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Abstract

The adjacency graphs of feedback shift registers (FSRs) with characteristic function of the

form g = (x0+x1)∗f are considered in this paper. Some properties about these FSRs are given.

It is proved that these FSRs contains only prime cycles and these cycles can be divided into two

sets such that each set contains no adjacent cycles. When f is a linear function, more properties

about these FSRs are derived. It is shown that, when f is a linear function and contains an odd

number of terms, the adjacency graph of FSR((x0 + x1) ∗ f) can be determined directly from

the adjacency graph of FSR(f). As an application of these results, we determine the adjacency

graphs of FSR((1 + x)4p(x)) and FSR((1 + x)5p(x)), where p(x) is a primitive polynomial, and

construct a large class of de Bruijn sequences from them.

Keywords: MSC(94A55), feedback shift register, adjacency graph, de Bruijn sequence.

1 Introduction

Feedback shift registers (FSRs) can be used to generate pseudo random sequences. The period of

the output sequences of an n-stage FSRs is no more than 2n. If this value is attained, we call the

FSR maximum length FSR, and the sequence de Bruijn sequence. Maximum length FSRs (or de

Bruijn sequences) are usually constructed by the cycle joining method introduced in [5]. For the

application of this method, we need to know the distribution of the conjugate pairs in the cycles of

the based FSR, which is usually difficult to analyze. Therefore, FSRs with simple cycle structures

are good candidates for the based FSRs. Some linear feedback shift registers (LFSRs), such as the

maximum length LFSRs, pure circulating registers and pure summing registers, have been used

to construct maximum length FSRs [2–4]. Recently, the LFSRs with characteristic polynomials

(1 + x)mp(x) and (1 + xm)p(x) were also used, where p(x) is a primitive polynomial and m is a

positive integer less than 4 [8, 11,12,14].
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The adjacency graph of an FSR provides information on the distribution of conjugate pairs,

and it is useful for constructing maximum length FSRs by the cycle joining method. In this paper,

we consider the adjacency graphs of a class of FSRs, namely, the FSRs with characteristic function

of the form g = (x0 + x1) ∗ f . Some properties about these FSRs are given. It is proved that

these FSRs are dividable (see Definition 2). When f is a linear function, some more properties

about these FSRs are derived. For example, it is shown that in some cases the adjacency graph of

FSR((x0 + x1) ∗ f) can be determined directly from the adjacency graph of FSR(f) (see Section

4). As an application of these properties, we continue the work of Li et al. [11] to determine the

adjacency graphs of FSR((1+x)4p(x)) and FSR((1+x)5p(x)), where p(x) is a primitive polynomial.

Two families of maximum length FSRs are constructed from them. We show that the sizes of the

two families are O(25n) and O(27n), where n is the degree of p(x). We also present an algorithm to

generate such a maximum length FSR with both time complexity and memory complexity O(n).

The paper is organized as follows. In Section 2, we introduce some necessary preliminaries. In

Section 3, some properties of the FSRs with characteristic function of the form g = (x0 +x1)∗f are

given. In Section 4, we consider the case that f is a linear function. In Section 5, we determine the

the adjacency graphs of FSR((1 +x)4p(x)) and FSR((1 +x)5p(x)). In Section 6, a large number of

maximum length FSRs are constructed from FSR((1 +x)4p(x)) and FSR((1 +x)5p(x)). In Section

7, we make a conclusion about our work.

2 Preliminaries

Let F2 = {0, 1} be the finite field of two elements, and Fn
2 be the vector space of dimension n

over F2. A Boolean function f(x0, x1, . . . , xn−1) in n variables is a mapping from Fn
2 to F2. It

is well known that it can be uniquely represented by its algebraic normal form (ANF), which

is a multivariate polynomial. The order of f , denoted by ord(f), is the highest subscript i

for which xi occurs in the ANF of f . Note that the order of f is not equal to the number

of variables in f . For two Boolean functions f(x0, x1, . . . , xn) and g(x0, x1, . . . , xm), we denote

f ∗ g = f(g(x0, x1, . . . , xm), g(x1, x2, . . . , xm+1), . . . , g(xn, xn+1, . . . , xn+m)), which is a Boolean

function of order n + m [6]. The operation ∗ is not commutative, that is, f ∗ g is not equal to

g ∗ f generally. However, if f and g are linear Boolean functions, we have f ∗ g = g ∗ f . We say

(x0 + x1) is a left ∗-factor of g, denote by (x0 + x1)‖Lg, if g = (x0 + x1) ∗ h for some Boolean

function h. For a given g, it is easy to verify whether we have (x0 + x1)‖Lg or not.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a characteristic

function f regulated by a single clock. In what follows, the characteristic function f is supposed to

be nonsingular, i.e., of the form f = x0+f0(x1, . . . , xn−1)+xn. The FSR with characteristic function

f is usually denoted by FSR(f). At every clock pulse, the current state (s0, s1, . . . , sn−1) is updated

by (s1, s2, . . . , sn−1, sn) such that f(s0, s1, . . . , sn) = 0. From an initial state S0 = (s0, s1, . . . , sn−1),

after consecutive clock pulses, FSR(f) will generate a cycle C = [S0,S1, . . . ,Sl−1] (can also be

denoted by C = [s1, s2, . . . , sl−1]n or simply C = [s1, s2, . . . , sl−1]), where Si+1 is the next state of

Si for i = 0, 1, . . . , l − 2 and S0 is the next state of Sl−1. In this way, the set Fn
2 is divided into
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cycles C1, C2, . . . , Ck by FSR(f), and reversely, a partition of Fn
2 into cycles determines an n-stage

FSR. So we can treat FSR(f) as a set of cycles, and use the notation FSR(f) = {C1, C2, . . . , Ck}.
We call FSR(f) maximum length FSR if there is only one cycle in FSR(f), and the unique cycle

in FSR(f) is usually called de Bruijn cycle or full cycle. The output sequences of FSR(f), denoted

by G(f), are the 2n sequences s = s0s1 · · · , such that f(st, st+1, . . . , st+n) = 0 for t ≥ 0. It was

proved in [14] that

Lemma 1. [14] G((x0 + x1) ∗ f) = G(f) ∪G(f + 1).

For a state S = (s0, s1, . . . , sn−1), its conjugate Ŝ is defined as Ŝ = (s0, s1, . . . , sn−1) where s0

is the binary complement of s0. Two cycles C1 and C2 are adjacent if they are state disjoint and

there exists a state S on C1 whose conjugate Ŝ is on C2. By interchanging the successors of S and

Ŝ, the two cycles C1 and C2 are joined together. This is the basic idea of the cycle joining method

introduced in [5].

Definition 1. [7, 13] For an FSR, its adjacency graph is an undirected graph where the vertexes

correspond to the cycles in it, and there exists an edge labeled with an integer m between two vertexes

if and only if the two vertexes share m conjugate pairs.

For any FSR, its adjacency graph is a connected graph. This fact follows from the statement

in [4]: C is a de Bruijn cycle if and only if the existence of state S on C also implies the existence

of its conjugate Ŝ on C. Every maximal spanning tree of an adjacency graph corresponds to a

maximum length FSR, since this represents a choice of adjacencies that repeatedly join two cycles

into one ending with exactly one cycle, i.e. de Bruijn cycle.

3 Some Properties of FSR((x0 + x1) ∗ f)

Let f and g be the characteristic functions of two FSRs. It was proved in [14] that, G(f) ⊂ G(g)

and ord(f) = ord(g)− 1 implies g = (x0 + x1) ∗ f .

Theorem 1. The output sequences of FSR(g) are the disjoint union of the output sequences of two

or more FSRs if and only if (x0 + x1)‖Lg.

Proof. Suppose g = (x0 + x1) ∗ f , then we have G(g) = G(f) ∪ G(f + 1). It can be verified that

G(f) ∩G(f + 1) = ∅.
Suppose G(g) = G(f1) ∪ G(f2) ∪ · · · ∪ G(fk), such that k ≥ 2 and G(fi) ∩ G(fj) = ∅ for any

i 6= j. Assume the sequence s generated by FSR(g) with initial state (0, . . . , 0, 1) belongs to G(fi).

Let n be the number of stages in FSR(g). It can be verified that, s can not be generated by any

FSR with stages less than n− 1. Therefore, we have ord(fi) = ord(g)− 1. Since G(fi) ⊂ G(g) and

ord(fi) = ord(g)− 1, we get g = (x0 + x1) ∗ fi.

For a given g, searching for the f such that G(f) ⊂ G(g) is a hard work [15]. However,

according to Theorem 1, decompose G(g) into the disjoint union of the output sequences of FSRs,

i.e., G(g) = G(f1) ∪G(f2) ∪ · · · ∪G(fk), is easy.
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Example 1. Let g = x0 +x2 +x3 +x1x2 +x3x4 +x5. Since g = (x0 +x1) ∗ (x0 +x1 +x3 +x1x2 +

x2x3 +x4), we have G(g) = G(f)∪G(f+1) where f = x0 +x1 +x3 +x1x2 +x2x3 +x4. For f , since

f = (x0 +x1) ∗ (x0 +x1x2 +x3), we have G(f) = G(h)∪G(h+ 1) where h = x0 +x1x2 +x3. It can

be verified that (x0 + x1) ∦L h. Therefore, G(g) = G(f) ∪G(f + 1) = G(h) ∪G(h+ 1) ∪G(f + 1)

is the complete decomposition of G(g).

For a cycle C = [s1, s2, . . . , sl−1]n, define the extended cycle of C as C+ = [s1, s2, . . . , sl−1]n+1,

then Lemma 1 can be restated as

Lemma 2. [14] Let FSR(f) = {C1, C2, . . . , Ck} and FSR(f + 1) = {D1, D2, . . . , Dt} be two FSRs,

then

{C+
1 , C

+
2 , . . . , C

+
k , D

+
1 , D

+
2 , . . . , D

+
t }

is an FSR with characteristic function g = (x0 + x1) ∗ f .

We call a cycle C = [s0, s1, . . . , sl−1]n prime cycle if there are no conjugate pairs (S, Ŝ) in C.

In the case C is a prime cycle, the reduced cycle of C is defined as C− = [s0, s1, . . . , sl−1]n−1.

Definition 2. An FSR is called dividable if it contains only prime cycles and these cycles can be

divided into two sets such that each set contains no adjacent cycles.

Example 2. Let g = x0 + x1x2 + x2x3 + x4 be a Boolean function. There are 6 cycles in FSR(g),

i.e.,

C1 = [0000], C2 = [0001, 0010, 0100, 1000], C3 = [0011, 0111, 1110, 1100, 1001],

C4 = [0101, 1010], C5 = [0110, 1101, 1011], C6 = [1111].

These cycles are prime cycles and they can be divided into two sets {C1, C3, C4} ∪ {C2, C5, C6},
such that each set contains no adjacent cycles, therefore, FSR(g) is dividable. The adjacency graph

of FSR(g) is shown below.

C1 C3 C4

C2 C5 C6

1 2
2

1
1

1

Theorem 2. FSR(g) is dividable if and only if (x0 + x1)‖Lg.

Proof. Suppose g = (x0 + x1) ∗ f for some f . Let FSR(f) = {C1, C2, · · · , Ck} and FSR(f + 1) =

{D1, D2, · · · , Dt}. By Lemma 2, FSR(g) = {C+
1 , C

+
2 , · · · , C

+
k , D

+
1 , D

+
2 , · · · , D

+
t }. It is easy to see,

the cycles in FSR(g) are prime cycles. We divide these cycles into two sets: {C+
1 , C

+
2 , · · · , C

+
k } ∪

{D+
1 , D

+
2 , · · · , D

+
t }. Then for the necessity part of the theorem it is enough to show that none of

the two sets contains adjacent cycles. Suppose C+
i and C+

j are adjacent. Let (S, Ŝ) be a conjugate
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pair with S ∈ C+
i and Ŝ ∈ C+

j . Denote S by S = (s0, s1, . . . , sn−1), where n is the order of g. Then

the state (s1, s2, . . . , sn−1) would be on both Ci and Cj , which is impossible. Therefore, there are no

adjacent cycles in {C+
1 , C

+
2 , · · · , C

+
k }. Similarly, there are no adjacent cycles in {D+

1 , D
+
2 , · · · , D

+
t }.

Suppose FSR(g) is dividable. Then the cycles in FSR(g) are prime cycles and they can be

divided into two sets, say {C1, C2, · · · , Ck} ∪ {D1, D2, · · · , Dt}, such that none of the two sets

contains adjacent cycles. We assert that: {C−1 , C
−
2 , · · · , C

−
k } and {D−1 , D

−
2 , · · · , D

−
t } are two par-

titions of Fn−1
2 , i.e., they are two (n − 1)-stage FSRs, where n is the order of g. To prove the

assertion, we need to show that, for any state S ∈ Fn−1
2 there exist some i and j such that S is

on both C−i and D−j . Denote S by S = (s0, s1, . . . , sn−2) and let U = (0, s0, s1, . . . , sn−2) and

V = (1, s0, s1, . . . , sn−2). Since (U,V) is a conjugate pair, there exist some i and j such that

U is on Ci and V is on Dj . Then it can be verified that S is on both C−i and D−j . Therefore,

{C−1 , C
−
2 , · · · , C

−
k } and {D−1 , D

−
2 , · · · , D

−
t } are two (n−1)-stage FSRs. Let f and f ′ be the charac-

teristic functions of the two FSR. The sufficiency part of the theorem is proved if f and f ′ have the

relation f = f ′ + 1. Let W = (w0, w1, . . . , wn−2) be a state of length n− 1. Assume W is on C−i
and D−j . Let X = (w1, w2, . . . , wn−2, x) and Y = (w1, w2, . . . , wn−2, y) be the two next states of W

in C−i and D−j respectively. Since (w0, w1, w2, . . . , wn−2, x) is on Ci and (w0, w1, w2, . . . , wn−2, y) is

on Dj , we have (w0, w1, w2, . . . , wn−2, x) 6= (w0, w1, w2, . . . , wn−2, y), therefore, x = y. This implies

f = f ′ + 1.

Theorem 3. The number of n-stage dividable FSRs is 22
n−2−1.

Proof. Let FSR(f1) and FSR(f2) be two (n−1)-stage FSRs, then we have (x0+x1)∗f1 = (x0+x1)∗f2
⇔ f1 − f2 = x1 ∗ (f1 − f2) ⇔ f1 = f2 or f1 = f2 + 1. Define a mapping ψ from the (n − 1)-stage

FSRs to the n-stage dividable FSRs: ψ(FSR(f)) = FSR((x0 +x1)∗f). Then ψ is a 2-to-1 mapping,

and its image set is the n-stage dividable FSRs.

By the definition, a dividable FSR contains only prime cycles, however, an FSR that contains

only prime cycles may not be dividable.

Example 3. Let g = x0 + x1x2x4 + x1x3x4 + x5 be a Boolean function. FSR(g) contains 8 cycles,

i.e.,

C1 = [00000], C2 = [00001, 00010, 00100, 01000, 10000],

C3 = [00011, 00110, 01100, 11000, 10001],

C4 = [00101, 01010, 10100, 01001, 10010],

C5 = [00111, 01110, 11100, 11001, 10011],

C6 = [01011, 10111, 01111, 11110, 11101, 11010, 10101],

C7 = [01101, 11011, 10110], C8 = [11111].

It can be verified that, these cycles are prime cycles. However, FSR(g) is not dividable, because

(x0 + x1) ∦L g. The adjacency graph of FSR(g) is shown below.
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C1 C3 C4 C6

C2 C5 C7 C8

1
2 2

1
2

1
2 2

1

2

We call FSR(g) a linear feedback shift register (LFSR) if g is a linear Boolean function, i.e., g

is of the form g = c0x0 + c1x1 + . . .+ cnxn. For a linear Boolean function g, it can be verified that,

(x0 + x1)‖Lg if and only if g contains an even number of terms.

Theorem 4. Let FSR(g) be a linear feedback shift register, then FSR(g) contains only prime cycles

if and only if (x0 + x1)‖Lg.

Proof. Suppose (x0+x1)‖Lg, then FSR(g) is dividable according to Theorem 2. So FSR(g) contains

only prime cycles. Suppose (x0+x1) ∦L g, then g contains an odd number of terms. It can be verified

that, the next state of (0, 1, . . . , 1) in FSR(g) is (1, 1, . . . , 1). Since (0, 1, . . . , 1) and (1, 1, . . . , 1) are

conjugate with each other, the cycle that contains these two states is not a prime cycle.

4 The Adjacency Graphs of Some LFSRs

D-morphism was proposed by Lempel [10]. It is a 2-to-1 mapping from Fn+1
2 to Fn

2 : D(s0, s1, . . . , sn) =

(s0 + s1, s1 + s2, . . . , sn−1 + sn). The two preimages of a state S = (s0, s1, . . . , sn−1) is D−10 (S) =

(0, s0, s0+s1, . . . , s0+s1+· · ·+sn−1) and D−11 (S) = (1, 1+s0, 1+s0+s1, . . . , 1+s0+s1+· · ·+sn−1).
Let (S, Ŝ) be a conjugate pair, then (D−10 (S), D−11 (Ŝ)) and (D−11 (S), D−10 (Ŝ)) are two conjugate

pairs. For a cycle C = [s0, s1, . . . , sl−1], its complement is defined as C = [s0, s1, . . . , sl−1]. Its weight

is defined as the number of 1’s among the si’s, i.e., W (C) =
∑l−1

i=0 si. In the caseW (C) is even, define

D−1(C) = {[0, s0, s0+s1, · · · , s0+s1+· · ·+sl−2]n+1, [1, 1+s0, 1+s0+s1, · · · , 1+s0+s1+· · ·+sl−2]n+1}
which contains two complement cycles of order n+ 1. In the case W (C) is odd, define D−1(C) =

{[0, s0, · · · , s0 + s1 + · · · + sl−2, 1, 1 + s0, · · · , 1 + s0 + s1 + · · · + sl−2]n+1} which contains one

self-complement cycle of order n+ 1.

Lemma 3. [10] Let FSR(f) = {C1, C2, . . . , Ck} be an n-stage FSR, then

D−1(C1) ∪D−1(C2) ∪ · · · ∪D−1(Ck)

is an (n+ 1)-stage FSR with characteristic function f ∗ (x0 + x1).

Since the operation ∗ is not commutative, generally (x0 + x1) ∗ f 6= f ∗ (x0 + x1). But when f

is a linear Boolean function, we have (x0 + x1) ∗ f = f ∗ (x0 + x1).

Theorem 5. Let f be a linear Boolean function. Let FSR(f) = {C1, C2, . . . , Ck} and FSR(f+1) =

{D1, D2, . . . , Dt}, then we have

D−1(C1) ∪D−1(C2) ∪ · · · ∪D−1(Ck) = {C+
1 , C

+
2 , . . . , C

+
k , D

+
1 , D

+
2 , . . . , D

+
t }.
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Proof. It follows from Lemma 2 and Lemma 3.

Theorem 6. Let f be a linear Boolean function, then we have

1. The number of cycles in FSR(f + 1) is equal to the number of even weight cycles in FSR(f).

2. FSR(f) contains only even weight cycles if and only if f contains an odd number of terms.

3. FSR(f) and FSR(f + 1) contain the same number of cycles if and only if f contains an odd

number of terms.

Proof. 1. Let s and t be the number of odd weight cycles and even weight cycles in FSR(f)

respectively, and u be the number of cycles in FSR(f + 1). By the equation in Theorem 5, we have

s+ 2t = s+ t+ u, which implies t = u.

2. Let f be a linear Boolean function that contains an odd number of terms. Suppose C is

an odd weight cycle in FSR(f). Since W (C) is odd, there is only one cycle in D−1(C). Denote

the cycle in D−1(C) by E, then it can be verified that for any state (s0, s1, . . . , sn) on E the state

(s0, s1, . . . , sn) is also on E. According to Theorem 5, we have E− ∈ FSR(f) or E− ∈ FSR(f + 1).

Without lose of generality, assume E− ∈ FSR(f). Then for any state (s0, s1, . . . , sn) on E, we

have f(s0, s1, . . . , sn) = 0. This is contradiction, because f contains an odd number of terms and

f(s0, s1, . . . , sn) = 0 implies f(s0, s1, . . . , sn) = 1. Let f be a linear Boolean function that contains

an even number of terms, then the cycle that contains only the state (1, 1, . . . , 1) is an odd weight

cycle in FSR(f). Therefore, FSR(f) contains at least one cycle of odd weight.

3. It follows from the two items above.

In the following, we investigate the relationship between the adjacency graphs of FSR((x0 +

x1) ∗ f) and FSR(f), where f is a linear Boolean function. This problem was first studied in [11],

where some conclusions are obtained when f is a linear Boolean function that corresponding to a

primitive polynomial. An open problem was also proposed there: for any two adjacent even weight

cycles C1 and C2 in FSR((1 + x)mp(x)), determine the number of conjugate pairs shared by their

preimages D−1(C1) and D−1(C2), where p(x) is a primitive polynomial. We pay attention to a

generalized situation and continue this research. Our discussion is divided into two cases.

Let f be a linear Boolean function that contains an odd number of terms (FSR(f) is not

dividable). According to Theorem 6, FSR(f) contains only even weight cycles. Let C be a cycle in

FSR(f), then there are two cycles in D−1(C). Denote the two cycles by E and E. It can be verified

that, we always have (1) E− ∈ FSR(f), E
− ∈ FSR(f + 1) or (2) E− ∈ FSR(f + 1), E

− ∈ FSR(f).

Theorem 7. Let f be a linear Boolean function that contains an odd number of terms.

1. Let C be a cycle in FSR(f), and D−1(C) = {E,E}. Suppose C contains r conjugate pairs,

then E and E share 2r conjugate pairs.
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2. Let C1, C2 be two cycles in FSR(f), and D−1(C1) = {E1, E1}, D−1(C2) = {E2, E2}, then

we can assume E−1 , E
−
2 ∈ FSR(f) and E

−
1 , E

−
2 ∈ FSR(f + 1). Suppose C1 and C2 share r

conjugate pairs, then both E1 and E2, E1 and E2 share r conjugate pairs.

Proof. 1. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs in C. For i ∈ {1, 2, . . . , r}, let

bi ∈ {0, 1} such that D−1bi
(Xi) ∈ E and D−11−bi(Xi) ∈ E. Since E and E belong to FSR((x0+x1)∗f)

which is dividable, there are no conjugate pairs in E or E. Remember that (D−1bi
(Xi), D

−1
1−bi(X̂i))

is a conjugate pair, we have D−11−bi(X̂i) is on the cycle E. Similarly, D−1bi
(X̂i) is on the cycle E.

Therefore, (D−1bi
(Xi), D

−1
1−bi(X̂i)), (D−1bi

(X̂i), D
−1
1−bi(Xi)), for i = 1, 2, . . . , r, are 2r conjugate pairs

shared by E and E. It remains to show that there are no other conjugate pairs. Let (Y, Ŷ) be a

conjugate pair shared by E and E with Y ∈ E and Ŷ ∈ E, then (D(Y), D(Ŷ)) is a conjugate pair

in C. Assume (D(Y), D(Ŷ)) = (Xi, X̂i) for some i ∈ {1, 2, . . . , r}, then the conjugate pair (Y, Ŷ)

is (D−1bi
(Xi), D

−1
1−bi(X̂i)) or (D−1bi

(X̂i), D
−1
1−bi(Xi)).

2. Since E−1 , E
−
2 ∈ FSR(f), there are no conjugate pairs shared by E1 and E2. Similarly, there

are no conjugate pairs shared by E1 and E2. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs

shared by C1 and C2 with Xi ∈ C1 and X̂i ∈ C2. For i ∈ {1, 2, . . . , r}, let bi ∈ {0, 1} such that

D−1bi
(Xi) ∈ E1 and D−11−bi(Xi) ∈ E1. Since there are no conjugate pairs shared by E1 and E2,

D−11−bi(X̂i) is on E2 and D−1bi
(X̂i) is on E2. Therefore, (D−1bi

(Xi), D
−1
1−bi(X̂i)), for i = 1, 2, . . . , r, are

r conjugate pairs shared by E1 and E2. Next we show that there are no other conjugate pairs shared

by E1 and E2. Let (Y, Ŷ) be a conjugate pair shared by E1 and E2 with Y ∈ E1 and Ŷ ∈ E2, then

(D(Y), D(Ŷ)) is a conjugate pair shared by C1 and C2 with D(Y) ∈ C1 and D(Ŷ) ∈ C2. Assume

(D(Y), D(Ŷ)) = (Xi, X̂i) for some i ∈ {1, 2, . . . , r}, then we have (Y, Ŷ) = (D−1bi
(Xi), D

−1
1−bi(X̂i)).

So there are exactly r conjugate pairs shared by E1 and E2. Similarly, (D−11−bi(Xi), D
−1
bi

(X̂i)),

i = 1, 2, . . . , r, are the r conjugate pairs shared by E1 and E2.

The conclusion in Theorem 7 is illustrated by the following graph.

C
(even)

r
⇒

E

E

2r

C2
(even)

C1

(even)

r ⇒

E1

E1

E2

E2

r r

case 1 case 2

Let f be a linear Boolean function that contains an even number of terms (FSR(f) is dividable),

then FSR(f) contains only prime cycles. Let C be a even weight cycle in FSR(f), then there are

two cycles in D−1(C). Denote the two cycles by E and E. It can be verified that, we always have

(1) E−, E
− ∈ FSR(f) or (2) E−, E

− ∈ FSR(f + 1). Since E− and E
−

belong to the same FSR,

there are no conjugate pairs shared by E and E.
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Theorem 8. Let f be a linear Boolean function that contains an even number of terms.

1. Let C1, C2 ∈ FSR(f) be two odd weight cycles. Let D−1(C1) = {E1} and D−1(C2) = {E2}.
Suppose C1 and C2 share r conjugate pairs, then E1 and E2 share 2r conjugate pairs.

2. Let C1 ∈ FSR(f) be an odd weight cycle and C2 ∈ FSR(f) be an even weight cycle. Let

D−1(C1) = {E1} and D−1(C2) = {E2, E2}. Suppose C1 and C2 share r conjugate pairs.

Then both E1 and E2, E1 and E2 share r conjugate pairs.

3. Let C1, C2 ∈ FSR(f) be two even weight cycles. Let D−1(C1) = {E1, E1} and D−1(C2) =

{E2, E2}. Suppose C1 and C2 share r conjugate pairs. Then there exist some integer u with

0 ≤ u ≤ r such that: both E1 and E2, E1 and E2 share u conjugate pairs; both E1 and E2,

E1 and E2 share r − u conjugate pairs.

Proof. 1. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1

and X̂i ∈ C2, then (D−10 (Xi), D
−1
1 (X̂i)), (D−11 (Xi), D

−1
0 (X̂i)), for i = 1, 2, . . . , r, are 2r conjugate

pairs shared by C1 and C2. Let (Y, Ŷ) be a conjugate pair shared by E1 and E2 with Y ∈ E1

and Ŷ ∈ E2, then (D(Y), D(Ŷ)) is a conjugate pair shared by C1 and C2 with D(Y) ∈ C1 and

D(Ŷ) ∈ C2. Assume (D(Y), D(Ŷ))= (Xi, X̂i) for some i ∈ {1, 2, . . . , r}, then the conjugate pair

(Y, Ŷ) is (D−10 (Xi), D
−1
1 (X̂i)) or (D−11 (Xi), D

−1
0 (X̂i)).

2. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1

and X̂i ∈ C2. For i ∈ {1, 2, . . . , r}, let bi ∈ {0, 1} such that D−1bi
(X̂i) ∈ E2 and D−11−bi(X̂i) ∈ E2,

then (D−11−bi(Xi), D
−1
bi

(X̂i)), for i = 1, 2, . . . , r, are r conjugate pairs shared by E1 and E2, and

(D−1bi
(Xi), D

−1
1−bi(X̂i)), for i = 1, 2, . . . , r, are r conjugate pairs shared by E1 and E2. Next we show

that there are no other conjugate pairs shared by E1 and E2. Let (Y, Ŷ) be a conjugate pair shared

by E1 and E2 with Y ∈ E1 and Ŷ ∈ E2, then (D(Y), D(Ŷ)) is a conjugate pair shared by C1 and

C2 with D(Y) ∈ C1 and D(Ŷ) ∈ C2. Assume (D(Y), D(Ŷ)) = (Xi, X̂i) for some i ∈ {1, 2, . . . , r},
then we have (Y, Ŷ) = (D−11−bi(Xi), D

−1
bi

(X̂i)). So there are exactly r conjugate pairs shared by E1

and E2. Similarly, there are exactly r conjugate pairs shared by E1 and E2.

3. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1 and

X̂i ∈ C2. For i ∈ {1, 2, . . . , r}, let bi ∈ {0, 1} such that D−1bi
(Xi) ∈ E1 and D−11−bi(Xi) ∈ E1, and

ci ∈ {0, 1} such that D−1ci (X̂i) ∈ E2 and D−11−ci(X̂i) ∈ E2. Let u be the number of elements in

the set {i : bi + ci = 1}, then (D−1bi
(Xi), D

−1
ci (X̂i)) such that bi + ci = 1 for i = 1, 2, . . . , r, are u

conjugate pairs shared by E1 and E2. Next we show there are no other conjugate pairs shared by

E1 and E2. Let (Y, Ŷ) be a conjugate pair shared by E1 and E2 with Y ∈ E1 and Ŷ ∈ E2, then

(D(Y), D(Ŷ)) is a conjugate pair shared by C1 and C2 with D(Y) ∈ C1 and D(Ŷ) ∈ C2. Assume

(D(Y), D(Ŷ)) = (Xi, X̂i) for some i ∈ {1, 2, . . . , r}, then we have (Y, Ŷ) = (D−1bi
(Xi), D

−1
ci (X̂i))

with bi + ci = 1. Therefore, E1 and E2 share exactly u conjugate pairs. Similarly, (D−11−bi(Xi),

D−11−ci(X̂i)) such that bi + ci = 1 for i = 1, 2, . . . , r, are the u conjugate pairs shared by E1 and E2,

(D−1bi
(Xi), D

−1
1−ci(X̂i)) such that bi + ci = 0 for i = 1, 2, . . . , r, are the r − u conjugate pairs shared

by E1 and E2, and (D−11−bi(Xi), D
−1
ci (X̂i)) such that bi + ci = 0 for i = 1, 2, . . . , r, are the r − u

conjugate pairs shared by E1 and E2.
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Note 1. In the case 3 of Theorem 8, we just provide a general range 0 ≤ u ≤ r, and it seems hard

to investigate the relationship between the two parameters u and r. An example that explains this

phenomenon can be found in [11].

The conclusion in Theorem 8 is illustrated by the following graph.

C1

(odd)

C2
(odd)

r ⇒

E1

E2

2r

case 1

C1

(odd)

C2
(even)

r ⇒

E1 E2

E2

r r

case 2

C1

(even)

C2
(even)

r

E1

E2

E1

E2

⇒ u u
r−u

r−u

case 3

5 The Adjacency Graphs of FSR((1+ x)4p(x)) and FSR((1+ x)5p(x))

For a linear Boolean function f(x0, x1, . . . , xn) = a0x0 + a1x1 + · · · + anxn, we associate it with

a univariate polynomial c(x) = a0 + a1x + · · · + anx
n ∈ F2[x]. Sometimes, it is convenient to

use univariate polynomials instead of linear Boolean functions. Some results about LFSRs can be

found in [5]. It is well known that, an LFSR generates m-sequences if and only if its characteristic

polynomial is primitive [16]. For m-sequences, we have the famous shift-and-add property [16].

Lemma 4. [12, 16] Let s be an m-sequence with period 2n − 1, then for any 1 ≤ j ≤ 2n − 2,

there exist an integer 1 ≤ k ≤ 2n − 2 such that s + Lj(s) = Lk(s). Furthermore, the mapping from

{1, 2, . . . , 2n − 2} to itself, Z : j 7→ k, is a bijection.

Let p(x) be a primitive polynomial. The adjacency graphs of LFSRs with characteristic poly-

nomial (1 + x)mp(x) for m = 1, 2, 3 were studied in [14], [8] and [11]. But there are no results

for m ≥ 4. In what follows, we deal with this problem for m = 1, 2, 3, 4, 5 step by step. We use

a = (a0, a1, . . . , al−1) to denote the periodic sequence a = a0a1 · · · , al−1 · · · with period l, and use

[a] to denote the cycle [a0, a1, . . . , al−1]. The period of a is denoted by per(a).

Lemma 5. Let p(x) be a primitive polynomial. Let a + s be a sequence in FSR((1 + x)mp(x)),

where a ∈ FSR((1 + x)m) and s ∈ FSR(p(x)) is an m-sequence. Then we have

1. per(a + s) = per(a)per(s).

2. W([a + s]) ≡W([a]) mod 2.

3. D−1([a + s]) = {[b + s] : b ∈ D−1([a])}.

Proof. 1. Let (1+x)c be the minimal polynomial of a, where c ≤ m. Then the period of a is 2t,

where t is the integer such that 2t−1 < c ≤ 2t. Since gcd((1+x)c, p(x)) = 1 and gcd(per(a),per(s)) =

1, we get per(a + s) = lcm(per(a), per(s)) = per(a)per(s).
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2. Denote a and s by a = (a0, a1, · · · , a2t−1) and s = (s0, s1, · · · , s2n−2), where n is the degree

of p(x). Then we have, W ([a + s]) ≡
(∑2t−1

i=0 ai + 2t · s0
)

+ · · · +
(∑2t−1

i=0 ai + 2t · s2n−2
)
≡ (2n −

1) ·
∑2t−1

i=0 ai + 2t ·
∑2n−2

j=0 sj ≡
∑2t−1

i=0 ai ≡W([a]) mod 2.

3. Let [b] be a cycle in D−1([a]). We need to show D([b + s]) = [a + s]. From D([b]) =

[b + L(b)] = [a] we know, there exists some integer u such that b + L(b) = Lu(a). According to

Lemma 4, there exists some integer v such that s+L(s) = Lv(s). From per(a+s) = per(a)per(s) we

know, [Lu(a)+Lv(s)] = [a+s]. Then the proof can be done as follows: D([b+s]) = [b+s+L(b+s)) =

[b + L(b) + s + L(s)] = [Lu(a) + Lv(s)] = [a + s].

There are two cycles in FSR(p(x)), i.e., [(0)] and [s], and they are even weight cycles. The

adjacency graph of FSR(p(x)) is shown below.

[(0)] [s]

2n−1−1
1

According to Lemma 5, D−1([(0)]) = {[(0)], [(1)]} and D−1([s]) = D−1([(0) + s]) = {[s], [(1) + s]},
therefore, there are four cycles in FSR((1 + x)p(x)): [(0)], [(1)], [s], [(1) + s]. Since W ([(1) + s]) ≡
W ([(1)]) ≡ 1 mod 2, the two cycles [(0)] and [s] are of even weight, and the other two cycles are of

odd weight. By Theorem 7, the adjacency graph of FSR((1 + x)p(x)) is determined.

[(0)] [s]

[(1)] [(1) + s]

1 1

2n−2

Similarly, we can calculate the cycles in FSR((1 +x)2p(x)): [(0)], [(1)], [s], [(1) + s], [(01)], [(01) + s].

Since W ([(1) + s]) ≡W ([(1)]) ≡ 1 mod 2 and W ([(01) + s]) ≡W ([(01)]) ≡ 1 mod 2, the two cycles

[(0)] and [s] are of even weight, and the other four cycles are of odd weight. By Theorem 8, the

adjacency graph of FSR((1 + x)2p(x)) is obtained.

[(0)] [s] [(1) + s] [(1)]

[(01)] [(01) + s]

2n−2 1

2n−2
11

1
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In the same way, we get the adjacency graph of FSR((1 + x)3p(x)).

[(0)] [s] [(1) + s] [(1)] [(01)] [(01) + s]

[(0011)] [(0011) + s]

1 1 2n−2 1
2n−2 1

2 2

2n+1−4

For the adjacency graph of FSR((1 + x)4p(x)), we have to deal with the parameter u in the case

3 of Theorem 8. In the following theorem we will solve this problem. The method we will use is

suggested by Li et al. [12].

Theorem 9. There are 12 cycles in FSR((1 + x)4p(x)): [(0)], [(1)], [s], [(1) + s], [(01) + s], [(01)],

[(0011) + s], [(0011)], [(0001)], [(0111)], [(0001) + s], [(0111) + s]. Denote them by C1, C2, · · · , C12

respectively, then the number of conjugate pairs shared by these cycles is shown by the following

two tables, where a = 2n − 2.

Table 1: In the case [(0)] is adjacent with [(0001) + s]

C1 C2 C3 C4 C5 C6 C7 C8

C9 0 0 1 0 1 0 2 0

C10 0 0 0 1 1 0 2 0

C11 1 0 a 0 a 1 2a 2

C12 0 1 0 a a 1 2a 2

Table 2: In the case [(0)] is adjacent with [(0111) + s]

C1 C2 C3 C4 C5 C6 C7 C8

C9 0 0 0 1 1 0 2 0

C10 0 0 1 0 1 0 2 0

C11 0 1 0 a a 1 2a 2

C12 1 0 a 0 a 1 2a 2

Proof. In order to deal with the parameter u in the case 3 of Theorem 8, we need to determine the

numbers of conjugate pairs shared by

[(0)] and [(0001) + s], [s] and [(0001)], [s] and [(0001) + s].

In the case [(0)] is adjacent with [(0001) + s], since there is only one state in [(0)], [(0)] share 1

conjugate pair with [(0001)+s]. In the following, we consider the number of conjugate pairs shared

by [s] and [(0001)], [s] and [(0001) + s]. Since [(0)] is adjacent with [(0001) + s], the (n+ 4)-stage

12



state E = (1, 0, · · · , 0) belongs to [(0001) + s]. Treat [(0001)] and [s] as cycles of order n+ 4. There

are two states U0 and S0 in [(0001)] and [s] respectively such that:

U0 + S0 = E, (1)

which implies S0 = Û0. So the conjugate of S0 belongs to [(0001)]. Denote [(0001)] = [U0,U1,U2,U3]

and [s] = [S0,S1, . . . ,S2n−2]. Without lose of generality, we can assume s = (s0s1 · · · s2n−2), where

si is the first component of Si for i = 0, 1, · · · , 2n−2. According to Lemma 4, s+Lj(s) = LZ(j)(s),

therefore, we have

S0 + Sj = SZ(j). (2)

By combining the two state equations (1) and (2), we get

U0 + Sj = ŜZ(j). (3)

Since Z is a bijection on {1, 2, . . . , 2n − 2}, equation (3) means that the conjugate of Sj with

j 6= 0 belongs to [(0001) + s]. Therefore [s] shares 1 conjugate pair with [(0001)] and shares 2n − 2

conjugate pairs with [(0001) + s].

For the case [(0)] is adjacent with [(0111) + s], the proof is similar.

The following example shows that, both of the two cases in Theorem 9 can happen.

Example 4. Let p1(x) = x5+x4+x2+x+1 be a primitive polynomial and s1 = (000011100110111

1101000100101011) ∈ G(p1(x)) be an m-sequence, then [(0001) + s1] = [(10000000011101000011111

01111110101100110100011100001101110011100101010110111101001010001010111110011000010010

010110001001101)]. Therefore, [(0)] is adjacent with [(0001) + s1] in FSR((1 + x)4p1(x)).

Let p2(x) = x5+x3+x2+x+1 be a primitive polynomial and s2 = (00001011010100011101111100

10011) ∈ G(p2(x)) be an m-sequence, then [(0111)+s2] = [(10000000010111110111100101101111110

01100011100100011111000010011010101000010100010110000111010100110010010011101101011010

001)]. Therefore, [(0)] is adjacent with [(0111) + s2] in FSR((1 + x)4p2(x)).

The adjacency graph of FSR((1 + x)5p(x)) can be determined directly without being bothered

by the parameter u in Theorem 8. By Lemma 5, there are 16 cycles in FSR((1 + x)5p(x)): [(0)],

[(1)], [(01)], [s], [(1)+ s], [(01)+ s], [(0011)+s], [(0011)], [(0001)+s], [(0111)+ s], [(0001)], [(0111)],

[(00001111)], [(00101101)], [(00001111) + s], [(00101101) + s]. Denote them by D1, D2, · · · , D16

respectively, then the number of conjugate pairs shared by these cycles is shown by the following

two tables, where a = 2n − 2.

Theorem 10. Let fm be the linear Boolean function corresponding to the polynomial (1+x)mp(x).

If m = 2t−1 for some integer t, FSR(fm+1) contains only odd weight cycles; otherwise, FSR(fm+1)

contains only even weight cycles.

Proof. According to the theory of LFSRs, the number of cycles in FSR(fm + 1) is 2m+1−dlog(m+1)e.

By Theorem 6, the number of even weight cycles in FSR(fm) is the same as the number of cycles in

13



Table 3: In the case [(0)] is adjacent with [(00001111) + s]

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D13 0 0 0 1 1 0 2 0 2 2 0 0

D14 0 0 0 0 0 2 2 0 2 2 0 0

D15 1 1 0 a a 0 2a 2 2a 2a 2 2

D16 0 0 2 0 0 2a 2a 2 2a 2a 2 2

Table 4: In the case [(0)] is adjacent with [(00101101) + s]

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

D13 0 0 0 0 0 2 2 0 2 2 0 0

D14 0 0 0 1 1 0 2 0 2 2 0 0

D15 0 0 2 0 0 2a 2a 2 2a 2a 2 2

D16 1 1 0 a a 0 2a 2 2a 2a 2 2

FSR(fm + 1), therefore, there are 2m+1−dlog(m+1)e even weight cycles in FSR(fm). By this formula,

the number of even weight cycles in FSR(fm+1) is 2m+2−dlog(m+2)e. Since G(fm+1) = G(fm) ∪
G(fm + 1), the number of even weight cycles in FSR(fm + 1) is 2m+2−dlog(m+2)e − 2m+1−dlog(m+1)e.

It can be verified that

2m+2−dlog(m+2)e − 2m+1−dlog(m+1)e =

0 if m = 2t − 1 for some integer t,

2m+1−dlog(m+1)e otherwise.

This completes the proof.

6 De Bruijn Sequences from FSR((1+x)4p(x)) and FSR((1+x)5p(x))

In this Section, two families of de Bruijn sequences are constructed from the LFSRs with charac-

teristic polynomials (1 + x)4p(x) and (1 + x)5p(x), where p(x) is a primitive polynomial of degree

n. Since we are interested in de Bruijn sequences of large period, we assume n is a large integer.

The first construction is based on Theorem 9 where the adjacency graph of FSR((1 + x)4p(x))

is given. There are 12 cycles in such an LFSR. The 12 cycles are divided into two classes according

to their length. The cycles in the first class are called short cycles since there are a small number

of states in them:

[(0)], [(1)], [(01)], [(0011)], [(0001)], [(0111)],

and the cycles in the second class are called long cycles:

[s], [(1) + s], [(01) + s], [(0011) + s], [(0001) + s], [(0111) + s].

According to Theorem 9, there are two possibilities for the adjacency graph of these LFSRs, de-

pending on the position of the state E = (1, 0, . . . , 0) which may on the cycle [(0001) + s] or the

cycle [(0111) + s]. At first, we need to determine the location of E.
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Denote the four states in the short cycle [(0001)] by U0,U1,U2 and U3. For i = 0, 1, 2, 3, let

Xi be the state of length n obtained from the first n bits of the state Ui + E, and let Yi be the

first n+ 4 bits generated by the LFSR with characteristic polynomial p(x) on the initial state Xi.

If Yi = Ui + E for some i ∈ {0, 1, 2, 3}, then E is in the cycle [(0001) + s], otherwise, E is in the

cycle [(0111) + s]. This method can be carried in time O(n), therefore, the adjacency graph of

FSR((1 + x)4p(x)) can be determined easily. Without lose of generality, we always assume that

Case 1 of Theorem 9 is satisfied in what follows.

A class of maximum length FSRs can be constructed from these LFSRs using the cycle joining

method. Let A be a set of states, in which there are no conjugate pairs. We use I(A) to denote

the Boolean function, which takes value 1 at the states in A and the states whose conjugate lies in

A, and takes value 0 at the other points.

Theorem 11. Let f(x0, x1, · · · , xn+4) be the Boolean function corresponding to (1 + x)4p(x).

Choose a state from each short cycle randomly, and let A be the set of these states. Then the

FSRs that take the following Boolean functions as their characteristic functions are maximum

length FSRs.

1. g = f(x0, x1, · · · , xn+4) + I(X1,X2,X3,X3,X4) + I(A)

2. g = f(x0, x1, · · · , xn+4) + I(X1,X2,X3,X4,X4) + I(A)

where X1 ∈ [s],X2 ∈ [(1) + s],X3 ∈ [(01) + s],X4 ∈ [(0011) + s] are chosen randomly such that

their conjugates are not in short cycles.

Proof. Regardless of the short cycles, the adjacency graph of FSR((1 + x)4p(x)) can be simplified

as follows, where a denotes the number 2n − 2.

[s] [(1) + s] [(01) + s] [(0011) + s]

[(0001) + s] [(0111) + s]

a a a a 2a 2a

If we choose a state X1 from [s] whose conjugate is not in short cycles and change its successor

with its conjugate, the two cycles [s] and [(0001) + s] are joined into one cycle. Similarly, by

changing the successor of X2 with its conjugate, the two cycles [(1) + s] and [(0111) + s] are joined

together, and by changing the successor of X4 with its conjugate, the two cycles [(0011) + s]

and [(0001) + s] (or [(0011) + s] and [(0111) + s]) are joined together. Since the conjugates of

X3 and X3 lie in [(0001) + s] and [(0111) + s] (or [(0111) + s] and [(0001) + s]) respectively,

by changing the successors of X3 and X3 with their conjugates simultaneously, the three cycles

[(01) + s], [(0001) + s] and [(0111) + s] are joined into a single one. Finally, considering the short

cycles, if we choose a state from each short cycles and change their successors with their conjugates,
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all the six short cycles are joined to the long cycles. Therefore, the FSRs with characteristic function

f(x0, x1, · · · , xn+4)+I(X1,X2,X3,X3,X4)+I(A) are maximum length FSRs. Similarly, the FSRs

with characteristic function f(x0, x1, · · · , xn+4) + I(X1,X2,X3,X4,X4) + I(A) are also maximum

length FSRs.

To count the number of maximum length FSRs we have constructed, we need the following

lemma which was proved in [9]

Lemma 6. [9] For n ≥ 4, if we apply the cycle joining method to two different n-stage LFSRs,

the resulting de Bruijn sequences are different.

The set A defined in Theorem 11 has 1 ·1 ·2 ·4 ·4 ·4 = 128 choices, the four states X1,X2,X3,X4

have a, a, 2a and 4a choices respectively, and the Boolean function f has φ(2n−1)/n choices where

φ(·) is the Euler’s totient function. For the Boolean functions in Theorem 11 of type (1), replacing

the state X3 by X3 result in a same g, therefore, there are totally

128 · a · a · 2a · 4a · φ(2n − 1)

2n
= 512a4φ(2n − 1)/n

functions of type (1). Similarly, there are totally 512a4φ(2n − 1)/n functions of type (2). So the

number of maximum length FSRs we have constructed from FSR((1 + x)4p(x)) is

1024(2n − 2)4φ(2n − 1)

n
= O(25n).

In the following, we present an algorithm to generate the four states X1,X2,X3,X4 satisfying

the condition of Theorem 11 (takes X3 for example). This algorithm may fail at a negligible

probability (given below). If it fails, we just need to run it again.

Algorithm 1 Generation of X3

1. Choose an n-stage state X randomly. Let Y be the first n + 4 bits generated by the LFSR

with characteristic polynomial p(x) on the initial state X (treat Y as an (n+ 4)-stage state).

2. Choose a state U from the short cycle [(01)] randomly.

3. If the state Û + Y lies in the short cycles, output “fail”; otherwise, output U + Y.

There are 2(2n−1) states in the cycle [(01) + s], of which there are two states whose conjugates

are in short cycles. So the fail probability of the algorithm is ε = 1
2n−1 , which is negligible when

n is big. The time complexity of this algorithm is O(n) which is also the time we need to get a

Boolean function in Theorem 11.

Another family of maximum length FSRs can be constructed from FSR((1 +x)5p(x)) using the

same method. Divide the cycles in FSR((1 + x)5p(x)) into two classes according to their length.

The cycles in the first class are called short cycles:

[(0)], [(1)], [(01)], [(0011)], [(0001)], [(0111)], [(00001111)], [(00101101)],
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and the cycles in the second class are called long cycles:

[s], [(1) + s], [(01) + s], [(0011) + s], [(0001) + s], [(0111) + s], [(00001111) + s], [(00101101) + s].

The adjacency graph of FSR((1 + x)5p(x)) has two possibilities, depending on the position of the

state E = (1, 0, . . . , 0) which may lies in either the cycle [(00001111)+s] or the cycle [(00101101)+s].

We always assume the former case in what follows. Similar to Theorem 11 we have,

Theorem 12. Let f(x0, x1, · · · , xn+5) be the Boolean function corresponding to (1 + x)5p(x).

Choose a state from each short cycle randomly, and let A be the set of these states. Then the

FSRs that take the following Boolean function as their characteristic functions are maximum length

FSRs.

1. g = f(x0, x1, · · · , xn+5) + I(X1,X2,X3,X4,X4,X5,X6) + I(A)

2. g = f(x0, x1, · · · , xn+5) + I(X1,X2,X3,X4,X5,X5,X6) + I(A)

3. g = f(x0, x1, · · · , xn+5) + I(X1,X2,X3,X4,X5,X6,X6) + I(A)

where X1 ∈ [s],X2 ∈ [(1) + s],X3 ∈ [(01) + s],X4 ∈ [(0011) + s],X5 ∈ [(0001) + s],X6 ∈ [(0111) + s]

are chosen randomly such that their conjugates are not in short cycles.

The time we need to get a Boolean function in Theorem 12 is O(n). The number of maximum

length FSRs we have constructed from FSR((1 + x)5p(x)) is

1572864(2n − 2)6φ(2n − 1)

n
= O(27n).

7 Conclusion

Some properties about the FSRs with characteristic function of the form g = (x0 +x1)∗f are given

in this paper. As an application of these result, we determine the adjacency graphs of LFSRs with

characteristic polynomials (1 + x)4p(x) and (1 + x)5p(x) where p(x) is a primitive polynomial. A

large class of maximum length FSR are constructed from these LFSRs. For further research, more

relations between the two parameters u and r in Theorem 8 need to be found.
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