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Abstract

In secure delegatable computation, computationally weak devices (or clients) wish to outsource their
computation and data to an untrusted server in the cloud. While most earlier work considers the gen-
eral question of how to securely outsource any computation to the cloud server, we focus on concrete
and important functionalities and give the first protocol for the pattern matching problem in the cloud.
Loosely speaking, this problem considers a text T that is outsourced to the cloud S by a sender SEN.
In a query phase, receivers REC1, . . . ,RECl run an efficient protocol with the server S and the sender
SEN in order to learn the positions at which a pattern of length m matches the text (and nothing beyond
that). This is called the outsourced pattern matching problem which is highly motivated in the context of
delegatable computing since it offers storage alternatives for massive databases that contain confidential
data (e.g., health related data about patient history).

Our constructions are simulation-based secure in the presence of semi-honest and malicious adver-
saries (in the random oracle model) and limit the communication in the query phase toO(m) bits plus the
number of occurrences—which is optimal. In contrast to generic solutions for delegatable computation,
our schemes do not rely on fully homomorphic encryption but instead use novel ideas for solving pattern
matching, based on a reduction to the subset sum problem. Interestingly, we do not rely on the hardness
of the problem, but rather we exploit instances that are solvable in polynomial-time. A follow-up result
demonstrates that the random oracle is essential in order to meet our communication bound.
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1 Introduction

Background on outsourced secure computation. The problem of securely outsourcing computation to
an untrusted server gained momentum with the recent penetration of cloud computing services. In cloud
computing, clients can lease computing services on demand rather than maintaining their own infrastruc-
ture. While such an approach naturally has numerous advantages in cost and functionality, it is crucial that
the outsourcing mechanism enforces privacy of the outsourced data and integrity of the computation. So-
lutions based on cryptographic techniques have been put forward with the concept of secure delagatable
computation [AIK10, CKV10, GGP10, AJLA+12], which lately has received broad attention within the
cryptographic research community.

In secure delegatable computation, computationally weak devices (or clients) wish to outsource their
computation and data to an untrusted server in the cloud. The ultimate goal in this setting is to design
efficient protocols that minimize the computational overhead of the clients and instead rely on the extended
resources of the server. Of course, the amount of work invested by the client in order to verify the correctness
of the computation shall be substantially smaller than running the computation by itself. Indeed, if this
was not the case then the client could carry out the computation itself without putting confidentiality and
integrity of its data at risk. Another ambitious challenge of delegatable computation is to design protocols
that minimize the communication between the cloud and the client, while using an optimal number of
rounds. This becomes of particular importance with the proliferation of Smartphone technology and mobile
broadband internet connections, as for mobile devices communication and data connectivity is often the
more severe bottleneck.

Most recent works in the area of delegatable computation propose solutions to securely outsource any
functionality to an untrusted server [AIK10, CKV10, GGP10]. While this of course is the holy grail in
delegatable computation, such generic solutions often suffer from rather poor efficiency and high com-
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putation overhead due to the use of fully homomorphic encryption [Gen09]. Furthermore, these solution
concepts typically examine a restricted scenario where a single client outsources its computation to an
external untrusted server. Another line of works studies an extended setting with multiple clients that mu-
tually distrust each other and wish to securely outsource a joint computation on their inputs with reduced
costs [KMR11, KMR12, LATV12, AJLA+12, CKKC13]. Of course, also in this more complex setting
with multiple clients recent constructions build up on fully homomorphic encryption (or consider a more
restricted setting where the clients do not collude with the server, or one of the clients “works harder”).

To move towards more practical schemes, we may give up on outsourcing arbitrary computation to
the cloud, but instead focus on particularly efficient constructions for specific important functionalities.
This approach has the potential to avoid the use of fully homomorphic encryption (FHE) by exploiting the
structure of the particular problem we intend to solve. Some recent works have considered this question and
proposed schemes for polynomial evaluation and keywords search [BGV11], set operations [PTT11] and
linear algebra [Moh11]. While these schemes are more efficient than the generic constructions mentioned
above, they typically only achieve very limited privacy or do not support multiple distrusting clients.

In this paper, we follow this line of work and provide the first protocols for pattern matching in the cloud.
The problem of outsourced pattern matching is highly motivated in the context of delegatable computing
since it offers storage alternatives for massive databases that contain confidential data (e.g., health related
data about patient history). In contrast to most earlier works, our constructions achieve a high level of
security, while avoiding the use of FHE and minimizing the amount of communication between the parties.
We emphasize that even with the power of FHE it is not clear how to get down to optimal communication
complexity in two rounds.1

Pattern matching in the cloud. The problem of pattern matching considers a text T of length n and a
pattern of length m with the goal to find all the locations where the pattern matches the text. Algorithms
for pattern matching have been widely studied for decades due to its broad applicability [KMP77, BM77].
Lately, researchers started to look at this problem in the context of secure two-party computation [TPKC07,
HL10, GHS10, KM10, HT10] due to growing interests in private text search. In this setting, one party holds
the text whereas the other party holds the pattern and attempts to learn all the locations of the pattern in the
text (and only that), while the party holding the text learns nothing about the pattern. Unfortunately, these
solutions are not directly applicable in the cloud setting, mostly because the communication overhead per
search query grows linearly with the text length. Moreover, the text holder delegates its work to an external
untrusted server and cannot control the content of the server’s responses.

To be precise, in the outsourced setting we consider a set of clients comprised from a sender SEN and a
set of receivers (REC1, . . . ,RECl) that interact with a server S in the following way. In a setup phase the
sender SEN uploads a preprocessed text to an external server S. This phase is run only once and may be
costly in terms of computation and communication. In a query phase the receivers REC1, . . . ,RECl query
the text by searching patterns and learn the matched text locations. The main two goals are as follows:

1. Simulation-based security: We model outsourced pattern matching by a strong simulation-based se-
curity definition (cf. Section 3) that captures all security concerns. Namely, we define a new reactive
outsourced pattern matching functionality FOPM that ensures the secrecy and integrity of the out-
sourced text and patterns. For instance, a semi-honest server does not gain any information about the
text and patterns, except of what it can infer from the answers to the search queries (this is formalized
more accurately below). If the server is maliciously corrupted the functionality implies the correct-
ness of the queries’ replies as well. As in the standard secure computation setting, simulation-based

1Namely, a two-rounds solution based on FHE would need a circuit that tolerates the worst case output size, which in pattern
matching implies a maximal number of matches that is proportional to the length of the text (or the database).
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modeling is simpler and stronger than game-based definitions. Specifically, game-based definitions
become more cumbersome since the corruption of different parties implies different security threats,
e.g., privacy with respect to a malicious server is not the same notion of privacy we expect to hold
when SEN is corrupted. Thus a different security definition is required for each party. On the other
hand simulation-based security is harder to achieve, especially in the outsourced setting. As the sim-
ulator must commit first to the data stored on the server, and yet, be able to simulate the server’s view
as in the real interaction. We further elaborate on these difficulties below.

2. Sublinear communication complexity during query phase: We consider an amortized model, where
the communication and computational costs of the clients reduce with the number of queries. More
concretely, while in the setup phase communication and computation is linear in the length of the text,
we want that during the query phase the overall communication and the work put by the receivers is
linear in the number of matches (which is optimal). Of course, we also require the server running
in polynomial time. Notice that our strong efficiency requirement comes at a price: it allows the
(possibly corrupted) server to learn the number of matches at the very least, as otherwise there is no
way to achieve overall communication complexity that is linear in the number of matches. We model
this by giving the server some leakage for each pattern query which will be described in detail below.

To illustrate the difficulties in designing outsourced protocols for pattern matching let us examine first the
simpler keyword search problem, where the goal is to retrieve a record associated with some keyword given
that the keyword appears in the database. The keyword search is easily solvable in the outsourced setting
by having the simulator commit to a sequence of pairs of ciphertexts, each encrypting (under distinct keys)
a pair of keyword and its associated record. Then a search query is simply the secret key of the particular
keyword ciphertext. The same solution cannot immediately work for pattern matching as there may be
many occurrences of the same substring, creating dependency within different text locations (not given to
the simulator in advance).

1.1 Our Contribution

In the following we will always talk about a single receiver REC that interacts with a sender SEN and a
server S in the query phase. This is only to simplify notation. Our protocols can naturally be applied to a
setting with mutually distrusting receivers.

1.1.1 Modeling Outsourced Pattern Matching

We follow the standard method for showing security of protocols using the ideal/real world paradigm [GL90,
Bea91, MR91, Can00]. More concretely, in the ideal world the parties just send their inputs over perfectly
secure communication channels to a trusted party, who then computes the function honestly and sends the
output to the designated party. A real protocol is said to be secure if no adversary can do more harm in a
real protocol execution than in an ideal one (where by definition no harm can be done). This definition of
security is often called simulation-based because security is demonstrated by showing that a real protocol
execution can be “simulated” in the ideal world. We give a specification of an ideal execution with a trusted
party by defining a reactive outsourced pattern matching functionality FOPM. This functionality works in
two phases: In the preprocessing phase sender SEN uploads its preprocessed text T̃ to the server. Next, in
an iterative query phase, upon receiving a search query p the functionality asks for the approvals of sender
SEN (as it may also refuse for this query in the real execution), and the server (as in case of being corrupted
it may abort the execution). To model the additional leakage that is required to minimize communication
we ask the functionality to forward the server the matched positions in the text upon receiving an approval
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from SEN. Note that this type of leakage is necessary if S and REC might collude, as in our case. We
further note that our functionality returns all matched positions but can be modified so that only the first few
matched positions are returned.2

Difficulties with simulating FOPM. The main challenge in designing a simulator for this functionality is
in case when the server is corrupted. In this case the simulator must commit to some text in a way that allows
it later to produce a sequence of trapdoors that is consistent with the sequence of queries. More precisely,
when the simulator commits to a preprocessed text, the leakage that the corrupted server obtains (namely,
the positions where the pattern matches the text) has to be consistent with the information that it sees during
the query phase. This implies that the simulator must have flexibility when it later matches the committed
text to the trapdoors. This difficulty does not arise in the classic two-party setting since there the simulator
always plays against a party that contributes an input to the computation which it can first extract, whereas
here the server is just a tool to run a computation. Due to this inherent difficulty the text must be encoded
in a way, that given a search query p and a list of text positions (i1, . . . , it), one can produce a trapdoor
for p in such a way that the “search” in the preprocessed text, using this trapdoor, yields (i1, . . . , it). We
note that alternative (and even simpler) solutions that permute the preprocessed text in order to prevent the
server from even learning the matched positions, necessarily require that the server does not collude with
the receivers, and even then are not simple to implement. This is because the simulator must have some
equivocation mechanism since it cannot distinguish in the preprocessing phase between the last element in
a list of matched positions and a non-last element. In contrast, out solutions allow such strong collusion
between the server and the receivers.

Searchable/Non-Committing encryption and outsourced pattern matching. To better motivate our so-
lution, let us consider a toy example first. Assume we encrypt each substring of length m in T using
searchable encryption [BCOP04], which allows running a search over an encrypted text by producing a
trapdoor for the searched word (or a pattern p). Given the trapdoor, the server can check each ciphertext and
return the text positions in which the verification succeeds. The first problem that arises with this approach
is that searchable encryption does not ensure the privacy of the searched patterns. While this issue may be
addressed by tweaking existing constructions of searchable encryption, a more severe problem is that the
simulator must commit in advance to (searchable) encryptions of a text that later allow to “find” p at posi-
tions that are consistent with the leakage. In other words: all the plaintexts in the specified positions must
be associated with the keyword p ahead of time. Of course, as the simulator does not know the actual text T
it cannot produce such a consistent preprocessed text. An alternative solution may be given by combining
searchable encryption with techniques from non-committing encryptions [CFGN96]. Unfortunately, it is
unclear how to combine these two tools even in the random oracle model.

1.1.2 Semi-Honest Outsourced Pattern Matching from Subset Sum

Our first construction for outsourced pattern matching is secure against semi-honest adversaries. In this
construction sender SEN generates a vector of random values, conditioned on that the sum of elements in
all positions that match the pattern equals some specified value that will be explained below. Namely, SEN
builds an instance T̃ for the subset sum problem, where given a trapdoor R the goal is to find whether there
exists a subset in T̃ that sums toR. More formally, the subset sum problem is parameterized by two integers
` and M . An instance of the problem is generated by picking random vectors T̃ ← Z`M , s ← {0, 1}` and

2This definition is more applicable for search engines where the first few results are typically more relevant, whereas the former
variant is more applicable for a DNA search where it is important to find all matched positions. For simplicity we only consider the
first variant, our solutions support both variants.
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T = 01010011010101001001 n = 20,m = 4

B1 = 01010011

B2 = 00110101

B3 = 01010100

B4 = 01001001

T̃ = a1a2a3a4a5 a6a7a8a9a10 a11a12a13a14a15 a16a17a18a19a20

a1 = H(F(κ, 0101||1))

B̃1 B̃2 B̃3 B̃4

a2 = H(F(κ, 1010||1)) a3 = H(F(κ, 0100||1)) a4 = H(F(κ, 1001||1)) a5 = H(F(κ, 0011||1))
a6 = H(F(κ, 0011||2)) a7 = H(F(κ, 0110||2)) a8 = H(F(κ, 1101||2)) a9 = H(F(κ, 1010||2)) a10 = H(F(κ, 0101||2))

a11 + a13 = H(F(κ, 0101||3)) a12 + a14 = H(F(κ, 1010||3)) a15 = H(F(κ, 0100||3))
a16 + a19 = H(F(κ, 0100||4)) a17 + a20 = H(F(κ, 1001||4)) a18 = H(F(κ, 0010||4))

Figure 1: The packaging tecnique applied to a text of length n = 20 bits, encoded to search for patterns of
length m = 4 bits.

outputting (T̃ , R = T̃T · s mod M). The problem is to find s given T̃ and a trapdoor R. Looking ahead, we
will have such a trapdoorRp for each pattern p of lengthm, such that if pmatches T then with overwhelming
probability there will be a unique solution to the subset sum instance (T̃ , Rp). This unique solution is placed
at exactly the positions where the pattern appears in the text. The receiver REC that wishes to search for a
pattern p obtains this trapdoor from SEN and will hand it to the server. Consequently, we are interested in
easy instances of the subset sum problem since we require the server to solve it for each query (we note that
using our packaging technique described below, brute force may be applicable as well). This is in contrast
to prior cryptographic constructions, e.g., [LPS10] that design cryptographic schemes based on the hardness
of this problem. We therefore consider low-density instances which can be solved in polynomial time by a
reduction to a short vector in a lattice [LO85, Fri86, CJL+92]. See Figure 1 for an illustration of our idea.

We further note that the security of the scheme relies heavily on the unpredictability of the trapdoor.
Namely, in order to ensure that the server cannot guess the trapdoor for some pattern p (and thus solve the
subset problem and find the matched locations), we require that the trapdoor is unpredictable. We therefore
employ a PRF F on the pattern and fix this value as the trapdoor, where the key k for the PRF is picked
by SEN and the two clients SEN and REC communicate via a secure two-party protocol to compute the
evaluation of the PRF. This ensures hardness of guessing the trapdoor for any pattern p.

Efficiency considerations. The scheme described above satisfies the appealing properties that the com-
munication complexity during the setup phase is O(κ · n) and during the query phase is proportional to the
number of matches times κ. Furthermore, the space complexity at the server side is O(κ · n). A moment
of reflection, however, shows that the scheme has very limited usage in practice. Recall that the server is
asked to solve subset sum instances of the form (T̃ , Rp), where T̃ is a vector of length ` = n−m+ 1 with
elements from ZM for some integerM . In order to ensure correctness we must guarantee that given a subset
sum instance, each trapdoor has a unique solution with high probability. In other words, the collision prob-
ability, which equals 2`/M (stated also in [IN96]), should be negligible. Fixing M = 2κ+n for a security
parameter κ, ensures this for large enough κ, say whenever κ ≥ 80. On the other hand, we need the subset
sum problem to be solvable in polynomial time. A simple calculation (see analysis in Section 2.2), yields in
this case a value of ` ≈

√
κ. This poses an inherent limitation on the length of the text to be preprocessed.
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For instance, even using a high value of κ ≈ 104 (yielding approximately subset sum elements of size 10
KByte) limits the length of the text to only 100 bits.

An improved solution using packaging. To overcome this limitation, we employ an important extension
of our construction based on packaging. First, the text is partitioned into smaller pieces of length 2m
which are handled separately by the protocol, where m is some practical upper bound on the pattern length.
Moreover, every two consecutive blocks are overlapping inm positions, so that we do not miss any match in
the original text. Even though this approach introduces some overhead, yielding a text T ′ of overall length
2n, note that now Eq. (2) below yields ` = 2m −m + 1 = m + 1 <

√
κ, which is an upper bound on the

length of the pattern (and not on the length of the text as before). Namely, we remove the limitation on the
text length and consider much shorter blocks lengths for the subset sum algorithm.

This comes at a price since we now need to avoid using in each block the same trapdoor for some
pattern p, as repetitions allow the server to extract potential valid trapdoors (that have not been queried yet)
and figure out information about the text. This is in particular a problem when m is reasonably short as in
this case since the server may just try out all potential trapdoors. One may suggest to generate for each block
a completely independently chosen trapdoor. Unfortunately, this does not work as during the query phase
the receiver needs to communicate these trapdoors to the server which may require communication linear in
the length of the text. We solve this problem by requiring from the function outputting the trapdoors to have
some form of “programmability” (which allows to simulate the answers to all queries consistently).

Specifically, we implement this function using the random oracle methodology on top of the PRF, so
that a trapdoor now is computed by H(F(k, p)‖b), for b being the block number. Now, the simulator can
program the oracle to match with the positions where the pattern appears in each block. Note that using just
the random oracle (without the PRF) is not sufficient as well, since an adversary that controls the server and
has access to the random oracle can apply it on p as well. We note that this construction is round optimal,
where the number of messages exchanged by the parties is minimal.

1.1.3 Malicious Outsourced Pattern Matching

We extend our construction to the malicious setting as well, tolerating malicious attacks. Our proof ensures
that the server returns the correct answers by employing Merkle commitments and zero-knowledge (ZK)
sets. Informally speaking, Merkle commitments are succinct commitment schemes for which the commit-
ment size is independent of the length of the committed value (or set). This tool is very useful in ensuring
correctness, since now, upon committing to T̃ , the server decommits the solution to the subset sum trapdoor
and receiver REC can simply verify that the decommitted values correspond to the trapdoor. Nevertheless,
this solution does not cover the case of a mismatch since a corrupted server can always return a “no-match”
massage. In order to avoid it we borrow techniques from ZK sets arguments [MRK03], used for proving
whether an element is in a specified set without disclosing any further information. Specifically, SEN com-
mits to the set of trapdoors for all patterns p that match T in at least one position. We then ask the server
to prove membership/non-membership relative to this set, which contains at most n −m + 1 elements. In
addition, proving security against a corrupted REC is a straightforward extension of the semi-honest proof
using the modifications we made above and the fact that the protocol for implementing the oblivious PRF
evaluation is secure against malicious adversaries as well.

The case of a corrupted SEN is more challenging since the simulator needs to extract first the text T ,
but also verify SEN’s computations with respect to the random oracle when it produces T̃ . The only proof
technique that we are aware of for proving correctness when using a random oracle is cut-and-choose (e.g.,
as done in [IKNP03]), which inflates the communication complexity by an additional statistical parameter.
Instead, we do not require that the server immediately verifies the correctness of the outsourced text, but
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only ensures that if SEN cheats with respect to some query p then it will be caught during the query phase
whenever p is queried. The crux of our protocol is that the server does not need to verify all computations
at once, but only the computations with respect to the asked queries. This enables us to avoid the costly
cut-and-choose technique since verification is done using a novel technique of derandomizing SEN’s com-
putations. Nevertheless, these difficulties imply that we need to relax the security proof and provide two
separated arguments for privacy and correctness whenever the sender is maliciously corrupted instead of a
simulation-based security proof. For simplicity, we introduce a separated protocol for each corruption case.
A combined protocol can be designed by integrating these into a single protocol.

Efficiency. Our protocols incur higher overhead for the malicious setting due to the use of zero knowledge
protocols and Merkle commitments. More specifically, correctness against a corrupted server increases
the communication complexity by a factor of O(log n) in the query phase. This is because each matched
position must be verified against its commitment which costs O(log n) using Merkle commitments. The
setup phase is also more costly since the server has to verify the sender’s PRF computations which induce
communication overhead ofO(κ ·m ·n). Note, however, that the long term space complexity is stillO(κ ·n)
since the server does not need to store all the ZK proofs for verification. Furthermore, this overhead relies
heavily on the [NR97] algebraic PRF complexity; an improved PRF will reduce the overhead complexity.

1.2 Follow-Up Work

In a follow-up work [HZ14], Hazay and Zarosim demonstrated that using the power of the random oracle is
essential in order to reduce the resources of receiver REC within round optimal protocols. Specifically, they
showed that for certain search functionalities (e.g, pattern matching and all its variants), the communication
complexity or the number of steps made by REC is as large as the size of the text in the plain model.
Their lower bound applies to both non-private and private channels scenarios (where in the private channels
setting corrupted parties do not see the communication between the honest parties). This implies that our
semi-honest construction is tight with respect to the assumptions it requires.

2 Preliminaries

2.1 Basic Notations

We let N be the natural numbers and denote with κ the security parameter. Unless described otherwise,
all quantities are implicitly functions of a security parameter denoted κ ∈ N. The security parameter,
represented in unary, is an input to all cryptographic algorithms (including the adversary). We let poly(κ)
denote an unspecified function O(κc) for some constant c. A function negl(κ) is negligible (in κ) if it is
o(κ−c) for every constant c polynomial. Given a string a ∈ {0, 1}t we specify its value in the ith position
by a[i]. We write PPT for probabilistic polynomial-time algorithms, i.e., randomized algorithms running in
time poly(κ). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be distribution ensembles. We say that X and Y are

computationally indistinguishable, written X
c
≈ Y , if for any PPT algorithm D we have

|Pr[D(Xκ) = 1]− Pr[D(Yκ) = 1]| ≤ negl(κ),

where the probability is taken over the random values Xκ and Yκ, and the randomness of D.
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2.2 The Subset Sum Problem

The subset sum problem is parametrized by two integers ` and M . An instance of the problem is generated
by picking random vectors a ← Z`M , s ← {0, 1}` and outputting (a, R = aT · s mod M). The problem is
to find s given a and R. We rely on the following simple observation, which already appeared in [IN96].

Lemma 1 ([IN96]) Fix ` and M . Let a and s be chosen uniformly at random and R = aT · s mod M .
Then, the probability that there exists a vector s′ 6= s such that R = aT · s′ mod M is upper bounded by
2`/M .

Proof: It is easy to see that the values aT · s and aT · s′ are independent and uniformly distributed for every
pair s, s′. Hence,

Pr[∃ s 6= s′ : aT · s mod M = aT · s′ mod M ] =
∑
s 6=s′

Pr[aT · s mod M = aT · s′ mod M ] ≤ 2`

M
. (1)

The hardness of solving the subset sum problem depends on the ratio between ` and logM , which is usually
referred to as the density ∆ of the subset sum instance. In particular:

1. When ∆ < 1/`, we speak of low-density instances which can be solved in polynomial time by a
reduction to a short vector in a lattice [LO85, Fri86, CJL+92].

2. When ∆ > `/ log2 `, we speak of high-density instances which can be solved in polynomial time us-
ing dynamic programming, or other sophisticated techniques [CFG89, GM91, FP05, Lyu05, Sha08].

In our protocols, we will need to set the parameters in such a way that the subset sum problem is solvable
efficiently. Furthermore, we need the term in Eq. (1) to be negligible in the security parameter κ; hence we
will set M = 2κ+`. The latter choice immediately rules out algorithms for high-density subset sum (e.g.,
algorithms based on dynamic programming, since they usually need to process a matrix of dimension M ).
On the other hand, for low-density instances, Lemma 1 implies ` + κ > `2, so that we need to choose κ, `
in such a way that

` <
1

2

(√
1 + 4κ− 1

)
. (2)

Algorithms for solving low-density subset sum are based on lattices. In particular, one can show [CJL+92]
that all low-density subset sum instances with ∆ < 0.9408 can be solved efficiently with overwhelming
probability. The concrete run-time depends on the performances of the LLL algorithm as a function of the
lattice dimension; values of ` < 1000 yield to practical performances [CN11, GN08, NS06]. We elaborate
more on the impact of the above analysis in our constructions in Section 4.1.

2.3 Collision Resistant Hashing and Merkle Trees

Let in the following {Hκ}κ∈N = {H : {0, 1}p(κ) → {0, 1}p′(κ)}κ be a family of hash functions, where p(·)
and p′(·) are polynomials so that p′(κ) ≤ p(κ) for sufficiently large κ ∈ N. For a hash function H ← Hκ a
Merkle hash tree [Mer89] is a data structure that allows to commit to ` = 2d messages by a single hash value
h such that revealing any message requires only to reveal O(d) hash values. A Merkle hash tree is repre-
sented by a binary tree of depth dwhere the `messagesm1, . . . ,m` are assigned to the leaves of the tree; the
values assigned to the internal nodes are computed using the underlying hash function H , whereas the value
h that commits to m1, . . . ,m` is assigned to the root of the tree. To open the commitment to a message mi,
one reveals mi together with all the values assigned to nodes on the path from the root to mi, and the values
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assigned to the siblings of these nodes. We denote the algorithm of committing to ` messages m1, . . . ,m`

by h = CommitM(m1, . . . ,m`) and the opening of mi by (mi, path(i)) = OpenM(h, i). Verifying the
opening of mi is carried out by essentially recomputing the entire path bottom-up and comparing the final
outcome (i.e., the root) to the value given at the commitment phase. For simplicity, we abuse notation and
denote by path(i) both the values assigned to the nodes in the path from the root to decommitted value mi,
together with the values assigned to their siblings.

In the paper, we often need to talk about the value assigned to a particular node. To this end, we introduce
a labeling scheme for the nodes of a tree. We denote the root of the tree by ε. For a node w ∈

⋃
i≤d{0, 1}i,

we label its left child by w0 and its right child by w1. The value that is assigned to a node with a label w is
typically denoted by hw. We also consider incomplete Merkle trees. An incomplete Merkle tree is a Merkle
tree where some nodes w, with |w| < d, have no leaves. We say that a (possibly incomplete) Merkle tree T
with max depth d is valid if for all its nodes w with two children, we have H(hw0||hw1) = hw. We further
say that a path path(i) is consistent with a Merkle tree T (or in T ) if all the values assigned to the nodes
w in path(i) are also assigned to the corresponding nodes in T , i.e., hw = vw, where vw denotes the value
assigned to node w in path(i).

The standard security property of a Merkle hash tree is collision resistance. Intuitively, this says that it
is infeasible to efficiently find a pair (x, x′) so that H(x) = H(x′), where H ← Hκ for sufficiently large κ.
In fact, one can show that collision resistance of {Hκ}κ∈N carries over to the Merkle hashing. Formally, we
say that a family of hash functions {Hκ}κ is collision resistant if for all PPT adversaries Adv the following
experiment outputs 1 with probability negl(κ): (i) A hash functionH is sampled fromHκ; (ii) The adversary
Adv is given H and outputs x, x′; (iii) The experiment outputs 1 if and only if x 6= x′ and H(x) = H(x′).

2.4 Oblivious Pseudorandom Function Evaluation

Informally speaking, a pseudorandom function (PRF) is an efficiently computable function that looks like a
truly random function to any PPT observer. Namely,

Definition 1 (Pseudorandom function) Let F : {0, 1}κ×{0, 1}m → {0, 1}l be an efficient, keyed function.
We say F is a pseudorandom function if for all PPT distinguishers D, there exists a negligible function negl
such that:

|Pr[DF(k,·)(1κ) = 1]− Pr[Dfκ(1κ) = 1]| ≤ negl(κ),

where k is picked uniformly from {0, 1}κ and fκ is chosen uniformly at random from the set of functions
mapping κ-bit strings into l-bit strings.

In our protocols, we consider a protocol πF that obliviously evaluates a pseudorandom function in the
presence of malicious adversaries. Let k ∈ {0, 1}κ be a key sampled as above. Then the oblivious PRF
evaluation functionality FPRF is defined as (k, x) 7→ (−,F(k, x)). Such an oblivious PRF may be instanti-
ated with the Naor-Reingold pseudorandom function [NR97] that is implemented by the protocol presented
in [FIPR05] (and proven in the malicious setting in [HL10]). The function is defined by

F((a0, . . . , am), x) = ga0
∏m
i=1 a

x[i]
i ,

where g is a generator for a group G of prime order p, ai ∈ Zp and x = (x[1], . . . , x[m]) ∈ {0, 1}m.3

We remark that both the key and the range are not bit strings, as required by Definition 1, but they can be
interpreted as such in a natural way. The protocol involves executing an oblivious transfer for every bit of

3We remark that this definition considers a function that is not pseudorandom in the classic sense of it being indistinguishable
from a random function whose range is composed of all strings of a given length. Rather, it is indistinguishable from a random
function whose range is the group generated by g as defined below.
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the input x. A two-rounds semi-honest secure implementation can be achieved by using the [FIPR05] pro-
tocol combined with any two-rounds semi-honest oblivious transfer. Applying the efficient OT construction
of [PVW08] in the malicious setting, implies a two-rounds protocol in the CRS setting with UC security and
constant overhead.

2.5 Commitment Schemes

A (non-interactive) commitment scheme consists of a triple of efficient algorithms (Gen,Commit,Open)
defined as follows. Upon input the security parameter κ, the probabilistic algorithm Gen outputs a key pk.
Upon input the key pk and message m ∈ {0, 1}∗ (and implicit random coins r), the probabilistic algorithm
Commit outputs (γ, δ)← Commit(pk,m; r) where γ is the committed value, while δ is the decommitment
information needed to open the commitment. Typically δ = (m, r). Upon input the key pk, a message m,
and a commitment-pair (γ, δ), the deterministic algorithm Open outputs a bit b ∈ {0, 1}.

A commitment scheme should be complete, i.e., for any security parameter κ, any pk ← Gen(1κ), for
any message m ∈ {0, 1}∗ and any (γ, δ) ← Commit(pk,m) we have Open(pk,m, δ, γ) = 1. In addition,
commitment schemes are defined by their security properties binding and hiding. Roughly speaking, the
binding property says that a sender is unable to change the message it is committed to once the commitment
phase is over. The hiding property says that a receiver cannot learn the message from the commitment.

In some cases the public value pk is not needed and the commitment scheme is simply denoted as
(Commit,Open) omitting the algorithm Gen. For ease of notations we omit it from now on. We further
require that the commitment scheme is homomorphic. Homomorphic commitment schemes exist based on
various hardness assumptions, e.g. the discrete logarithm assumption [Ped91] or decisional Diffie-Hellman
(DDH) [ElG85].

2.6 Zero-Knowledge Sets

A zero-knowledge set (ZKS) scheme [MRK03] allows a prover to commit to a secret setG in a way such that
it can later prove, non interactively, statements of the form γ ∈ G (or γ 6∈ G)), without revealing any further
information on G, not even its size. A protocol for ZKS consists of three algorithms (ZKS-Setup,P,V),
specified as follows. Algorithm ZKS-Setup takes as input the security parameter κ and outputs a common
reference string CRS ← ZKS-Setup(1κ). Algorithm P consists of two sub-algorithms (P1,P2) such that
P1 takes as input CRS and a set G, and outputs a pair (hG, σ) where hG is a commitment to the set G and
σ is some state information; P2 takes as input the state information σ and a value γ, and outputs a proof π.
Algorithm V takes as input CRS, a commitment hG, some value γ and a proof π, and outputs a decision bit.

Intuitively, we require the following properties to hold. (1) Completeness: For any set G, for any γ such
that γ ∈ G (resp. γ 6∈ G) an honest prover who correctly commits to G can always convince the verifier that
γ ∈ G (resp. γ 6∈ G); (2) Soundness: Once a commitment to the setG has been formed (even by a malicious
prover), no P can, for the same γ, convince the verifier that both γ ∈ G and γ 6∈ G; (3) Zero-knowledge:
There exists a simulator SimZKsets such that even for adversarially chosen G, no adversarial verifier can tell
whether it is (a) talking to an honest prover P committed to G, or (b) talking to SimZKsets who only has
oracle access to the set G. We refer the reader directly to [MRK03] for formal definitions.

The original construction of zero-knowledge sets is based on special properties of a commitment scheme
(so called mercurial commitments) which have been formalized later on by Chase et al. [CHL+05]. All
known constructions of ZKS are built upon the common idea of constructing an authenticated Merkle tree
of depth κ where each internal node is a mercurial commitment of its two children. For a universe of size
2κ fix a security parameter l; in particular l = 256 suffices to get κ = 128 bits of security. The most
efficient proofs relying on mercurial commitments requires 6κ + 5 elements (for proofs of membership)
and 5κ+ 4 elements (for proofs of non-membership), where each element has size l bits. An improvement
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can be obtained relying on q-mercurial commitments [CRFM11], where a proof of membership requires
µ(q + 4) + 5 elements and a proof of non-membership requires 4µ + 4 elements, where now the size of
the universe is qµ. A value of q = 8 yields proofs of membership that are 33% shorter and proofs of
non-membership that are almost 73% shorter.

3 Modeling Outsourced Pattern Matching

The inputs for the basic pattern matching problem are a text T of length n and a pattern p (i.e., keyword) of
length m; the goal is to find all the text locations in which the pattern matches the text. A private distributed
variant of this problem is defined in the two-party setting, where a sender SEN holds a text T and a receiver
REC holds a pattern p. The goal of REC is to learn the positions in which p matches in the text, without
revealing anything about the pattern to SEN; at the same time, REC should not learn anything else about
the text.4 In this section we are interested in an outsourced variant of the problem, which is specified in two
phases. In the setup phase a sender SEN uploads a (preprocessed) text T̃ to an external server S. This phase
is run only once. In the query phase receivers REC1,REC2, . . . query the text by searching patterns and
learn the matched text locations. For simplicity, we focus on a single receiver REC asking multiple queries.
However, our model can be easily generalized to the multiple receivers scenario.

The basic idea is to implement the pattern matching functionality using the server as a mediator, answer-
ing search queries on behalf of SEN. In order to take some advantage from this modeling, we must allow the
server to obtain some leakage about the text, otherwise the communication complexity between the server
and receiver REC would be O(n). Instead, we are interested in building schemes where the preprocessing
phase requires O(n) workload, but the overall cost of issuing a query grows only linearly with the number
of matches (which is as optimal as one can obtain). This optimization comes with the price of revealing
some leakage about the text. More precisely, the server learns that for some text positions repetitions occur.
Attempts to hide this information from the sever by permuting the text fail if the server colludes with REC.
For some applications this leakage is tolerable given the improvement of running search queries. To sum up,
we aim for O(n) computation/communication overhead in the preprocessing phase and O(tp) in the query
phase, where tp is the number of occurrences of p in T .

We further require that the round complexity of any protocol implemented in this setting is minimal.
That is, in the setup phase we require a single message sent from the sender to the server, whereas in the
query phase we require clients REC and SEN to exchange only two messages (one in each direction),
and one message in each direction between REC and S in order to retrieve the output. We note that our
constructions meet this order of rounds, but this may not be the case in general. We denote a scheme with
this number of rounds by round optimal.5

We formalize security using the ideal/real paradigm. Note that, in the context of outsourced compu-
tation, the server is a separate entity that does not contribute any input to the computation and is required
to run most of the function evaluation. In the ideal setting, such an entity is also communicating with the
functionality and, upon corruption, decides whether the functionality sends the outcome of the computation
to the prescribed receivers. Denote by Tj the substring of length m that starts at text location j. The pattern
matching ideal functionality in the outsourced setting is depicted in Figure 2. We write |T | for the bit length
of T and assume that receiver REC asks a number of queries pi (i ∈ [λ]).

4As specified in the introduction, we can define a search functionality that only returns the first few and most relevant matches.
Our discussion and formalization below can be easily adapted for this functionality as well.

5Looking ahead, we manage to meet this optimal bound only for our semi-honest protocol.
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Functionality FOPM

Let m,λ ∈ N. Functionality FOPM sets an empty table B and proceeds as follows, running with clients
SEN and REC, server S and adversary Sim.

1. Upon receiving a message (text, T,m) from SEN, send (preprocess, |T |,m) to S and Sim, and
record (text, T ).

2. Upon receiving a message (query, pi) from receiver REC (for i ∈ [λ]), where message (text, ·) has
been recorded and |pi| = m, it checks if the table B already contains an entry of the form (pi, ·). If
this is not the case then it picks the next available identifier id from {0, 1}∗ and adds (pi, id) to B. It
sends (query,REC) to SEN and Sim.

(a) Upon receiving (approve,REC) from sender SEN, read (pi, id) from B and send
(query,REC, (i1, . . . , it), id) to server S, for all text positions {ij}j∈[t] such that Tij = pi.
Otherwise, if no (approve,REC) message has been received from SEN, send ⊥ to REC and
abort.

(b) Upon receiving (approve,REC) from Sim, read (pi, id) from B and send
(query, pi, (i1, . . . , it), id) to receiver REC. Otherwise, send ⊥ to receiver REC.

Figure 2: The outsourced pattern matching functionality

The definition. As in the standard static modeling, a corrupted party is either passively or actively con-
trolled by an adversarial entity. In the passive case (a.k.a. semi-honest case) a corrupted party follows the
protocol’s instructions and tries to gain additional information about the honest parties’ inputs from its view;
in the active case (a.k.a. malicious case) a corrupted party is allowed to follow an arbitrary polynomial-time
strategy. In our case, when the server is corrupted we must ensure that the only information leaked by the
protocol is about the text positions for which repetitions occur, without disclosing the actual content of the
text in these positions or any additional information. A moment of reflection shows that in the security
proof the simulator needs to commit to the text before given the above leakage from the trusted party. We
emphasize that this technicality is not artificial, since even if receiver REC is corrupted at the beginning of
the execution, the simulator cannot be given the leakage about the queries in advance since the queries may
be asked in an fully adaptive manner. In other words, it may be the case that receiver REC does not know
all the queries it will ask in advance.

Formally, denote by IDEALFOPM,Sim(z)(κ, (−, T, (p1, . . . , pλ))) the output of an ideal adversary Sim,
server S and clients SEN,REC in the above ideal execution of FOPM upon inputs (−, (T, (p1, . . . , pλ)))
and auxiliary input z given to Sim. We note that one can also consider a security definition that captures
collusion between the server and one of the clients. Our protocols capture collusion between S and REC. We
implement functionality FOPM via three two-party protocols π = (πPre, πQuery, πOpm) specified as follows.
Protocol πPre is run in the preprocessing phase by SEN to preprocess text T and forwards the outcome T̃ to
S. During the query phase, protocol πQuery is run between SEN and REC (holding a pattern p); this protocol
outputs a trapdoor Rp that depends on p and will enable the server to search the preprocessed text. Lastly,
protocol πOpm is run by S upon input the preprocessed text and a trapdoor (forwarded by REC); this protocol
returns to REC the matched text positions (if any). We denote by REALπ,Adv(z)(κ, (−, T, (p1, . . . , pλ)))
the output of adversary Adv, server S and clients SEN,REC in a real execution of π = (πPre, πQuery, πOpm)
upon inputs (−, (T, (p1, . . . , pλ))) and auxiliary input z given to Adv.

Definition 2 (Security of outsourced pattern matching) We say that π securely implements FOPM, if for
any PPT real adversary Adv there exists a PPT ideal adversary (simulator) Sim such that for any tuple of
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inputs (T, (p1, . . . , pλ)) and auxiliary input z,

{IDEALFOPM,Sim(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N
c
≈ {REALπ,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N.

The schemes described in the next sections implement the ideal functionality FOPM in the random oracle
model. As usual in this case, we assume the existence of a publicly available function H behaving as a truly
random function. We stress that all parties are allowed to query the random oracle arbitrarily, regardless the
fact that they are malicious or semi-honest. In addition, we describe our constructions in a private channels
setting, where the corrupted party is not allowed to see the communication between the honest parties. This
is because our protocol does not support a collusion between the sender and the server. Thus, if a corrupted
sender sees the receiver’s message, the receiver’s privacy is violated. Note that any protocol in this setting
can be transformed into the non-private channels setting using PKI (namely, by having every pair of parties
encrypt their communication using a pair of public keys). This, however, requires additional rounds of
communication.

4 Security in the Presence of Semi-Honest Adversaries

In this section we present our implementation of the outsourced pattern matching functionality FOPM and
prove its security against semi-honest adversaries. A scheme with security against malicious adversaries is
described in Section 5, building upon the protocol in this section. Recall first that in the outsourced variant
of the pattern matching problem, sender SEN manipulates the text T and then stores it on the server S in
such a way that the preprocessed text can be used later to answer search queries submitted by receiver REC.
The challenge is to find a way to hide the text (in order to obtain privacy), while enabling the server to carry
out searches on the hidden text whenever it is in possession of an appropriate trapdoor.

We consider a new approach and reduce the pattern matching problem to the subset sum problem
(cf. Section 2.2). Namely, consider a text T of length n, and assume we want to allow searches for pat-
terns of length m. For some integer M ∈ N, we assign to each distinct pattern p that appears in T a random
element Rp ∈ ZM . Letting ` = n − m + 1, the preprocessed text T̃ is a vector in Z`M with elements
specified as follows. Specifically, for each pattern p that appears t times in T , we sample random values
a1, . . . , at ∈ ZM such that Rp =

∑t
j=1 aj . Denote with ij ∈ [`] the jth position in T where p appears and

set T̃ [ij ] = aj . Notice that for each pattern p, there exists a vector s ∈ {0, 1}` such thatRp = T̃T ·s. Hence,
the positions in T̃ where pattern p matches are identified by a vector s and can be viewed as the solution for
the subset sum problem instance (Rp, T̃ ).

Roughly, our protocol works as follows. During protocol πPre, we let the sender SEN generate the
preprocessed text T̃ as described above, and send the result to the server S. Later, when a receiver REC
wants to learn at which positions a pattern p matches the text, clients REC and SEN run protocol πQuery;
at the end of this protocol REC learns the trapdoor Rp corresponding to p. Finally, during πOpm receiver
REC sends this trapdoor to S, which can solve the subset sum problem instance (Rp, T̃ ). The solution to
this problem corresponds to the matches of p, which are forwarded to the receiver REC. To avoid that SEN
needs to store all trapdoors, we rely on a PRF to generate the trapdoors itself. More precisely, instead of
sampling the trapdoors Rp uniformly at random, we set Rp := F(k, p), where F is a PRF. Thus, during the
query phase REC and SEN run an execution of an oblivious PRF protocol; at the end of this protocol REC
learns the output of the PRF, i.e., the trapdoor Rp.

Although the protocol described above provides a first basic solution for the outsourced pattern match-
ing, it suffers from a strong restriction as only very short texts are supported. We will provide more details
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Protocol πSH = (πPre, πQuery, πOpm)

Let κ ∈ N be the security parameter and letM,m,n, µ be integers, where for simplicity we assume that n is
a multiple of 2m. Further, letH : {0, 1}µ → ZM be a random oracle and F : {0, 1}κ×{0, 1}m → {0, 1}µ
be a PRF. Protocol πSH involves a sender SEN holding a text T ∈ {0, 1}n, a receiver REC querying for
patterns p ∈ {0, 1}m, and a server S. The interaction between the parties is specified below.

Setup phase, πPre. The protocol is invoked between sender SEN and server S. Given input T and integer
m, sender SEN picks a random key k ∈ {0, 1}κ and prepares first the text T for the packaging by
writing it as

T ′ := (B1, . . . , Bu) = ((T [1], . . . , T [2m]), (T [m+1], . . . , T [3m]), . . . , (T [n−2m+1], . . . , T [n])),

where u = n/m − 1. Next, for each block Bb and each of the m + 1 patterns p ∈ {0, 1}m that
appear in Bb we proceed as follows (suppose there are at most t matches of p in Bb).

1. Sender SEN evaluates Rp := H(F(k, p)||b), samples a1, . . . , at−1 ∈ ZM at random and then
fixes at such that at = Rp −

∑t−1
j=1 aj mod M .

2. Set B̃b[vj ] = aj for all j ∈ [t] and vj ∈ [m + 1]. Note that here we denote by {vj}j∈[t]
(vj ∈ [m + 1]) the set of indexes corresponding to the positions where p occurs in Bb. Later
in the proof we will be more precise and explicitly denote to which block vj belongs by using
explicitly the notation vjb .

Finally, SEN outsources the text T̃ = (B̃1, . . . , B̃u) to S.

Query phase, πQuery. Upon issuing a query p ∈ {0, 1}m by receiver REC, clients SEN and REC engage
in an execution of protocol πQuery which implements the oblivious PRF functionality (k, p) 7→
(−,F(k, p)). Upon completion, REC learns F(k, p).

Oblivious pattern matching phase, πOpm. This protocol is executed between server S (holding T̃ ) and
receiver REC (holding F(k, p)). Upon receiving F(k, p) from REC, the server proceeds as follows
for each block B̃b. It interprets (B̃b,H(F(k, p)||b)) as a subset sum instance and computes s as the
solution of B̃b · s = H(F(k, p)||b). Let {vj}j∈[t] denote the set of indexes such that s[vj ] = 1, then
the server S returns the set of indexes {ϕ(b, vj)}b∈[u],j∈[t] to the receiver REC.

Figure 3: Semi-honest outsourced pattern matching

on this restriction in Section 4.1.6 To overcome this severe limitation, we partition the text into smaller
pieces each of length 2m, where each such piece is handled as a separate instance of the the protocol. More
specifically, for a text T = (T [1], . . . , T [n]) let (T [1], . . . , T [2m]), (T [m + 1], . . . , T [3m]), . . . be blocks,
each of length 2m, such that every two consecutive blocks overlap in m bits. Then, for each pattern p that
appears in the text the sender SEN computes an individual trapdoor for each block where the pattern p
appears. More precisely, suppose that pattern p appears in block Bb then we compute the trapdoor for this
block (and pattern p) as H(F(k, p)||b). Here, H is a cryptographic hash function that will be modeled as
a random oracle in our proofs. Given the trapdoors, we apply the preprocessing algorithm to each block
individually. The sub-protocols πQuery and πOpm work as described above with a small change. In πQuery

receiver REC learns the output of the PRF F(k, p) instead of the actual trapdoors and in πOpm receiver REC
forwards directly the result F(k, p) to S. The server can then compute the actual trapdoor using the random
oracle. This is needed to keep the communication complexity of the protocol low. Note that in this case if

6Taking a look ahead, this solution can only support short texts as otherwise either the collision probability (cf. Lemma 1) is
large and we cannot achieve correctness, or the subset sum problem cannot be solved efficiently as the instance is not low-density.
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we let {vjb}jb∈[tb] be the set of indices corresponding to the positions where p occurs in a given block Bb,
the server needs to map these positions to the corresponding positions in T (and this has to be done for each
of the blocks where p matches). It is easy to see that such a mapping from a position vjb in block Bb to the
corresponding position in the text T can be computed as ϕ(b, vj) = (b − 1)m + vj . The entire protocol,
including the packaging mechanism, is shown in Figure 3; see also Figure 1 for a pictorial representation.

We now prove the following result.

Theorem 1 Let κ ∈ N be the security parameter. For integers n,m we set λ = poly(κ), µ = poly(κ),
u = n/m − 1, ` = (m + 1)u and M = 2m+κ+1. We furthermore require that κ is such that 2m+1/M is
negligible (in κ). Assume H : {0, 1}µ → ZM is a random oracle and F : {0, 1}κ × {0, 1}m → {0, 1}µ is
a pseudorandom function. Then, round optimal protocol πSH from Figure 3 securely implements the FOPM

functionality in the presence of semi-honest adversaries.

It is easy to verify that the number of rounds within πSH is optimal. First, SEN sends only one message
to S. Next, we consider a two-rounds oblivious PRF evaluation protocol for πQuery. Finally, REC and S
exchange only two messages. We now continue with our security proof.

Proof: We first argue about correctness and then prove privacy.

Correctness. We say that our construction achieves correctness if with overwhelming probability each
pattern query p issued by REC is answered correctly with respect to the outsourced text T . More concretely,
for each pattern p ∈ {0, 1}m and a text T ∈ {0, 1}n, let {ij}j∈[t] be the positions in T where p matches
the text. Then, our protocol achieves correctness if for any T and p it returns the correct matches {ij}j∈[t].
Suppose that pattern p appears at position ij . We need to show that in this case the algorithm given in
Figure 3 returns indeed index ij . To this end, suppose that position ij lies in block Bb and Bb+1 for some
b ∈ [1, v − 1] (recall that two consecutive blocks overlap at m positions, hence the bit T [ij ] may appear
in both blocks; in case we have a match of a pattern exactly in the area that overlaps, then we will always
consider only the match in the first block). Wlog. assume that pattern p appears in block Bb+1. We run the
preprocessing algorithm on block Bb+1 to obtain the transformed block B̃b+1 that contains the solution of
the subset sum problem for (H(F(k, p)||b+1), B̃b+1) at positions where the pattern p appears. Hence, when
during the execution of protocol πOpm the server solves this subset sum instance, it will retrieve index ij as
one of the solutions.

The analysis from above does not hold when one of the following situations occur. First, it may be
the case that for two different patterns p 6= p′ we get a collision in the PRF and/or random oracle. The
probability that this happens is negligible by the birthday bound. Next, we consider the following two cases
when we get a non-unique solution for the subset sum problem:

1. Two (or more) different subsets that sum to the same trapdoor in some block: From Lemma 1, it
follows that for each subset sum instance collision happens with probability 22m/M . Taking the
union bound we get that the probability of collision for all patterns p (appearing in some block of
length 2m) is upper bounded by 2m · 22m/M , which for our choice of parameters is negligible in κ.

2. There is no match in a block, but a subset in this block sums to trapdoor: For each trapdoor Rp the
probability that some subset in a block sums toRp is upper bounded by 1/M . As there are 2m possible
targets, we get by the union bound that the probability of this event is upper bounded by 2m/M which
is negligible in κ.

As both events above occur with a negligible probability and there are u = n/m − 1 blocks, we can apply
the union bound, resulting in a negligible (in κ) probability of an incorrect result for our protocol. This
concludes the correctness proof of our protocol.
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Privacy. We will show that for any PPT real adversary Adv there exists a PPT ideal adversary (simulator)
Sim such that for any tuple of inputs (T, (p1, . . . , pλ)) and auxiliary input z,

{IDEALFOPM,Sim(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N
c
≈ {REALπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N.

We prove each corruption setting separately. The final simulator from above can then be obtained by com-
bining the individual simulators.

A corrupted server. We begin with the case when the server is corrupted. Let Adv denote the adversary
controlling the server S. We will build a simulator SimS that simulates the view of Adv. To this end SimS
interacts with the trusted party and uses the leakage from the trusted party, which for each pattern query
reveals the matched text positions. We first describe the simulator SimS with access to Adv.

Convention: During the simulation SimS evaluates queries to the random oracleH. Such queries are
made by Adv or by SimS during its simulation of the corrupted server. To evaluate H(x), SimS first
checks if it has already recorded a pair (x, r), in which caseH(x) evaluates to the value r. Otherwise,
SimS chooses a random string r ∈ ZM , records (x, r) and evaluatesH(x) to r.

1. On input the auxiliary input z, SimS invokes Adv (i.e., the corrupted server) on this input. The
simulator keeps track of a table B that is initially set to the empty table.

2. Upon receiving a (preprocess, n,m) message from the trusted party denoting that the honest SEN
wants to outsource a text of length n to the trusted party, SimS defines text T̃ by sampling uniformly
at random a vector of length ` := (m + 1)u from Z`M . It forwards T̃ to adversary Adv and stores it
for later usage as well.

3. Upon receiving a (query,REC, (i1, . . . , it), id) message from the trusted party indicating that receiver
REC submitted a search query that was approved by SEN, SimS distinguishes two cases.

(a) Pattern queried by REC appears in T : In this case {ij}j∈[t] is not the empty set, and the sim-
ulator samples uniformly at random a value Xid from {0, 1}µ (this will take the role of F(k, p)
in the real execution). Then, it proceeds as follows for each of the ij’s. It first computes the
block number b = bij/mc + 1 in which the index ij occurs and then the starting position
vjb = ij mod m where the pattern appears in B̃b. Then, SimS programs the random oracle
H(Xid||b) to

∑tb
jb=1 T̃ [vjb ]; if H has already been programmed to a different value, then we

abort.

(b) Pattern does not appear in T : In this case {ij}j∈[t] is the empty set, and we check if table B
contains a value of the form (id, Xid). Otherwise, we pick the value Xid uniformly at random in
{0, 1}µ and store (id, Xid) in B.

Finally, SimS (emulating the role of REC in the real execution) forwards Xid to the adversary.

4. If Adv does not answer with (i1, . . . , it), SimS sends ⊥ to ideal functionality and abort. Otherwise it
sends the trusted party (approve,REC).

5. SimS outputs whatever Adv does.

We first note that SimS runs in polynomial time since it only samples a random vector from Z`M , and then
calculates the sum of values from a given subset. Next, we show that the distribution produced by SimS in
the ideal world is computationally indistinguishable from the distribution that Adv expects to see in the real
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world. This is required to hold even given the leakage revealing the positions where the pattern matches the
text. We start by defining a hybrid distribution HYBπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ))) that is defined as
the real experiment REALπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ))) with the difference that Xid is not computed
by a PRF but rather by a random function fκ. The following claim formalizes this statement.

Claim 2 Let F be a secure pseudorandom function (cf. Definition 1), then there exists a negligible function
negl(·) such that for sufficiently large κ ∈ N and for any tuple of inputs (T, (p1, . . . , pλ)) and auxiliary
input z, it holds that

{REALπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N
c
≈ {HYBπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N. (3)

The proof follows by an easy reduction to the pseudorandomness of F, as a distinguisher for the distributions
in Eq. (3) yields a distinguisher for the PRF.

To move to the simulated view, we need to bound the distance between the experiment HYBπSH,Adv(z)(κ,
(−, T, (p1, . . . , pλ))) and the simulated view. To this end, we define the event bad that occurs when the sim-
ulator aborts in the ideal world.

- Event bad: Occurs if the simulation given above is aborted. In this case the corrupted server has asked
for a direct query to the random oracle of the form (fκ(p)||b) before it has seen fκ(p), where b ∈ [u]
and p is a pattern that occurs in the text T . Recall that fκ is a random function as defined in the hybrid
world.

We will show that the distribution produced by the simulator SimS in the ideal world is statistically close to
the distribution produced in the hybrid world.

Claim 3 For any input text T , patterns p1, . . . , pλ, and auxiliary input z, it holds that

{IDEALFOPM,Sim(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N ≡s {HYBπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N.

Proof: We show that the view generated by SimS for the corrupted server in the ideal world has the same
distribution as the server expects to see in the hybrid protocol conditioned on the event bad. The view
contains the preprocessed text, answers to random oracle queries and the trapdoors that are sent by REC
during the sub-protocol πOpm. In the ideal world, SimS chooses these values in the following way.

- Answers to direct RO queries: If the RO has already been asked on this input, then it returns the stored
value; otherwise it returns a value chosen uniformly at random,

- Preprocessed text: Sampled independently and uniformly from Z`M ,

- Trapdoors sent by REC: We first check if table B contains an entry of the form (id, Xid), in which case
we returnXid. Otherwise, we consider two cases depending on the query (query,REC, (i1, . . . , it), id):

1. Pattern matches the text: Xid is chosen uniformly at random from {0, 1}µ. For each block Bb
where the pattern appears, we program the random oracleH(Xid||b) to

∑tb
jb=1 T̃ [vjb ], where vjb

are the positions in block B̃b where the pattern appears. We store (id, Xid) in B.

2. Pattern does not match the text: We pick Xid at random from {0, 1}µ and store (id, Xid) in B.

Notice that in the first case the trapdoor is a uniformly chosen value from ZM as it is the sum of
uniformly and independently chosen values.
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It is easy to see that individually these values are identically distributed in both the ideal and hybrid ex-
ecution. For the proof, we need to analyze the joint distribution that the corrupted server sees. The only
difference between the joint distribution in the ideal world and in the hybrid world is the way in which the
preprocessed text and the trapdoors are sampled. While in the ideal world the preprocessed text is sampled
uniformly and independently from Z`M in the hybrid world we prepare it according to the patterns that ap-
pear in the text T . More precisely, in the hybrid world we put at locations where a pattern appears a random
additive sharing of a random value. This trivially implies that also in the hybrid world the transformed text
is sampled uniformly at random from Z`M . It remains to argue that at the later stage when the receiver
REC asks for patterns, the view in the ideal world remains consistent, namely, the sum of the values that
are put at the matched positions is equal to the trapdoor. We can achieve this consistency by programming
the value of the random oracle to the appropriate value. There is one exception when such programming
fails: namely, when the adversary has earlier queried the random oracle on this value. This is exactly when
event bad happens and the simulator aborts. It remains to show that the probability that event bad happens
is negligible in the security parameter.

Event bad occurs when the adversary asks the random oracle on a value X with form (fκ(p)||b) for
some b ∈ [u] and pattern p that appears in the text before it actually sees X . As fκ is a random function this
happens with probability at most poly(κ)/2µ = negl(κ). This concludes the proof.

Combining Claims 2 and 3, it holds that the distributions {IDEALFOPM,Sim(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N
and {REALπSH,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N are computationally close, which concludes the proof
of privacy in case of a corrupted (semi-honest) server.

A corrupted sender. Next, we consider the case when SEN is corrupted. Let Adv denote an adversary
controlling sender SEN, we build a simulator SimSEN that generates its view. The simulator SimSEN needs
to emulate the roles of receiver REC and of the server S using the leakage it gets from the trusted party. Let
us describe first the simulator SimSEN that is given access to adversary Adv.

Convention: During the simulation SimSEN evaluates queries to the random oracle H. Such queries
are made by Adv or by SimSEN during its simulation of the corrupted SEN. To evaluate H(x),
SimSEN first checks if it has already recorded a pair (x, r), in which case H(x) evaluates to the value
r. Otherwise, SimSEN chooses a random string r ∈ ZM , records (x, r) and evaluatesH(x) to r.

1. On input text T , length m, and auxiliary input z, SimSEN invokes Adv on these inputs.

2. Upon receiving T̃ from Adv, SimSEN sends a (text, T,m) message to the trusted party and receives
back (preprocess, |T |,m).

3. Upon receiving a (query,REC) message from the trusted party, denoting that the honest REC sub-
mitted a query p of length m to the trusted party, SimSEN invokes the simulator SimQuery for protocol
πQuery to simulate Adv’s view. If during the simulation SimQuery sends ⊥ to its own trusted party,
SimSEN sends also ⊥ to the trusted party, aborting the execution. Otherwise, it sends (approve,REC)
to the trusted party on behalf on SEN as well (we recall that the functionality excepts to receive an
approval from both SEN and the ideal adversary).

4. SimSEN outputs whatever Adv outputs.

We first note that the simulator runs in polynomial time since all it does is running the polynomial
time simulator SimQuery for protocol πQuery. Next, we analyze the privacy of receiver REC and show that
SEN does not gain any further information during the execution of the real protocol πSH. In fact, the only
difference between the simulation above and a real execution of πSH is in the way the view of the corrupted
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SEN is generated with respect to a query p which has been approved by SEN. Namely, in the simulation
this view is produced by the simulator SimQuery whereas in a real execution it is produced by a run of πQuery.
Indistinguishability of the two distributions thus follows from the fact that πQuery securely implements the
oblivious PRF functionality.

A corrupted receiver. Finally, we consider the case when receiver REC is corrupted. Let Adv denote an
adversary controlling receiver REC, we build a simulator SimC that generates its view. Simulator SimREC
needs to emulate the roles of the sender SEN and of the server S using the leakage it gets from the trusted
party. Below we describe the simulator SimC that is given access to adversary Adv.

Convention: During the simulation SimC evaluates queries to the random oracleH. Such queries are
made by Adv or by SimC during its simulation of the corrupted REC. To evaluate H(x), SimC first
checks if it has already recorded a pair (x, r), in which caseH(x) evaluates to the value r. Otherwise,
SimC chooses a random string r ∈ ZM , records (x, r) and evaluatesH(x) to r.

1. Upon receiving auxiliary input z, SimC invokes Adv on this input.

2. (preprocess, n,m) messages from the trusted party that denote that the honest SEN submitted a text
of length n are ignored.

3. Whenever Adv initializes protocol πQuery to learn the trapdoor corresponding to a given pattern, SimC

invokes the simulator SimQuery of the underlying protocol. The simulator SimQuery invokes Adv who
controls REC in πQuery. If SimQuery sends ⊥ to its trusted party, SimC also sends ⊥ to its own trusted
party leading to an abort of the execution. Otherwise, SimC receives p from SimQuery when it sends
this value to its own ideal functionality. Finally, SimC sends (query, p) to the trusted party.

4. Upon receiving ⊥ from the ideal functionality, SimC sends ⊥ to Adv and abort. Otherwise, it sends
(approve,REC) to the ideal functionality.

5. Upon receiving (query, p, (i1, . . . , it), id) from the trusted party, SimC sends {ij}i∈[t] to Adv and
outputs whatever Adv does.

Notice that the simulator runs in polynomial time since it runs the polynomial time simulator SimQuery

for protocol πQuery. Next, we show that for a corrupted REC the privacy of sender SEN is guaranteed,
and show that REC does not gain any further information during the execution of the real protocol πSH. In
fact, the only difference between the simulation above and a real execution of πSH is the way in that the
view of REC is generated upon input a query pi which is approved by SEN. Namely, in the simulation
this view is produced by the simulator SimQuery, while in a real execution it is produced by a run of πQuery.
Indistinguishability of the two distributions thus follows from the fact that πQuery securely implements the
oblivious PRF functionality.

Collusion. So far we considered single corruption cases. However, the proof carries over also in the
presence of collusion between the receiver REC and S. In this case, we need to show that the server and the
receiver cannot conclude any additional information about the text other than what is obtained by the leakage
from the queries. A proof of this statement follows the same argument as in the single corruption case. Note
in particular that the only additional information given to the server are the values of the patterns, and it still
remains infeasible to guess new trapdoors that enable to obtain more information about the outsourced text.
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4.1 Efficiency

We start by considering the efficiency of our scheme when we do not use the packaging approach. Notice
that in this case we do not need the random oracle, but as shown below we have strong limitations on the
size of the text. Namely, without packaging the server S is asked to solve subset sum instances of the form
(T̃ , Rp), where T̃ is a vector of length ` = n − m + 1 with elements from ZM for some integer M . To
achieve correctness, we require that each subset sum instance has a unique solution with high probability
(cf. also the proof of Theorem 1). In order to satisfy this property, one needs to set the parameters in such
a way that the quantity 2`/M is negligible. Writing M = 2κ+`, we achieve a reasonable correctness level
with, e.g., security parameter κ ≥ 80. On the other hand, to let S solve subset sum instances efficiently, we
need to consider low-density subset sum instances. The analysis of Section 2.2 (see in particular Eq. (2))
yields, in this case, a value of ` ≈

√
κ. This poses an apparently inherent limitation on the length of the text

to be preprocessed. For instance, even using a higher value κ ≈ 104 (yielding approximately subset sum
elements of size 10 KByte) limits the length of the text to only 100 bits.

To overcome this limitations, we can use the packaging approach from our protocol above. Namely,
when we structure the text into blocks of length 2m bits, the preprocessed blocks B̃b consist of ` = m + 1
elements in ZM . As above we can setM = 2κ+` to guarantee correctness. For efficiency, we have, however,
the advantage that the blocks are reasonably short which yields subset sum instances of the form (B̃b, Rp)
that can be solved in polynomial-time. By combining many blocks we can support texts of any length
polynomial in the security parameter. We further note that for sufficiently small lengths of m (which are
typically some constant), a brute force search in time 2m per package is sufficient in order to solve the
subset sum problem. Finally, we emphasize that the communication/computational complexities of πQuery

depend on the underlying oblivious PRF evaluation. This in particular only depends on m (due to the
complexity of the current implementation of the [NR97] PRF). Using improved PRFs can further reduce the
communication complexity. Whereas the communication complexity of πOpm solely depends on the number
of matches of p in T which is essentially optimal.

5 Security in the Presence of Malicious Adversaries

In this section we explain how to modify the semi-honest construction from Section 4 to obtain security
against malicious adversaries. For simplicity, we will consider progressive modifications of protocol πSH,
where each modification deals with a different corruption case. These extensions can then be combined
to obtain a construction which supports full malicious security (with the exception that our proof for a
malicious sender is not simulation-based). An advantage in such a modular description is the flexibility
in picking the identities of the corrupted parties that the system protects against. For instance, in some
applications it might be sufficient to protect the system against a corrupted server, while assuming that the
clients are semi-honest. In order to maintain the presentation of our protocols simple, we will present them
in their basic form without relying on the packaging technique described in Section 4. We stress though that
all our constructions can handle packaging as well.

5.1 Dealing with a Malicious Server

The underlying idea here is to add an efficient mechanism in protocol πSH that enables to verify the cor-
rectness of the server’s answers. Notably, this already provides security against a malicious server, because
the server does not have any input/output with respect to protocol πQuery, and we already ensured privacy
within the semi-honest proof. To do so, we will rely on Merkle trees [Mer89] commitment schemes (see
Section 2.3); that essentially produce a succinct commitment that is independent of the length of the com-
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mitted message. We modify protocol πPre by instructing sender SEN to commit to its preprocessed text
using Merkle trees. Precisely, let T̃ be the preprocessed text outsourced to server S, as described in the
protocol of Figure 3. Sender SEN generates a binary tree building on top of leaves {T̃ [i]‖i}`i=1. Then, for
every pattern p such that its trapdoor H(F(k, p)) corresponds to a subset in T̃ with locations {i1, . . . , it},
the server is asked to decommit the paths from the root to the leaves corresponding to these locations. To
verify such values, receiver REC recomputes the paths all the way back to the root. We emphasize that this
approach already ensures that the server cannot return a proper subset of the actual set of matches, since this
would imply that the server has found two different solutions for a given target, which we know occurs only
with a negligible probability.

Nevertheless, Merkle trees do not protect against a malicious server declaring that there is no match even
though a given pattern actually matched. To prevent this attack we use zero-knowledge sets (see Section 2.6),
proving in ZK whether an element is in a set or not. We remark that applying this technique in a naı̈ve way
would not work, since the potential number of elements in the set is exponential in n (i.e., counting all
possible subsets from the preprocessed text) resulting in exponential running time for SEN and S. Instead,
we let SEN commit to the set of trapdoors it generated while creating the preprocessed text T̃ . This yields
a much smaller group G with at most ` elements. (For privacy issues we need to pad G in such a way that
S cannot detect the total number of trapdoors, which would also reveal the number of distinct substrings of
length m in the text.) For this set we invoke a zero-knowledge set proof.

Our final construction is slightly different than this, in that we need to provide REC with the proper
information allowing it to verify the values retrieved from the server. First, REC needs to know the com-
mitment to T̃ , i.e., the root h of the Merkle tree, and the commitment to the set G (which is denoted hG).
These values will be sent from SEN within protocol πQuery. Moreover, in order to verify the ZK set proof,
REC also needs the commitment of the trapdoor γp. Clearly, this value can neither be forwarded by the
server (since otherwise it could easily cheat), nor by sender SEN (since otherwise it should keep a state of
size equal to the number of trapdoors). Our solution is to split the output of the PRF into two parts (R′p, rp):
The first part is used as input to the random oracleH to evaluate the actual trapdoor Rp; whereas the second
part is used as randomness in the computation of the commitment γp corresponding to R′p (and thus toRp).7

Given this randomness, REC can compute the commitment γp and thus verify the ZK set proof.
To sum up, we rely on the following building blocks: (1) a succinct commitment scheme (CommitM,

OpenM) (implemented via Merkle trees); (2) a computationally hiding commitment scheme (Commit,
Open); (3) a zero-knowledge sets proof πZKsets. A detailed description of the protocol can be found in
Figure 4.

Theorem 2 Let κ ∈ N be the security parameter. For integers n,m, λ, µ, µ′ and ` = n − m + 1, let
M = 2`+κ, µ = poly(κ), µ′ = poly(κ), λ = poly(κ) and fix κ such that 2`/M is negligible (in κ). Assume
that H is a random oracle, and that (CommitM,OpenM), (Commit,Open) and πZKsets are as above. Then,
protocol πMalS of Figure 4 securely implements FOPM in the presence of a malicious server S.

Proof: Proving security follows in two steps. We first prove that protocol πMalS is correct. Namely, with all
but negligible probability the server does not return a false search response. Second, we claim that condition
on that πMalS is correct, we can simulate the view of the server.

Proof of correctness. We say that our construction achieves correctness if with overwhelming probability
each pattern query p issued by REC is answered correctly with respect to the outsourced text T . More
concretely, for each pattern p ∈ {0, 1}m and a text T ∈ {0, 1}n, let {ij}j∈[t] be the positions in T where p

7In the basic form of the protocol it does not make any difference whether we commit toRp or toR′p. However, in the extension
based on packaging committing to R′p yields a better communication complexity in the setup phase.

22



Protocol πMalS = (πPre, πQuery, πOpm)

Let κ ∈ N be the security parameter and let M,λ,m, n, µ, µ′ be integers. Further, let H : {0, 1}µ → ZM
be a random oracle and F : {0, 1}κ × {0, 1}m → {0, 1}µ′ be a PRF. Consider a succinct commitment
scheme (CommitM,OpenM), a computationally hiding commitment scheme (Commit,Open) and a ZK set
proof system (ZKS-Setup, (P1,P2),V). Protocol πMalS involves a sender SEN holding a text T ∈ {0, 1}n,
a receiver REC querying patterns p ∈ {0, 1}m and a server S. At the onset, a common reference string
CRS← ZKS-Setup(1κ) is generated and distributed to S and REC. The interaction is specified below.

Setup phase, πPre. The protocol is invoked between sender SEN and server S. (1) Preprocessing the
text: Given input T and integer m, sender SEN defines a vector T̃ of length ` = n −m + 1 and
picks a random PRF key k ∈ {0, 1}κ. For any p ∈ {0, 1}m denote by {ij}j∈[t] the set of indexes
corresponding to the positions where p occurs in T . Sender SEN evaluates (R′p, rp) = F(k, p) (for
R′p ∈ {0, 1}µ), computes Rp = H(R′p), samples a1, . . . , at−1 ∈ ZM at random and then fixes at
such that at = Rp −

∑t−1
j=1 aj mod M . It then sets T̃ [ij ] = aj for all j ∈ [t]. (2) Committing

to T̃ : In addition, SEN commits to T̃ by letting h = CommitM((T̃ [1]‖1), . . . , (T̃ [`]‖(`))) (for
{T̃ [i]‖(i)}i the committed values). (3) Committing to trapdoors: Denote by p1, . . . , pν all distinct
patterns of length m in T , for some ν ≤ `. Then, SEN computes γi = Commit(R′pi ; rpi) for all
i = 1, . . . , ν and sets G = {γ1, . . . , γν , γν+1, . . . , γ`} for randomly chosen γν+1, . . . , γ`. (4) Setup
for ZK sets: Finally, SEN computes (hG, σ) ← P1(1κ,CRS, G), outsources (T̃ , G, h, σ) to S and
keeps (k, h, hG).

Query phase, πQuery. Upon issuing a query p ∈ {0, 1}m by receiver REC, clients SEN and REC engage
in an execution of protocol πQuery which implements the oblivious PRF functionality (k, p) 7→
(⊥,F(k, p)), such that (R′p, rp) = F(k, p). Receiver REC also receives from SEN the commitments
h and hG. Upon completion, REC computes trapdoor Rp = H(R′p).

Oblivious pattern matching phase, πOpm. This protocol is engaged between server S that inputs
(CRS, T̃ , G, h, σ) and receiver REC that inputs (CRS, h, hG, Rp, R

′
p, rp). Upon receiving (R′p, γp)

from REC, where γp = Commit(R′p; rp), the server views (T̃ , Rp = H(R′p)) as a subset sum
instance and solves this instance. Let s denote the solution, and denote with {ij}j∈[t] the set of
indexes such that s[ij ] = 1. The server runs (T̃ [ij ],path(ij)) = OpenM(h, ij) for all j ∈ [t]
and builds a proof πZKsets ← P2(σ, γp). Hence, S returns REC the set {ij}j∈[t] together with
{T̃ [ij ],path(ij)}j∈[t] and πZKsets. Receiver REC verifies the openings {T̃ [ij ],path(ij)}j∈[t],
checks that

∑t
j=1 T̃ [ij ] = Rp and that V(1κ,CRS, hG, γp, πZKsets) = 1.

Figure 4: Outsourced pattern matching resisting a malicious server

matches the text. Then, our protocol is correct if it returns for any such p and T the same matches {ij}j∈[t].
As in Theorem 1, we neglect the event that a solution of subset sum is non-unique due to a collision in the
PRF and/or random oracle (since the probability that this happens is negligible in the security parameter κ).

For each pattern p we consider two subcases here. In case p matches the text in at least one position, we
reduce correctness to the collision intractability of Merkle trees and the soundness of the ZK set proof. In
case p does not match the text, we again rely on the collision intractability of Merkle trees.

Claim 4 For any pattern p∗ ∈ {0, 1}m such that p∗ matches T in at least one position, protocol πQuery is
correct assuming the binding property of Merkle trees and the negligible soundness of πZKsets.

Proof: Consider a pattern p∗ and assume that it matches the text in positions τ = {ij}j∈[t]. We consider
two bad events and bound their probability.
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- bad1: Occurs in the real execution whenever S convinces REC that p∗ does not match the text.

- bad2: Occurs in the real execution whenever S convinces REC that the solution to the subset sum
instance (T̃ , Rp∗) is τ ′ = {i′j}j′∈[t′] for {i′j}j 6= {ij}j .

Intuitively, bad1 happens with negligible probability since provoking this event means that the server is
able to prove that the commitment to a trapdoor Rp does not belong to the set G of all commitments. This
violates the soundness property of πZKsets.

We start by considering a malicious Adv controlling S in the real world and provoking event bad1 for
text T and pattern p∗. From such an adversary, we build an efficient machine P∗ breaking soundness of
(ZKS-Setup, (P1,P2),V), namely P∗ is given as input CRS ← ZKS-Setup(1κ) and is able to find a set G
and a tuple (hG, π

′
ZKsets, π

′′
ZKsets) for a statement γ∗ ∈ G, such that V(1κ,CRS, γ∗, hG, π

′
ZKsets) outputs 0

and V(1κ,CRS, γ∗, hG, π
′′
ZKsets) outputs 1. Prover P∗ proceeds as follows. It first processes the text T as

described in the protocol of Figure 4, obtaining (T̃ , G, h, hG, σ) such that (σ, hG)← P1(1
κ,CRS, G). The

values (T̃ , G, h, σ) are forwarded to S together with the common reference string CRS. Furthermore, P∗

implicitly sets γ∗ = γp∗ and computes π′ZKsets = P2(σ, γ
∗). At this point P∗ simulates a query for pattern p∗

(matching T by hypothesis), as described in protocol πMalS; this yields a pair (R′p∗ , rp∗) which is forwarded
to the server. S returns the matching positions {ij}j∈[t] together with a proof π′′ZKsets.

Note that the above simulation is perfect from the point of view of S. Hence, P∗ outputs (hG, γp∗ , π
′
ZKsets,

π′′ZKsets). This contradicts soundness, since π′ZKsets will not accept (as it was generated honestly and p∗

matches), whereas π′′ZKsets will accepts (as the above is a perfect simulation and bad1 happens).
Next, consider the second event bad2. Intuitively, bad2 happens with a negligible probability since pro-

voking this event means that the server is able to decommit at least one position in the text to a non-consistent
value. This violates the binding property of Merkle trees. Recall that, with overwhelming probability, there
exists at most one solution to the subset sum instance (T̃ , Rp∗). Denote this “non-collision event” by nocol.
We can write:

Pr[bad2] = Pr[bad2|nocol] · Pr[nocol] + Pr[bad2|nocol] · Pr[nocol] ≤ Pr[bad2|nocol] + Pr[nocol].

Due to the low collision probability, we have Pr(nocol) ≤ negl(κ). It remains to prove that Pr(bad2|nocol) ≤
negl(κ). However, conditioned on nocol, the only way to provoke event bad2 is by violating the binding
property of Merkle trees: There exists an index ij ∈ τ ′ such that OpenM(h, ij) 6= T̃ [i′j ]. In particular, an
adversary provoking this event can be turned into a concrete polynomial-time machine breaking collision re-
sistance of (CommitM,OpenM). Thus, Pr[bad2|nocol] must also be negligible. Together with the previous
equation, this concludes the proof of the claim.

Claim 5 For any pattern p∗ ∈ {0, 1}m such that p∗ does not match T , protocol πQuery is correct assuming
the binding property of Merkle trees and the negligible soundness of πZKsets.

This proof follows similarly to the proof of Claim 4 and is therefore omitted.

Privacy. Finally, we note that conditioned on correctness, simulating the server’s view reduces almost
immediately to the semi-honest case; so essentially the same simulator as in the proof of Theorem 1 will
do. We only need to specify how the simulator can simulate the additional messages which are included
in protocol πMalS but not in πSH. Specifically, during the setup phase Sim needs also to produce the values
(G, h, σ). To do so, the simulator will simply commit to ` random values and then compute σ as a function
of G by running P1 as in a real execution. On the other hand, the value h can be computed consistently
with the sampled pre-processed text T̃ . Finally, during the oblivious pattern matching phase, Sim will first
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compute the value Rp as described in the proof of Theorem 1. If the pattern matches, then γp is chosen to
be a random element in G; otherwise a fresh commitment of a random message is used. It follows from
the computationally hiding property of (Commit,Open) that the above strategy is not detectable by the
adversary but with a negligible probability.

A formal description of the simulator SimS (with access to Adv) follows.

Convention: During the simulation SimS evaluates queries to the random oracleH. Such queries are
made by Adv or by SimS during its simulation of the corrupted server. To evaluate H(x), SimS first
checks if it has already recorded a pair (x, r), in which caseH(x) evaluates to the value r. Otherwise,
SimS chooses a random string r ∈ ZM , records (x, r) and evaluatesH(x) to r.

1. On input the auxiliary input z, SimS invokes Adv (i.e., the corrupted server) on this input. The
simulator keeps track of a table B that is initially set to the empty table.

2. Upon receiving a (preprocess, n,m) message from the trusted party denoting that the honest SEN
wants to outsource a text of length n to the trusted party, SimS defines text T̃ by sampling uniformly
at random a vector of length ` := n−m+ 1 from Z`M .

Next, SimS computes h = CommitM((T̃ [1]‖(1)), . . . , (T̃ [`]‖(`))) (for {T̃ [i]‖(i)}i the committed
values), lets G = {γ1, . . . , γ`} for randomly chosen γ1, . . . , γ`, and sets (hG, σ) ← P1(1

κ,CRS, G).
Hence, it forwards (T̃ , G, h, σ) to adversary Adv and stores (T̃ , G) for later usage as well.

3. Upon receiving a (query,REC, (i1, . . . , it), id) message from the trusted party indicating that receiver
REC submitted a search query that was approved by SEN, SimS distinguishes two cases.

(a) Pattern queried by REC appears in T : In this case {ij}j∈[t] is not the empty set, and the simula-
tor samples uniformly at random a value Xid from {0, 1}µ. Then, it programs the random oracle
H(Xid) to

∑t
j=1 T̃ [ij ]; if H has already been programmed to a different value, then we abort.

Furthermore, SimS picks an element γ ← G.
(b) Pattern does not appear in T : In this case {ij}j∈[t] is the empty set, and we check if table B

contains a value of the form (id, Xid). Otherwise, we pick the value Xid uniformly at random
in {0, 1}µ and store (id, Xid) in B. Furthermore, SimS picks an element γ by committing to a
random message.

Finally, SimS (emulating the role of REC in the real execution) forwards (Xid, γ) to the adversary.

4. If Adv does not answer with (i1, . . . , it), SimS sends ⊥ to ideal functionality and abort. Otherwise it
sends the trusted party (approve,REC).

5. SimS outputs whatever Adv does.

We first note that SimS runs in polynomial time since it only samples a random vector from Z`M , and then
calculates the sum of values from a given subset. Next, we show that the distribution produced by SimS in
the ideal world is computationally indistinguishable from the distribution that Adv expects to see in the real
world. This is required to hold even given the leakage revealing the positions where the pattern matches the
text. We start by defining a hybrid distribution HYB1

πMalS,Adv(z)
(κ, (−, T, (p1, . . . , pλ))) that is defined as

the real experiment REALπMalS,Adv(z)(κ, (−, T, (p1, . . . , pλ))) with the difference that Xid is not computed
by a PRF but rather by a random function fκ. We have the following claim:

Claim 6 Let F be a secure pseudorandom function (cf. Definition 1), then for all sufficiently large κ ∈ N
and for any tuple of inputs (T, (p1, . . . , pλ)) and auxiliary input z, it holds that

{REALπMalS,Adv(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N
c
≈ {HYB1

πMalS,Adv(z)
(κ, (−, T, (p1, . . . , pλ)))}κ∈N.
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The proof of the above claim is similar to the proof of Claim 2, and consists of a simple reduction to the
pseudorandomness property of the PRF.

Next we consider a hybrid distribution HYB2
πMalS,Adv(z)

(κ, (−, T, (p1, . . . , pλ))) that is defined as the
previous hybrid, with the difference that the elements in the set G are replaced by commitments to random
messages. A standard hybrid argument yields the following claim:

Claim 7 Let (Commit,Open) be computationally hiding, then for all sufficiently large κ ∈ N and for any
tuple of inputs (T, (p1, . . . , pλ)) and auxiliary input z, it holds that

{HYB1
πMalS,Adv(z)

(κ, (−, T, (p1, . . . , pλ)))}κ∈N
c
≈ {HYB2

πMalS,Adv(z)
(κ, (−, T, (p1, . . . , pλ)))}κ∈N.

Finally, we need to bound the distance between the experiment HYB2
πMalS,Adv(z)

(κ, (−, T, (p1, . . . , pλ)))
and the simulated view. We do this in the next claim.

Claim 8 For any input text T , patterns p1, . . . , pλ, and auxiliary input z, it holds that

{IDEALFOPM,Sim(z)(κ, (−, T, (p1, . . . , pλ)))}κ∈N ≡s {HYB2
πMalS,Adv(z)

(κ, (−, T, (p1, . . . , pλ)))}κ∈N.

Proof: Define the following event bad3 that occurs when the simulator aborts in the ideal world.

- Event bad3: Occurs if the simulation given above is aborted. In this case the corrupted server has
asked for a direct query to the random oracle of the form (fκ(p)|µ) (where y|µ denotes the truncation
of bit-string y to the first µ bits) before it has seen fκ(p), where p is a pattern that occurs in the text
T . Recall that fκ is a random function as defined in the first hybrid world.

An argument similar to the proof of Theorem 1 shows that the simulated view and the output distribution in
HYB2

πMalS,Adv(z)
(κ, (−, T, (p1, . . . , pλ))) are identical conditioned on the event bad := bad1∧bad2∧bad3

not happening.
On the other hand, since fκ is a random function, it is easy to see that bad3 occurs with probability

at most poly(κ)/2µ = negl(κ). Now, Claim 4 and Claim 5 together with a union bound imply that the
probability of bad is negligible. This concludes the proof.

Putting together Claim 6, Claim 7 and Claim 8 concludes the proof.

5.2 Dealing with a Malicious Receiver

We note that the protocol of Figure 3 is already secure against a malicious REC (with a small change). In
fact, the only inputs receiver REC provides in an execution of protocol πSH (sub-protocol πQuery) are the
search queries pi’s. To this end, we claim that the only way REC can attack the protocol is by guessing
a trapdoor of which it did not submit a query for. We further claim that the probability of this event is
negligible in the security parameter. Loosely speaking, this follows from the security of the PRF. Namely,
given that this event occurs with a non-negligible probability a distinguisher can detect this trapdoor in the
queries submitted to the random oracle. The reduction to the hardness of the PRF follows the same outlines
as the semi-honest reduction for the case that the server is corrupted and is therefore omitted. Hence, it
suffices to ensure that protocol πQuery is secure in the presence of malicious adversaries so that a simulator
can extract these queries. (An example is the protocol of [HL10], taken from [FIPR05], which implements
the Naor-Riengold function [NR97] in the presence of malicious adversaries.)

26



5.3 Dealing with a Malicious Sender

The most difficult case to deal with, is proving security against a corrupted SEN. The reasons for this are as
follows. First, we must ensure that the subset sum vector T̃ corresponds to a well defined text T , so that the
simulator will be able to extract it. In systems that rely on a random oracle, this issue is typically addressed
using the cut-and-choose technique which is rather inefficient; see [IKNP03] for one example. Another
difficulty is that we need to ensure that sender SEN uses consistent trapdoors when running against REC
and S. In fact, SEN could potentially use two different trapdoors in these executions or use a maliciously
chosen key (that leads to a collision for two different patterns), causing the simulation to fail easily. In this
section we design a protocol that is comprised of a sequence of steps which are backed-up with efficient
zero-knowledge (ZK) proofs, so that verification of the pre-processed text is run “on-the-fly” during the
query phase. Namely, the server is handed a trapdoor for derandomizing the computations of SEN with
respect to each query. It then recomputes whatever SEN has computed in the setup phase and verifies the
correctness of these computations. Nevertheless, we cannot construct a simulation-based security proof for
this protocol since it is not clear how to design a ZK proof for computations that are based on a random
oracle. Instead, we design a new protocol and prove that it maintains privacy and correctness. We continue
with the description of the modifications needed for protocol πSH from Figure 3. We first give a high level
overview, a more formal description can be found in Figure 5. More concretely, our protocol includes the
following steps:

• Commitment to the text. The sender SEN commits to all values T [i] for i = 1, . . . , n. The resulting
commitments ci are forwarded to S together with a proof that the committed value is a bit. This can
be done efficiently using the ZK proof system πisBit (cf. Appendix A.1).

• Commitment to the PRF key. In the next step, SEN samples a PRF key k and commits to it. At this
point the server S picks a fresh random key k′ and sends it to SEN. The parties then compute the
commitment of k · k′. This step requires using a homomorphic commitment.

• Derandomization. In order to derandomize SEN’s computations, SEN samples another PRF key k′′

and commits to it. Let Tmi = (T [i], . . . , T [i + m − 1]) be the ith substring of length m in T for
i ∈ [n −m + 1]. Then for every substring Tmi the sender feeds the pseudo-random generator PRG
with input F(k′′, Tmi ); denote with (riF, r

i
isPRF, r

i
isBit) the output of the PRG. The sender will use this

randomness for all its computations from here on.

• Committed PRF evaluations. SEN sends S a vector of commitments c′ = (c′1, . . . , c
′
n−m+1) that

specifies c′i = Commit(F(k ·k′, Tmi ; riF)). Next, SEN and S engage in an execution of protocol πCPRF

that securely implements FCPRF in the presence of malicious adversaries, such that SEN enters key
k · k′ and text T , whereas S enters the commitment to key k · k′, the commitments to {Tmi }i and
c′. This proof ensures that SEN computes the PRF evaluations correctly with respect to k · k′; see
Appendix A.2 for the complete details of πCPRF. Let b denote the server’s outcome, then the server
continues to the next step only if b = 1.

• Commitment to the number of matches. Let c′′ = (c′′1, . . . , c
′′
n−m+1) be the permuted version of c′

such that the elements are sorted in a non-decreasing order with respect to the corresponding plaintexts
Tmi . Now, SEN forwards c′′ to S together with a proof that the sorting is done correctly. Such a proof
can be implemented efficiently using the proof system πisSort (cf. Appendix A.2).

For each i ∈ [n −m] denote with c̃ the vector containing c̃i = c′′i+1/c
′′
i . It follows from the homo-

morphic property of the commitment scheme that c̃i commits to 0 whenever c′′i+1 and c′′i commits the
same value. SEN provides an “indicator vector” ĉ = (ĉ1, . . . , ĉn−m), such that ĉi commits to zero
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if and only if c̃i commits to a plaintext different than 0 and otherwise it commits to 1. Hence, SEN
first proves that ĉ commits to bits using πisBit. In addition, for each i, it proves that the product of the
plaintexts underlying c̃i and ĉi equals 0. This implies that whenever c̃i ∈ c̃ commits to a non-zero
value, the corresponding commitment ĉi ∈ ĉ commits to zero. Finally, SEN proves that c̃i · ĉi commits
to a non-zero value. This implies that whenever c̃i ∈ c̃ commits to 0, the corresponding commitment
ĉi ∈ ĉ commits to 1. Note that in order to verify the number of matches of a query p, it is sufficient
to check the number of consecutive 1’s in ĉ in the positions associated with p, see details below. The
last two proofs can be carried out using the ZK proof systems πmult and πNonZero (cf. Appendix A.1).
Notably, the commitments in c′′ and ĉ are computed using randomness riisSort and riisBit.

We now describe the modified protocol πQuery, between SEN and REC. Here, the parties run a protocol that
implements the functionality F2PRF :

(
(k0, k1), (p,Commit(k0),Commit(k1))

)
7→
(
−,F(k0, p),F(k1, p)

)
.

Let π2PRF denote a protocol that implements F2PRF in the presence of malicious adversaries. An implemen-
tation of this functionality based on the [NR97] PRF can be found in Appendix A.2.

It remains to modify protocol πOpm between receiver REC and server S. First the two parties verify
that their commitments for the PRF keys are identical. Next, REC sends the values (F(k · k′, p),F(k′′, p))
to S. The first value is used to solve the corresponding subset sum instance as in our protocol πSH. The
second value is used as input to the pseudo-random generator PRG to extract the randomness used by SEN
in computing the commitments associated with pattern p and verify the computations performed by SEN
in the setup phase. If these checks fail then the server returns an abort message. Otherwise it returns the
matched text positions. Next, we prove the following result.

Theorem 3 Let κ ∈ N be the security parameter. For integers n,m, λ, µ and ` = n−m+1, letM = 2`+κ,
µ = poly(κ), λ = poly(κ) and fix κ such that 2`/M is negligible (in κ). Assume thatH is a random oracle,
that all the ZK proofs are sound, that (Gen,Commit,Open) is a homomorphic commitment scheme and that
FCPRF and F2PRF are implemented using protocols that are secure in the presence of malicious adversaries.
Then, protocol πMalSEN of Figure 5 privately and correctly computes outsourced pattern matching in the
presence of a malicious sender SEN.

Proof: We first argue about privacy and then correctness.

Privacy. We prove privacy first. The privacy argument implies that for any two sets of queries (p1, . . . , pλ)
and (p′1, . . . , p

′
λ) of the same length, the sender cannot distinguish between a (sequential) execution against

the receiver with queries (p1, . . . , pλ) and a (sequential) execution with queries (p′1, . . . , p
′
λ). This argu-

ment follows similarly to the argument made in the proof of protocol πSH. Namely, the sender cannot
learn anything about the query since the protocol for which the sender and the receiver engage with is
secure in the presence of malicious attacks. More formally, denote the sender’s view within πQuery by
VIEWπQuery,SEN(z)(κ, (−, T, p1, . . . , pλ)). Then,

VIEWπQuery,SEN(z)(κ, (−, T, p1, . . . , pλ))
c
≈ VIEWπQuery,SEN(z)(κ, (−, T, p′1, . . . , p′λ)).

Indistinguishability boils down to λ− 1 hybrid arguments for which for every j ∈ [λ]

VIEWi
πQuery,SEN(z)(κ, (−, T, p1, . . . , pi, p

′
i+1, . . . pλ))

c
≈ VIEWi+1

πQuery,SEN(z)(κ, (−, T, p1, . . . , pi+1, p
′
i+2, . . . pλ)).

Indistinguishability holds due to the security of πQuery. Namely, assume that for some fixed j ∈ [λ] there
exists a distinguisher D for which views VIEWj and VIEWj+1 are distinguishable with a non-negligible
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Protocol πMalSEN = (πPre, πQuery, πOpm)

Let κ ∈ N be the security parameter and let M,λ,m, n, µ be integers. Further, letH : {0, 1}µ → ZM be a
random oracle, F : {0, 1}m+1 × {0, 1}m → {0, 1}µ be a pseudo-random function, (Gen,Commit,Open)
be a homomorphic commitment scheme and PRG : {0, 1}µ → {0, 1}∗ be a pseudo-random generator.
Protocol πMalSEN involves a sender SEN holding a text T ∈ {0, 1}n, a receiver REC querying for patterns
p ∈ {0, 1}m, and a server S. The interaction is specified below.

Setup phase, πPre. The protocol is invoked between sender SEN and server S and is introduced in a
sequence of phases.

- Input preprocessing. SEN executes the same preprocessing phase from πSH, yielding a vector
T̃ . Then, the sender computes ci ← Commit(T [i]) for all i ∈ [n] and forwards {ci, πisBit}i∈[n]
to S.

- Committing to PRF evaluations. SEN picks random keys k and k′′ and releases their com-
mitments cF ← Commit(k) and c′′F ← Commit(k′′). S picks a random key k′ and sends it to
SEN. The parties compute c′F = Commit(k · k′). Let Tmi = (T [i], . . . , T [i+m− 1]) be the
ith substring of length m in T . Then, SEN computes (riF, r

i
isSort, r

i
isBit) = PRG(F(k′′, Tmi ))

and sends {c′i = Commit(F(k · k′, Tmi ); riF), πisPRF}i∈[n−m+1] (where each commitment is
computed with independent randomness).
Next, SEN and S invoke πCPRF such that SEN enters k · k′ and T , whereas S enters c′F, the
commitments to {Tmi }i and c′. S aborts if its outcome from πCPRF is zero.

- Committing to number of matches. SEN sends {c′′i , πisSort}i∈[n−m+1], computes c̃i = c′′i+1/c
′′
i

and forwards the indicator vector {ĉi, πisBit}i∈[n−m]. Then, for each i, sender SEN sends
(c̃i, ĉi,Commit(0), πmult) and (c̃i·ĉi, πNonZero) where the commitments c′′i and ĉi are computed
using randomness riisSort and riisBit respectively.

The server verifies these proofs and outputs ⊥ whenever the verification fails.

Query phase, πQuery. Upon issuing a query p ∈ {0, 1}m by receiver REC, clients SEN and REC engage
in an execution of protocol π2PRF. Denote REC’s outputs by (Rp, R

′
p), respectively. SEN further

sends the values c′F and c′′F .

Oblivious pattern matching phase, πOpm. This protocol is engaged between server S and receiver
REC which first check for equality of the commitments of k · k′ and k′′. In case equal-
ity holds, REC forwards the server the values (Rp, R

′
p). The server views (Rp, T̃ ) as a sub-

set sum instance and solves this instance. Let s be the solution of this instance and denote
with {ij}j∈[t] the set of indexes such that s[ij ] = 1 (if such exist). At this point, S com-
putes PRG(R′p) and checks SEN’s computations with respect to p as follows. It first com-
putes {Commit(Rp; r

j
F)}j∈[t] and compares the outcome to the commitments in c′ within po-

sitions {ij}j∈[t]. In addition, S computes {Commit(Rp; r
j
isSort)}j∈[t] and checks for t con-

secutive commitments within c′′ that equal exactly the obtained values. Lastly, S computes
{Commit(0; r1isBit), {Commit(1; rjisBit)}j∈[t]\1,Commit(0; rt+1

isBit)} (where the first/last commitment
of 0 is omitted if necessary) and checks for t + 1 consecutive commitments {ĉi∗j }j∈[t+1] within ĉ

that equal the obtained values, where ij−1 = i∗j for j ∈ [t] and it = i∗t+1. If all verifications follow
correctly, S returns REC the set {ij}j∈[t]. Otherwise, it returns an abort message.

Figure 5: Outsourced pattern matching resisting a malicious sender SEN

probability. We construct a new distinguisher DQuery that interacts with an external receiver and an internal
malicious sender, that distinguishes a single execution of πQuery and is defined as follows. Given index j,
DQuery emulates the role of the honest receiver in the first j executions of πQuery using queries p1, . . . , pj .
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In the j+1 execution, DQuery interacts with the external receiver and forwards its messages to the malicious
sender. Finally, DQuery emulates the remaining executions of πQuery, playing the role of the honest receiver
with input p′j+2, . . . , p

′
λ.

Correctness. The correctness argument is more subtle. Here we need to make sure that the receiver learns
the correct matched text locations with respect to T and T̃ . Specifically, we prove that with all but negligible
probability, the receiver learns the correct matched text locations in T relative to its queries. For each query
p the receiver learns two trapdoors F(k · k′, p) and F(k′′, p). Recall that the first trapdoor is used for solving
a subset sum instance whereas the second trapdoor is used for verifying the computations of the sender.
Now, we claim first that any matched text location that is returned by the subset sum solution is a valid
position in T for which the pattern matches the text. This is because the server is able to precisely verify the
computations of the sender. That is, the server extracts the randomness used to compute the commitments
to the PRF evaluations and is able to recompute these commitments and check that their positions in the
vector of commitments match the positions returned by the subset sum solution. On the other hand, any
matched position in T will be a matched position in T̃ with overwhelming probability, otherwise the server
will aborts. This is because the text is being verified against the PRF evaluations, where these values are
being sorted. Therefore, the sender cannot report less matched positions than the actual number.
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[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold fhe.
In EUROCRYPT, pages 483–501, 2012.

[BCOP04] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In EUROCRYPT, pages 506–522, 2004.

[Bea91] Donald Beaver. Foundations of secure interactive computing. In CRYPTO, pages 377–391, 1991.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of computation over
large datasets. In CRYPTO, pages 111–131, 2011.

[BM77] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Commun. ACM, 20(10):762–
772, 1977.

[Can00] Ran Canetti. Security and composition of multi-party cryptographic protocols. Journal of Cryptology,
13:143–202, 2000.

[CFG89] Mark Chaimovich, Gregory Freiman, and Zvi Galil. Solving dense subset-sum problems by using ana-
lytical number theory. J. Complexity, 5(3):271–282, 1989.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation.
In STOC, pages 639–648, 1996.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In EUROCRYPT, pages 103–118, 1997.

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin. Mercurial com-
mitments with applications to zero-knowledge sets. In EUROCRYPT, pages 422–439, 2005.

[CJL+92] Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, and
Jacques Stern. Improved low-density subset sum algorithms. Computational Complexity, 2:111–128,
1992.

30



[CKKC13] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Carlos Cid. Multi-client non-interactive verifi-
able computation. In TCC, pages 499–518, 2013.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of computation using
fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[CN11] Yuanmi Chen and Phong Q. Nguyen. Bkz 2.0: Better lattice security estimates. In ASIACRYPT, pages
1–20, 2011.

[CRFM11] Dario Catalano, Mario Di Raimondo, Dario Fiore, and Mariagrazia Messina. Zero-knowledge sets with
short proofs. IEEE Transactions on Information Theory, 57(4):2488–2502, 2011.
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A Building Blocks

In the following section we overview zero-knowledge (ZK) proofs that are important for our construction in
the malicious setting to ensure correctness. All of these proofs are Σ-protocols over a group G of composite
order, and adapted from proofs for prime order groups. In Section A.2 we describe additional sub-protocols
that include more involved zero-knowledge proofs and protocols for correctness.

A.1 Zero-Knowledge Proofs with Constant Overhead

1. Proving the knowledge of a discrete logarithm of a statement x [Sch89].

RDL = {((G, g, h), x) | h = gx}

Denote this proof by πDL.

2. Proving that a commitment c either commits to 0 or 1. For our particular instantiation of commitment
scheme, this can be obtained directly from πDL using the compound proof of Cramer et al. [CGS97].

RisBit = {((G, pk, p, c), (b, r)) | c = Commit(pk, b; r) ∧ b ∈ {0, 1}} .

Denote this proof by πisBit.

3. Proving that a commitment c2 commits to the product of two decommitted values [DF02, DJN10].
Namely,

Rmult =

{
((G, pk, c0, c1, c2), (a0, a1, r0, r1, r2, )) s.t.

ci = Commit(pk, ai; ri) for i ∈ {0, 1} ∧
c2 = Commit(pk, a0 · a1; r2)

}
Denote this proof by πmult.

4. Proving that a commitment c commits to a non-zero value [HN12]. Namely,

RNonZero = {(G, pk, c) | ∃ (x 6= 0, r) s.t. Commit(pk, x; r)} .

Denote this proof by πNonZero.

A.2 Additional Tools

A.2.1 Committed Sorted Set

In this section we consider a proof for proving that a set of decommitted values is sorted. Namely,

RisSort =
{(

pk, {ci}i∈[τ ]
)
,
(
{pi, ri}∈[τ ]

)∣∣∀ i, ci = Commit(pk, pi; ri) ∧ pi+1 ≥ pi
}
.

This proof can be shown using a sequence of ZK greater than proofs on encrypted plaintexts for each two
consecutive ciphertexts. This proof can be based on range proofs such as [Lip03].
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A.2.2 Committed PRF Evaluations

The approach of running a protocol on committed inputs in order to enforce correctness is very well known in
secure computation (see, e.g., [GMW87, JS07, DMV13]). In this section we deal with the case of the [NR97]
PRF evaluation (see Section 2.4). The functionality for committed PRF evaluation is defined by,

FCPRF : ((k, x1, . . . , xτ ), (Commit(pk, k), (Commit(pk, x1), . . . ,Commit(pk, xτ )), (c′1, . . . , c
′
τ )) 7→ (−, b)

where b = 1 only if c′i = Commit(pk,F(k, xi)) for all i ∈ [τ ]. Namely, SEN commits to its PRF key, and
inputs x1, . . . , xτ for the PRF evaluations.

Recall that in the [NR97] PRF the key is a vector k = (a1, . . . , am), and each input to the PRF is an
m-length bit-string xi = (xi[1], . . . , xi[m]). The protocol we describe is for a setting where the verifier
knows commitments cj to each element in k, and commitments ci,j for each bit xi[j] of the inputs. (This
is exactly the situation in the protocol of Section 5.3.) At first, the prover computes ei,j = a

xi[j]
j for all

i ∈ [τ ], and the corresponding commitment c∗i,j = Commit(pk, ei,j). Next, the prover proves correctness
of this computation to the verifier.8 It then splits the values {ei,j} into distinct pairs, multiplies each pair,
commits to the result, and proves correctness of this computation running protocol πmult with the verifier.
This step is run recursively until the exponent

∏
j ei,j is obtained, such that the correctness of the last step

can be verified by inputting the value c′i in protocol πmult. Note that the above requires the invocation of the
basic ZK proof πmult for O(τ) times where the number of iterations is O(log τ) for each i (we remark that
the proofs can be invoked in parallel for all i since these are independent PRF evaluations).

A.2.3 Double Oblivious PRF Evaluation

Finally, in this section we discuss the implementation of the following functionality,

F2PRF :
(
(k0, k1), (p,Commit(pk, k0),Commit(pk, k1))

)
7→
(
−,F(k0, p),F(k1, p)

)
which is an extension of the oblivious PRF evaluation functionality for which the receiver learns two PRF
evaluations on a single element p (with two different keys k0, k1). The protocol from the previous section is
not applicable here since the prover does not know p and thus cannot compute the PRF evaluation by itself.
Instead, we extend the oblivious PRF solution of [FIPR05, HL10] to the double case. Namely, we invoke
the basic protocol twice (where in each invocation the prover enters a different PRF key). In addition to
that, we need to ensure that the prover indeed uses the correct PRF keys that were committed to within the
commitments that the verifier holds. Briefly, for the above particular implementation of the [NR97] PRF
this can be done by proving consistency between the ciphertext encrypting the PRF key within the oblivious
PRF evaluation protocol, and the above commitments given in the state, using a ZK proof.

8The latter can be done by proving in ZK that a commitment to ei,j + xi[j] is either a commitment to 1 or to aj + 1. This
implies correctness since the verifier knows the commitments of the bits in each xi, thus the sum aj + 1 can only equal 1 (in case
xi[j] = 0 and ei,j = a0j = 1) or aj + 1 (in case xi[j] = 1 and ei,j = a1j = aj). This proof can be implemented efficiently with
constant overhead if the commitment is homomorphic.
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