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Abstract In response to the need for secure one-round authenticated key exchange protocols providing both perfect
forward secrecy and full deniability, we put forward a new paradigm for constructing protocols from a Diffie-Hellman
type protocol plus a non-interactive designated verifier proof of knowledge (DV-PoK) scheme. We define the notion
of DV-PoK which is a variant of non-interactive zero-knowledge proof of knowledge, and provide an efficient DV-
PoK scheme as a central technical building block of our protocol. The DV-PoK scheme possesses nice properties
such as unforgeability and symmetry which help our protocol to achieve perfect forward secrecy and full deniability
respectively. Moreover, the security properties are formally proved in the Canetti-Krawczyk model under the Gap
Diffie-Hellman assumption. In sum, our protocol offers a remarkable combination of salient security properties and
efficiency, and the notion of DV-PoK is of independent interests.

Keywords Authenticated Key Exchange · Perfect Forward Secrecy · Full Deniability · Non-Interactive Zero-
Knowledge · Proof of Knowledge
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1 Introduction

Motivation. Authenticated key exchange (AKE) is a cryptographic primitive that allows two entities to agree on
a secure session key in public network. The design and analysis of AKE protocols continues to be a topic of active
research after the seminal work of Diffie and Hellman [1], many works [2–5] have been dedicated to define stronger
security models and provide novel protocols with many desired security properties.

Recently, the property of “deniability” is getting more and more attractive since it can protect personal privacy
which we often concern in the real life or business activities. Motivated by the work of deniable authentication [6],
Raimondo et al formally define the property of deniability for key exchange (KE) protocols [7], which is a central
concern in KE protocols nowadays. The goal of deniability is to prevent a (possibly dishonest and malicious) receiver
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convincing a third party that a given sender authenticated a given message. Using the simulation paradigm, the
notion of deniability is characterized by constructing an effective machine (called the simulator) without possessing
the secret key of the sender to simulate the view of any receiver. This natural and appealing definition characterizes
the essential idea that the transcript of the protocol held by the receiver cannot be used to trace back to a specific
sender, since it could be produced by a simulator instead of the actual sender.

Perfect forward secrecy (PFS) is another important security property that ensures damage confinement in the
case of secrecy leakages, and was originally introduced by Diffie et al to describe a property of the Station-to-Station
protocol [8]. Informally, an AKE protocol is said to be secure with PFS if disclosure of the long-term secret key of
a party does not compromise the security of session keys established by that party before the disclosure occurred.
Due to a general conclusion that PFS cannot be achieved by any implicitly authenticated 2-message or one-round
protocol [3], many works which have been dedicated to design one-round AKE protocols with PFS [9–12] share a
common design principle that uses explicit authentication techniques, e.g. digital signature or message authentication
code (MAC) to thwart active attacks.

However, there is not any one-round AKE protocol providing full deniability as well as PFS so far. Addressing to the
problem, we plan to construct a protocol achieves this goal. The obstacle to our plan is that we would like the protocol
can counter active attacks and then achieves PFS without using traditional explicit authentication techniques, which
will breach the deniability in general. To fulfill this need, we put forward a new paradigm for constructing protocols
from the a Diffie-Hellman (DH) type protocol plus a non-interactive designated verifier proof of knowledge (DV-
PoK) scheme which is a variant of non-interactive proof of knowledge (PoK) [13] and enjoys two additional properties,
unforgeability and symmetry. Unforgeability guarantees that a valid proof could not be generated without trapdoors
of the prover and the verifier, while symmetry allows an honest verifier generating a valid proof without the witness
and thus ensures that the proof generated by the prover could not leave any traces.

Then, we provide an efficient DV-PoK scheme for the discrete logarithm language, its properties are formally
defined and proved. Furthermore, we present a one-round deniable AKE (named as DAKE) protocol with perfect
forward secrecy by using DV-PoK as a central technical building block. By relying on the salient features of DV-PoK,
the security properties can be formally proved in the Canetti-Krawczyk (CK) model [14] under the Gap Diffie-Hellman
(GDH) assumption.

Related work. Informal treatment of deniability issues for KE protocols have been extensively studied [15–17].
Raimondo et al extended the definitional work of Dwork et al [18] from deniable authentication to deniable KE
protocols, and formally prove that SKEME is full deniable and SIGMA is partial deniable in the sense of simulation
paradigm. Jiang and Safavi-Naini [19] also proposed an efficient deniable key exchange protocol under a formal security
model, which is a combination of Bellare-Rogaway KE protocol model [20] and the work of Dwork et al [18]. Deniable
key exchange with a formal proof was obtained in [21,22] as well. These work do not concern PFS at the same time.

The desire to achieve efficient perfect forward secrecy in one-round AKE protocols has been currently addressed
by using explicit authentication, e.g., signature or MAC, which requires more communications complexity and com-
putational complexity [9,10]. Signature is a popular mean of authenticating the author of a message. An important
consequence of signature is that anyone who holds the public key could verify the related signature, and then prove
to a third party the signer of a message without signer’s cooperation. In other words, the signer is unable at a later
time to disclaim authorship of a message that she signed. Obviously, this property accounts for loss of deniability in
AKE protocols which use signature as a building block. Though Cremers and Feltz [10] show that it is possible to
establish deniability and perfect forward secrecy in one-round AKE protocol by using signature, the proposed scheme
only provides peer-and-time deniability, which is weaker than full deniability.

In contrast to signature, MAC is a symmetric mechanism that requires the sender and the verifier sharing a
common secret key to authenticate and verify. Since any third party without the secret MAC key could not generate
valid transcripts, AKE protocols relying on MAC as a building block thwart the active attacks and thus provide
perfect forward secrecy. Boyd and Nieto [9] construct a generic framework of AKE protocols with perfect forward
secrecy by using a MAC scheme. However, this construction requires participants sharing a extra secret MAC key
which adds additional cost, and until now it has been unknown if the construction guarantees full deniability.

Contributions. Firstly, we rephrase the definition of deniability for AKE protocols proposed by Raimondo et al [7].
To capture different abilities of an adversary, we formalize full deniability by using a simulation which is divided into
two phases depending on whether the adversary possesses the secret key of the specific receiver or not.

Secondly, we define a notion of non-interactive designated verifier proof of knowledge holding two distinguishing
properties, namely, unforgeability and symmetry. In addition, we propose an efficient DV-PoK scheme and show that
the construction satisfies the security definition in the random oracle model under the GDH assumption.

Thirdly, we present a one-round AKE protocol combining a DV-PoK scheme with a Diffie-Hellman type KE
protocol, and prove that the protocol satisfies perfect forward secrecy as well as full deniability in the CK model
under the GDH assumption.
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Organization. We first recall the definition of key exchange security and define the full deniability notion in Section 2.
In Section 3 we introduce the notion of DV-PoK and present an efficient concrete DV-PoK scheme for the discrete
logarithm language. The DAKE protocol and its security proof are presented in Section 4. Finally, further discussion
and concluding remarks are made in Section 5.

2 Security Definition

2.1 Security Notions

Computational Diffie-Hellman (CDH) Assumption: Let k be a security parameter and G be a group generated
by g with security parameter k, where the order of G is prime p and |p| = k. For two elements U = gu, V = gv in
G, we denote the result of applying Diffie-Hellman computation to U and V by CDH(U, V ). CDH Assumption means
that for any probabilistic polynomial time (PPT) algorithm A, which is called a CDH solver, there exists a negligible
function µ with security parameter k such that

Pr[A(g, U, V ) = CDH(U, V )] ≤ µ(k),

where the probability is over the random choice of generator g ∈ G, the random choice of a, b ∈ Zp, and the random
bits of A.
Gap Diffie-Hellman (GDH) Assumption: The GDH assumption holds if no PPT CDH solver exists to solve the
CDH problem, even if the CDH solver is equipped with a Decisional Diffie-Hellman (DDH) oracle for the group G and
the generator g, where on arbitrary input (U, V,W ) ∈ G3 the DDH oracle outputs 1 if and only if W = CDH(U, V ).

2.2 Security Model

In this section we briefly describe the CK model needed in the rest of the paper, and emphasize how to capture the
perfect forward secrecy in the CK model. The CK model describes a very realistic adversary which basically controls
all communication in the network. The adversary A presents parties with incoming messages via Send queries, obtains
the outgoing messages of the parties, and makes decisions about their delivery, thereby controlling all communications
between parties.

– Send(Message): The message has one of the following forms: (Ûi, Ûj), (Ûi, Ûj , out) or (Ûi, Ûj , in, out). The adver-
sary is given the session’s response according to the protocol and the variables In, Out are initialized and updated
(by concatenation) accordingly.

The peer that sends the first message in a session is called the initiator (denoted as I) and the other the responder
(denoted as R). We usually denote the peers to a session by Â and B̂; either one may act as initiator or responder.
An initiator session identifier is a five-tuple (I, Â, B̂, Out, In) where Â is the identity of the holder of the session and
B̂ is the peer. The session (R, B̂, Â, Y,X) (if it exists) is said to be matching to the session (I, Â, B̂,X, Y ).

The adversary A can register arbitrary public keys of its choice, including public keys equal to keys of some
honest parties in the system, on behalf of adversary-controlled parties. Additional, to capture information leakage A
is allowed to make the following queries:

– Session State Reveal(Û , sid): The adversary obtains the session-specific secret information (specified by a
protocol) of a session sid being executed by Û .

– Session key Reveal(Û , sid): The adversary obtains the session key computed by Û in a completed session sid.
– Corrupt(Û): By making this query the adversary takes full control of a user Û and obtains the static key of Û

as well as the ephemeral secret information of all current sessions executed by Û .
– Expire(sid): This query takes a session sid as input and deletes the related session key (and any related session

state).

If the adversary issues Session State Reveal(Û , sid), or Session key Reveal(Û , sid), or Corrupt(Û) before
Expire(sid), then sid is said to be locally exposed. If neither sid nor its matching session are locally exposed, sid is
fresh. At any stage during its execution the adversary is allowed to make one special query Test(sid), where sid is
an unexpired and fresh session. The goal of the adversary is to guess whether the challenge is a true session key or
a randomly selected key. When the adversary terminates, it outputs a bit b′. The adversary wins the experiment if
b′ = b, where b is the random bit chosen in the Test query. The advantage Adv of the adversary A in breaking the
security of a protocol Σ is defined as:

Adv(A) = Pr[b = b′]− 1

2
.
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Definition 1 (CK Security) A key exchange protocol Σ is called CK secure if the following conditions hold:

– Users who complete matching sessions compute the same session key.
– For any PPT adversary A with the above capabilities running against Σ, Adv(A) is negligible.

Perfect forward security is another important notion that provides a security guarantee of key exchange sessions
in the case that the adversary has learned the private keys of some parties. This property is captured via the notion of
session key expiration which represents the erasure of a session key from memory. The adversary against key exchange
protocol is able to obtain the long-term keys of peers to the test session after the session key expired.

Definition 2 (CK security with perfect forward secrecy) The protocol Σ is CK secure with perfect forward
secrecy if the PPT adversary A is allowed to corrupt actor and peer to the test session after the session key expired,
and

– Users who complete matching sessions compute the same session key.
– For any PPT adversary A with the above capabilities running against Σ, Adv(A) is negligible.

2.3 Deniability of Key exchange protocols

We present an extended definition of deniability which is a variant of the definition proposed by Raimondo et al [7].
Aiming to explicitly specify the abilities of the adversaries and then to facilitate the security proof, we divide the
definition into two parts with respect to two different kinds of adversaries, who possess the secret keys of the specific
parties or not but still share a sole goal that is to accuse a given party had involved in a protocol execution. According
to the definition which follows the traditional simulation paradigm, in the security proof we construct a two-phase
simulation depending on whether the adversary corrupts honest parties or not. In the first phase, the adversary does
not corrupt any specific parties, and the simulator is required to possess the same limited power as the adversary,
which only runs on the public keys of the honest parties and the auxiliary information (denoted as aux) as inputs. In
the second phase, the adversary does corrupt some specific parties and holds their secret keys, and the simulator is
also allowed to possess the secret keys.

Consider an adversaryM who runs on input an arbitrary number of public keys
−→
pk = (pk1, · · · ,pkn), randomly

generated by a key generation algorithm KG and associated with the honest parties in the network. The adversary
initiates an arbitrary number of executions of the key exchange protocol with the honest parties, some as an initiator,
others as a responder. These executions can be arbitrarily scheduled and interleaved by M. The adversary’s view
consists of the transcript of the entire interaction and the session keys computed in all the protocols in which M
participated (if the session does not complete, the session key is defined as an error value), together with the internal

coin tosses ofM. We denote this view as ViewM(
−→
pk, aux). The definition of deniability is formalized as follows.

Definition 3 (Full Deniability) Let Σ = (KG,ΣI ,ΣR) be a KE protocol defined by a key generation algorithm KG,
and interactive machines ΣI , ΣR specifying the roles of the (honest) initiator (the party who sends the first message)
and responder, respectively. We say that Σ is a fully deniable key exchange protocol if for any adversaryM, for any

input of public keys
−→
pk = (pk1, · · · ,pkn) of the parties and any auxiliary input aux, there exist a simulator SIM that

produces a simulated view which is indistinguishable from the real view of M. The simulator SIM and the adversary
M share the same input including the random coins.

That is, consider the following two probability distributions where
−→
pk = (pk1, · · · ,pkn) is the set of public keys of

the parties, k is the security parameter:

Real(k, aux) = [(ski, pki)← KG(1k); (aux,
−→
pk,ViewM(

−→
pk, aux))]

Sim(k, aux) = [(ski, pki)← KG(1k); (aux,
−→
pk,SIMM(

−→
pk, aux))]

then for every PPT machine D running on the same input as M, there exists a negligible function µ with security
parameter k such that:

|Prx∈Real(k,aux)[D(x) = 1]− Prx∈Sim(k,aux)[D(x) = 1]| ≤ µ(k) (1)

According to the adversary corrupts the honest parties or not, we partition the full deniability into two disjoint
cases as follows.
Passive Deniability. We say that Σ is passive deniable when the adversaryM does not corrupt any honest parties
and the equation 1 is satisfied.
Active Deniability. We say that Σ is active deniable when the adversary M does corrupt some honest parties and
the equation 1 is satisfied.
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Remarks on the definition. We stress that there is not essential difference between our definition and Raimondo
et al ’s. In both of the definitions, the adversary has the same capabilities, and the simulator shares the same inputs
with the adversary, which is a natural and reasonable assumption. However it is also worth highlighting the difference
between the two definitions. In our definition, we explicitly define two different kinds of deniability according to the
adversary corrupts the honest parties or not (holds the secret keys of the honest parties or not). In the Raimondo
et al ’s definition (and the subsequent security proof), the two situations are not explicitly defined and analyzed
separately.

In the work of Raimondo et al ’s, the deniablity of SKEME [17] is proved in the situation that the adversary has
the party’s secret key (see [7, Section 3.2, Theorem 3]). It claims that the deniability with respect to the adversary
corrupting honest parties implies the deniability with respect to eavesdroppers (see [7, Section 2]), therefore the
deniability with respect to eavesdroppers (corresponding to the case of passive deniability in our definition) is not
analyzed. In fact, since the protocol SKEME uses public key encryption as a core mechanism of authentication, a
perfect simulation with respect to a passive adversary attacking the deniability can be easily constructed.

In contrast to that, we organize a two-case definition since we focus on an AKE protocol based on a DV-PoK
scheme, the adversary with or without party’s secret key makes a significant difference in the process of simulation.
The key point is that the outgoing message of a protocol execution includes a knowledge proof which relies on the
sender’s secret key, thus the simulation with respect to a passive adversary, in which the simulator does not hold the
sender’s secret key, can not be trivially obtained. We demonstrate a computationally indistinguishable simulation for
this case in the proof of Theorem 3 (Section 4).

3 Non-Interactive Designated Verifier Proof of Knowledge

3.1 Definition

We formally define the notion of non-interactive designated verifier proof of knowledge which provides five properties
including completeness, validity, adaptive zero-knowledge, unforgeability and symmetry.

The completeness and special soundness properties are basic requirements of a proof of knowledge. The complete-
ness requirement means that if a prover does know the witness, it succeeds in convincing the honest verifier. We say
that the proof is valid when the verifier accepts the proof. The special soundness property shows that if a given proof
is valid, the prover who generated this proof really does know the witness. The special soundness property is captured
by using an extractor who interacts with a prover to extract the witness that the prover claims to know. A proof
of knowledge would be known as a zero-knowledge proof of knowledge when no additional knowledge is released. It
requires that any verifier does not learn anything except that a proof is valid. Adaptive zero-knowledge is formalized
by constructing a PPT simulator to generate a simulated proof which is indistinguishable from the view of the verifier
in a real execution.

Unforgeability and symmetry are two distinguishing properties in our definition. In the case of unforgeability, we
require that any PPT adversary without secret keys of the prover and the verifier cannot forge a valid proof though
he knows the witness. In the case of symmetry, we require that a valid proof can be generated not only by the prover
but also by the honest designated verifier which gets the witness.

Definition 4 (Non-Interactive Designated Verifier Proof of Knowledge (DV-PoK)) Let pp be the public
parameters, (skP̂,pkP̂) and skV̂,pkV̂) be the secret/public key pairs of the prover and the verifier respectively. A proof
system Π = (Setup,Gen,P,V) is a non-interactive DV-PoK for the language L ∈ NP (with corresponding WL(x)) as
the set of all witnesses for public value x and witness relation RL, if Setup, Gen, P and V are all PPT algorithms,
and the following conditions hold:

– Completeness: For every x ∈ L, w ∈WL(x) and public parameter pp← Setup(1|x|), we have

Pr[ρ← Gen(pp, P̂ , V̂ );π ← P(x,w, pp, skP̂,pkP̂, skV̂) : V(x, π, pp, skV̂, pkV̂,pkP̂) = 1] = 1,

where ρ denotes (skP̂, pkP̂, skV̂, pkV̂).
– Special Soundness: There exists a PPT algorithm E, a knowledge extractor, with access to a prover oracle PskP̂

(·)
such that for every x ∈ L, public parameter pp← Setup(1|x|) and ρ← Gen(pp, P̂ , V̂ ), and for every P̂ for which
px = Pr[π ← P(x,w, pp, skP̂, pkP̂, skV̂) : V(x, π, pp, skV̂, pkV̂,pkP̂) = 1], we have

Pr[EPsk
P̂
(·)
(x) ∈WL(x)] ≥ poly(px),

where ρ denotes (skP̂, pkP̂, skV̂, pkV̂).
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– Adaptive Zero-Knowledge: For every non-uniform PPT adversaries A = (A1,A2), and for every x ∈ L,
w ∈ WL(x) and public parameter pp ← Setup(1|x|), there exists a PPT simulator S = (S1,S2) such that the
following result is negligible

|Pr[ρ← Gen(pp, P̂ , V̂ ); (x,w)← A1(pp,pkP̂,pkV̂) : A
P(x,w,pp,skP̂,pkP̂,pkV̂)
2 (pp, pkP̂, pkV̂) = 1]−

Pr[(τ, ρ)← S1(pp, P̂ , V̂ ); (x,w)← A1(pp,pkP̂,pkV̂) : A
S2(x,τ,pp,ρ)
2 (pp, pkP̂, pkV̂) = 1]|

where ρ denotes (skP̂, pkP̂, skV̂, pkV̂), and τ denotes the auxiliary information used by S2.
– Unforgeability: For every PPT adversary A access to a verifier oracle VSIM(·) and a prover oracle P̃SIM(·), and

for every x ∈ L, w ∈WL(x) and public parameter pp← Setup(1|x|), there exists a negligible function µ such that

Pr[ρ← Gen(pp, P̂ , V̂ ); (x, π)← AVSIM(·),PSIM(·)(pp, pkP̂,pkV̂) : V(x, π, pp, skV̂,pkV̂, pkP̂) = 1] ≤ µ(|x|),

where ρ denotes (skP̂, pkP̂, skV̂, pkV̂).

– Symmetry: For every x ∈ L, w ∈ WL(x) and public parameter pp ← Setup(1|x|), there exists a PPT algorithm
B such that

Pr[ρ← Gen(pp, P̂ , V̂ );π ← B(x,w, pp, skV̂,pkV̂, pkP̂) : V(x, π, pp, skV̂, pkV̂,pkP̂) = 1] = 1,

where ρ denotes (skP̂, pkP̂, skV̂, pkV̂).

3.2 Construction

Let G = ⟨g⟩ is a multiplicative cyclic group of order q which is a k-bit prime number and H : {0, 1}∗ → Zq is a target
collision resistant hash function. We define a non-interactive DV-PoK scheme Π = (Setup,Gen,P,V) for the language
L = {x : x = gw, w ∈ Zq} ∈ NP with corresponding witness relation RL, the set of all witnesses for public value x
in L is defined to be WL(x) = {w : x = gw}. Note that RL(x,w) holds if and only if x ∈ L and w ∈ WL(x). The
concrete scheme is described as follows.

– [Setup] Setup(1k):
1. Chooses secure group parameters (G, g, q).
2. Chooses a target collision resistant hash function H.
3. Defines pp = (G, g, q,H) and outputs it.

– [Generation] Gen(pp, P̂ , V̂ ):
1. Chooses skP̂ ∈R Zq, skV̂ ∈R Zq and set pkP̂ = gskP̂ ,pkV̂ = gskV̂ .
2. Outputs ρ = (skP̂,pkP̂, skV̂,pkV̂).

– [Prover] P(x,w, pp, skP̂, pkP̂,pkV̂):
1. Chooses r ∈R Zq and compute R = gr.

2. Computes σ = pk
(skP̂+w)

V̂
, and h = H(σ,R).

3. Computes z = r + w · h and output π = (R, z).
– [Verifier] V(x, π, pp, skV̂,pkV̂,pkP̂):

1. Computes σ′ = (pkP̂ · x)
skV̂ , and h′ = H(σ′, R).

2. Computes Z′ = R · xh′
.

3. If Z′ = gz output 1, else output 0.

We prove the following theorem to show that Π constructed above is a non-interactive designated verifier proof
of knowledge. Completeness always succeeds when the honest prover does know the witness of x. By using rewinding
technique, if the proof is valid we can construct an extractor to reveal the witness of x and the validity property
is directly derived. To prove adaptive zero-knowledge, we construct a simulator blinded to the witness to produce
a valid proof that is indistinguishable from a real view. In addition, we reduce the unforgeability property to the
GDH assumption, that is, any adversary breaking the unforgeability property can be used as a sub-routine to violate
the GDH assumption. Lastly, the symmetry property is enjoyed since any honest designated verifier which gets the
witness can generate a valid proof.

Theorem 1 The scheme Π = (Setup,Gen,P,V) described above is a non-interactive DV-PoK in the random oracle
model under GDH assumption.
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Proof. We give a formal proof to show that Π enjoys completeness, validity, adaptive zero-knowledge, unforgeability
and symmetry as follows.
Completeness: Completeness follows by inspection. If the prover truly knows the witness w of x, then

gz = R · xH(pk
(sk

P̂
+w)

V̂
,R) = R · xH((pkP̂·x)skV̂ ,R) = R · xh′

,

and thus the verifier accepts z as a valid proof.

Special Soundness: We construct an extractor to reveal the witness. The extractor takes full control of the hash
function modeled as a random oracle so that when the prover makes queries to the oracle, the extractor can decide
what value to return. It runs the prover twice on the same randomness by rewinding such that the prover gives the
same value R = gr both times, and then replies with two different values c ̸= c′ to obtain two responses:

z = r + w · c
z′ = r + w · c′

Suppose that both of these executions would have convinced a honest verifier to accept. Given these two equations,
the witness w can be derived:

w =
z − z′

c− c′
.

Adaptive Zero-Knowledge: For every public parameter pp ← Setup(1|x|), we construct a simulator S = (S1,S2)
such that the ensembles

{ρ← Gen(pp, P̂ , V̂ ),P(x,w, pp, skP̂,pkP̂,pkV̂)}

and
{(τ, ρ)← S1(pp, P̂ , V̂ ),S2(x, τ, pp, ρ)}

are computationally indistinguishable, where τ denotes the auxiliary information used by S2, ρ denotes (skP̂,pkP̂, skV̂,pkV̂).
The simulator is operated in the following way:

1. Chooses c ∈R Zq and z ∈R Zq.
2. Computes R = gz/xc.
3. Sets H((pkP̂ · x)

skV̂ , R) = c.

It is observed that the output (R, z) of the simulation is a valid proof which succeeds in convincing the honest verifier
and is indistinguishable from the output of the real view.

Unforgeability: We show that a PPT adversary A without skP̂ and skV̂ is unable to forge a valid proof with
RL(x,w) holds. In order to bound the probability of a forging attack, we construct another adversary S solving the
GDH problem. S takes full control of the hash function modeled as a random oracle and simulates a run of the scheme
against A. S takes a GDH challenge (A = ga, B = gb) as input and sets pkP̂ = A, pkV̂ = B.

Firstly, we model the verifier oracle VSIM(·) and prover oracle PSIM(·) without secret keys of verifier and prover
as follows.

– VSIM(x, π = (R, z),pkP̂,pkV̂):
1. Search the output values recorded in the list of oracle H, and find a value h′, whose corresponding input is a

pair (σ′, R′) with DDH(pkV̂, pkP̂ · x, σ
′) = 1 and R′ = R.

2. Check that if gz = R · xh′
is true, output the proof is valid. Otherwise, output the proof is invalid.

– PSIM(x,w, pkP̂,pkV̂):
1. Randomly choose a value h ∈ Zq (assume that the output of H is defined in the group Zq) and a randomness

r ∈ Zq, now we can simulate a proof z = r + w ∗ h. we make a record on the H list with information (r, x,
pkP̂, pkV̂, h).

The only way that the adversary detects that the simulated proof produced by the prover oracle is invalid is
to make a query to oracle H with input a pair (σ′, R′), where DDH(pkV̂,pkP̂ · x, σ

′) equals 1 and R′ = gr. In this
situation, we respond the query with the corresponding value h in the list of H recorded previously in the process of
prover oracle.

As long as the forging attack succeeds, there must be a query (σ = CDH(A,B) · pkw
V̂
, R) in the queries list. By

applying the extractor constructed in the proof of special soundness, S can obtain the witness w and compute pkw
V̂

and obtain CDH(A,B) = σ/pkw
V̂
. Due to the fact that the total number q of random oracle queries is polynomial, the

simulator S can successfully guess the query (σ,R) corresponding to the GDH problem with probability 1/q and then
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solve the GDH problem.

Symmetry: This property is obviously satisfied in our construction, since every PPT algorithm B with input
(x,w, pp, skV̂, pkV̂,pkP̂ could compute a valid proof to convince the honest designated verifier with the secret key
skV̂:

1. Chooses r ∈R Zq and compute R = gr.
2. Computes σ = (pkP̂ · x)

skV̂ and h = H(σ,R).
3. Computes z = r + w · h and output π = (R, z).

4 DAKE protocol

4.1 Protocol Construction

In this subsection we discuss the design rationales of our AKE protocol named DAKE to show the central techniques
for achieving both perfect forward secrecy and full deniability at the same time, and describe the protocol execution
in detail. In an execution of the protocol, the honest initiator (responder) produces an ephemeral public key X = gx

(Y = gy) along with a valid proof of X (Y ) by using its secret key to convince the honest designated verifier that
it does know the witness x (y). We prevent DAKE from active attacks by using DV-PoK as a building block which
requires that everyone except the honest prover and the designated verifier is infeasible to generate a valid proof. In
addition, DV-PoK allows any honest designated verifier to generate a valid proof by using its secret key and the witness
of the ephemeral public key. Therefore, each role in DAKE could act like an honest designated receiver (verifier) to
produce a communication which is indistinguishable from that generated by the honest sender (prover). In a word,
DAKE provides perfect forward secrecy as well as the full deniability.

The protocol includes protocol setup, key generation and protocol execution. Figure 1 shows the informal descrip-
tion of our protocol, and the detail is described as follows.

Protocol setup. Let k ∈ N be the security parameter, G = ⟨g⟩ is a multiplicative cyclic group of prime order q,
H : {0, 1}∗ → Zq, Ĥ : {0, 1}∗ → {0, 1}λ are hash function and Π = (Setup,Gen,P,V) is a DV-PoK scheme. Define
public parameter pp = (G, g, q,H, Ĥ).

Key generation KGen(pp). For any party Û , the algorithm randomly chooses u ∈ Zq, sets skÛ = u,pkÛ = gu and
outputs (u, gu).

Protocol execution. The protocol runs between two parties Â (intitiator) and B̂ (responder), which own the long-
term key pairs (skÂ, pkÂ) and (skB̂,pkB̂) respectively. An execution of the protocol proceeds as follows.

1. Upon the activation, Â selects x ∈ Zq at random, computes X = gx, generates πÂ = P(X,x, skÂ,pkÂ,pkB̂) and

sends (Â, X, πÂ) to B̂.

2. Upon receiving (Â, X, πÂ), B̂ verifies if V(X,πÂ, skB̂,pkB̂,pkÂ) = 1, if true, B̂ performs the following steps: (a)

selects y ∈ Zq at random, computes Y = gy, generates πB̂ = P(Y, y, skB̂,pkB̂,pkÂ), and sends (B̂, Y , πB̂) to Â;

(b) Computes KB̂ = (pkÂ ·X)(skB̂+y) and sets SKB̂ = Ĥ(Â, B̂,X, Y,KB̂); otherwise, aborts.

3. Upon receiving (B̂, Y , πB̂), Â verifies if V(Y, πB̂, skÂ,pkÂ,pkB̂) = 1, if true, computes KÂ = (pkB̂ ·Y )(skÂ+x) and

sets SKÂ = Ĥ(Â, B̂,X, Y,KÂ); otherwise, aborts.

It is not difficult to see that both the parties compute the same secret value K = g(x+skÂ)(y+skB̂) in a valid
execution. Therefore, they have the same session key SK = Ĥ(Â, B̂,X, Y,K). All the intermediate computation
values are erased immediately after the session completes, the session state of a party is specified as containing only
the peer’s identity, the outgoing and incoming Diffie-Hellman values X, Y , and proofs πÂ, πB̂ and the session key
SK.

4.2 CK Security with Perfect Forward Secrecy

In this subsection, we investigate the CK security with perfect forward secrecy of DAKE. We present a formal
security proof with two typical simulation phases to show that DAKE provide perfect forward secrecy under the CDH
assumption in the random oracle model. In the first phase, we show that given a successful active adversary A against
DAKE we can construct a forger to break the unforgeability property of the DV-PoK scheme involved in DAKE in
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+x

SK
Â
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Else, abort. Else, abort.

Fig. 1: The Description of DAKE Protocol.

contradiction to the assumed infeasibility of forging a valid proof without the secret keys of the honest prover and the
honest verifier, and thus DAKE is resilient against active attacks.

By excluding active attacks in the protocol executions, we limit A to perform passive attacks which means that
A is not actively involved with the choice of the X, Y values at a session (specifically it does not choose or learn the
exponents of X and Y respectively). Under the circumstances, in the second phase, we prove that if A is a passive
adversary then the resultant session key does enjoy perfect forward secrecy which allows A to learn the secret keys
of both peers to the session by making Corrupt queries after the session key expired. We show that if A could
distinguish the session key from a random key, we can get the existence of an efficient CDH solver in contradiction to
the CDH assumption.

Theorem 2 Suppose that Π is a DV-PoK scheme and H and Ĥ are modeled as random oracles, then DAKE is a
secure AKE protocol with perfect forward secrecy in the CK model under the GDH assumption.

Proof. We start by observing that since the session key of the test session is computed as SK = Ĥ(Â, B̂,X, Y,K),
the adversary A has only two ways to distinguish SK from a random key:

– Forging attack. At some point A queries Ĥ on the same element group (Â, B̂,X, Y,K).
– Key-replication attack. A succeeds in forcing the establishment of another session that has the same session key

as the test session.

The key-replication attack is impossible since the session key of the test session is computed under the random oracle
Ĥ which acts like a collision-resistant hash function. In turn, distinct sessions must have distinct secret values. To win
the experiment, A must perform a forging attack if random oracles produce no collisions. Therefore, the following
proof focus on the forging attack. Assume that the adversary A will test a session between party Â and party B̂. We
separate the forging attack into two sub-case. In the first case, we consider the active adversary, which will actually
pose an active attack on behalf of party Â or party B̂, i.e. actively sends messages. In the second case, after excluding
the active adversary, we consider the passive adversary, which will not pose an active attack on behalf of party Â and
party B̂.

Phase 1. The adversary A could break the security of DAKE via insertion of a message of its choice. Without loss
of generality, we assume that A impersonates the party B̂ (a similar argument hold for Â). In order to bound the
probability of an active attack, we construct an adversary S against the unforgeability property of Π. S takes a
challenge input (pp,pkP̂,pkV̂) and simulates the behavior of the honest party Â as follows.

– Protocol Setup. Setups the public parameter by choosing secure group parameters and two hash functions
H : {0, 1}∗ → Zq and Ĥ : {0, 1}∗ → {0, 1}λ.

– Key Generation.
1. Randomly chooses two parties Â (initiator) and B̂ (responder) and sets pkÂ = pkV̂,pkB̂ = pkP̂.

2. For any other party Û different from Â and B̂, sets (skÛ,pkÛ)← KGen(pp).

– Protocol Execution. The sessions activated at party Û other than Â and B̂ can be simulated obeying the
protocol. Thus we only consider the sessions activated at party Â (a similar simulation holds for the session owned
by party B̂).
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1. Send(Â, sid, (Û , star)): randomly chooses x ∈ Zq, computes X = gx and produce a proof (R, z) by making
use of the prover oracle PSIM(x,X,pkÂ,pkÛ). Returns (Â, X, (R, z)) to party Û .

2. Send(Â, sid, (Û , Y , πÛ)): verifies πÛ by making use of the verifier oracle VSIM(Y, πÛ = (R, z), pkÛ,pkÂ). If

the proof is invalid, abort. Else denotes the event Û = B̂ and (Û , Y , πÛ) is generated by A by Forge (the
complementary event of Forge is denoted by Forge) and considers the following two cases:
(a) Forge. aborts and outputs (Y, πÛ) as the forging proof.

(b) Forge. randomly chooses x′ ∈ Zq, computes X ′ = gx
′
and produces a proof πÂ = (R′, z′) by making use

of the prover oracle PSIM(X ′, x′,pkÂ, pkÛ). Returns (Â, X ′, (R′, z′)) to party Û . Then, randomly chooses

a value SK′ ∈ {0, 1}λ as the session key and makes a record on the Ĥ list with information Y , X ′, pkÛ,

pkÂ, SK
′. Responds the Session State Reveal with (Û , X ′, Y , πÂ, πÛ, SK

′), and responds the Session
key Reveal with SK′.

– Query Oracle H.
1. H(σ′, R′): checks that if DDH(pkV , X ′ · pkP , σ) equals 1 and R′ = gr

′
, and the values (r′, X ′, pkP , pkV ,

h′) were recorded in the list of H previously by prover oracle. If true, outputs the corresponding value h′.
Otherwise, simulates the random oracle H in the usual way.

– Query Oracle Ĥ.
1. H(Â, Û ,X ′, Y ′,K′): checks that if DDH(Y ′ · pkÛ, X

′ · pkÂ,K
′) equals 1, and the values (Y ′, X ′, pkÛ, pkÂ,

SK′) were recorded in the list of Ĥ previously. If true, outputs the corresponding session key SK′. Otherwise,
simulates the random oracle Ĥ in the usual way.

This simulation is computationally indistinguishable from the real view. Especially, we take a complicated case
in the simulation to analyze. In the event Forge, the adversary could have registered any public key of its choice
(thus knows the corresponding secret key) for party Û , however, the simulator does not know the corresponding
secret key. In this case, the adversary does not possess Û ’s or Â’s secret key. Fortunately, the simulation can be
done successfully because both the prover oracle PSIM(·) and the verifier oracle VSIM(·) can be queried without both
prover’s and verifier’s secret keys. Finally, if A succeeds in performing an active attack, then S directly outputs the
proof generated by A and successfully breaks the unforgeability property of Π. By assumption that forging a valid
proof without the secret keys of the prover and the verifier is infeasible, DAKE is resilient against active attacks.
Phase 2. After excluding active attacks in Phase 1, we show that A is unable to to distinguish the session key from a
random key by performing passive attacks, even it is allowed to make Corrupt queries after the session key expired.

Given an adversary A that breaks the perfect forward secrecy property, we construct a CDH solver S that takes
a CDH challenge (X0, Y0) as input. S simulates a run of DAKE as follows.

– Protocol Setup. Chooses secure group parameters as real execution of DAKE.
– Key Generation. For every party Û , sets (skÛ, pkÛ)← KGen(pp).

– Protocol Execution. Randomly chooses two parties Â and B̂, and guesses the test session tid and its matching
session tid′.
1. Send(Â, tid, star): computes πÂ by using skB̂ and outputs (Â, X0, πÂ). If the session associated with tid is

indeed the test session, then the session state and the session key of this session need not be simulated.
2. Send(B̂, tid′, (Â, X0, πÂ)): computes πB̂ by using skÂ and outputs (B̂, Y0, πB̂). If the session associated with

tid′ is indeed the matching session of the test session, then the session state and the session key of this session
need not be simulated.

According to the adaptive zero-knowledge property of Π, S can generate a valid proof of X0 (Y0) by using the
secret key skB̂ (skÂ) of the designated verifier B̂ (Â) without the witness of X0 (Y0), and thus the simulation above

is perfect. In particular, when Corrupt(Â) (Corrupt(B̂)) occurs after the session key expired, S directly provides
skÂ (skB̂) generated by KGen(pp) to A.

If A does choose tid, whose matching session is tid′, as the test session and distinguishes the session key from a

random key with non-negligible probability, then A must have made a query (Â, B̂, X0, Y0, K = CDH(X0, Y0) ·X
skB̂
0 ·

Y
skÂ
0 · pkskB̂

Â
) to the random oracle Ĥ from which the session key of tid (tid′) is derived. Now, with the knowledge of

skÂ and skB̂, S can compute CDH(X0, Y0) = K/(X
skB̂
0 · Y skÂ

0 · pkskB̂

Â
) and solve the CDH problem.

4.3 Full Deniability

We prove that DAKE provides full deniability which is a combination of honest receiver deniability and dishonest
receiver deniability according to Definition 3. Given an adversaryM whose goal is to convince a third party that a
given sender authenticated a given message, we attempt to construct a simulator S to produce the communications
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during the AKE sessions as well as their session keys which are indistinguishable from the real execution.

Theorem 3 Suppose that Π is a DV-PoK scheme, then DAKE is a fully deniable key exchange protocol in the random
oracle model under the CDH assumption.

Proof. According to Definition 3, the proof consists of two cases, passive deniability and active deniability, corre-
sponding to the fact thatM corrupts the specific party or not.

– Passive deniability: In this case, S has the same limited power as M which does not hold the secret keys of
the honest parties. In order to bound the probability of an attack against passive deniability, we let S act like a
CDH solver taking a CDH challenge (U, V ) as input. S randomly chooses two parties Â (initiator), B̂ (responder)
and embeds (U, V ) into their public keys, that is, pkÂ = U and pkB̂ = V . Under the unforeability of the DV-PoK
scheme, M can not actively send a valid message or participate in a completed protocol run. We only consider
that M acts as an eavesdropper. Thus, S aims to simulate the view of an eavesdropper, which is a complete
execution of DAKE in which Â and B̂ participate. In particular, we simulate protocol messages and session keys
of the sessions activated by Â as follows and the same simulations hold for the sessions activated by B̂.
1. Protocol message: S chooses x ∈ Zq, R ∈ G, z ∈ Zq at random, computes X = gx and outputs (Â,X, (R, z)).

This simulation is computational indistinguishable from a real execution of DAKE under the CDH assumption.
IfM distinguishes the random message from a valid message, thenM must have made a query (CDH(U, V ) ·
V x, R) to the random oracle from which the valid proof of X is derived. Now, with the knowledge of x, S can
compute CDH(U, V ) and solve the CDH problem.

2. Session key: S chooses SK ∈ {0, 1}λ at random and outputs SK. This simulation is computational indistin-
guishable from a real execution where the session key computed as SK=Ĥ(Â, B̂,X, Y,K) otherwise violates
the CK security with perfect forward secrecy of DAKE.

– Active deniability: In this case, S is allowed to take the same inputs asM including its random coins and the
secret key of the specific party corrupted by M. The simulation is under the assumption that M corrupts an
honest responder B̂ who interacts with an honest initiator Â, and obtains its secret key skB̂. S takes an input
(skB̂, pkB̂,pkÂ, aux) and produces a simulated view as follows. Note that we are simulating an honest initiator

party Â (an honest responder party B̂ can also be simulated by a similar way).

1. Protocol message: S chooses x ∈ Zq, r ∈ Zq at random, computes X = gx, R = gr, z = r+x ·H(pk
skB̂

Â
·XskB̂ , R)

and outputs (Â, X,πÂ = (R, z)). This simulation is perfect since S could generate a valid proof of X by using
skB̂ according to the symmetry property of Π.

2. Session key: Upon receiving (B̂, Y = gy, πB̂) generated byM, S firstly verifies the proof of Y . Recall that S
holds random coins ofM and thus it could check the validity of πB̂ with the knowledge of y and skB̂. If πB̂ is

valid, computes K = (X · pkÂ)
(skB̂+y) and outputs the session key SK = Ĥ(Â, B̂,X, Y,K), otherwise, aborts

the session and sets SK an error value. It is obvious that this simulation is perfect.

5 Discussion and concluding remarks

We put forward a new paradigm for constructing one-round deniable AKE protocols with perfect forward secrecy by
combining a Diffie-Hellman type KE protocol with a DV-PoK scheme. Our construction significantly guarantee full
deniability, rather than weaker deniability (e.g. peer-and-time deniability) provided in the other AKE protocols which
use traditional explicit authentication techniques (e.g. signature or MAC) as a building block. DV-PoK is a special
kind of non-interactive proof of knowledge with certain natural cryptographic indistinguishability properties, and can
be efficiently instantiated for the discrete logarithm language at the cost of two exponentiations of the prover and
three exponentiations of the verifier. An execution of DAKE requires for each party two exponentiations (one for the
ephemeral public key and one for the session key), one DV-PoK generation and one DV-PoK verification, thus it is
seven in total. We compare DAKE with other closely related protocols as follows.

Cremers and Feltz extended the Diffie-Hellman protocol to an one-round AKE protocol with perfect forward
secrecy as well as peer-and-time deniability by using signature as a primitive [10]. A run of the protocol requires for
each party two exponentiations (one for the ephemeral public key and one for the session key), one signature generation
and one signature verification. The protocol is instantiated by using a deterministic signature scheme from Boneh et
al ’s work [23], which costs one exponentiation in the signature generation and one DH-tuple check in the signature
verification. In comparison to Cremers and Feltz’s protocol, our construction requires additional exponentiations of
generating and verifying the proof of the ephemeral key and thus is slightly more expensive. However, our protocol
provides full deniability which is a stronger security property than peer-and-time deniability.
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To construct KE protocols with PFS, Boyd and Nieto [9] propose a generic one-round protocol which essentially
is a compiler transforming any existing secure protocol with weak forward secrecy to achieve PFS. Instead of using
signature, they introduced an extra public/secret key pair for each party to generate a shared MAC key between any
two parties, such that the protocol can use a MAC scheme to thwart active attacks and thus achieves PFS at the
cost of adding roughly one exponentiation per party. However, it is not claimed that the protocol achieves deniability.
Comparing with the protocols that get from applying the Boyd and Nieto’s compiler to existing protocols, e.g. TS3
protocol [24] and NAXOS [4], our protocol requires more expense because of the extra cost of DV-PoK, but it is worth
emphasizing that, our protocol achieves higher security - full deniability..

The most similar protocol to ours is YAK protocol proposed by Hao [25], which is a one-round AKE protocol
combining a Diffie-Hellman type KE protocol with a Zero-Knowledge proof scheme. The YAK protocol uses Schnorr
signature as a PoK scheme which allows the sender to prove the knowledge of the exponent without leaking it [25,
Section 3, Page 5], thus it does not achieve full deniability. It is claimed that the YAK protocol possesses many nice
security properties, including full forward secrecy which is recognized as weak perfect forward secrecy [10, Section 8,
Page 14]. However, we emphasize that the definitional method, the security model and proof techniques presented in
the work of Hao [25] are fundamentally different from ours, hence we can not precisely compare the work of Hao with
ours.

To sum up, our protocol offers a remarkable combination of advanced security properties and efficiency. In our
future work, we concentrate on enhancing our protocol in a stronger security model, and constructing efficient DV-
PoK schemes which can be proved secure without random oracles, subsequently providing a protocol can be formally
proved secure in standard model.
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