. Heuristically it is asymptotically optimal to choose L( c2) as the
upper bound for the small factors in the polynomial values and to search for relations among
the integer pairs (a, b) with |a| ≤ L( c2) and 0 ≤ b ≤ L( c2). For the NFS the rational and
algebraic polynomial values then have heuristic probabilities L(−c8 ) and L(−3c

8 ) to be smooth,
respectively; for the SNFS both probabilities are L(−c4 ). Either way (i.e., NFS or SNFS) and
assuming independence of the polynomial values, the polynomial values are both smooth
with probability L(−c2 ). Over the entire search space L(c)L(−c2 ) = L( c2) relations may thus
be expected, which suffices.

Relation collection can be done using sieving because the search space is a rectangle in Z2

and because polynomial values are considered. The latter implies that if p divides g(s) (or
f(s)), then p divides g(s+kp) (or f(s+kp)) for any integer k, the former implies that given s
all corresponding values s + kp in the search space are quickly located. Thus, for one of the
polynomials, sieving is used to locate all pairs in the search space for which the corresponding
polynomial value has only factors bounded by L( c2). This costs∑

p prime, p≤L( c
2
)

L(c)

p
= L(c)

(for N → ∞, due to the o(1) in L(c)) and leads to pairs for which the polynomial value is
smooth. Next, in the same way and at the same cost, the pairs are located for which the
other polynomial value is smooth. Intersecting the two sets leads to L( c2) pairs for which both
polynomial values are smooth.

Sieving twice, once for each polynomial, works asymptotically because L(c)+L(c) = L(c).
It may be less obvious that it is also a good approach in practice. After all, after the first sieve
only pairs remain that are smooth with respect to the first polynomial, so processing those
individually for the second polynomial could be more efficient than reconsidering the entire
rectangular search space with another sieve. It will depend on the circumstances what method
should be used. For the regular (S)NFS using two sieves is most effective, both asymptotically
and in practice: sieving is done twice in a “quick and dirty” manner, relying on the intersection
of the two sets to quickly reduce the number of remaining pairs, which are then inspected
more closely to extract the relations. In Section 2.4, however, different considerations come
into account and one cannot afford a second sieve – asymptotically or in practice – precisely
because a second sieve would look at too many values.
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As suggested in [29] the sieving task is split up into a large number of somewhat over-
lapping but sufficiently disjoint subtasks. Given a root z modulo a large prime q of one of
the polynomials, a subtask consists of sieving only those pairs (a, b) for which a/b ≡ z mod q
and for which therefore the values of that polynomial are divisible by q. This implies that
the original size L(c) rectangular search space is intersected with an index-q sublattice of Z2,
resulting in a size L(c)/q search space. Sieving can still be used in the new smaller search
space, but in a somewhat more complicated manner [29], as first done in [17] and later much
better in [13]. Also, more liberal smoothness criteria allow several primes larger than L( c2)
in either polynomial value [12]. This complicates the decision of when enough relations have
been collected and may increase the matrix size, but leads to a substantial overall speed-up.
Another complication that arises is that duplicate relations will be found, i.e., by different
subtasks, so the collection of relations must be made duplicate-free before further processing.

2.3 Matrix and filtering

Assume that the numbers of distinct rational and algebraic small primes allowed in the smooth
values during relation collection equal r1 and r2, respectively. With r = r1 + r2, each relation
corresponds to an r-dimensional vector of exponents. With many distinct potential factors
(i.e., large r1 and r2) of which only a few occur per smooth value, the exponent vectors
are huge-dimensional (with r on the order of billions) and very sparse (on average about 20
non-zero entries).

As soon as r + 1 relations have been collected, an even sum of the corresponding r-
dimensional vectors (as required to derive a factorization) can in principle be found using
linear algebra: with v one of the vectors and the others constituting the columns of an r × r
matrix Mraw, an r-dimensional bit-vector x for which Mrawx equals v modulo 2 provides the
solution. Although a solution has at least a 50% chance to produce a non-trivial factorization,
it may fail to do so, so in practice somewhat more relations are used and more than a single
independent solution is derived.

The effort required to find solutions (cf. Section 5) grows with the product of the dimen-
sion r and the number of non-zero entries of Mraw (the weight of Mraw). A preprocessing
filtering step is applied first to Mraw in order to reduce this product as much as is practi-
cally possible. It consists of a “best effort” to transform, using a sequence of transformation
matrices, the initial huge-dimensional matrix Mraw of very low average column weight into a
matrix M of much lower dimension but still sufficiently low weight. It is not uncommon to
continue relation collection until a matrix M can be created in this way that is considered to
be “doable” (usage of a second algebraic polynomial for some of our factorizations takes this
idea a bit further than usual; cf. sections 3.2 and 4). Solutions for the original matrix Mraw

easily follow from solutions for the resulting filtered matrix M .

2.4 Coppersmith’s factorization factory

Coppersmith, in [8, Section 4], observed that a single linear polynomial g may be used for
many different composites as long as their (d + 1)st roots are not too far apart, with each
composite still using its own algebraic polynomial. Thus smooth bg(a/b)-values can be pre-
computed in a sieving step and used for each of the different factorizations, while amortizing
the precomputation cost. We sketch how this works, referring to [8, Section 4] for the details.

After sieving over a rectangular region of L(2.007) rational polynomial values with smooth-
ness bound L(0.819) a total of L(1.639) pairs can be expected (and must be stored for future
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use) for which the rational polynomial value is smooth. Using this stored table of L(1.639)
pairs corresponding to smooth rational polynomial values, any composite in the correct range
can be factored at cost L(1.639) per composite: the main costs per number are the algebraic
smoothness detection, again with smoothness bound L(0.819), and the matrix step. Factor-
ing ` = L(ε) such integers costs L(max(2.007, 1.639 + ε)), which is advantageous compared
to `-fold application of the regular NFS (at cost L(1.923) per application) for ` ≥ L(0.084).
Thus, after a precomputation effort of L(2.007), individual numbers can be factored at cost
L(1.639), compared to the individual factorization cost L(1.923) using the regular NFS.

During the precomputation the L(1.639) pairs for which the rational polynomial value
is smooth are found by sieving L(2.007) locations. This implies that, from an asymptotic
runtime point of view, a sieve should not be used to test the resulting L(1.639) pairs for alge-
braic smoothness (with respect to an applicable algebraic polynomial), because sieving would
cost L(2.007). As a result each individual factorization would cost more than the regular
application of the NFS. Asymptotically, this issue is resolved by using the elliptic curve fac-
toring method (ECM, [25]) for the algebraic smoothness test because, for smoothness bound
L(0.819), it processes each pair at cost L(0), resulting in an overall algebraic smoothness
detection cost of L(1.639). In practice, if it ever comes that far, the ECM may indeed be the
best choice, factorization trees ([4] and [15, Section 4]) may be used, or sieving may simply be
the fastest option. Because the smooth rational polynomial values will be used by all factor-
izations, in practice the rational precomputation should probably include, after the sieving,
the actual determination of all pairs for which the rational polynomial value is smooth: in the
regular (S)NFS this closer inspection of the sieving results takes place only after completing
both sieves.

These are asymptotic results, but the basic idea can be applied on a much smaller scale too.
With a small number ` of sufficiently close composites to be factored and using the original
NFS parameter choices (and thus a table of L(1.683) as opposed to L(1.639) pairs), the gain
approaches 50% with growing ` (assuming the matrix cost is relatively minor and disregarding
table-storage issues). It remains to be seen, however, if for such small ` individual processing
is not better if each composite uses a carefully selected pair of polynomials as in [19], and if
that effect can be countered by increasing the rational search space a bit while decreasing the
smoothness bounds (as in the analysis from [8]).

We are not aware of practical experimentation with Coppersmith’s method. To make it
realistically doable (in an academic environment) a few suitable moduli could be concocted.
The results would, however, hardly be convincing and deriving them would be mostly a waste
of computer time – and electric power [21]. We opted for a different approach to gain practical
experience with the factorization factory idea, as described below.

2.5 SNFS factorization factory

If we switch the roles of the rational and algebraic sides in Coppersmith’s factorization fac-
tory, we get a method that can be used to factor numbers that share the same algebraic
polynomial, while having different rational polynomials. Such numbers are readily available
in the Cunningham project [10, 11, 6]3. They have the additional advantage that obtaining

3 On an historical note, the desire to factor the ninth Fermat number 229 + 1, in 1988 the “most wanted”
unfactored Cunningham number, inspired the invention of the SNFS, triggering the development of the
NFS; the details are described in [23].
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their factorizations is deemed to be desirable, so an actual practical experiment may be con-
sidered a worthwhile effort. Our choice of target numbers is described in Section 3. First we
present the theoretical analysis of the factorization factory with a fixed algebraic polynomial
with O(1) coefficients, i.e., the SNFS factorization factory.

Let L(2α) be the size of the sieving region for the fixed shared algebraic polynomial (with
coefficient size O(1)), let L(β) and L(γ) be the algebraic and rational smoothness bounds,

respectively. Assume the degree of the algebraic polynomial can be chosen as δ( log(N)
log(log(N)))

1/3

for all numbers to be factored.

The algebraic polynomial values are of size L[23 , αδ] and are thus assumed to be smooth

with probability L(−αδ
3β ) (cf. [22, Section 3.16]). With the coefficients of the rational poly-

nomials bounded by L[23 ,
1
δ ], the rational polynomial values are of size L[23 ,

1
δ ] and may be

assumed to be smooth with probability L(− 1
3γδ ). To be able to find sufficiently many relations

it must therefore be the case that

2α− αδ

3β
− 1

3γδ
≥ max(β, γ). (1)

The precomputation (algebraic sieving) costs L(2α) and produces L(2α− αδ
3β ) pairs for which

the algebraic value is smooth. Per number to be factored, a total of L(max(β, γ) + 1
3γδ ) of

these pairs are tested for smoothness (with respect to L(γ)), resulting in an overall factoring
cost

L(max(2β, 2γ,max(β, γ) +
1

3γδ
))

per number. If β 6= γ, then replacing the smaller of β and γ by the larger increases the left
hand side of condition (1), leaves the right hand side unchanged, and does not increase the
overall cost. Thus, for optimal parameters, it may be assumed that β = γ. This simplifies the
cost to L(max(2γ, γ + 1

3γδ )) and condition (1) to

(2− δ

3γ
)α ≥ γ +

1

3γδ
,

which holds for some α ≥ 0 as long as δ < 6γ. Fixing δ, the cost is minimized when 2γ = γ+ 1
3γδ

or when γ + 1
3γδ attains its minimum; these two conditions are equivalent and the minimum

is attained for γ = (3δ)−1/2. The condition δ < 6γ translates into

δ < 121/3 respectively γ > 18−1/3.

It follows that for δ approaching 121/3 from below, the factoring cost per number approaches
L((4/9)1/3) ≈ L(0.763) from above, with precomputation cost L(2α), α → ∞. These SNFS
factorization factory costs should be compared to individual factorization cost L((32/9)1/3) ≈
L(1.526) using the regular SNFS, and approximate individual factoring cost L(1.639) after a
precomputation at approximate cost L(2.007) using Coppersmith’s NFS factorization factory.

Assuming γ = (3δ)−1/2, the choices γ = (2/9)1/3 ≈ 0.606 and α = (128/343)1/3 ≈ 0.808
lead to minimal precomputation cost L((4/3)5/3) ≈ L(1.615), and individual factoring cost
L((4/3)2/3) ≈ L(1.211). This makes the approach advantageous if more than approximately
L(0.089) numbers must be factored (compare this to L(0.084) for Coppersmith’s factoriza-
tion factory). However, with more numbers to be factored, another choice for γ (and thus
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larger α) may be advantageous, according to a more complete analysis of which we present
the conclusion.

Suppose that ` = L(ε) special numbers must be factored. If ε < 6−1/3, then compute γ as

the unique positive root of (3γ(γ+ ε))2− 4γ− 2ε and set δ = 3γ(γ+ε)
2γ+ε . Otherwise, if ε ≥ 6−1/3,

then compute γ as the unique positive root of 18γ3ε− 2γ − ε and set δ = 1
3γ2

. In either case

α = 3γ2δ+1
6γδ−δ2 (which simplifies to α = 2

6γδ−δ2 in the second case) and β = γ as above. The

optimal overall factoring cost is L(2α).

For example, for ε = 6−1/3 ≈ 0.550 we get γ = ε, δ = 2ε, α = 3ε/2, precomputation cost
L(2α) ≈ L(1.651), and individual factoring cost L(2γ) ≈ L(1.101). Sets of special numbers
can be constructed for which all parameters (including the degree of the shared algebraic
polynomial) can be chosen in this way. We leave the construction as an exercise to the reader
(for Coppersmith’s factorization factory this is trivial).

3 Targets for the SNFS factorization factory

3.1 Target set

For our SNFS factorization factory experiment we chose to factor the Mersenne numbers
2n − 1 with 1000 ≤ n ≤ 1200 that had not yet been fully factored, the seventeen numbers
2n − 1 with n ∈ S as in the Introduction. We write S = SI ∪ SII, where SI is our first batch
containing exponents that are ±1 mod 8 and SII is the second batch with exponents that are
±3 mod 8. Thus

SI = {1007, 1009, 1081, 1111, 1129, 1151, 1153, 1159, 1177, 1193, 1199}

and

SII = {1093, 1109, 1117, 1123, 1147, 1171}.

Now that these numbers have been factored, only one unfactored Mersenne number with
n ≤ 1200 remains, namely 2991 − 1. It can simply be dealt with using an individual SNFS
effort, like the others with n ≤ 1000 that were still present when we started our project. Our
approach would have been suboptimal for these relatively small n.

Around 2009, when we were gearing up for our project, there were several more exponents
in the range [1000, 1200]. Before actually starting, we first used the ECM in an attempt to
remove Mersenne numbers with relatively small factors and managed to fully factor five of
them [5]: one with exponent 1 mod 8 and four with exponents ±3 mod 8. Three, all with
exponents ±3 mod 8, were later factored by Ryan Propper (using the ECM, [36]) and were
thus removed from SII. Some other exponents which were easier for the SNFS were taken care
of by various contributors as well, after which the above seventeen remained.

3.2 Polynomial selection for the target set

We used two different algebraic polynomials: fI = X8 − 2 for n = ±1 mod 8 in SI and
fII = X8 − 8 for n = ±3 mod 8 in SII. This leads to the common roots mn and rational
polynomials gn corresponding to n as listed in Table 1. Relations were collected using two
sieves (one for fI shared by eleven n-values, and one for fII shared by six n-values) and
seventeen factorization trees (one for each gn), as further explained in Section 4. Furthermore,
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Table 1. The shared algebraic polynomials, roots, and rational polynomials for the 11 + 6 = 17 Mersenne
numbers 2n − 1 considered here.

fI = X8 − 2 fII = X8 − 8
n n mod 8 mn gn n n mod 8 mn gn

1007
1111
1151
1159
1199


2126 X − 2126 1093

1109
1117


2137 X − 2137

2139 X − 2139 −3 2139 X − 2139

−1 2144 X − 2144 2140 X − 2140

2145 X − 2145

2150 X − 2150

1009
1081
1129
1153
1177
1193


1

2−126 2126X − 1 1123
1147
1171


2−140 2140X − 1

2−135 2135X − 1 3 2−143 2143X − 1
2−141 2141X − 1 2−146 2146X − 1
2−144 2144X − 1
2−147 2147X − 1
2−149 2149X − 1

f̃I = X5 +X4 − 4X3 − 3X2 + 3X + 1
n m̃n g̃n

1177 2107 + 2−107 2107X − (2214 + 1)
1199 2109 + 2−109 2109X − (2218 + 1)

in an attempt to reduce the effort to process the resulting matrix, for n ∈ {1177, 1199}
additional relations were collected using the algebraic polynomial f̃I, as specified in Table 1
along with the common roots m̃n and rational polynomials g̃n. Although n = 1177 and
n = 1199 share f̃I, to obtain the additional relations it turned out to be more convenient to
use the vanilla all-sieving approach from [14] twice, cf. Section 4.4.

Another possibility would have been to select the single degree 6 polynomial X6 − 2. Its
relatively low degree and very small coefficients lead to a huge number of smooth algebraic
values, all with a relatively large rational counterpart (again due to the low degree). Atypically,
rational sieving could have been appropriate, whereas due to large cofactor sizes rational
cofactoring would be relatively costly. Overall degree 8 can be expected to work faster, despite
the fact that it requires two algebraic polynomials. Degree 7 would require three algebraic
polynomials and may be even worse than degree 6 for our sets of numbers, but would have
had the advantage that numbers of the form 2n + 1 could have been included too

4 Relation collection for the target set

4.1 Integrating the precomputation

The first step of Coppersmith’s factorization factory is the preparation and storage of a
precomputed table of pairs corresponding to smooth rational polynomial values. With the
parameters from [8] this table contains L(1.639) pairs. Assuming composites of relevant sizes,
this is huge – possibly to the extent that it is impractical. If we apply Coppersmith’s idea
as suggested in the second to last paragraph of Section 2.4 to a relatively small number of
composites with the original NFS parameter choices, the table would contain L(1.683) pairs,
which is even worse.

In our case excessive storage requirements can be avoided. First of all, with the original
SNFS parameter choices the table would contain “only” L(1.145) pairs corresponding to
smooth algebraic polynomial values, because we are using the factorization factory for the
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SNFS with a shared algebraic polynomial. Though better, this is still impractically large.
Another effect in our favor is that we are using degree 8 polynomials, which is a relatively
large degree compared to what is suggested by the asymptotic runtime analysis: for our
N -values the integer closest to ( 3 log(N)

2 log(log(N)))
1/3 would be 6. A larger degree leads to larger

algebraic values, fewer smooth values, and thus fewer values to be stored.
Most importantly, however, we know our set of target numbers in advance. This allows us

to process precomputed pairs right after they have been generated, and to keep only those
that lead to a smooth rational polynomial value as well. With ` numbers to be factored and
L(1.5232 ) as smoothness bound (cf. Section 2.2), this reduces the storage requirements from
L(1.523)L(−1.523

4 ) = L(1.145) to `L(1.523)L(−1.523
2 ) = `L(0.763). For our target sets this is

only on the order of TBs (less than six TBs for SII.).
Despite the integration of the algebraic precomputation stage and the processing of the

resulting smooth algebraic values on the rational side, the stages are described separately
below.

4.2 Algebraic sieving

For the sieving of the polynomial fI = X8 − 2 from Section 3.2 we used a search space
of approximately 266 pairs and varying smoothness bounds. At most two larger primes less
than 237 were allowed in the otherwise smooth fI-values.

The sieving task is split up into a large number of subtasks: given a root z of fI mod-
ulo a large prime number q, a subtask consists of finding pairs (a, b) for which a/b ≡
z mod q (implying that q divides b8fI(a/b)) and such that the quotient b8fI(a/b)/q is smooth
(except for the large primes) with respect to the largest h · 108 less than q, with h ∈
{3, 4, 6, 8, 12, 15, 20, 25, 30, 35}.

Pairs (a, b) for which a/b ≡ z mod q form a two-dimensional lattice of index q in Z2 with
basis

(
q
0

)
,
(
z
1

)
. After finding a reduced basis u, v ∈ Z2 for the lattice, the intersection of the

original search space and the lattice is approximated as {
(
a
b

)
= iu+ jv : i, j ∈ Z, |i| < 2I , 0 ≤

j < 2J}. The bounds I, J ∈ Z>0 were (or, rather, “are ideally” as this is what we converged
to in the course of our experiments) chosen such that I + J + log2(q) ≈ 65 and such that
max(|a|) ≈ max(b), thus taking the relative lengths of u and v into account. Sieving takes
place in a size 2I+J+1 rectangular region of the (i, j)-plane while avoiding storage for the
(even,even) locations, as described in [13]. After the sieving, all fI-values corresponding to
the reported locations are divided by q and trial-divided as also described in [13], allowing
at most two prime factors between q and 237. Allowing three large primes turned out to be
counterproductive with slightly more relations at considerably increased sieving time or many
more relations at the expense of a skyrocketing cofactoring effort.

Each (a, b) with smooth algebraic polynomial value resulting from subtask (q, z) induces
a pair (−a, b) with smooth algebraic polynomial value for subtask (q,−z). Subtasks thus
come in pairs: it suffices to sieve for one subtask and to recover all smooth pairs for the other
subtask before further processing. For n ≥ 1151 we used most q-values with 4·108 < q < 8·109

(almost 233), resulting in about 157 million pairs of subtasks. For the other n-values we used
fewer pairs of subtasks: about 126 million for n ∈ {1007, 1009} and about 143 million for the
others.

Subtasks are processed in disjoint batches consisting of all (prime,root) pairs for a prime
in an interval of length 2500 or 10 000. Larger intervals are used for larger q-values, because
the latter are processed faster: their sieving region is smaller (cf. above), and their larger
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smoothness bounds require more memory and thus more cores. After completion of a batch,
the resulting pairs are inspected for smoothness of their applicable rational polynomial values
as further described below. Processing the batches, not counting the rational smoothness
tests, required about 2367 core years. It resulted in 1.57 · 1013 smooth algebraic values, and
thus for each n ∈ SI at most twice that many values to be inspected for rational smoothness.
Storage of the 1.57 ·1013 values (in binary format at five bytes per value) would have required
70 TB. As explained in Section 4.1 we avoided these considerable storage requirements by
processing the smooth algebraic values almost on-the-fly; this also allowed the use of a more
relaxed text format at about 20 bytes per value.

Sieving for n ∈ SII was done in the same way. For the polynomial fII = X8 − 8 and
n ∈ {1147, 1171} about 118 million pairs of subtasks were processed for most q-values with
3 · 108 < q < 5.45 · 109. For the other n-values in SII about 94% to 96% of that range of q-
values sufficed. Overall, sieving for n ∈ SII required 1626 core years and resulted in 1.16 ·1013

smooth algebraic values.

4.3 Rational factorization trees

Each time a batch of fI-sieving subtasks is completed (cf. Section 4.2) the pairs (a, b) produced
by it are partitioned over four initially empty queues Q34,Q35,Q36, and Q37: if the largest
prime in the factorization of b8fI(a/b) has bitlength i for i ∈ {35, 36, 37} then the pair is
appended to Qi, all remaining pairs are appended to Q34.

After partitioning the new pairs among the queues, the following is done for each n ∈ SI
(cf. Section 3.1). For all pairs (a, b) in ∪α(n)i=34Qi, with α(n) as in Table 2, the rational polynomial
value bgn(a/b) (with gn as in Table 1) is tested for smoothness: if bgn(a/b) is smooth, then
(a, b) is included in the collection of relations for the factorization of 2n − 1, else (a, b) is
discarded. The smoothness test for the bgn(a/b)-values is conducted simultaneously for all

pairs (a, b) ∈ ∪α(n)i=34Qi using a factorization tree as in [15, Section 4] (see also [4]) with
τ(n) · 108 and 2β(n) as smoothness and cofactor bounds, respectively (with τ(n) and β(n) as
in Table 2). Here the cofactor bound limits the number and the size of the factors in bgn(a/b)
that are larger than the smoothness bound.

For all n ∈ SI, besides the runtimes Table 2 also lists the numbers of relations found, of
free relations [24], of relations after duplicate removal (and inclusion of the free relations),
and of prime ideals that occur in the relations before the first singleton removal (where the
number of prime ideals is the actual dimension of the exponent vectors). All resulting raw
matrices are over-square. For n ∈ {1193, 1199} the over-squareness is relatively small. For
n = 1193 we just dealt with the resulting rather large filtered matrix. For n = 1199, and for
n = 1177 as well, additional sieving was done, as further discussed in the section below. The
unusually high degree of over-squareness for the smaller n-values is a consequence of the large
amount of data that had to be generated for the larger n-values, and that could be included
for the smaller ones at little extra cost.

Completed batches of subtasks for fII-sieving were processed in the same way. The results
are listed in Table 2.

4.4 Additional sieving

In an attempt to further reduce the size of the (filtered) matrix we collected additional rela-
tions for n ∈ {1177, 1199} using the degree 5 algebraic polynomial f̃I and the rational poly-
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Table 2.

n α(n) τ(n) β(n)
core relations occurring
years found free total unique prime ideals

1007 34 5 99 26 6 157 265 485 47 681 523 4 083 240 054 1 488 688 670
1009 34 5 99 26 6 076 365 897 47 681 523 4 030 378 014 1 487 997 805
1081 35 5 103 48 7 704 145 069 92 508 436 5 484 250 026 2 828 752 381
1111 35 5 103 46 5 636 554 807 92 508 436 4 045 778 202 2 744 898 588
1129 35 5 103 47 4 860 167 788 92 508 436 3 447 412 400 2 690 405 347
1151 36 5 105 77 9 026 908 346 179 644 953 6 878 035 126 5 229 081 896
1153 36 5 105 78 8 919 329 699 179 644 953 6 798 580 785 5 219 976 433
1159 36 5 105 78 8 494 336 817 179 644 953 6 454 287 572 5 179 538 761
1177 37 20 138 140 15 844 796 536 349 149 710 12 687 801 912 10 098 132 272
1193 37 20 141 171 13 873 940 124 349 149 710 11 120 476 664 9 912 486 202
1199 37 20 141 169 13 201 986 116 349 149 710 10 600 157 337 9 795 656 570
core years for n ∈ SI: 906
1093 35 5 103 37 5 380 284 567 92 508 436 3 777 018 420 2 736 825 054
1109 36 5 105 55 9 621 428 465 179 644 953 7 102 393 219 5 134 440 256
1117 36 5 105 55 8 930 755 992 179 644 953 6 762 813 242 5 220 018 492
1123 36 5 105 54 8 686 858 952 179 644 953 6 567 794 152 5 197 770 153
1147 37 20 138 122 15 404 494 545 349 149 710 12 096 909 112 9 967 719 536
1171 37 20 138 115 12 240 930 101 349 149 710 9 688 750 293 9 556 433 885
core years for n ∈ SII: 438

nomials g̃n from Table 1. These two n-values share f̃I, so we could have used Coppersmith’s
approach. For various reasons we treated them separately using the software from [14].

For n = 1177 we used on the rational side smoothness bound 3 · 108, cofactor bound 2109,
and large factor bound 237. On the algebraic side these numbers were 5·108, 274, and 237. Using
large primes q ∈ [3 ·108, 3.51 ·108] on the rational side (as opposed to the algebraic side above)
we found 1 640 189 494 relations, of which 1 606 180 461 remained after duplicate removal.
With 1 117 302 548 free relations this led to a total of 2 723 483 009 additional relations. With
the 12 687 801 912 relations found earlier, this resulted in 15 411 284 921 relations in total,
involving 15 926 778 561 prime ideals. Although this is not over-square (whereas the earlier
relation set for n = 1177 from Section 4.3 was over-square), the new free relations contained
many singleton prime ideals, so that after singleton removal the matrix was easily over-square.
The resulting filtered matrix was deemed to be small enough.

For n = 1199 the rational smoothness bound is 4 · 108. All other parameters are the
same as for n = 1177. After processing the rational large primes q ∈ [4 · 108, 6.85 · 108] we
had 6 133 381 386 degree 5 relations (of which 5 674 876 905 unique) and 1 117 302 548 free
relations. This led to 17 392 336 790 relations with 15 955 331 670 prime ideals and a small
enough filtered matrix.

The overall reduction in the resulting filtered matrix sizes was modest, and we doubt
that this additional sieving experiment, though interesting, led to an overall reduction in
runtime. On the other hand, spending a few months (thus a few hundred core years) on
additional sieving hardly takes any human effort, whereas processing (larger) matrices is
(more) cumbersome. Another reason is that we have resources available that cannot be used
for matrix jobs.
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4.5 Equipment used

Relation collection for n ∈ SI was done from May 22, 2010, until February 21, 2013, entirely
on clusters at EPFL as listed in Table 3: 82% on lacal 1 and lacal 2, 12% on pleiades, 3%
on greedy, and 1.5% on callisto and vega each, spending 3273 (2367 + 906) core years. Fur-
thermore, 65 and 327 core years were spent on lacal 1 and lacal 2 for additional sieving for
n = 1177 and n = 1199, respectively. Thus a total of 3665 core years was spent on relation
collection for n ∈ SI.

Relation collection for n ∈ SII was done from February 21, 2013, until September 11,
2014, on part of the XCG container cluster at Microsoft Research in Redmond, USA, and on
clusters at EPFL: 46.5% on the XCG cluster, 45.5% on lacal 1 and lacal 2, 5% on castor, 2%
on grid, and 1% on greedy, spending a total of 2064 (1626 + 438) core years. It followed the
approach described above for fI, except that data were transported on a regular 500 GB hard
disk drive that was sent back and forth between Redmond and Lausanne via regular mail.

Table 3. Description of available hardware. We have 100% access to the equipment at LACAL and to 134 nodes
of the XCG container cluster (which contains many more nodes) and limited access to the other resources. A
checkmark (X) indicates InfiniBand network. All nodes have 2 processors.

location name processor nodes cores
per node

cores GHz GB RAM per
node core

TB disk
space

Xbellatrix
callisto
castor
greedy
vega

Sandy Bridge 424 16 6784 2.2 32 2
Harpertown 128 8 1024 3.0 32 4

EPFL Ivy Bridge 52 16 832 2.6
{
50: 64
2:256

4
16

22
≈ 1000 mixed cores, ≈ 1 GB RAM per core; 70% windows, 25% linux, 5% mac

Harpertown 24 8 192 2.66 16 2
Xlacal 1
Xlacal 2

pleiades
storage server

AMD 53 12 636 2.2 16 1 1
3

LACAL
AMD 28 24 672 1.9 32 1 1

3

Woodcrest 35 4 140 2.66 8 2
AMD 1 24 24 1.9 32 1 1

3
58

Microsoft
Research

part of the XCG
container cluster

AMD 134 8 1072 2.1 32 4
Switzerland grid several clusters at several Swiss institutes

5 Processing the matrices

Although relation collection could be shared among the numbers, the matrices must all be
treated separately. Several of them required an effort that is considerably larger than the
matrix effort reported in [20]. There a 192 795 550 × 192 796 550-matrix with on average 144
non-zeros per column (in this section all sizes and weights refer to matrices after filtering)
was processed on a wide variety of closely coupled clusters in France, Japan, and Switzer-
land, requiring four months wall time and a tenth of the computational effort of the relation
collection. So far it was the largest binary matrix effort that we are aware of, in the public
domain. The largest matrix done here is about 4.5 times harder.

5.1 The block Wiedemann algorithm

Wiedemann’s algorithm. Given a sparse r × r matrix M over the binary field F2 and
a binary r-dimensional vector v, we have to solve Mx = v (cf. Section 2.3). The minimal
polynomial F of M on the vector space spanned by {M0v,M1v,M2v, . . .} has degree at
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most r. Denoting its coefficients by Fi ∈ F2 and assuming that F0 = 1 we have F (M)v =∑r
i=0 FiM

iv = 0, so that x follows as
∑r

i=1 FiM
i−1v. Wiedemann’s method [34] determines

x in three steps. For any j with 1 ≤ j ≤ r the j-th coordinates of the vectors M iv for
i = 0, 1, 2, . . . satisfy the linear recurrence relation given by the Fi. Thus, once the first
2r + 1 of these j-th coordinates have been determined using 2r iterations of matrix×vector
multiplications (Step 1), the Fi can be computed using the Berlekamp-Massey method [26]
(Step 2), where it may be necessary to compute the least common multiple of the results
of a few j-values. The solution x then follows using another r matrix×vector multiplications
(Step 3).

Steps 1 and 3 run in time Θ(rw(M)), where w(M) denotes the number of non-zero entries
of M . With Step 2 running in time O(r2) the effort of Wiedemann’s method is dominated by
steps 1 and 3.

Block Wiedemann. The efficiency of Wiedemann’s conceptually simple method is consid-
erably enhanced by processing several different vectors v simultaneously, as shown in [9, 33]:
on 64-bit machines, for instance, 64 binary vectors can be treated at the same time, at neg-
ligible loss compared to processing a single binary vector. Though this slightly complicates
Step 2 and requires keeping the 64 first coordinates of each vector calculated per iteration in
Step 1, it cuts the number of matrix×vector products in steps 1 and 3 by a factor of 64 and
effectively makes Wiedemann’s method 64 times faster. This blocking factor of 64 can, obvi-
ously, be replaced by 64t for any positive integer t. This calculation can be carried out by t
independent threads (or on t independent clusters, [1]), each processing 64 binary vectors at
a time while keeping the 64t first coordinates per multiplication in Step 1, and as long as the
independent results of the t-fold parallelized first step are communicated to a central location
for the Berlekamp-Massey step [1].

As explained in [9, 20] a further speed-up in Step 1 may be obtained by keeping, for some
integer k > 1, the first 64kt coordinates per iteration (for each of the t independent 64-bit
wide threads). This reduces the number of Step 1 iterations from 2 r

64t to ( 1k + 1) r
64t while

the number of Step 3 iterations remains unchanged at r
64t . However, it has a negative effect

on Step 2 with time and space complexities growing as (k + 1)µtµ−1r1+o(1) and (k + 1)2tr,
respectively, for r →∞ and with µ the matrix multiplication exponent (we used µ = 3).

Double matrix product. In all previous work that we are aware of a single filtered matrix
M is processed by the block Wiedemann method. This matrix M replaces the original matrix
Mraw consisting of the exponent vectors, and is calculated as M = Mraw×M1×M2 for certain
filtering matrices M1 and M2. For most matrices here, we adapted our filtering strategy,
calculated M̃1 = Mraw ×M1, and applied the block Wiedemann method to the r × r matrix
M without actually calculating it but by using M = M̃1×M2. Because Mv can be calculated
as M̃1(M2v) at (asymptotic) cost w(M2)+w(M̃1) this is advantageous if r(w(M̃1)+w(M2)) is
lower than the product of the dimension and weight resulting from traditional filtering. Details
about the new filtering strategy will be provided once we have more experience with it.

Error detection. During relation collection no special attention has to be paid to detect
errors due to malfunctioning hardware. Correctness of each of the resulting relations can easily
be checked, and incorrect ones can, in principle (but see Section 6), simply be removed. Thus,
occasional malfunctions do not noticeably affect the efficiency of the relation collection step.

Mishaps during the matrix step, however, need to be detected as a single incorrect bit
may render the entire calculation useless – not something one likes to see after a costly
calculation that may last months. Traditionally, simple common sense tricks are used that
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depend on the matrix step used and that allow detection and, if required, rollback to a recent
correct state at relatively small additional cost. They are part of factoring “folklore” and
normally not explicitly described. For instance, in [2, Section 3.3], where Gaussian elimination
was used, spurious dependencies (such as a d-th column consisting of the sum of columns 1
through d − 1 for regularly spaced d-values) were upfront included in the matrix. For many
later factorizations (such as [12]) block Lanczos was used. This generates a sequence of vectors
with most of them mutually orthogonal, so an occasional orthogonality check suffices to keep
the calculation on track.

For block Wiedemann, we used the following simple method, used since about 2001 by
Emmanuel Thomé [32] and in 2002 independently developed by the first author and Jens
Franke to deal with frequently flipping bits which went by unnoticed in the floating-point
focussed infrastructure they relied upon; for steps 1 and 3 it later appeared in [16]. For a
checkpoint distance c and a random vector z we (reliably) precompute u = (MT )cz. Because
the inner product 〈u, x〉 equals 〈z,M cx〉, probably almost all errors can be detected that
occurred in Step 1 between the two consecutive checkpoints x and M cx. In Step 3 one can
check that the same checkpoints as in Step 1 are computed and one can do a similar, but
faster, inner product check as in Step 1 (this was used once, when some files were not copied
or written correctly); we do not elaborate. The result of Step 2 can be checked by verifying
that certain coefficients are zero in a product of two large matrix-polynomials. The check can
be sped up in a simple randomized manner.

5.2 Matrix results

All matrix calculations were done at EPFL on the clusters with InfiniBand network (bellatrix,
lacal 1, and lacal 2) and the storage server (cf. Table 3). Despite our limited access to bellatrix,
it was our preferred cluster for steps 1 and 3 because its larger memory bandwidth (compared
to lacal 1 and lacal 2) allowed us to optimally run on more cores at the same time while also
cutting the number of core years by a factor of about two (compared to lacal 1). The matrix
from [20], for instance, which would have required about 154 core years on lacal 1 would
require less than 75 core years on bellatrix.

Table 4 lists some data for all matrices we processed. Jobs were usually run on a small
number of nodes (running up to five matrices at the same time), as that requires the least
amount of communication and storage per matrix and minimizes the overall runtime. Ex-
tended wall times were of no concern. The Berlekamp-Massey step, for which there are no
data in Table 4, was run on the storage server. Its runtime requirements varied from several
days to two weeks, using just 8 of the 24 available cores, writing and reading intermediate
results to and from disk to satisfy the considerable storage needs. For each of the numbers
Step 2 thus took less than one core year.

The error detection methods proved their worth: at least once in Step 1 during the start-
up phase of bellatrix and occasionally for lacal 1 and lacal 2 due to writing problems on the
network file system.

6 Factorizations

For most n the matrix solutions were processed in the usual way [27, 28, 3] to find the unknown
factors of 2n − 1. This required an insignificant amount of runtime. The software from [3] is,
however, not set up to deal with more fields than the field of rational numbers and a single
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Table 4. Data about the matrices processed, as explained in Section 5.1, with M̃1, M2, and M matrices of
sizes r× r̃, r̃× (r+ δ), and r× (r+ δ), respectively, for a relatively small positive integer δ. Runtimes in italics
are estimates for data that were not kept. Starting from Step 3 for n = 1151 a different configuration was
used, possibly including some changes in our code, and the programs ran more efficiently. Until n = 1159 a
blocking factor of 128 was used (so t must be even), for n ∈ {1177, 1193, 1199} ∪ SII it was 64 in order to fit
on 16 nodes. The green bars indicate the periods that the matrices were processed, on the green scale at the
top. Dates are in the format yymmdd.[

121207 . . . core years . . . 150109
]

n r, r̃, δ or r, δ (cf. above) weight(s) t k Step 1 Step 3 start - end

1007
{
r= 38 986 666
r̃= 61 476 801, δ= 420

{
201.089r
31.518r̃

12 3 3.5 2.6 121207 - 130106
(30 days)

1009
{
r= 39 947 548
r̃= 64 737 522, δ= 348

{
202.077r
36.958r̃

12 2 3.9 2.6 130424 - 130610
(47 days)

1081
{
r= 79 452 919
r̃=122 320 052, δ=1624

{
183.296r
15.332r̃

16 2 20.3 13.5 130130 - 130311
(41 days)

1111
{
r=108 305 368
r̃=167 428 008, δ=1018

{
180.444r
13.887r̃

24 2 41.8 30.6 130109 - 130611
(154 days)

1129
{
r=132 037 278
r̃=204 248 960, δ= 341

{
180.523r
13.434r̃

16 2 64.8 44.4 121231 - 130918
(262 days)

1151
{
r=164 438 818
r̃=253 751 725, δ= 911

{
174.348r
11.810r̃

12 2 130.7 38.3 130316 - 131210
(270 days)

1153
{
r=168 943 024
r̃=260 332 296, δ=1830

{
169.419r
11.014r̃

8 2 75.4 43.3 130326 - 131026
(215 days)

1159
{
r=179 461 813
r̃=276 906 625, δ=1278

{
174.179r
11.688r̃

4 2 87.0 58.0 130808 - 140207
(184 days)

1177
{
r=192 693 549
r̃=297 621 101, δ=1043

{
216.442r
19.457r̃

4 3 89.3 74.1 140119 - 140525
(127 days)

1193 r = 297 605 781, δ = 1024 272.267r 6 3 129.5 105.3 131029 - 140819
(295 days)

1199 r = 270 058 949, δ = 1064 217.638r 6 3 104.8 86.0 140626 - 141211
(169 days)

core years for n ∈ SI: 751.0 + 498.7 = 1249.7

1093
{
r= 90 140 482
r̃=138 965 105, δ=1854

{
204.151r
16.395r̃

8 3 13.4 10.1 140731 - 140912
(44 days)

1109
{
r=106 999 725
r̃=164 731 867, δ=1662

{
216.240r
15.976r̃

8 3 20.3 15.2 140801 - 140919
(50 days)

1117
{
r=117 501 821
r̃=182 813 008, δ=1894

{
202.310r
15.638r̃

6 3 25.5 20.9 140805 - 141121
(109 days)

1123
{
r=124 181 748
r̃=192 010 818, δ=3225

{
197.677r
14.222r̃

4 3 30.9 24.1 140819 - 141220
(124 days)

1147
{
r=154 051 173
r̃=237 416 402, δ=1170

{
218.516r
17.141r̃

6 3 52.8 39.6 141001 - 150107
(99 days)

1171
{
r=224 613 073
r̃=349 164 598, δ=1252

{
215.665r
14.602r̃

6 3 137.0 105.0 140921 - 150109
(111 days)

core years for n ∈ SII: 279.9 + 214.9 = 494.8

algebraic number field defined by a single algebraic polynomial (in our case fI for n ∈ SI
and fII for n ∈ SII). Using this software for n ∈ {1177, 1199}, the values for which additional
sieving was done for the polynomials f̃I and g̃n from Table 1, would have required a substantial
amount of programming. To save ourselves this non-trivial effort we opted for the naive old-
fashioned approach used for the very first SNFS factorizations as described in [24, Section
3] of finding explicit generators for all first degree prime ideals in both number fields Q( 8

√
2)

and Q(ζ11 + ζ−1
11 ) and up to the appropriate norms. Because both number fields have class

number equal to one and the search for generators took, relatively speaking, an insignificant
amount of time, this approach should have enabled us to quickly and conveniently deal with
these two more complicated cases as well.

For n = 1177, however, we ran into an unexpected glitch: the 244 congruences that were
produced by the 256 matrix solutions (after dealing with small primes and units) were not
correct modular identities involving squares of rational primes and first degree prime ideal
generators. This means that the matrix step failed and produced incorrect solutions, or that
incorrect columns (i.e., not corresponding to relations) were included in the matrix. Further
inspection learned that the latter was the case. It turned out that due to a buggy adaptation
to the dual number field case incorrect “relations” containing unfactored composites (due to
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the speed requirements unavoidably produced by sieving and cofactorization) were used as
input to the filtering step. When we started counting the number of bad inputs, extrapolation
of early counts suggested quite a few more than 244 bad entries, implying the possibility that
the matrix step had to be redone because the 244 incorrect congruences may not suffice to
produce correct congruences (combining incorrect congruences to remove the bad entries).
We narrowly escaped because, due to circumstances beyond anyone’s control [30], the count
unexpectedly slowed down and only 189 bad entries were found. This then led to a total of
195 correct congruences, after which the factorization followed using the approach described
above. The bug has been fixed, and for n = 1199 the problem did not recur.

The seventeen factorizations that we obtained are listed below: n, the lengths in binary
and decimal of the unfactored part of 2n − 1, factorization date, the lengths of the smallest
newly found prime factor, and the factor.

1007 : 843-bit c254, Jan 8 2013, 325-bit p98:{
456648335230526285864952133714425117400753719511824784488197858947527635536
20148815526546415896369

1009 : 677-bit c204, Jun 12 2013, 295-bit p89:{
328016293993162203862559385660775410788362383458683411815672560081556389845
94836583203447

1081 : 833-bit c251, Mar 11 2013, 380-bit p115:{
143958109023236030672465272149722147580189359410433570676762910927750259908
3325989958974577353063372266168702537641

1111 : 921-bit c278, Jun 13 2013, 432-bit p130:{
940169921742610112608562740053788168866892343030602990266594724011208557285
0557654128039535064932539432952669653208185411260693457

1129 : 1085-bit c327, Sep 20 2013, 460-bit p139:{
268286355184946394155501223506130260611391954211714181416821906546974102697
3149811937861249380857772014308434017285472953428756120546822911

1151 : 803-bit c242, Dec 12 2013, 342-bit p103:{
831191943103956096429163491797781276599700151644473213627100061117477526433
7926657343369109100663804047

1153 : 1099-bit c331, Oct 28 2013, 293-bit p89:{
101223609612478739536241908851788886296068899804351792496835242933132301150
56983720103793

1159 : 1026-bit c309, Feb 9 2014, 315-bit p95:{
629992650360823359001119647014620004385929325178156608184518819156211543492
10038027033309344287

1177 : 847-bit c255, May 29 2014, 370-bit p112:{
201566078754892345466259020562112388697008576143602159294285984752310846552
3348455927947279783179798610711213193

1193 : 1177-bit c355, Aug 22 2014, 346-bit p104:{
852273262013143618238937766054336366702174253883119064577144090160499615075
16230416822145599757462472729

1199 : 1041-bit c314, Dec 17 2014, 252-bit p76:
4218108040611917562429786369962714155026225684343947313001103389074302369031

1093 : 976-bit c294, Sep 13 2014, 405-bit p122:{
461163329434364525515405763156969852979902598694113118132223032310471964441
60418969946791520558378694863913363980328293449
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1109 : 998-bit c301, Sep 20 2014, 483-bit p146:{
246160192118893252008690552181810705879686400612203285102080433991774223148
89351269580238737955397055519355385591659502001884424804253804809798519

1117 : 1102-bit c332, Nov 24 2014, 259-bit p78:
520973969756320610191611683062985619298001156192232208204963188406964166233609

1123 : 1064-bit c321, Dec 23 2014, 285-bit p86:{
432174937442617825091240517171252021834859519423625288706968889787572287434
21469882287

1147 : 873-bit c263, Jan 10 2015, 378-bit p114:{
471661056045900801786914314898846331049686822504477947359335825425991737416
239736817636268059783884146105254485417

1171 : 1134-bit c342, Jan 11 2015, 423-bit p128:{
123486709628332584428076753832658383476279975879401175061904202736046204438
43301292612106209291538933323931056186142998412331913

The total cost for the eleven factorizations for n ∈ SI was about 4915 core years, with relation
collection estimated at 3665 core years, and all matrices in about 1250 core years. The total
cost for the six factorizations for n ∈ SII was about 2559 core years, with relation collection
estimated at 2064 core years, and all matrices in about 495 core years. The total cost for all
seventeen factorizations was close to but less than 7500 core years.

Individual factorization using the SNFS would have cost ten to fifteen thousand core years
for all n ∈ SI and four to six thousand core years for all n ∈ SII, so overall we obtained a
worthwhile saving.

With smallest newly found factors of 76 and 78 decimal digits (of 21199−1 and of 21117−1,
respectively) and a largest factor found using the ECM of 83 decimal digits [35], it may be
argued that our ECM preprocessing could have been a bit “luckier”; on the bright side, the
254-digit (844-bit) prime factor of 21117 − 1 may be a new largest prime factor record for
SNFS factorizations.

7 Conclusion

We have shown that given a list of properly chosen special numbers their factorizations may
be obtained using Coppersmith’s factoring factory with considerable savings, in comparison
to treating the numbers individually. Application of Coppersmith’s idea to general numbers
looks less straightforward. Taking the effects into account of rational versus algebraic pre-
computation (giving rise to many more smooth values) and of our relatively large algebraic
degree (lowering our number of precomputed values), extrapolation of the 70 TB disk space
estimate given at the end of Section 4.2 suggests that an EB of disk space may be required if
a set S of 1024-bit RSA moduli to be factored is not known in advance. This is not infeasible,
but not yet within reach of an academic effort. Of course, these excessive storage problems
vanish if S is known in advance. But the relative efficiency of current implementations of siev-
ing compared to factorization trees suggests that |S| individual NFS efforts will outperform
Coppersmith’s factorization factory, unless the moduli get larger. This is compounded by the
effect of advantageously chosen individual roots, versus a single shared root.

Regarding the SNFS factorization factory applied to Mersenne numbers, the length of an
interval of n-values for which a certain fixed degree larger than our d = 8 is optimal, will be
larger than our interval of n-values. And, as the corresponding Mersenne numbers 2n− 1 will
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be larger than the ones here, fewer will be factored by the ECM. Thus, we expect that future
table-makers, who may wish to factor larger Mersenne numbers, can profit from the approach
described in this paper to a larger extent than we have been able to – unless of course better
factorization methods or devices have emerged. Obviously, the SNFS factorization factory
can be applied to other Cunningham numbers, or Fibonacci numbers, or yet other special
numbers. We do not elaborate.
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