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Abstract: In this paper, we explore the primitivity of trinomials over small finite fields. We extend the results
of the primitivity of trinomials xn + ax + b over F4 [1] to the general form xn + axk + b. We prove that for
given n and k, one of all the trinomials xn + axk + b with b being the primitive element of F4 and a + b 6= 1

is primitive over F4 if and only if all the others are primitive over F4. And we can deduce that if we find one
primitive trinomial over F4, in fact there are at least four primitive trinomials with the same degree. We give the
necessary conditions if there exist primitive trinomials over F4. We study the trinomials with degrees n = 4m +1

and n = 21 ·4m+29, where m is a positive integer. For these two cases, we prove that the trinomials xn+ax+b

with degrees n = 4m + 1 and n = 21 · 4m + 29 are always reducible if m > 1. If some results are obviously
true over F3, we also give it.
Keywords: finite fields¶primitive polynomials¶trinomials

1 Introduction
As usual, denote Fq the finite field of q elements and let Fq[x] be the ring of polynomials in one variable xwith

coefficients in Fq . Trinomials in Fq[x] are polynomials of the form xn +axk + b(n > k > 0, ab 6= 0). Irreducible
and primitive trinomials have many important applications in the theory of finite fields, cryptography, and coding
theory [2-4]. Hence, there are many results on the factorizations of trinomials and existence or non-existence
of irreducible or primitive trinomials. For detail results one can see [5] [6] [7] [8] . However, these results on
trinomials are mainly related to binary field and many basic questions concerning trinomials remain unanswered.
For example, to this day no one has proved that there are infinite primitive trinomials over finite field Fq .

In this paper, we mainly explore the primitivity of trinomials xn +axk +b over finite field F4. First we remark
that we only consider the trinomials of odd degrees. This is because the only primitive trinomials of even degree
over F4 are of the form x2 + ax + b [6] . In next section, we extend the results of the primitivity of trinomials
xn + ax + b over F4 [1] to the general form xn + axk + b. As a consequence, We prove that for given n and k,
one of all the trinomials xn + axk + b with b being the primitive element of F4 and a+ b 6= 1 is primitive over F4

if and only if all the others are primitive over F4. And we can deduce that if we find one primitive trinomial over
F4, in fact there are at least four trinomials with the same degree. We give a table of necessary conditions for the
existence of primitive trinomials and other interesting results. In section 3, we discuss the primitivity of trinomials
with special degrees over F4 and if some results are obviously true over F3, we also give it.

2 The general form
In [1], we have given some results on the primitivity of trinomials of the special form xn + ax+ b over F4. In this
section, we extend these results to the general form xn + axk + b. These new results are mainly included in the
following theorem 1 and theorem 2. To prove theorem 1 and theorem 2, we first give some lemmas.

Lemma 1 [3]. If f(x) ∈ Fq[x] is a polynomial of positive degree with f(0) 6= 0, and if r is a prime not
dividing q, then ord(f(xr)) = rord(f(x)).

Lemma 2. If f(x) ∈ Fq[x] is a polynomial of positive degree with f(0) 6= 0 and f(x) has no multiple roots,
then for each a ∈ F∗

q , ord(f(x)) divides ord(a) · ord(f(ax)).
Proof. Let β be a root of f(x), then a−1β is a root of f(ax) and ord(β) = ord(a · a−1β). It is obvious that

ord(a ·a−1β) can divide ord(a) ·ord(a−1β), so ord(β) can divide ord(a) ·ord(a−1β). Since f(0) 6= 0 and f(x)
has no multiple roots, it is well known that the order of f(x) is equal to the least common multiple of the orders of
all its roots, hence according to the basic knowledge of the least common multiple, we have ord(f(x)) can divide
ord(a) · ord(f(ax)).

Lemma 3. Let ω be a primitive element of F4. If k ≡ 0 mod 3 or n ≡ 0 mod 3, then for any a ∈ F∗
4, the

trinomial xn + axk + ω can not be primitive over F4.
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Proof. Let g(x) = xn + axk + ω. If n ≡ 0 mod 3 and k ≡ 1 mod 3 or k ≡ 2 mod 3, one can easily
check that g(x) has at least one root in F4. So it is reducible over F4. And of course not primitive.

If n ≡ 0 mod 3 and k ≡ 0 mod 3, then g(x) = (x3)
n
3 + a(x3)

k
3 + ω. According to lemma 1, we have

ord(g(x)) = 3ord(x
n
3 + ax

k
3 + ω)

≤ 3(4
n
3 − 1)

< 4n − 1.

So g(x) can not be primitive over F4.
If k ≡ 0 mod 3 and n ≡ 1 mod 3, since a ∈ F∗

4, a = 1, ω or ω2. For a = 1 and a = ω2, one can check that
for each case g(x) = xn+axk+ω has a root in F4. For a = ω, note that g(ωx) = ω(xn+xk+1), g(0) 6= 0 and n
is odd, so g(x) has no multiple roots, then by lemma 2, ord(g(x)) can divide ord(ω) · ord(g(ωx)), which is equal
to 3ord(g(ωx)). Since ω−1g(ωx) = xn + xk + 1 ∈ F2[x], we have ord(g(ωx)) = ord(ω−1g(ωx)) ≤ 2n − 1,
then ord(g(x)) ≤ 3ord(g(ωx)) ≤ 3(2n − 1) < 4n − 1. So g(x) can not be primitive over F4 too.

If k ≡ 0 mod 3 and n ≡ 2 mod 3, for a = 1 and a = ω2, one can check that for each case g(x) =
xn + axk + ω has a root in F4. For a = ω, the proof is similar to the case k ≡ 0 mod 3, n ≡ 1 mod 3 and
a = ω, we omit it.

Corollary 1. Let ω be a primitive element of F4.
1. If xn + ωxk + ω is primitive, then n ≡ 1 mod 3, k ≡ 2 mod 3 or n ≡ 2 mod 3, k ≡ 1 mod 3.
2. If xn + xk + ω−1 is primitive, then n ≡ 1 mod 3, k ≡ 2 mod 3 or n ≡ 2 mod 3, k ≡ 1 mod 3.
Proof. Let T1(x) = xn + ωxk + ω and T2(x) = xn + xk + ω−1. Suppose that T1(x) is primitive. If k ≡ 0

mod 3 or n ≡ 0 mod 3, according to lemma 3, T1(x) can not be primitive over F4. If n ≡ 1 mod 3, k ≡ 1
mod 3 and if n ≡ 2 mod 3, k ≡ 2 mod 3, one can check that T1(x) has a root in F4 for each case. So if T1(x)
is primitive, then n ≡ 1 mod 3, k ≡ 2 mod 3 or n ≡ 2 mod 3, k ≡ 1 mod 3.

If k ≡ 0 mod 3 or n ≡ 0 mod 3, the same according to lemma 3, T2(x) can not be primitive over F4. If
n ≡ 1 mod 3, k ≡ 1 mod 3, then T2(ω−1x) = ω−1(xn + xk + 1). So according to lemma 2, ord(T2(x)) can
divide ord(ω−1) ·ord(T2(ω−1x)), which is equal to 3ord(T2(ω−1x)). Since ωT2(ω−1x) = xn +xk +1 ∈ F2[x],
we have ord(T2(ω−1x)) = ord(ωg(ω−1x)) ≤ 2n − 1, then ord(T2(x)) ≤ 3ord(T2(ω−1x)) ≤ 3(2n − 1) <
4n − 1. If n ≡ 2 mod 3, k ≡ 2 mod 3, the proof is the same as the case n ≡ 1 mod 3, k ≡ 1 mod 3. So if
T2(x) is primitive, then also n ≡ 1 mod 3, k ≡ 2 mod 3 or n ≡ 2 mod 3, k ≡ 1 mod 3. This completes the
proof.

Let ω be a primitive element of F4. In [1] we have proved that the trinomials of the special form xn +ωx+ω
was primitive over F4 if and only if xn + x+ ω−1 was primitive over F4. In fact, it is also true for the trinomials
of the general form.

Theorem 1. The trinomial xn + ωxk + ω is primitive over F4 if and only if xn + xk + ω−1 is primitive over
F4.

Proof. Let T1(x) = xn + ωxk + ω and T2(x) = xn + xk + ω−1. Since T1(x) is primitive, then by corollary
1, n ≡ 1 mod 3, k ≡ 2 mod 3 or n ≡ 2 mod 3, k ≡ 1 mod 3. Let ξ be a root of T1(x), then

ω = ξ · ξ4 · · · ξ4
n−1

= ξ
4n−1

3 . (1)

If n ≡ 1 mod 3 and k ≡ 2 mod 3, then

T2(ωξ) = (ωξ)n + (ωξ)k + ω−1 = ω(ξn + ωξk + ω) = 0.

Hence, ωξ is a root of xn + xk + ω−1. By (1), we have ωξ = ξ1+
4n−1

3 . Note that

1 +
4n − 1

3
= 1 + n+

n−2∑
k=0

Ck
n3n−k−1.

So 3 is not a divisor of 4n − 1 and 1 + 4n−1
3 if n ≡ 1 mod 3. If p is a prime divisor of 4n − 1 and p 6= 3,

obviously, it can not be a divisor of 1 + 4n−1
3 . So 4n − 1 and 1 + 4n−1

3 are relatively prime. Then the order of
ωξ is also 4n − 1. Thus, ωξ is a primitive element of F4n . Since the degree of xn + xk + ω−1 is n, then it is the
minimal polynomial of ωξ, hence xn + xk + ω−1 is primitive over F4. If n ≡ 2 mod 3 and k ≡ 1 mod 3, the
proof is similar, we omit it.

Conversely, suppose that T2(x) is primitive, then by corollary 1, we also have that n ≡ 1 mod 3, k ≡ 2
mod 3 or n ≡ 2 mod 3, k ≡ 1 mod 3. And the proof of the left is similar to the proof of necessity, we omit
it.
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Lemma 4 [3]. The monic polynomial f(x) ∈ Fq[x] of degree n > 1 is a primitive polynomial over Fq if
and only if (−1)nf(0) is a primitive element of Fq and the least positive integer r for which xr is congruent
mod f(x) to some element of Fq is r = qn−1

q−1 . In case f(x) is primitive over Fq , we have xr ≡ (−1)nf(0)

mod f(x).
By lemma 4, when we check the primitivity of all trinomials xn + axk + b over F4. We only need to consider

the trinomials with b being the primitive element of F4. Let ω be a primitive element of F4. Then b = ω or
b = ω2. If b = ω, a = ω2 or b = ω2, a = ω, note that ω2 + ω + 1 = 0, then 1 is the root of xn + axk + b.
Hence if xn + axk + b is primitive over F4, then a = b = ω or a = b = ω2 or a = 1, b = ω or a = 1, b = ω2,
i.e., only the following four cases g1(x) = xn + ωxk + ω, g2(x) = xn + ω2xk + ω2, g3(x) = xn + xk + ω
and g4(x) = xn + xk + ω2 maybe primitive over F4. By theorem 1, g1(x) is primitive over F4 if and only if
g4(x) is primitive over F4 and g2(x) is primitive over F4 if and only if g3(x) is primitive over F4. Note that
g21(x) = g2(x2), then the squares of all the roots of g1(x) are just all the roots of g2(x) and the converse is true.
So g1(x) is primitive over F4 if and only if g2(x) is primitive over F4. The above discussion means that for given
n and k, one of all the trinomials xn +axk + b with b being the primitive element of F4 and a+ b 6= 1 is primitive
over F4 if and only if all the others are primitive over F4. And we can deduce that if we find one primitive trinomial
over F4, in fact there are at least four trinomials with the same degree.

Lemma 5 [6]. Suppose [K : F2] is even. Only two types of odd-degree trinomials have an even number of
factors, namely,

1. g(x) = xn + axk + b, 2|k|2n, if t2 + t+ a
2n
k b2−

2n
k has no roots in K.

2. g(x) = xn + axk + b, n− k|n, if t2 + t+ a
2n
k b−2 has no roots in K.

Lemma 6. Let ω be a primitive element of F4 and let T1(x) = xn+ωxk +ω. If n > 2, then T1(x) is reducible
over F4 for the cases in table 1.

Table 1

k mod 15 n mod 15 k mod 15 n mod 15
1 2,8,14 2 1,4,13
4 2,8,11 8 1,4,7
7 8,11,14 11 4,7,13

13 2,11,14 14 1,7,13

Proof. For the case k mod 15 = 1 and n mod 15 = 2, let β be a root of x2 + ωx + ω. Then β15 = 1 and
one can check that β is also the root of T1(x). Since x2 + ωx + ω is irreducible over F4 and n > 2, we have
x2 +ωx+ω is a factor of T1(x). The proofs of other cases are similar, we omit them and list an irreducible factor
of degree 2 for each case in the following table 2.

Table 2

k mod 15 n mod 15 a factor of T1(x) k mod 15 n mod 15 a factor of T1(x)
2 x2 + ωx+ ω 1 x2 + ω2x+ 1

1 8 x2 + ωx+ 1 2 4 x2 + ω2x+ ω2

14 x2 + x+ ω2 13 x2 + x+ ω
2 x2 + ωx+ 1 1 x2 + ω2x+ ω2

4 8 x2 + ωx+ ω 8 4 x2 + ω2x+ 1
11 x2 + x+ ω2 7 x2 + x+ ω
8 x2 + ω2x+ ω2 4 x2 + ωx+ ω

7 11 x2 + ω2x+ 1 11 7 x2 + x+ ω2

14 x2 + x+ ω 13 x2 + ωx+ 1
2 x2 + ω2x+ ω2 1 x2 + ωx+ ω

13 11 x2 + x+ ω 14 7 x2 + ωx+ 1
14 x2 + ω2x+ 1 13 x2 + x+ ω2

Now we can prove the following further results.
Theorem 2. If trinomial xn +axk +b with b being the primitive element of F4 is primitive over F4 and n > 2,

then n, k satisfy the conditions in the table below.
Proof. By theorem 1 and the arguments after lemma 4, we only need to suppose that the trinomial xn+ωxk+ω

is primitive over F4, then by corollary 1, we have k ≡ 1 mod 3,n ≡ 2 mod 3 or k ≡ 2 mod 3, n ≡ 1 mod 3.
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Table 3

k mod 15 1 2 4 5 7 8 10 11 13 14
n mod 15 5,11 7,10 5,14 1,4,7,13 2,5 10,13 2,8,11,14 1,10 5,8 4,10

For k ≡ 1 mod 3 and n ≡ 2 mod 3, note that k ≡ 1 mod 3 is equivalent to k ≡ 1, 4, 7, 10, 13 mod 15.
For k ≡ 1, 4, 7, 13 mod 15, since n > 2, then by lemma 6, for the corresponding values of n mod 15 in table 1,
the trinomial xn +ωxk +ω is reducible over F4. Checking all possible values of n mod 15 and make sure n ≡ 2
mod 3 for each k ≡ 1, 4, 7, 13 mod 15, only for the values of n mod 15 in table 3, we can not decide whether
xn +ωxk +ω is primitive or not and for all other cases, xn +ωxk +ω can not be primitive. For k ≡ 10 mod 15,
if n ≡ 5 mod 15, then 5 can divide n and k, by lemma 1, ord(xn +ωxk +ω) = 5ord(x

n
5 +ωx

k
5 +ω) < 4n−1.

So xn + ωxk + ω is not primitive over F4. Checking all possible values of n mod 15 and make sure n ≡ 2
mod 3, xn + ωxk + ω can not be primitive except for n ≡ 2, 8, 11, 14 mod 15. For k ≡ 2 mod 3 and n ≡ 1
mod 3, the proof is similar to the case k ≡ 1 mod 3 and n ≡ 2 mod 3. We omit the proof.

Following from theorem 2, we can have
Corollary 2. For any n(n > 2) there is no primitive trinomials xn + ax2 + b over F4.
Proof. Let ω be a primitive element of F4. By theorem 1 and the arguments after lemma 4, we only need to

consider the case a = b = ω. According to corollary 1, xn + ωx2 + ω can not be primitive over F4 if n ≡ 0
mod 3 and n ≡ 2 mod 3. In fact, one can directly check that xn + ax2 + ω has a root in F4. If n ≡ 1 mod 3,
since [F4 : F2] = 2, t2+t+ω

2n
2 ω2− 2n

2 = t2+t+ω2 has no roots in F4. Then by lemma 5, we have xn+ωx2+ω
is reducible over F4.

3 The special form
In this section, we go on to consider the primitivity of trinomials of the special form xn + ax + b. By theorem 2
we know that there is no primitive trinomials over F4 except for n ≡ 5 mod 15 and n ≡ 11 mod 15. Hence we
consider the primitivity of trinomial xn + ax + b when n ≡ 5 mod 15 and n ≡ 11 mod 15. We mainly study
the trinomials with degrees n = 4m + 1 and n = 21 · 4m + 29, where m is a positive integer. It is easy to check
that if n = 4m + 1, then n ≡ 5 mod 15 for m is odd and if n = 21 ·4m + 29, then n ≡ 5 mod 15 for m is even.
For these two cases, we prove that the trinomials xn + ax+ b with degrees n = 4m + 1 and n = 21 · 4m + 29 are
always reducible if m > 1. If some results are obviously true over F3, we also give them.

Theorem 3. Let m be a positive integer. Suppose that a, b ∈ F∗
q and

(λi, λi+1) = (1,−a) ·
(

0 −b
1 −a

)i

, i = 0, 1, · · · , q − 2. (2)

If λi 6= 0 for 1 ≤ i ≤ q − 1 and λq−2b+ λq−1a = 0, then all irreducible factors of xq
m+1 + ax+ b have degrees

dividing (q + 1)m, and therefore, periods dividing q(q+1)m − 1.
Proof. Let ϕ(x) = xq

m+1 + ax+ b and

Φ(x) = λq−1ϕ(x) +

q−2∑
i=0

λix
q(q−2−i)m+···+qm+1ϕq(q−1−i)m

(x). (3)

By (2), we have that

(λi+1, λi+2) = (λi, λi+1) ·
(

0 −b
1 −a

)
, i = 0, 1, · · · , q − 3.

Then λi+2 + λib + λi+1a = 0, 0 ≤ i ≤ q − 3. So by simple calculation and the condition that λi 6= 0, 1 ≤ i ≤
q − 1, λq−2b+ λq−1a = 0, we can deduce that

Φ(x) = xq
qm+···+qm+1 + λq−1b.

Note that ϕ(x) can divide Φ(x). So ϕ(x) can divide Φ(x) = xq
qm+···+qm+1 + λq−1b, which can divide

x(q−1)(qqm+···+qm+1) − 1. Notice that for any positive integer m, q − 1 divides qm − 1, and (qm − 1)(qqm +
· · · + qm + 1) = q(q+1)m − 1. So (q − 1)(qqm + · · · + qm + 1) is a divisor of q(q+1)m − 1. So ϕ(x) divides
xq

(q+1)m−1 − 1. Hence all irreducible factors of ϕ(x) have degrees dividing (q + 1)m, and therefore, periods
dividing q(q+1)m − 1.
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Corollary 3. Let q = 3, 4 and let m be a positive integer. Suppose that a, b ∈ F∗
q and b 6= a2, then all

irreducible factors of xq
m+1 + ax+ b have degrees dividing (q + 1)m.

Proof. For the case q = 3, let g(x) = x3
m+1 + ax + b. According to the condition that b 6= a2 and since

F3 = {0, 1,−1}, we have b = −1, a = 1 or b = −1, a = −1. Let λ0 = 1, λ1 = −a. Then λ2 = a2− b according
to theorem 3 and one can check that λ1b+ λ2a = 0 whatever b = −1, a = 1 or b = −1, a = −1. So by theorem
3, all irreducible factors of x3

m+1 + ax+ b have degrees dividing 4m.
For the case q = 4, the proof is similar. Let ω be a primitive element of F4. Then F4 = {0, 1, ω, ω2} and

1 + ω + ω2 = 0. Since b 6= a2 , if b = 1, then a 6= 1, i.e., a = ω or a = ω2, if b = ω, then a = 1 or a = ω, if
b = ω2, then a = 1 or a = ω2. Let λ0 = 1, λ1 = a. Then λ2 = a2 − b, λ3 = 1. According to theorem 3 and
one can check that for b = 1, a = ω or a = ω2, b = ω, a = 1 or a = ω and b = ω2, a = 1 or a = ω2, we all
have that a2b + b2 + a = 0 and this is equivalent to λ2b + λ3a = 0. Hence by theorem 3, all irreducible factors
of x4

m+1 + ax+ b have degrees dividing 5m.
By corollary 3, we can deduce that trinomial xq

m+1 + ax+ b is reducible if m > 1. Before we give corollary
4, we first need a lemma.

Lemma 7 [2]. Let Fq be a finite field and let m be a positive integer. Then the degree of every irreducible
factor of xq

m+1 + x+ 1 over Fq divides 3m.
Corollary 4. Suppose that q = 3, 4 and m is a positive integer. Then all irreducible factors of xq

m+1 + ax+ b
have degrees dividing (q + 1)m or dividing 3m.

Proof. For the case q = 3, let g(x) = x3
m+1 + ax + b. According to theorem 3, all irreducible factors of

g(x) = x3
m+1 + ax + b dividing 4m when b = −1. If b = 1, a = 1, then by lemma 7, the degree of every

irreducible factor of xq
m+1 + x + 1 over Fq divides 3m. If b = 1, a = −1, then g(x) = x3

m+1 − x + 1.
Let g1(x) = g(−x), then g1(x) = x3

m+1 + x + 1, it is well known that the transformation from g(x) to g1(x)
preserves degrees of factors. So the degree of every irreducible factor of g(x) is the same as the degree of some
irreducible factor of g1(x), hence divides 3m.

For the case q = 4, let h(x) = x4
m+1 + ax + b. According to theorem 3, all irreducible factors of h(x) =

x4
m+1 + ax + b dividing 5m when b 6= a2. If b = a2, the first case if b = a = 1, then by lemma 7, we know

that the degree of every irreducible factor of xq
m+1 + x + 1 over Fq divides 3m. Let ω be the primitive element

of Fq . The second case if a = ω, then b = ω2 and h(x) = x4
m+1 + ωx + ω2. Let h1(x) = h(ωx), then

h1(x) = ω(x4
m+1 +x+1), of course the transformation from h(x) to h1(x) also preserves degrees of factors. So

the degree of every irreducible factor of h(x) is the same as the degree of some irreducible factor of h1(x), hence
divides 3m. The third case if a = ω2, then b = ω and h(x) = x4

m+1 +ω2x+ω. The proof of this case is similar
to the second case, we omit it.

Theorem 4. The trinomial x21·4
m+29 + ax+ b always has a root in F43 for any positive integer m.

Proof. First one can verify that x50 + ax + b always has a root in F43 . For m ≡ 0 mod 3, if β is a root of
x50 + ax+ b in F43 , then it is also the root of x21·4

m+29 + ax+ b. For m ≡ 1 mod 3 and m ≡ 1 mod 3, note
that 21 · 4 + 29 = 63 + 50 and 21 · 16 + 29 = 63 · 5 + 50, so the roots of x50 + ax+ b in F43 are also the roots of
x21·4

m+29 + ax+ b. This completes the proof.
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