
Pleco and Plectron – Two Provably Secure Password
Hashing Algorithms

Bo Zhu, Xinxin Fan, and Guang Gong
Department of Electrical and Computer Engineering, University of Waterloo, Canada

{bo.zhu,x5fan,ggong}@uwaterloo.ca

ABSTRACT
Password-based authentication has been widely deployed in
practice due to its simplicity and efficiency. Storing pass-
words and deriving cryptographic keys from passwords in
a secure manner are crucial for many security systems and
services. However, choices of well-studied password hash-
ing algorithms are extremely limited, as their security re-
quirements and design principles are different from common
cryptographic algorithms. In this paper, we propose two
simple and practical password hashing algorithms, Pleco
and Plectron. They are built upon well-understood cryp-
tographic algorithms, and combine advantages of symmetric
and asymmetric primitives. By employing the Rabin cryp-
tosystem, we prove that the one-wayness of Pleco is at
least as strong as the hard problem of integer factorization.
In addition, both password hashing algorithms are designed
to be sequential memory-hard, in order to thwart large-scale
password cracking by parallel hardware, such as GPUs, FP-
GAs, and ASICs. Moreover, total computation and memory
consumptions of Pleco and Plectron are tunable through
their cost parameters.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication; D.4.6
[Operating Systems]: Security and Protection—authenti-
cation, cryptographic controls

General Terms
Security, Algorithm

Keywords
Password, hashing, login, authentication

1. INTRODUCTION
Password-based authentication is probably the most widely
deployed security mechanism across all information systems
thanks to its cost-effectiveness and efficiency. However, there

are two fundamental limitations of password-based authen-
tication: 1) Users routinely pick poor passwords which are
particularly subject to dictionary attacks or brute-force search;
and 2) A device or server storing a large number of passwords
is consistently a juicy target for attackers and how to store
passwords securely and minimize damages if the device or
server has been breached is non-trivial. As an effective coun-
termeasure, all passwords should be obscured together with
user-specific, random and high-entropy salts by applying a
one-way function, namely password hashing, before storing
them in the device or server. During authentication, the
user’s input is processed in the same way and then the re-
sult is compared with the one pre-stored in the device or
server.

Password hashing is one of the most basic security consider-
ations for setting up a password-based user authentication
system and there are several requirements that a good pass-
word hashing algorithm should fulfill:

• Similar as most cryptographic primitives, the password
hashing algorithm should behave as a random func-
tion that ensures one-wayness and collision resistance,
and is resist to side-channel attacks as well as known
cryptanalytic technologies such as time-memory trade-
off [10, 14], differential/linear cryptanalysis [7, 18];

• Different from most cryptographic primitives, the pass-
word hashing algorithm should be heavyweight in com-
putation and memory usage to slow down brute-force
attacks to a certain degree and make large-scale at-
tacks economically difficult. Note that the desired
heavyweightness is expected to be roughly consistent
for all platforms, no matter software or hardware;

• Server-specific shortcut is an optional but very attrac-
tive feature for a password hashing scheme. Once
this feature is enabled and certain private informa-
tion is known, legitimate servers or devices can obscure
passwords by using less computation (server-specific
computational shortcut) and/or less memory (server-
specific memory shortcut).

Although password hashing is the foundation of many real-
world security systems and services, there are only limited
proposals well studied and adopted, due to the aforemen-
tioned uncommon and demanding requirements. PBKDF2,
which is a key derivation function designed by RSA Labora-

tories [15] and standardized in RFC 2898, has been the sub-
ject of extensive research and still remains the best conser-
vative choice. PBKDF2 is a conventional design that mainly
relies on iterating a pseudorandom function (which is usu-
ally HMAC-SHA1) a certain number of times. However, the
iterative design leads to quite unaggressive usage of memory,
which makes large-scale and parallel cracking possible [11].
bcrypt is designed by Provos and Mazières [25], based on
the Blowfish cipher [28] with a purposefully expensive key
schedule. Thanks to the adaptive iteration count that can
be increased to make it slower, bcrypt could remain resis-
tant to brute-force search attacks even with vast increases
in computing power. Like PBKDF2, bcrypt works in-place
in memory and performs poorly towards thwarting attacks
using dedicated hardware. scrypt, designed by Percival [23],
is a proposal which not only offers stronger security from a
theoretical point of view than the other two but also allows
one to configure the amount of space in memory required
to efficiently complete the algorithm. This additional fea-
ture reduces the advantage that attackers can gain by using
the custom-designed parallel circuits, and has been exten-
sively evaluated when scrypt was selected as the underlying
proof-of-principle function for many cryptocurrencies, e.g.,
Litecoin, Dogecoin and Mastercoin.

1.1 Our Contributions
In this paper, we propose two novel password hashing algo-
rithms, named Pleco and Plectron, respectively, based
upon several well-studied cryptographic structures and prim-
itives. The novelty in the designs of Pleco and Plectron
is the combination of asymmetric and symmetric compo-
nents that offer a twofold benefit: 1) Since the tools to crypt-
analyzing asymmetric algorithms are quite different from
those for symmetric ones, the composition of asymmetric
and symmetric components often makes the cryptanalysis
much harder. This is analogous to the designs of ARX
based cryptographic primitives [1, 4, 20] and the block ci-
pher IDEA [16] where mixed operations are used; 2) The
asymmetric component not only makes our scheme provably
secure (the security of Pleco is as strong as the hard prob-
lem of integer factorization), but also enables server-specific
computational shortcuts as a result of faster exponentiation
via the Chinese Remainder Theorem when factors of moduli
are known. In addition to describing the Pleco and Plec-
tron designs in great detail, we also theoretically prove their
security with respect to one-wayness and collision resistance.

1.2 Organization
The organization of the paper is as follows. Section 2 de-
scribes the cryptographic primitives that Pleco and Plec-
tron employ. The designs of Pleco and Plectron are
specified in Section 3. We discuss the design rationale and
provide the security analysis of Pleco and Plectron in
Section 4. We also propose several extensions of the new
hashing algorithms in Section 5, followed by the efficiency
analysis in Section 6. We discuss the related work in Section
7 and finally conclude this paper in Section 8.

2. INGREDIENTS OF PLECO/PLECTRON
This section briefly describes several cryptographic primi-
tives, which are the core components in the designs of Pleco
and Plectron.

2.1 Provably One-Way Function
It is proven that the security of the Rabin public-key en-
cryption scheme is equivalent to the hard problem of integer
factorization [26]. More theoretically, let us define

Rabinn(x) = x2 (mod n),

where x is a positive integer in the multiplicative group of
integers modulo n. Then computing the square roots, i.e.,
reversing the function Rabinn(x), is proven to be equivalent
to factorizing the integer n.

To obtain a hard-to-factor modulus n, one can utilize the
same approach as generating moduli for the RSA algorithm,
i.e., randomly generating two large prime numbers p and
q, and using their product n = p · q as a modulus. The
other approach is to choose certain large composite numbers
with unknown factorization, e.g., the Mersenne composite
number used in Shamir’s SQUASH construction [30].

2.2 Sponge-Based Hash Function
Keccak is the winner of the SHA-3 cryptographic hash
function competition held by NIST [21]. It is designed by
Bertoni, Daemen, Peeters, and Van Assche [5]. Keccak is
based on a unique construction, namely sponge construction,
which can absorb an arbitrary-length binary string as input,
and then squeeze out a binary string of any required length.

In our password hashing designs, Keccak is adopted to:

• Fully mix password and salt strings;

• Expand short input strings to the large space of the
Rabin encryption scheme;

• Alternately apply to intermediate states with public-
key scheme to gain more cryptanalytic strength.

• May process the final state to produce hash tags of
required lengths.

If not specified, default parameters of Keccak should be
used, i.e., r = 1024 and c = 576.

2.3 Sequential Memory-Hard Construction
The password-based key derivation function scrypt was pro-
posed by Percival in order to thwart parallel brute-force at-
tacks using GPUs, FPGAs or ASIC chips on passwords, and
has been widely used by cryptocurrencies. One of core func-
tions of scrypt, namely ROMix, is proven to be sequential
memory-hard. One important feature of being sequential
memory-hard is that parallel algorithms cannot asymptoti-
cally achieve efficiency advantage than non-parallel ones [23].
For a more detailed definition of sequential memory-hard,
the reader is referred to [23].

We list ROMix in Algorithm 1 since it is highly relevant to
our designs of Pleco and Plectron. In ROMix, H is a
cryptographic hash function, bstr is a binary string, cost is
called the CPU/memory cost parameter that must be larger
than one, and Integerify is a bijective function that maps
binary strings to integers.

Algorithm 1 ROMix(bstr, cost)

1: x← bstr
2: for i← 0 to cost− 1 do
3: vi ← x
4: x← H(x)
5: end for
6: for i← 0 to cost− 1 do
7: j ← Integerify(x) (mod cost)
8: x← H(x⊕ vj)
9: end for

10: return x

3. DESIGN OF PLECO AND PLECTRON
The following notations are used in this section:

• || concatenates two binary strings;

• int(·) converts a binary string into a non-negative inte-
ger, where the little-endian convention is used, i.e., the
left-most (lowest address) bit is the least significant bit
of the integer1;

• strb(·) converts a non-negative integer back to a binary
string by using the same bit ordering convention, and
may append zeros to the string in order to achieve a
total length of b bits;

• 0t denotes a t-bit all-zero binary string, e.g., 0t =
strt(0) for t > 0, and 00 means an empty string;

• len(·) denotes the bit-length of a binary string;

• size(·) denotes the number of bits in the binary repre-
sentation of a given non-negative integer, e.g., size(256) =
9 and size(255) = 8;

• Keccakb denotes a Keccak instance that produces
only b bits as output.

Given a modulus n, we define a new hash function

Hn(x) = strN (Rabinn(1 + int(KeccakN−1(x)))),

where N = size(n). To be secure, N should be at least
1024, or preferably larger than 3072, according to [2]. As we
mentioned before, the modulus n can be obtained using the
same approach for generating the RSA modulus n = p · q
or chosen from a public composite number with unknown
factorization as proposed in the design of SQUASH [30].

Our new password hashing algorithm Pleco is defined by
Algorithm 2, which takes as input

• a modulus n,

• a 128-bit binary string salt as a unique or randomly
generated salt,

1For software implementations, we recommend using the fol-
lowing convention: The 8 least significant bits are stored in
the byte with the lowest address, and within a byte the least
significant bit is the coefficient of 20. This follows the inter-
nal implementation convention of Keccak [6].

• a variable-length (≤ 128 bytes) binary string pass as a
user password,

• a positive integer tcost as the time cost parameter,

• and a positive integer mcost as the memory cost pa-
rameter.

Algorithm 2 Pleco(n, salt, pass, tcost,mcost)

1: L← 8 · dsize(n)/8e − size(n)

2: x← salt||str16(len(pass))||pass||01024−len(pass)

3: ctr← 0
4: x← Hn(str128(ctr)||x)
5: for i← 0 to tcost− 1 do
6: for j ← 0 to mcost− 1 do
7: vj ← x
8: ctr← ctr + 1
9: x← Hn(str128(ctr)||x)

10: end for
11: for j ← 0 to mcost− 1 do
12: k ← int(x) (mod mcost)
13: ctr← ctr + 1
14: x← Hn(str128(ctr)||x||0L||vk)
15: end for
16: ctr← ctr + 1
17: x← Hn(str128(ctr)||x)
18: end for
19: return x

Lines 6-15 of Algorithm 2 are essentially the same as ROMix,
except that:

• An incremental counter ctr is always prepended to the
intermediate variable x in each step;

• Instead of XORing vk with x as in the design of ROMix,
we simply concatenate them and input into Hn.

The design rationale of Pleco is to inherit the existing
structure of scrypt that is proved to be sequential memory-
hard, and to improve its inner components for providing
better security and asymmetry in computation as desired.

Pleco will produce an N -bit hash tag, but sometimes ap-
plications need to flexibly choose tag sizes. We recommend
applying Keccak to the output of Pleco again to produce
tags of required lengths. We name this modified algorithm as
Plectron and its design is specified in Algorithm 3, where

• hsize denotes the desired bit-length of the hash tag.

Algorithm 3 Plectron(n, salt, pass, tcost,mcost, hsize)

1: t← Pleco(n, salt, pass, tcost,mcost)
2: return Keccakhsize(t)

4. SECURITY ANALYSIS
The designs of Pleco and Plectron combine public-key
and symmetric-key algorithms and alter the operation se-
quence to make cryptanalysis harder. This is analogous to

the designs of several ARX ciphers and the block cipher
IDEA, where mixed operations are used. In what follows,
we discuss security properties of Pleco and Plectron in
detail.

4.1 One-Wayness
One of the most important security goals of designing a pass-
word hashing scheme is one-wayness, i.e., attackers should
not be able to devise any methods faster than brute-force
search for reversing the hashing algorithm in order to ob-
tain original passwords.

In our designs, the cryptographic hash function Keccak
and the provably one-way function Rabinn are applied to
the intermediate state x alternatively. To the best of our
knowledge, no weaknesses have been reported when com-
bining these two algorithms. In order to reverse Hn the
attackers may have to analyze Keccak and Rabinn sepa-
rately. On one hand, even if the one-wayness of Keccak
is completely broken, say replacing Keccak by an identity
function, the one-wayness of H is still guaranteed by Rabinn,
i.e., the hardness of integer factorization. On the other hand,
if any weakness of iterating Keccak is found, the weakness
is highly likely to be covered up by the computations of
Rabinn.

More formally, we give the following definition.

Definition 1. For a given function f and a pre-specified
set Y containing certain outputs of f , we define the advan-
tage of an adversary A finding preimages of the elements in
Y (i.e., reversing f) as

Adv
Pre(Y)
f (A)

def
= Pr[y

$← Y, x← Af,y : f(x) = y],

where y
$← Y means randomly assigning one element of Y

to y.

Then we can show the preimage security ofHn is guaranteed
by Rabinn, as described in the following lemma.

Lemma 1 (One-wayness of Hn). For any adversary
A, we have

Adv
Pre(S)
Hn

(A) ≤ Adv
Pre(S)
Rabinn

(A),

where S is a set containing all possible outputs of Hn,

Proof. Assume that n is an N -bit modulus. Once a
preimage of Hn is found, e.g., y = Hn(x), we let x′ =
1 + int(KeccakN−1(x)) and y′ = int(y), and then x′ is a
preimage of y′ of Rabinn.

For a reasonably large set S, computing preimages of Rabinn

regarding S is still as hard as factoring the integer n, since
the factorization will be known after obtaining a constant
number of preimages on average. For example, for RSA-like
moduli, the expected number of preimages required is 2 [19].

Please note that Lemma 1 presents a simplified bound only
for the case that n is not factored by adversaries. If the

factorization of n is known to adversaries, the one-wayness
of H is still guaranteed by Keccak.

Based on Lemma 1, we can investigate the one-wayness of
the whole design of Pleco.

Theorem 1 (One-Wayness of Pleco). If Pleco and
Hn use a same modulus n, then we have

Adv
Pre(S)
Pleco (A) ≤ Adv

Pre(S)
Rabinn

(A),

where S is a set containing all possible outputs of Pleco.

Proof. Assume that a preimage of Pleco is found, then
the steps of Pleco before the last Hn can be recomputed,
so the preimage of H is obtained. Thus, we have

Adv
Pre(S)
Pleco (A) ≤ Adv

Pre(S)
Hn

(A),

which implies

Adv
Pre(S)
Pleco (A) ≤ Adv

Pre(S)
Rabinn

(A),

due to Lemma 1.

For the preimage in the above theorem, we do not differen-
tiate the two cases: 1) a preimage containing both salt and
pass, or 2) a preimage including only pass for a pre-specified
salt. For the second case, the first KeccakN−1 in Pleco
can be seen as a specialized Keccak instance, e.g., the de-
sign of Keccak supports simply prepending a message with
a key to construct a Message Authentication Code (MAC)
scheme [5]. Therefore, an adversary’s advantage of recover-
ing pass still satisfies the bound in Theorem 1, even if salt
is public or known to adversaries.

Next, let us consider the one-wayness of Plectron. If we
assume that, in order to reverse Plectron, any adversary
has to first reverse Keccakhsize and then reverse Pleco, we
can simply get a bound like

Adv
Pre(S)
Plectron(A) ≤ Adv

Pre(S)
Keccakhsize

(A) ·Adv
Pre(S)
Pleco (A)

≤ Adv
Pre(S)
Keccakhsize

(A) ·Adv
Pre(S)
Rabinn

(A).

However, it cannot be guaranteed that adversaries will al-
ways try to obtain the intermediate value between Pleco
and Keccakhszie. Consider the case where hsize is very
small, say two bits. After trying random passwords for four
times, there will be one producing a 2-bit pre-specified hash
tag. Therefore, in theory, we can only give the following
theorem on one-wayness of Plectron.

Theorem 2 (One-Wayness of Plectron). If Hn and
Plectron use a same modulus n, then we have

Adv
Pre(S)
Plectron(A) ≤ Adv

Pre(S)
Keccakhsize

(A),

where S is a set containing all possible outputs of Plec-
tron.

Proof. Once a primage of Plectron is found, e.g.,

y = Plectron(n, s, p, tc,mc, hsize),

we compute

x = Pleco(n, s, p, tc,mc).

Then x is a preimage of y of Keccakhsize.

As a cryptographic hash function, Keccak is designed to
be preimage-resistant, which means that for essentially all
outputs, finding any input hashing to a pre-specified output
should be computationally infeasible [19, 27].

4.2 Collision Resistance
Collision and second-preimage resistances are also desirable
when designing a password hashing scheme. In this context,
an occurrence of collision may result in two passwords being
hashed to the same tag, whereas a second-preimage implies
that given a password pass1 one may find the second one
pass2 producing the same tag. It is easy to see that if there
exists an algorithm for constructing second-preimages, then
it can also be used to generate collisions, so collision resis-
tance implies second-preimage resistance.

It is easy to see that once a collision of KeccakN−1 is found,
then it will result in a collision of Hn. Furthermore, if the
outputs of Keccak contain two roots of Rabinn, then it
will also produce a collision of Hn. Therefore, the collision
resistance of Hn is bounded by properties of Rabinn and
Keccak together.

Formally, we give the following security definition.

Definition 2. For a given function f , we define the advan-
tage of an adversary A to find a collision of f as

AdvColl
f (A)

def
= Pr[x1, x2 ← Af : f(x1) = f(x2)].

To better analyze the collision resistance of Hn, we give the
following the definition.

Definition 3. For a given function f , we define the ad-
vantage of an adversary A to obtain an output difference n
as

Adv
Diff(d)
f (A)

def
= Pr[x1, x2 ← Af,d : f(x1) = d− f(x2)].

This advantage Adv
Diff(d)
f (A) should be negligible for any

secure cryptographic hash function f , since these hash func-
tions are designed to be indistinguishable from pseudoran-
dom functions.

Then we have the following lemma about collisions of Hn.

Lemma 2 (Collision Resistance of Hn). For any ad-
versary A, we have

AdvColl
Hn

(A) ≤ AdvColl
KeccakN−1

(A) + Adv
Diff(n)
KeccakN−1

(A)

+ Adv
Pre(S)
Rabinn

(A),

where N = size(n) and S is a set containing all possible
outputs of Rabinn.

Proof. Suppose a colliding pair x1 and x2 of Hn are
found, i.e., Hn(x1) = Hn(x2). Let r1 = KeccakN−1(x1)
and r2 = KeccakN−1(x2). Then we have three cases:

• If r1 = r2, then a collision of KeccakN−1 is found;

• If r1 6= r2, let s1 = 1 + int(r1) and s2 = 1 + int(r2),
and then:

– If s1 = n − s2, then a pair producing the output
difference n of KeccakN−1 is found;

– If s1 6= n−s2, then gcd(s1−s2, n) is a non-trivial
factor of n.

Therefore, the lemma holds.

As the previous discussion on Lemma 1, Lemma 2 also gives
a simplified bound on collisions that satisfies our purpose of
showing Hn to be secure. Even if n is factored, it should still
be hard to construct collisions of the whole Hn, since adver-
saries need to control outputs of KeccakN−1 to be among
roots corresponding to a same squaring value. For example,
for RSA-like moduli, there are only four roots mapping to
one output.

Based on Lemma 2, we give the following theorem to char-
acterize adversaries’ collision advantage on Pleco.

Theorem 3 (Collision Resistance of Pleco). If the
cost parameters, mcost and tcost, of Pleco keep unchanged,
and Hn and Pleco use a same modulus n, then we have

AdvColl
Pleco(A) ≤ AdvColl

KeccakN−1
(A)

+ Adv
Diff(n)
KeccakN−1

(A)

+ Adv
Pre(S)
Rabinn

(A),

where S is a set containing all possible outputs of Rabinn.

Proof. Once a collision of Pleco is found, then there
must exist a collision of the internal hash functionHn. Thus,
we have

AdvColl
Pleco(A) ≤ AdvColl

Hn
(A).

Therefore, the theorem holds.

Please note that if we use the original design of ROMix, i.e.,
XORing x and vk instead of concatenating them together as
input, the bound for collisions will be much more difficult
to be discovered and proven, because different intermediate
values x1 and x2 may still yield an identical input to the
internal hash functionHn, i.e., x1⊕vk1 = x2⊕vk2 . However,
in the current design of Pleco, different x1 and x2 will never
generate identical inputs to Hn.

For Plectron, we have the following theorem.

Theorem 4 (Collision Resistance of Plectron).
If the cost parameters and output hash length, mcost, tcost

and hsize, of Plectron keep unchanged, and Hn and Plec-
tron use a same modulus n, then we have

AdvColl
Plectronn(A) ≤ AdvColl

KeccakN−1
(A)

+ Adv
Diff(n)
KeccakN−1

(A)

+ Adv
Pre(S)
Rabinn

(A) + AdvColl
Keccakhsize

(A),

where S is a set containing all possible outputs of Rabinn.

Proof. If a collision of Plectron is found, e.g.,

Plectron(n, s1, p1, tc,mc, hsize)
= Plectron(n, s2, p2, tc,mc, hsize),

then we let{
t1 = Pleco(n, s1, p1, tc,mc)
t2 = Pleco(n, s2, p2, tc,mc)

.

We have the following two cases:

• If t1 = t2, then a collision of Pleco is found.

• If t1 6= t2, then a collision of Keccakhsize is found.

Therefore, we have

AdvColl
Plectron(A) ≤ AdvColl

Pleco(A) + AdvColl
Keccakhsize(A).

Thus, the theorem holds.

4.3 Thwarting Brute-Force Attacks
Although the designs of Pleco and Plectron may be se-
cure for random inputs in theory, users’ passwords are usu-
ally weak and easily crackable by using parallel computation
based on special or customized hardware, such as GPUs,
FPGAs, and ASICs. Thus password hashing designs should
thwart such attacks as much as possible.

The hardware such as GPUs, FPGAs, and ASICs can feature
thousands of cores for parallel computation, but in return
each core possesses very restrained memory space. By us-
ing the structure of ROMix, the internal iteration of Pleco
(Lines 6-15 in Algorithm 2) inherits scrypt’s security prop-
erty of being sequential memory-hard. Pleco and Plec-
tron also provide a tunable memory parameter mcost to
increase their memory cost as desired. Although the de-
sign of Pleco is slightly different from ROMix, the security
proofs of ROMix can be easily transferred to here, since in
the original proofs the internal hash function is treated as a
Random Oracle.

Please note that in scrypt, a structure called BlockMix is used
to build an internal hash function with wide input/output
from a small function Salsa20 core [4]. However, Block-
Mix may not be necessary for Pleco since the input/output
lengths of Hn are relatively large. As a side benefit of omit-
ting BlockMix, our scheme is simpler and easier for analysis,
when compared to scrypt.

4.4 Preventing Self-Similarity Attacks
An incremental counter ctr is prepended to the intermedi-
ate states of Pleco before each invocation of Hn, which

enables us to protect Pleco and Plectron from potential
self-similarity attacks, such as fixed points or iterative pat-
terns of Hn. The similar technique is used in many other
cryptographic designs, such as Keccak, PRESENT [8] and
PRINCE [9].

5. OTHER EXTENTIONS
In this section, we propose a number of extensions of Pleco
and Plectron.

5.1 Discrete Logarithm Based Hash Function
Gibson has proved that if factoring n is hard, the following
discrete logarithm based hash function

Gn(x) = gx (mod n)

is one-way and collision-free [13]2, where x is a positive in-
teger and g is a generator of the multiplicative group of
integers modulo n. The security of this hash function is
guaranteed by the hardness of integer factorization, since a
collision will lead to the factorization of n.

We define a new hash function

GHn(x) = strN (Gn(1 + int(KeccakN (x)))),

for a given positive integer n, where N = size(n). If Hn(x)
in Pleco is replaced by GHn(x), the security, especially
the collision resistance, of Pleco and Plectron would be
further enhanced.

Lemma 3. For any adversary A, we have

Adv
Pre(S)
GHn

(A) ≤ Adv
Pre(S)
Gn (A),

and

AdvColl
GHn

(A) ≤ AdvColl
KeccakN (A) + AdvColl

Gn (A),

where S is a set containing all possible outputs of GHn.

Proof. The proofs are similar to the ones for Lemmas 1
and 2, so they are omitted here.

It is easy to see that AdvColl
GHn

(A) is smaller than AdvColl
Hn

(A),

because AdvColl
Gn (A) should be equivalent to Adv

Pre(S)
Rabinn

(A),

but AdvColl
Hn

(A) has an extra term Adv
Diff(n)
KeccakN−1

(A) (see

Lemma 2).

We have the following theorem about using GHn in Pleco.

Theorem 5. Suppose the cost parameters, mcost and tcost,
of Pleco keep unchanged, and GHn and Pleco use a same
N-bit modulus n. If replacing Hn in Pleco by GHn, we will
have

Adv
Pre(S)
Pleco (A) ≤ Adv

Pre(S)
Gn (A),

and

AdvColl
Pleco(A) ≤ AdvColl

KeccakN (A) + AdvColl
Gn (A),

where S is a set containing all possible outputs of Pleco.
2It is claimed in [29] that this hash function was proposed
by Shamir, and a simple proof was given by Rivest.

Proof. As the proofs for Theorems 1 and 3, the one-
wayness and collision resistance of this modified Pleco can
be guaranteed by the security of GHn. Thus, the theorem
holds.

For Plectron, if Hn is replaced by GHn, its one-wayness
(Theorem 2) does not change, but the bound for its collisions
will be improved as Pleco.

Another benefit of using GHn instead of Hn is that Gn is
proven to be secure for any positive integer as input. Com-
pared to Rabinn, whose security properties usually only con-
sider the inputs within the multiplicative group of integers
modulo n, Gn allows much more flexibility when we adopt
it to design security schemes. For example, in the design
of GHn, the output length of Keccak may be equal to or
larger than size(n); while in Hn, Keccak is set to generate
less than size(n) bits.

Although the discrete logarithm based hash function Gn is
more secure and flexible, it is much less efficient than Rabinn

due to the slow modular exponentiation computations.

5.2 Using Publicly Auditable Modulus
As observed by Shamir in [30], the Rabin scheme cannot be
efficiently inverted for any modulus n with unknown factor-
ization. As a result, large composite Mersenne numbers with
publicly unknown factorization and of the form n = 2k − 1
can be used as the modulus, which leads to efficient software
implementation of Pleco and Plectron (see Section 6.2
for performance comparison). A table summarizing the fac-
torization of Mersenne numbers of the form Mk = 2k − 1 is
maintained by Leyland [17]. Certain interesting Mersenne
numbers that might be used as the moduli in Pleco and
Plectron for different security levels are 21277−1, 22137−1,
and 23049 − 1.

Furthermore, RSA-like moduli might not be suitable if Pleco
or Plectron are used in cryptocurrencies for proofs of work,
because RSA-like moduli must be generated by someone.
With the private knowledge of the factors of n, one may com-
pute the hash functions more efficiently than others, which
will be discussed in Section 6.3. By using public composite
numbers with unknown factors, we can eliminate potential
trapdoors in cryptocurrency systems.

5.3 Transforming Existing Hashes to Larger
Cost Settings

For Pleco, its final output can re-enter the algorithm from
Line 6 (Algorithm 2), which is equivalent to increasing the
time cost parameter tcost by one. During the additional
computations, we can also choose a larger memory param-
eter mcost. Under such circumstance, hash tags can be up-
dated according to new cost settings without the knowledge
of original passwords.

5.4 Variants with More Efficient Software Im-
plementations

In order to be easily and efficiently implemented in software,
it is better for the modulus n to have a size that is a mul-
tiple of word sizes. But in certain circumstances, we cannot

choose the size of n freely, e.g., when using Mersenne com-
posite numbers, so we may need to make small changes for
the original algorithms of Hn and Pleco to achieve a better
efficiency.

Let {
UB = w · dN/we
LB = w · (dN/we − 1)

,

where w is the desired word size and N is the size of the
modulus n. Then we define the following modified version
of Hn.

RHn(x) = strUB(Rabinn(1 + int(KeccakLB(x))))

By replacing Hn by RHn, the software performance may be
improved, because operations are applied to a multiple of
words. But if the inputs into Rabinn are so small that their
squaring results do not need to be modulo n, then adver-
saries can easily compute the original inputs. The smaller
LB is, the higher the probability of Rabinn getting such in-
puts will be. Therefore, LB should not be too small.

To unify lengths of internal variables, we may simply sub-
stitute LB with UB, and get the following hash function.

RH′n(x) = strUB(Rabinn(1 + int(KeccakUB(x))))

The collision probability of RH′n will be higher, as there are
inputs larger than n that cause collisions, e.g., Rabinn(x +
n) = Rabinn(x). However, the overall security of the pass-
word hashing scheme should still be fine, since it will be
difficult to construct inputs with such additional differences
through Keccak.

It is also possible to remove the operation of adding one in
Hn, i.e., defining the following function to replace Hn.

SHn(x) = strN (Rabinn(int(KeccakN−1(x))))

There is a negligible chance that KeccakN−1(x) outputs
zero, and the result of SHn will be an all-zero string. If we
treat Keccak as a pseudorandom function, this probability
will be 1/2N−1. Even if this incident happens, it will likely
disappear when SHn is iterated for multiple times with an
incremental counter. Henceforth, the security level of the
entire design of Pleco will not be influenced.

6. PERFORMANCE ANALYSIS
In this section, we discuss the time and memory costs of
Pleco and Plectron.

6.1 Tunable Time and Memory Costs
The designs of Pleco and Plectron provide two parame-
ters, tcost and mcost, for applications to tune their time and
memory consumptions.

The parameter mcost adjusts the amount of memory that
needs to be present during the computations of Pleco and
Plectron. The memory usage is expected to be around

size(n) ·mcost

bits. Due to the sequential memory-hardness property of
ROMix [23], without having such amount of memory, the

computation time of Pleco and Plectron will increase
dramatically.

The parameter tcost has limited ability to adjust the time
usage of Pleco and Plectron, since the total time cost also
relies on the memory usage. To complete a full computation
of Pleco, it requires

2 ·mcost · tcost + tcost + 1

invocations of Hn. Plectron needs one more invocation of
Keccak than Pleco.

6.2 Efficiency of Software Implementation
Pleco and Plectron are built upon well-established cryp-
tographic primitives, and their implementations have been
studied for years. The modular squaring operating is the ba-
sis for RSA encryption/signature widely used in TLS/SSL,
and Keccak is designed to be efficient in both software and
hardware. We have tested our initial implementations of
Pleco and Plectron on a 2.6 GHz Intel Core i7 processor
for 80-, 112-, and 128-bit security levels. For each security
level, an RSA-like modulus n = p · q as well as a Mersenne
number with similar bit-length (see Table 1) are chosen as
the moduli in Pleco and Plectron, for the purpose of
performance comparison. We set mcost = 216 when pro-
filing the software performance, which means the programs
will consume 216size(n)-bit memory, i.e., around 17 MB for
Pleco/Plectron using the modulus 22137 − 1.

Table 1: Parameters for Different Security Strengths

Security Size of RSA-Like Mersenne

Strength Modulus (in bits) Number

80-bit 1024 21277 − 1

112-bit 2048 22137 − 1

128-bit 3072 23049 − 1

The performance data in Table 2 shows that as the modulus
size grows, the running time of the algorithms Pleco/Plectron
will increase (along with the memory usage), and computa-
tion of the Rabinn part will gradually dominate the running
time. Moreover, using Mersenne numbers as moduli will
yield much efficient computations than choosing RSA-like
ones.

For comparison, we have also tested scrypt on the same
machine, using the configuration (N = 214, r = 8, p = 1)
that yields a similar memory usage as Pleco/Plectron
with 2048-bit moduli, and it takes 35 ms to compute scrypt.
Although slowness is somehow desirable in password hash-
ing designs for thwarting large-scale password cracking, we
should consistently improve the time efficiency of the imple-
mentations of Pleco. For example, by reducing the compu-
tation time of Hn, we will have more flexibility for the time
parameter tcost. On the other hand, attackers are always
trying to speed up their cracking methods, so there is no
reason why we should stick to under-optimized implementa-
tions.

6.3 Shortcut with Private Information

It would be very attractive if password hashing algorithms
could support private parameters or keys to speed up hash-
ing computations. For example, legitimate servers with cer-
tain private information may compute or verify hash tags
faster than attackers who have obtained only salts and hash
tags. In this way, servers will save a lot of computation cost
without risking too much about the overall security.

Due to the nature of the modular exponentiation operation,
if we know the factorization of the modulus n, e.g., knowing
p and q for n = pq, the computation can be finished with
less time, by using the Chinese Remainder Theorem (CRT).
Such performance gain might not be obvious for Rabinn,
as its operations are simple. But if the discrete logarithm
based hash function Gn(x) = gx (mod n) is used in Hn,
the computation will be greatly accelerated if factors of n
are known. Note that p and q should be kept securely as
always, e.g., being encrypted or stored in a hardware secure
module.

Note that even if p and q are leaked to attackers, the over-
all security of Pleco and Plectron still has Keccak as a
“fail-safe”. With the private information, attackers can com-
pute Pleco or Plectron as efficient as legitimate servers,
but the brute-force search for original passwords is probably
still a must.

7. RELATED WORK
In this section, we will compare Pleco and Plectron with
several other related algorithms. Especially, an open com-
petition about password hashing (a.k.a. PHC) is currently
ongoing3, so many new designs have been proposed recently.
We only choose couples of them to be discussed here, which
may be the most typical or relevant to ours.

scrypt
As we mentioned in Section 2.3, scrypt presents the idea
along with the first concrete design of sequential memory-
hard algorithms. The internal structure of our designs Pleco
and Plectron are based on ROMix of scrypt.

However, the overall design of scrypt is complicated. It uses
BlockMix and the Salsa20/8 core [4] to construct an internal
hash function to be used in ROMix, and adopts PBKDF2
with HMAC and SHA256 to process first and final messages.
Therefore, it might be error-prone for developers to imple-
ment scrypt due to the involvement of multiple cryptographic
primitives and its complicated structure.

Moreover, although ROMix is proven to be sequential memory-
hard in the Random Oracle mode, there are no security
proofs for the whole design of scrypt. Especially, the Salsa20/8
core is not collision-resistant, so it appears that scrypt can
hardly be proven to be collision-resistant, which might leave
scrypt certain weaknesses in some application scenarios.

Makwa
Makwa is a password hashing function designed by Pornin [24],
and to the best of our knowledge it is the only design pro-
posed in the PHC that adopts asymmetric cryptographic
operations. Makwa uses a RSA/Rabin-like operation that

3Its official website is at https://password-hashing.net.

Table 2: Initial Software Performance of Pleco/Plectron with tcost = 1 and mcost = 216 (in s)

Modulus Pleco Plectron

Size (in bits) RSA-like Modulus Mersenne Number RSA-like Modulus Mersenne Number

1024 / 1277 0.684 0.538 0.686 0.540

2048 / 2137 2.215 1.185 2.235 1.203

3072 / 3049 4.355 2.135 4.358 2.146

the intermediate value x is raised to the degree of 2w + 1,
i.e., y = x2w+1, where w is a time/work cost parameter and
n is a Blum integer serving as a modulus.

Makwa is not designed to be memory-hard, and thus has
very limited ability to thwart brute-force password cracking
based on special hardware.

Catena
Catena is designed by Forler, Lucks and Wenzel, as a prov-
ably secure password scrambler that can be used for key
derivation or proof of work/space [12].

The one-wayness of Catena is guaranteed by its underlying
hash function; while the security of Pleco is assured by
both Keccak and the hard problem of integer factorization.

In order to avoid the random memory access pattern in
ROMix that enables cache-timing attacks [3], Catena does
not use sequential memory-hard structures like ROMix. In-
stead, Catena provides a weaker memory-hard property called
λ-memory-hard. However, in cache-timing attacks, adver-
saries may need to fully or partially control the victims’ host
machines in order to accurately measure timings, which is
a difficult requirement. Thus, in our view, being sequential
memory-hard is a more desirable goal than avoiding cache-
timing attacks, if these two things are not achievable in one
design of password hashing.

SQUASH
SQUASH is a challenge-response protocol for RFIDs designed
by Shamir [30], and aims to provide provable security based
on the Rabin cryptosystem. In SQUASH, a challenge is first
mixed with a secret, and then processed by an optimized
implementation of Rabin encryption scheme with Mersenne
numbers. Our idea of combining symmetric and asymmet-
ric cryptographic algorithms originates from the design of
SQUASH.

Ouafi and Vaudenay has shown that SQUASH is insecure if
the mixing function is designed to be linear [22]. Pleco and
Plectron should not suffer from the same weakness, since
the cryptographic hash function Keccak is employed as a
mixing function.

8. CONCLUDING REMARKS
We propose two provably secure password hashing algo-
rithms, Pleco and Plectron, which are built upon well-
studied cryptographic primitives, such as a provably one-
way function Rabinn based on the hard problem of integer
factorization, the SHA-3 hash competition winner Keccak,
and the sequential memory-hard construction ROMix. We

prove that Pleco and Plectron inherit the similar secu-
rity properties as Rabinn, Keccak and ROMix. The designs
of Pleco and Plectron provide two parameters tcost and
mcost that can be tuned for different application scenarios.

In order to fully utilize the memory-hardness property of
ROMix, the internal hash function Hn should be as fast as
possible, since during a fixed time period the total amount
of memory that can be consumed is limited by the compu-
tational speed of Hn. The current design of Hn is based
on modular squaring of big integers, so it may not be fast
enough for certain devices with constrained CPU power. We
have proposed several modified designs of Hn that have bet-
ter software efficiency in Section 5.4. One more solution
might be removing asymmetric operations from the mcost
loop, i.e., the inside of ROMix, and only applying them at
the beginning or the end of the tcost loop. However, the
security of these potential solutions needs further investiga-
tions.

It is encouraging to design password hashing algorithms by
combining asymmetric and symmetric premitives, since the
combined algorithms may offer provable security and pos-
sibilities of server-specific computational shortcuts. We ex-
pect more password hashing designs consisting of both asym-
metric and symmetric components to appear.

9. REFERENCES
[1] J. P. Aumasson and D. J. Bernstein, SipHash: a fast

short-input PRF, Progress in Cryptology,
INDOCRYPT 2012, LNCS 7668, pp. 489–508, 2012.

[2] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,
Recommendation for key management, part 1: general
(revision 3), NIST Special Publication 800-57, 2012.

[3] D. J. Bernstein, Cache-timing attacks on AES,
available at http:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf,
2005.

[4] D. J. Bernstein, The Salsa20 family of stream ciphers,
New Stream Cipher Designs, LNCS 4986, pp. 8–97,
2008.

[5] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
The Keccak SHA-3 submission. Submission to NIST
(Round 3), 2011.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche,
Keccak implementation overview, version 3.2, available
at http://keccak.noekeon.org/

Keccak-implementation-3.2.pdf, 2012.

[7] E. Biham and A. Shamir, Differential cryptanalysis of
DES-like cryptosystems, Journal of CRYPTOLOGY,
vol. 4, no. 1, pp. 3–72, 1991.

[8] A. Bogdanov, L. R. Knudsen, G. Leander, and C. Paar,

A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C.
Vikkelsoe, PRESENT: an ultra-lightweight block
cipher, Cryptographic Hardware and Embedded Systems,
CHES 2007, LNCS 4727, pp 450–466, 2007.

[9] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M.
Knezevic, L. R. Knudsen, G. Leander, et al., PRINCE
– A low-latency block cipher for pervasive computing
applications, Advances in Cryptology - ASIACRYPT
2012, LNCS 7658, pp. 208–225, 2012.

[10] W. Diffie, Special feature exhaustive cryptanalysis of
the NBS data encryption standard, vol. 10, no. 6, pp.
74-84, IEEE Computer 1977.

[11] M. Dürmuth, T. Güneysu, M. Kasper, C. Paar, T.
Yalcin and R. Zimmermann, Evaluation of standardized
password-based key derivation against parallel
processing platforms, Computer Security, ESORICS
2012, LNCS 7417, pp. 716–733, 2012.

[12] C. Forler, S. Lucks and J. Wenzel, Catena: a
memory-consuming password scrambler, Cryptology
ePrint Archive, Report 2013/525, 2013.

[13] J. K. Gibson, Discrete logarithm hash function that is
collision free and one way, IEE Proceedings E
(Computers and Digital Techniques), 138, no. 6, pp
407–410, 1991.

[14] M. E. Hellman, A cryptanalytic time-memory
trade-off, Information Theory, IEEE Transactions on,
vol. 26, no. 4, pp. 401–406, 1980.

[15] B. Kaliski, PKCS# 5: Password-based cryptography
specification version 2.0, RFC 2898, available at
http: // www. ietf. org/ rfc/ rfc2898. txt , 2000.

[16] X. Lai and J. L. Massey, A Proposal for a New Block
Encryption Standard, LNCS 473, pp. 389–404, 1991.

[17] P. Leyland, Factorization of Mersenne numbers,
Mn = 2n − 1, available at http://www.leyland.vispa.

com/numth/factorization/factors/mersenne.txt,
2008.

[18] M. Matsui, Linear cryptanalysis method for DES
cipher, Advances in Cryptology, EUROCRYPT 1993,
pp. 386–397, 1994.

[19] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone, Handbook of Applied Cryptography, CRC
Press Series on Discrete Mathematics and Its
Applications. CRC Press, Boca Raton, FL, 1997.

[20] R. M. Needham and D. J. Wheeler, TEA extensions,
available at
http://www.movable-type.co.uk/scripts/xtea.pdf,
1997.

[21] NIST Computer Security Division, The SHA-3
cryptographic hash algorithm competition, available at
http://csrc.nist.gov/groups/ST/hash/sha-3/.

[22] K. Ouafi and S. Vaudenay, Smashing squash-0.
Advances in Cryptology, EUROCRYPT 2009, LNCS
5479, pp. 300–312, 2009.

[23] C. Percival, Stronger key derivation via sequential
memory-hard functions, BSDCan, 2009.

[24] T. Pornin, The MAKWA password hashing function –
specifications v1.0, available at
https://password-hashing.net/submissions/specs/

Makwa-v0.pdf, 2014.

[25] N. Provos and D. Mazieres, A future-adaptable
password scheme, USENIX Annual Technical

Conference, USENIX 1999, pp.81–91, 1999.

[26] M. O. Rabin, Digitalized signatures and public-Key
functions as intractable as factorization, Technical
Report, MIT, 1979.

[27] P. Rogaway and T. Shrimpton, Cryptographic
hash-function basics: definitions, implications and
separations for preimage resistance, second-preimage
resistance, and collision resistance, Fast Software
Encryption, FSE 2004, LNCS 3017, pp. 371-388, 2004.

[28] B. Schneier, Description of a new variable-length key,
64-bit block cipher (Blowfish), Fast Software
Encryption, FSE 1994, LNCS 809, pp. 191–204, 1994.

[29] R. Senderek, A discrete logarithm hash function for
RSA signatures, available at
http://senderek.com/SDLH/

discrete-logarithm-hash-for-RSA-signatures.ps,
2003.

[30] A. Shamir, SQUASH – A new MAC with provable
security properties for highly constrained devices such
as RFID tags, Fast Software Encryption, FSE 2008,
LNCS 5086, pp 144-157, 2008

APPENDIX
A. TEST VECTORS
For testing and reference, we give the following input param-
eters and their corresponding hash output of Plectron, us-
ing the Mersenne number 22137 − 1 as the modulus. Please
note that the hexadecimal numbers for the entries salt, pass
and tag represent byte strings, e.g., 546865 means a string
The, and long strings are written in multiple lines.

salt 4c880aa553669c3869f62b389c2c3499

pass 54686520717569636b2062726f776e20

666f78206a756d7073206f7665722074

6865206c617a7920646f67

tcost 2

mcost 1024

hsize 256

tag 7969ad4aae09ba48e61cc5e348f1de39

c15475d69eee42cffe8770a88f2f3e93

B. THE ALGORITHM NAMES
Pleco or Plecostomus is a kind of fishes that is very popular
among aquarists, as Pleco fishes help keeping water clean.
The word Plecostomus itself means folded mouth.

Plectron is a small piece of metal or plastic that is used to
plunk musical instruments.

