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Abstract

Previously known functional encryption (FE) schemes for general circuits relied on indistin-
guishability obfuscation, which in turn either relies on an exponential number of assumptions
(basically, one per circuit), or a polynomial set of assumptions, but with an exponential loss in
the security reduction. Additionally these schemes are proved in an unrealistic selective security
model, where the adversary is forced to specify its target before seeing the public parameters.
For these constructions, full security can be obtained but at the cost of an exponential loss in
the security reduction.

In this work, we overcome the above limitations and realize a fully secure functional en-
cryption scheme without using indistinguishability obfuscation. Specifically the security of our
scheme relies only on the polynomial hardness of simple assumptions on multilinear maps.

1 Introduction

In traditional encryption schemes, decryption control is all or nothing: the sender encrypts its
message under a particular key, and anyone with the corresponding secret key can recover the mes-
sage. In contrast, functional encryption (FE) schemes [BSW11, O’N10] allow the sender to embed
sophisticated functions into secret keys. More specifically, an FE scheme includes an authority,
which holds a master secret key and publishes public system parameters. The sender uses the
public parameters to encrypt its message m to obtain a ciphertext ct. A user may obtain a secret
key skf for the function f from the authority (if the authority deems that the user is entitled).
This key skf can be used to decrypt ct to recover f(m); and nothing more. In a recent result, Garg
et al. constructed the first FE scheme for general circuits using indistinguishability obfuscation
(IO) [GGH+13b].

While tremendous progress has been made on justifying the security of IO [BR14, BGK+14,
PST14, GLW14, GLSW14], ultimately the security of the resulting constructions still either re-
lies on an exponential number of assumptions [BR14, BGK+14, PST14] (basically, one per cir-
cuit), or a polynomial set of assumptions, but with an exponential loss in the security reduc-
tion [GLW14, GLSW14]. For example, the recent IO scheme based on the MSE assumption
[GLSW14] crucially uses complexity leveraging in its proof – specifically, the number of hybrids
in the proof is proportional to 2|x| where x is the input, and each hybrid “examines” a particular
input x and implicitly “verifies” that the circuits C0, C1 in question satisfy C0(x) = C1(x). Garg et
al. [GGSW13] provide an intuitive argument suggesting that either of these shortcoming might be
inherent when realizing indistinguishability obfuscation.1 This intuitive argument however is not
applicable to FE schemes. In this work we ask the following fundamental question:
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1Garg et al. [GGSW13] only provide the intuition for witness encryption but it extends to IO.

1



Can we construct a functional encryption scheme for general circuits assuming only polynomial
hardness of simple computational assumptions?

Another limitation of the Garg et al. [GGH+13b] scheme is that it is only selectively secure –
that is, they have been proved secure only in an unrealistic model in which the adversary is required
to specify the message m for its challenge ciphertext before it sees the public parameters of the
FE scheme. We would like FE for circuits that is fully secure – i.e., that allows the adversary to
choose m∗ adaptively after seeing the public parameters and even responses to some of its private
key queries. In general, one can trivially reduce full security to selectively security via complexity
leveraging – essentially the reduction tries to guess the adversary’s chosen m, and succeeds with
probability 2−|m| – but complexity leveraging loses a 2|m| factor in the reduction to the underlying
hard problem that we would like to avoid.

Can we construct a fully secure functional encryption scheme for general circuits without an
exponential loss in the security reduction?

Achieving full security without the lossiness of complexity leveraging is just as important for
FE for circuits as it was for identity-based encryption (IBE) ten years ago [Wat05, Gen06, Wat09],
for both efficiency and conceptual reasons.

1.1 Our Results

In this work, we give positive answers to both questions above. Specifically we construct the first
fully secure FE scheme for circuits without using indistinguishability obfuscation or any exponential
loss in security reductions. Our scheme uses composite order multilinear maps in the asymmetric
settings [BS02, GGH13a, CLT13] and security is based on polynomial hardness of fixed, relatively
simple assumptions.

We extend the existing graded encoding schemes [GGH13a, CLT13] with a new extension func-
tion that serves as a crucial ingredient in our construction. This extension function serves a role
similar to that of the straddling set systems of [BGK+14], binding various encodings so that only
certain subsets can be paired together. The important difference is that the extension function
allows the binding to happen dynamically and publicly. This allows, for example, an encrypter to
bind ciphertext encodings together so that encodings from different ciphertexts cannot be “mixed
and matched.” We suspect that this new technique will be useful in other contexts as well.

1.2 Concurrent and Independent Work

In concurrent and independent work, Waters [Wat14] constructs a fully secure functional encryption
(FE) scheme using indistinguishability obfuscation (IO) [GGH+13b]. While Waters’ result on FE
is exciting, the focus of this work is to avoid indistinguishability obfuscation altogether and to build
fully secure functional encryption using simpler tools (multilinear maps and simple assumptions
involving them).

2 Preliminaries

In this section, we start by providing the definition of adaptively secure FE for general circuits. Next
we recall the notions of branching programs and graded encoding schemes and develop notation
that will be needed in our context.
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2.1 Adaptively Secure FE

A functional encryption system consists of four algorithms: Setup,KeyGen,Encrypt, and Decrypt.

- Setup(λ): The setup algorithm takes in the security parameter λ as input and outputs the
public parameters MPK and a master secret key MSK.

- KeyGen(MSK, y): The key generation algorithm takes in the master secret key MSK, and
an attribute string y as input. It outputs a private key SKy for y. y is included as part of
the secret key.

- Encrypt(MPK,x): The encryption algorithm takes in the public parameters MPK, and a
message x as input. It outputs a ciphertext C.

- Decrypt(SKy, C): The decryption algorithm takes a private key SKy for attribute string y
and a ciphertext C (encrypting say the message x) as input and outputs the value C(x, y),
where C is a fixed universal circuit.

Correctness of the scheme requires that for correctly generated private keys for y and correctly
generated ciphertexts encrypting x, decryption yields C(x, y) except with negligible probability.

We will now give the security definition for adaptive FE. This is described by a security game
between a challenger and an attacker that proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker.

- Query Phase I: The attacker queries the challenger for private keys corresponding to at-
tribute strings y1, . . . , yq1 , which the challenger provides.

- Challenge: The attacker declares two messages x0, x1. We require that ∀i ∈ [q1] we have
that C(x1, yi) = C(x0, yi). The challenger flips a random coin β ∈ {0, 1} and runs C ←
Encrypt(MPK,xβ). The challenger gives the ciphertext C to the adversary.

- Query Phase II: The attacker queries the challenger for private keys corresponding to
the attribute strings yq1+1, . . . , yq, with the added restriction that ∀i ∈ {q1, . . . , q} we have
C(x1, yi) = C(x0, yi).

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

2.2 Branching Programs

A branching program consists of a sequence of steps, where each step is defined by a pair of
permutations. In each step the the program examines one input bit, and depending on its value the
program chooses one of the permutations. The program outputs 1 if and only if the multiplications
of the permutations chosen in all steps is the identity permutation. In our setting, just like in
previous work it will be easier to work with matrix branching programs that we define next.

Definition 1 (Matrix Branching Program). A branching program of width w and length ` on n-bit
inputs is given by two 0/1 permutation matrices M0,M1 ∈ {0, 1}w×w, M0 6= M1 and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)`
i=1

,
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where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [n] is the input bit position
examined in step i. We require that, for all inputs x ∈ {0, 1}n,∏̀

i=1

Bi,xinp(i) ∈ {M0,M1}

Let (α, β) be a position where M1[α, β] = 1 and M0[α, β] = 0. Call (α, β) a distinguishing
coordinate. The output of the branching program on input x ∈ {0, 1}n is as follows:

BP (x) =

(∏̀
i=1

Bi,xinp(i)

)
[α, β]

Theorem 1 ([Bar86]). For any depth-d fan-in-2 boolean circuit C, there exists an oblivious branch-
ing program of width 5 and length at most 4d that computes the same function as the circuit C.

Remark 1. In our functional encryption construction we do not require that the branching program
is of constant width. In particular we can use any reductions that result in a polynomial size
branching program.

For simplicity of notation, it will be convenient to consider two-input branching programs.2

Here, the input x ∈ {0, 1}2n is split into two inputs (x[0], x[1]). We then split inp into two functions:

• inp′ : [`] → {0, 1} where inp′(i) = dinp(i)/ne − 1. Basically, inp′ chooses which of the inputs
x[0] and x[1] inp points to.

• bit : [`]→ [n] where bit(i) = inp(i) mod n. Basically, bit chooses which bit of x[b] inp points
to, where b is the bit chosen by inp′.

Then we can write the branching program evaluation as

BP (x) =

(∏̀
i=1

Bi,x[inp′(i)]bit(i)

)
[α, β]

Remark 2. It is also straightforward to consider two-input branching programs where x[0] and x[1]
have different sizes. We treat them as the same size for convenience.

Kilian Randomization of Branching Programs. Let BP be a branching program as above.
Fix a ring R. Choose random invertible matrices R1, . . . , R`−1, and define a new branching program
BP ′ which is identical to BP , except that the matrices Bi,b are replaced with B̃i,b = Ri−1 ·Bi,b ·R−1i ,
where we take R0 = R` = Iw. We observe that∏̀

i=1

B̃i,xinp(i) =
∏̀
i=1

Bi,xinp(i)

so that for every x we have that BP ′(x) = BP (x).
Moreover, we have the following theorem of Kilian:

Theorem 2 ([Kil88]). Fix any input x ∈ {0, 1}`, and let b = BP (x) = BP ′(x). Then the set of
matrices multiplied together to evaluate BP ′(x), namely the set{

B̃i,xinp(i)

}
i∈[`]

are distributed as uniform random w × w invertible matrices over R, conditioned on their product
being Mb.

2Not to be confused with dual-input branching programs from [BGK+14].
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2.3 Graded Encoding Scheme

Now, we describe the graded encoding scheme abstraction that will be needed in our context, mostly
following [GGH13a, CLT13, GLW14]. To instantiate the abstraction, we can use Gentry et al.’s
variant [GLW14] of the Coron-Lepoint-Tibouchi (CLT) graded encodings [CLT13]. This variant
is designed to emulate multilinear groups of composite order, and to allow assumptions regarding
subgroups of the multilinear groups. One key difference in our abstraction is a new extension
function that we add to the GGH graded encoding abstraction. This new functionality will be
crucial in our scheme. In Appendix A we briefly recall the CLT graded encodings and show how
they can be adapted to also support this extension functionality.3

Definition 2 (U-Graded Encoding System). A U-Graded Encoding System consists of a ring R

and a system of sets S = {S(α)
T ⊂ {0, 1}∗ : α ∈ R, T ⊆ U, }, with the following properties:

1. For every fixed set T , the sets {S(α)
T : α ∈ R} are disjoint (hence they form a partition of

ST
def
=
⋃
α S

(α)
T ).

2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ (on {0, 1}∗)
such that for every α1, α2 ∈ R, every set T ⊆ U, and every u1 ∈ S(α1)

T and u2 ∈ S(α2)
T , it

holds that
u1 + u2 ∈ S(α1+α2)

T and − u1 ∈ S(−α1)
T

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every

T1, T2 with T1 ∪T2 ⊆ U, and every u1 ∈ S(α1)
T1

and u2 ∈ S(α2)
T2

, it holds that u1×u2 ∈ S(α1·α2)
T1∪T2 .

Here α1 · α2 is multiplication in R, and T1 ∪ T2 is set union.

CLT (and GGH) encodings do not quite meet the definition of graded encoding systems above,
since the homomorphisms required in the definition eventually fail when the “noise” in the encodings
becomes too large, analogously to how the homomorphisms may eventually fail in lattice-based ho-
momorphic encryption. However, these noise issues are relatively straightforward (though tedious)
to deal with.

Now, we define some procedures for graded encoding schemes. We start with the procedures
standard in the graded encoding literature [GGH13a, CLT13].

Instance Generation. The randomized InstGen(1λ,U, r) takes as inputs the parameters λ,U, r,
and outputs params, where params is a description of a U-Graded Encoding System as above
for a ring R = R1 × . . .×Rr. We assume R is chosen such that the density of zero divisors
in each Ri is negligible.

Note that setting r = 1 corresponds to the prime order setting, while r > 1 corresponds to
the composite-order setting.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S
(α)
φ for a

nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R is nearly

uniform, but not that the encoding a is uniform in S
(α)
φ .)

3We note that the GGH encodings can also be extended to deal with this functionality as well but here we provide
this it only for the CLT encodings.
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Encoding. The (possibly randomized) enc(params, T, a) takes a “level-zero” encoding a ∈ S(α)
φ for

some α ∈ R and index T ⊆ U, and outputs the “level-T” encoding u ∈ S(α)
T for the same α.

Re-Randomization. The randomized reRand(params, T, u) re-randomizes encodings relative to

the same index. Specifically, for an index T ⊆ U and encoding u ∈ S
(α)
T , it outputs an-

other encoding u′ ∈ S
(α)
T . Moreover for any two u1, u2 ∈ S

(α)
T , the output distributions of

reRand(params, T, u1) and reRand(params, T, u2) are statistically indistinguishable.

Addition and negation. Given params and two encodings relative to the same index, u1 ∈ S(α1)
T

and u2 ∈ S
(α2)
T , we have an addition function add(params, T, u1, u2) = u1 + u2 ∈ S

(α1+α2)
T ,

and a negation function neg(params, T, u1) = −u1 ∈ S(−α1)
T .

Multiplication. For u1 ∈ S
(α1)
T1

, u2 ∈ S
(α2)
T2

such that T1 ∪ T2 ⊆ U, we have a multiplication

function mul(params, T1, u1, T2, u2) = u1 × u2 ∈ S(α1·α2)
T1∪T2 .

Zero-test. The procedure isZero(params, u) outputs 1 if u ∈ S(0)
U and 0 otherwise. Note that in

conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ SU encode the same
element α ∈ R.

Next, we define two new procedures on graded encodings that we will use:

Extension. This procedure allows extending the graded encoding system by fresh asymmetric
levels. Specifically, extend(params,V, {ei}i) takes as input a set V ⊆ U and a sequence of
encodings ei each at level vi ⊆ V and outputs a new set V′ and encodings e′i each at level
v′i ⊆ V′ along with a public transformation function fV′→V such that:-

• Addition and multiplication procedures from above can be applied to encodings at these
new levels as well.

• Let V = {1, . . . t} then V′ = {1′, . . . t′} and for each i we have that if vi = {j1, . . . jk}
then v′i = {j′1, . . . j′k} where j1, . . . jk ∈ {1, . . . , t}.

• fV′→V(e′,W′) takes as input e′ ∈ S
(α)
W′ where V′ ⊆ W′ and outputs an encoding e ∈

S
(α)
V∪(W′\V′).

Extension†. This function extend† is the same as the previous function extend(params,V, {ei}i)
except that it also outputs additionally randomizers (encodings of 0) for each level it outputs
an encoding at.

In Appendix A, we demonstrate how to obtain the above extension procedures from the GLSW
varant of the CLT encodings. We stress that, except for the new extension procedures, all the
procedures above are exactly the same as in [GLW14]. The extension functions are built on top
of the underlying graded encoding without any modifications to the existing procedures — in
particular, no extra terms are needed in the public parameters.

2.4 Other Cryptographic Primitives

Punctured PRFs. A punctured pseudorandom function (PRF) [BW13, BGI14, KPTZ13] is a
pseudorandom function PRF where the secret key k for the function can be punctured at an
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arbitrary input x, arriving at a punctured key kx. kx allows the evaluation of PRF at all points
other than x: that is, PRF (kx, x′) = PRF (k, x′) as long as x′ 6= x. For security, we require that
the pair (kx, PRF (k, x)) is indistinguishable from the pair (kx, r) where r is chosen at random
independent of k.

The original pseudorandom function of Goldreich, Goldwasser, and Micali [GGM84] is punc-
turable. However, we will need puncturable PRFs that can be evaluated in NC1, and the GGM
construction does not satisfy this requirement. Instead, we will use the PRFs of Boneh, Lewi,
Montgomery, and Raghunathan [BLMR13], which are both puncturable and can be evaluated in
NC1.

Randomized Encodings Given a circuit C, a randomized encoding is a pair of functions Ĉ, Rec.
Ĉ(x; r) is a randomized function taking the same inputs as C that “encodes” the evaluation of C
on input x. Rec takes as input e = Ĉ(x; r), and output C(x).

The goal of randomized encodings is to take a complex circuit C and “encode” the evaluation
of C on input x, where the encoding operation is much simpler than evaluating C directly. In our
case, C will be an arbitrary polynomial-sized circuit, and we require that Ĉ be computable in NC1.

The security notion we require from randomized encodings is weaker than typically required in
the literature. We require that, for two inputs x, x′ such that C(x) = C(x′), that Ĉ(x) and Ĉ(x′)
are computationally indistinguishable distributions.

3 Slotted Functional Encryption

In this section, we define the notion of slotted functional encryption. Later we will show how
this scheme can be used to realize a functional encryption scheme for general circuits. A slotted
functional encryption scheme, is roughly a functional encryption with multiple “slots,” where each
slot roughly serves as an independent copy of the functional encryption scheme. For any ciphertext
or secret key, each slot is either active or inactive, and active slots will contain some bit string that
potentially varies from slot to slot. Decryption is well-defined only if all slots that are active in
both the ciphertext and the secret key agree on the output, in which case the result of decryption
is the agreed-upon output. Otherwise, the output is undefined. Slot 0 is a special slot and where
the public parameters rest. This is the slot that anyone can encrypt a message to; all the other
slots require secret parameters.

- Setup(λ, d,C): The setup algorithm takes in the security parameter λ, a number d of slots,
and a fixed universal circuit description C as inputs and outputs the public parameters MPK
and a master secret key MSK.

- KeyGen(MSK,y): The key generation algorithm takes in the master secret key MSK, and
a vector of attribute strings y ∈ {{0, 1}n ∪ ⊥}d as input. It outputs a private key SK for y.

- KeyGen(MSK, y): Alternatively, an unslotted version of the key generation algorithm
takes the master secret key MSK, and a single string y ∈ {0, 1}n as input. It runs Key-
Gen(MSK,y) where y = (y,⊥, . . . ).

- Encrypt(MSK,x): A private slotted encryption algorithm takes in the secret parameters
MSK, and a vector of messages x ∈ {{0, 1}n ∪ ⊥}d as input. It outputs a ciphertext C.

- Encrypt(MPK,x): a public unslotted encryption algorithm takes in the public parameters
MPK, and a single message x ∈ {0, 1}n as input. It outputs an encryption of the message
vector (x,⊥,⊥, ...)
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- Decrypt(SK,C): The decryption algorithm takes a private key SK for attribute string y
and a ciphertext C (encrypting say the messages x). Let S ⊆ [d] be the set of active indices,
namely those i ∈ [d] where x[j] 6= ⊥ and y[j] 6= ⊥. If C(x[j], y[j]) = b for all active indices
i ∈ S, it outputs b. Otherwise, the output is undefined.

We note that, semantically, a slotted functional encryption scheme gives a functional encryption
using only the unslotted versions of the KeyGen and Encrypt procedures. Our goal will be to prove
security of the derived (unslotted) functional encryption scheme, using various security properties
of the full slotted scheme.

For security of slotted FE, consider the following general security game, parameterized by a
predicate P :

- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker. The challenger also flips a random coin β ∈ {0, 1}, which it keeps secret.

- Query Phase I: The attacker adaptively queries the challenger for private keys corresponding

to attribute vectors pairs y
(0)
i ,y

(1)
i ∈ {{0, 1}n ∪⊥}d for i = 1, ..., q1. The challenger responds

with the secret keys for y
(β)
i .

- Challenge: The attacker declares two message s vector x(0),x(1) ∈ {{0, 1}n ∪ ⊥}d. The
challenger responds with the ciphertext C ← Encrypt(MSK,x(β)).

- Query Phase II: The attacker continues to adaptively queries the challenger for private

keys corresponding to attribute vectors pairs y
(0)
i ,y

(1)
i ∈ {{0, 1}n ∪ ⊥}d for i = q1 + 1, ..., q.

The challenger responds with the secret keys for y
(β)
i .

- Guess: The attacker outputs a guess β′ for β.

- Check: The challenger runs a predicate P on the secret key queries and challenge querie:

c = P ({y(b)
i }i∈[q],b∈{0,1},x(0),x(1)). If c = 1, the challenger outputs β′′ = β′. Otherwise if

c = 0, the challenger outputs a random bit β′′.

The advantage of an attacker in this game is defined to be Pr[β = β′′]− 1
2 .

The security game varies depending on the predicate P . At a minimum P should check that the
adversary cannot trivially distinguish the left and right sides by applying the decryption procedure
on the secret keys and ciphertext received. P would also need to verify that P cannot distinguish
the left and right sides by generating his own ciphertext. Ideally, security should hold for this
general P .

However, this security definition is not efficiently checkable: P would have to test all possible
vectors x = (x, 0, 0, . . .) that the adversary could produce himself with the public parameters to
make sure the secret keys cannot distinguish.

Moreover, this security notion is too strong. If we just look at the case where d = 1 so there
is a single slot, the P above would allow changing a secret key y to y′ if C(x, y) = C(x, y′) for
all x ∈ {0, 1}n. In other words, the scheme would hide the secret key function, thereby implying
indistinguishability obfuscation. Specifically, to obfuscate a function f , let C(x, f) be the universal
circuit which evaluates f(x), construct a slotted functional encryption scheme, and then publish the
secret key SKf for attribute f . Anyone can evaluate f(x) for an x of their choice by encrypting x
under the scheme, and then using SKf to evaluate f(x). Finally, if P is the predicate as described
above, any two functionally equivalent f and f ′ would be indistinguishable.
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Our goal, then, is to describe simple checks P that are both efficient and do not imply full
function hiding. This in principle has similarities with the Gentry et al. constructions of witness
encryption [GLW14] and indistinguishability obfuscation [GLSW14] from instance independent
assumptions. However, unlike the Genrty et al. construction, we will not require complexity
leveraging to turn these simple requirements into full-fledged functional encryption.

3.1 Core Predicates

First, we describe some simple core predicates that we would like the construction of our slotted FE
scheme to satisfy. These properties will enable the realization of the adaptively secure FE scheme.

0 Slot Symmetry. P checks that there is two slots α, β ∈ [d] \ {0}, α 6= β, such the queries
have the following form:

b = 0
x[j] yi[j]

j = α x(0∗) y
(0∗)
i

j = β x(1∗) y
(1∗)
i

j 6= α, β x[j] yi[j]

b = 1
x[j] yi[j]

j = α x(1∗) y
(1∗)
i

j = β x(0∗) y
(0∗)
i

j 6= α, β x[j] yi[j]

Intuitively, this allows us to permute the contents of different slots without the adversary’s
notice.

1 Single-Use Message and Function Hiding. P checks that there is a slot α ∈ [d], α 6= 0
and a secret key query γ ∈ [q] such that the queries have the following form:

b = 0

x[j]
yi[j]

i = γ i 6= γ

j = α x(0∗) y(0∗) yi[α]

j 6= α x[j] yi[j]

b = 1

x[j]
yi[j]

i = γ i 6= γ

j = α x(1∗) y(1∗) yi[α]

j 6= α x[j] yi[j]

Requirements:

C(x(0∗), y(0∗)) = C(x(1∗), y(1∗)) or

x(0∗) = x(1∗) = ⊥ or

y(0∗) = y(1∗) = ⊥

This allows us to argue both message and function hiding in any slot which is uniquely used
by a ciphertext and a secret key. For example in the above tables slot α is used only in the
challenge ciphertext and the γth secret key.

2 Slot Duplication. P checks that there is a slot α (possibly 0) and another slot β 6= α, 0
such that the queries have the following form:

b = 0
x[j] yi[j]

j = α x∗ y∗i
j = β ⊥ ⊥
j 6= α, β x[j] yi[j]

b = 1
x[j] yi[j]

j = α x∗ y∗i
j = β x∗ or ⊥ y∗i or ⊥
j 6= α, β x[j] yi[j]

We stress that slot duplication can duplicate the slots of the ciphertext and secret keys
simultaneously. We can choose to duplicate the slots of all keys and the ciphertext, or any
subset of them.

3 Ciphertext Moving. P checks that there are slots α, β ∈ [d], α 6= β such that the queries
have the form:
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b = 0
x[j] yi[j]

j = α x∗ y∗i
j = β ⊥ y∗i
j 6= α, β x[j] yi[j]

b = 1
x[j] yi[j]

j = α ⊥ y∗i
j = β x∗ y∗i
j 6= α, β x[j] yi[j]

This lets us move ciphertexts between slots provided the secret keys are identical on those
slots.

4 Weak key moving. P checks that there are slots α, β ∈ [d], α 6= 0 and β 6= α, 0 and
secret-key query γ such that the queries have the following form:

b = 0

x[j]
yi[j]

i = γ i 6= γ

j = α x∗ y∗

yi[j]j = β x∗ ⊥
j 6= α x[j] yγ [j]

b = 1

x[j]
yi[j]

i = γ i 6= γ

j = α x∗ ⊥
yi[j]j = β x∗ y∗

j 6= α x[j] yγ [j]

This allows us to to moving the secret key from slot α to slot β as long as the messages
encrypted in the two slots are the same.

We observe that the above properties, even in combination, will never allow the changing of
a secret key in slot 0. Thus, we will not be able to obtain any form of function hiding for the
derived unslotted functional encryption scheme just from the properties above. This serves as a
sanity check that the above properties are not too strong, and might be obtainable from simple
assumptions, and indeed we give a construction meeting these in Section 4.

3.2 Additional Derivable Predicates

Now we describe several additional properties that can be derived from the core properties above,
potentially “using up” several additional slots.

5 New Slot. P checks that there are slots α, β ∈ [d] with α 6= 0 and β 6= α such that the
queries have the following form:

b = 0
x[j] yi[j]

j = α ⊥ ⊥
j = β x[β] 6= ⊥

yi[j]j 6= α, β x[j]

b = 0
x[j] yi[j]

j = α x∗ ⊥
j = β x[β] 6= ⊥

yi[j]j 6= α, β x[j]

This allows us to create new slots with arbitrary messages in them, provided the secret keys
are not active in the slot α.

6 Strong key moving. P checks that there are slots α, β ∈ [d], α 6= 0, β 6= α, 0, and secret
key query γ ∈ [q] such that:

b = 0

x[j]
yi[j]

i = γ i 6= γ

j = α x∗0 y∗

yi[j]j = β x∗1 ⊥
j 6= α x[j] yγ [j]

b = 1

x[j]
yi[j]

i = γ i 6= γ

j = α x∗0 ⊥
yi[j]j = β x∗1 y∗

j 6= α x[j] yγ [j]

Requirements:
C(x∗0, y

∗) = C(x∗1, y
∗)
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This allows us to actually move secret key component from slot α to slot β even when the
messages encrypted in the two slots are not the same.

7 Weak ciphertext indistinguishability. P checks that there is a slot α ∈ [d], α 6= 0 such
that the queries have the following form:

b = 0
x[j] yi[j]

j = α x∗0 y∗i
j 6= α x[j] yi[j]

b = 0
x[j] yi[j]

j = α x∗1 y∗i
j 6= α x[j] yi[j]

Requirements:
C(x∗0, y

∗
i ) = C(x∗1, y

∗
i )∀i

This almost gives us functional encryption, except for the requirement that α 6= 0.

8 Strong ciphertext indist. Same as above, except α can be 0.

3.3 Reductions

Now we describe several reductions showing that core properties described above are sufficient for
obtaining the additional derivable properties also described above, at the cost of “using up” several
additional slots. We note that in all of the reductions below, any existing property, whether core
or derived, is preserved in the reduction.

Lemma 1. (1) Single-use hiding and (2) slot duplication imply (5) new slot.

Proof. Use slot duplication to duplicate contents of the β slot into the originally empty α slot of the
ciphertext (don’t duplicate the secret keys), and then use single-use message and function hiding
to change the message to x∗, which is possible since there are no secret keys components in the α
slot.

Lemma 2. (1) Single-use hiding, (2) slot duplication, (3) and weak key moving for d + 1 slots
implies (6) strong key moving for d slots (all existing properties being preserved).

Proof. We prove for α = 1, β = 2, the other cases being identical. We will move secret key γ ∈ [q].
Let slot d + 1 be a “scratch” slot, that is unused by the normal scheme. We will use slot d + 1
in the security proof. Below is the table of hybrids. For secret keys i ∈ [q], i 6= γ not included in
the table, slot d + 1 is inactive, and the rest of the slots remain the same throughout all hybrids.
Similarly, slots j 6= 1, 2, d+ 1 remain the same for the ciphertext and the γth secret key.

Hybrid
x[j] yγ [j]

comments
j = 1 j = 2 j = d+ 1 j = 1 j = 2 j = d+ 1

H0 x∗0 x∗1 ⊥ y∗ ⊥ ⊥
H1 x∗0 x∗1 x∗0 y∗ ⊥ ⊥ Slot duplication

H2 x∗0 x∗1 x∗0 ⊥ ⊥ y∗ Weak secret key moving

H3 x∗0 x∗1 x∗1 ⊥ ⊥ y∗ Single-use message hiding

H4 x∗0 x∗1 x∗1 ⊥ y∗ ⊥ Weak secret key moving

H5 x∗0 x∗1 ⊥ ⊥ y∗ ⊥ Slot duplication

Lemma 3. (0) Slot symmetry, (5) new slot, and (6) strong key moving for d+1 slots implies weak
(7) weak ciphertext indistinguishability for d slots (all existing properties being preserved).
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Proof. We prove for α = 1, the other cases being identical. The slot d + 1 will be the “scratch”
slot, that is unused by the normal scheme but used in the security proof. In the hybrids below we
will use the strong key moving property. Note that the strong key moving only allows for changing
one key at a time but in the hybrids below we will need to change all the keys and this can be done
by a sequence of hybrids changing one key at a time.

Hybrid
x[j] ∀γ ∈ [q], yγ [j]

comments
j = 1 j = d+ 1 j = 1 j = d+ 1

H0 x∗0 ⊥ y∗ ⊥
H1 x∗0 x∗1 y∗ ⊥ New slot

H2 x∗0 x∗1 ⊥ y∗ Strong key moving (×q)
H3 ⊥ x∗1 ⊥ y∗ New slot

H4 x∗1 ⊥ y∗ ⊥ Slot Symmetry

Lemma 4. (2) Slot duplication, (3) weak ciphertext moving, and (7) weak ciphertext indistin-
guishability for d+ 1 slots implies (8) strong ciphertext indistinguishability for d slots (all existing
properties preserved).

Proof. Only need to add the case for slot 0. Just as before, the slot d+ 1 will be the “scratch” slot,
that is unused by the normal scheme but used in the security proof.

Hybrid
x[j] yi[j] Comments

j = 0 j = d+ 1 j = 0 j = d+ 1

H0 x∗0 ⊥ y∗i ⊥
H1 x∗0 ⊥ y∗i y∗i Slot duplication

H2 ⊥ x∗0 y∗i y∗i Weak ciphertext moving

H3 ⊥ x∗1 y∗i y∗i Weak ciphertext indistinguishability

H4 x∗1 ⊥ y∗i y∗i Weak ciphertext moving

H5 x∗1 ⊥ y∗i ⊥ Slot duplication

4 Slotted Functional Encryption for NC1

We now give our slotted FE scheme for NC1. We will describe our scheme in terms of matrix
branching programs, and rely on Barrington’s Theorem (Theorem 1) to realize slotted FE for NC1

circuits. We describe our scheme for single bit outputs — it can easily be extended to multi-bit
outputs by running multiple instances of the scheme in parallel.
Setup(λ,BP, d): Given a universal 2-input matrix branching program

BP =
(
bit, inp, (Bi,b)i∈[`],b∈{0,1}

)
run params ← InstGen(1λ, {1, . . . , `}, d). Then, choose random matrices Ri ∈ R for i ∈ [` − 1], as
well as random αi,b for i ∈ [`], b ∈ {0, 1}. Let B̃i,b = αi,b · Ri−1 · Bi,b · R−1i for i ∈ [2, ` − 1], and

B̃1,b = α1,b ·B1,b ·R−11 and B̃`,b = α`,b ·R`−1 ·B`,b4. Compute Aji,b = [B̃i,b]
j
{i} for j ∈ [d]. (Here R0

4Using current graded encodings, it is not possible to publicly compute matrix inverses since users do not have direct
access to the underlying ring. However, the setup procedure would know a trapdoor for the graded encodings that
does allow computing the matrix inverse. Alternatively, we can replace R−1

i with the adjugate matrix Radj
i , encodings

of which can be computed publicly. The adjugate and matrix inverse only differ by a scalar multiple (namely, the
determinant), and since we multiply everything by a random scalar anyway, the distributions of encodings obtained
are identical in both approaches.
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and R` are set to identity.)
Let V be the subset of [`] that corresponds to the secret key: V = {i ∈ [`] : inp(i) = 0}, and

W be the subset of [`] that corresponds to the ciphertext: W = {i ∈ [`] : inp(i) = 1}. Then the
universe U = V ∪W.

The master public key is

MPK = (params, (A0
i,b)i∈W,b∈{0,1})

The master secret key consists of the Aji,b for i ∈ V ∪W.

KeyGen(MSK,y): Given an attribute y ∈ {{0, 1}n ∪ ⊥}d, choose random βi ∈ R for i ∈ V, b ∈
{0, 1}, and output the secret key

SKy = extend

params,V,

βi ·
 ∑
j:y[j]6=⊥

Aji,y[j]bit(i)


i∈V


Encrypt(MSK,x): Given an attribute x ∈ {{0, 1}n ∪ ⊥}d, choose random βi ∈ R for i ∈ W, b ∈
{0, 1}, and output the ciphertext

C = extend

params,W,

βi ·
 ∑
j:x[j] 6=⊥

Aji,x[j]bit(i)


i∈W


Encrypt(MPK,m): Given a message m ∈ {0, 1}n, choose random βi ∈ R for i ∈W, and output
the ciphertext

C = extend
(
params,W,

(
βi ·A0

i,mbit(i)

)
i∈W

)
Remark 3. Note that all the encodings given out in the ciphertext can be re-randomized (to noise σ′)
using the randomizer provided in the public parameters. We do not mention the re-randomization
above explicitly, for the sake of simplicity of notation.

Decrypt(MPK,SK,C): Given a secret key SK = fV′→V, (Ki)i∈V′ and a ciphertext C = fW′→W, (Ci)i∈W′ ,

let Di =

{
Ki if i ∈ V′

Ci if i ∈W′
, and compute the product

D = fV′→V

(
fW′→W

(∏
i∈U

Di

))

Then run the zero-test procedure on a distinguishing coordinate of D.

Correctness. Evaluation is carried out slot by slot. In slot j, if either K or C is inactive, then
the corresponding ring will be empty. Therefore, the result of the computation is 0 in slot j.

In a slot j where K and C are both active, then write Ki[j] = [βiαi,y[j]bit(i)B̃i,ybit(i) ]
j
{i′} and

Ci[j] = [βiαi,mbit(i)
B̃i,mbit(i)

]j{i′} for some index elements i′ to be the components of K,C in the ring

Rj . Let d[j] = (y[j],m[j]) ∈ {0, 1}2n. Then we can write

Di[j] = [βiαi,d[j]inp(i),bit(i)B̃i,d[j]inp(i),bit(i) ]
j
{i}
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Therefore, the product
∏
i∈UDi[j] is equal to[∏

i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

B̃i,d[j]inp(i),bit(i)

]j
U′

=

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

Bi,d[j]inp(i),bit(i)

]j
U′

Where U′ = V′ ∪W′. Applying fW′→W to this encoding gives an encoding of the same product,
but relative to the set V′∪W, and then applying fV′→V gives the encoding relative to U. Therefore,

D[j] =

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

Bi,d[j]inp(i),bit(i)

]j
U

=

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)
MBP (d[j])

]j
U

We only care about ciphertexts and secret keys where the branching program evaluates the
same in every slot, so BP (d[j]) is the same for all active slots j; call the result b. Define γ[j] =
βiαi,d[j]inp(i),bit(i) projected down to ring Rj , and γ =

∑
j∈S γ[j] where S is the set of active slots.

Note that we only care about secret keys and ciphertext where there is at least one active slot.
Therefore with overwhelming probability γ 6= 0.

We can now write
D = [γMb]U

Then when we zero test a distinguishing coordinate of D, with overwhelming probability, the
result will match b.

4.1 Hardness Assumptions

Fix a universe U, a dimension d, and a partition of U into subsets V,W. For the assumptions below
we will assume that randomizers (encodings of zero) are provided for each index in U.

Definition 3 (Assumption 1). The following distributions are indistinguishable:( (
[si,j ]

j
{i}

)
i∈U,j>0

,
(

[ti]
1
{i}

)
i∈U

)
and

( (
[si,j ]

j
{i}

)
i∈U,j>0

,
(

[ti]
0,1
{i}

)
i∈U

)
Assumption 1 appears hard because, in order to distinguish the challenge elements, it is required

to eliminate the component in R1. However, the only way to accomplish this is to pair with one of
the [si,j ]

j
{i} for j ≥ 2, which will zero out both R1 and R0.

Definition 4 (Assumption 2). The following two distributions are indistinguishable:( (
[si,j ]

j
{i}

)
i∈V,j>1

,
(

[si]
j
{i}

)
i∈W,j∈[d]

,
(

[ti]
0,1
{i}

)
i∈V

,

extend†
(
params,W,

{(
[ui,j ]

j
{i}

)
i∈W,j>1

,
(

[vi]
0
{i}

)
i∈W

} ) )
and( (

[si,j ]
j
{i}

)
i∈V,j>1

,
(

[si]
j
{i}

)
i∈W,j∈[d]

,
(

[ti]
0,1
{i}

)
i∈V

,

extend†
(
params,W,

{(
[ui,j ]

j
{i}

)
i∈W,j>1

,
(

[vi]
1
{i}

)
i∈W

} ) )
Assumption 2 appears hard because the challenge elements can only be paired with other

extended elements, elements in V, or other challenge elements, and the non-challenge extended
elements and elements in V are all identical in R0 and R1.
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4.2 Security Proof

Theorem 3. Assuming Assumptions 1 and 2, the scheme described above satisfies the core prop-
erties of the slotted FE scheme.

Slot Symmetry. Our scheme satisfies perfect slot symmetry, where the advantage of an even
infinitely powerful adversary is 0. This follows from the fact that slots correspond to sub-rings in
our scheme, and our subrings are generated in a totally symmetric manner.

Single-use Message and Function hiding. In our scheme, the matrices are just the matrices
from Kilian-randomized branching programs, where the randomization in each sub-ring is inde-
pendent. In the single slot j where changes are made, only the ciphertext and a single public key
are active. Let z = (x0, y0) be the ciphertext and secret key values active on the left side, and
z′ = (x1, y1) be the values on the right side. Then on the left side, only the matrices B̃i,z[inp(i)]bit(i) are
handed out in ring Rj , and by Theorem 2, these matrices are uniform random matrices subject to
their product being MC(x0,y0). Similarly, on the left size, the matrices handed out are uniform ran-
dom matrices subject their product being MC(x1,y1). Since C(x0, y0) = C(x1, y1), these distributions
are identical, so our scheme satisfies perfect single use hiding.

Slot duplication. We will prove slot duplication from Assumption 1. Let α ∈ [d] and β 6= α, 0.
Obtain the challenge for assumption 1, and re-order the rings so that the challenge has the form(
Si,j = [si,j ]

j
{i}

)
i∈U,j 6=β

, (Ti)i∈U where Ti = [ti]
α
{i} or Ti = [ti]

α,β
{i} . We now simulate the view of the

adversary as follows. Given a 0/1 matrix B and an encoding e, let e ·B be the matrix of encodings,
where e · B has e in any position where B has a 1, and an encoding of 0 in any position where B
has a 0 (note that we will be multipling e ·B by other matrices of encodings, so the encodings of 0
do not actually have to be computed, but merely serve as placeholders in the computation).

Choose random matrices Ri ∈ R for i ∈ [` − 1], as well as random α′i,b, and set Aji,b = α′i,b ·
Ri−1 · (Si,j ·Bi,b) ·R−1i for j 6= β5. This formally sets αi,b = α′i,bsi,j in ring Rj , which leaves αi,b in

ring β undetermined. Define Dj
i,b = α′i,b ·Ri−1 · (Ti ·Bi,b) ·R

−1
i .

Using the Aji,b, we can simulate the public paramters as in the scheme. To answer the challenge
ciphertext query, there are two cases. If slot β is empty, then we can answer the challenge ciphertext
query as in the slotted FE scheme with the Aji,b (since β is empty, we do not need Aβi,b). If slot β is
not a copy of slot α on either side of the challenge, then we answer the challenge query by choosing
a random β′i ∈ R for i ∈W, b ∈ {0, 1}, and output the ciphertext

C = extend

params,W,

β′i ·
 ∑
j:x[j] 6=⊥,j /∈{α,β}

Aji,x[j]bit(i)
+Dj

i,x[α]bit(i)


i∈W


If the Ti are only encodings in ring Rα, then this correctly simulates the ciphertext when slot

β empty, formally setting βi = βi in rings other that Rα,Rβ, and setting βi = β′iti in rings Rα,Rβ

(the value in Rβ is irrelevant in this case). If the Ti are encodings in Rα ×Rβ, then this correctly
simulates the ciphertext when slot β is a copy of slot α, with the same formal settings of variables
as before.

5We actually cannot compute the quantities R−1
i since we do not have access to the trapdoor for the encodings.

Therefore, we must actually compute Radj
i instead of R−1

i . However, since we multiply by a random scalar anyway,
the distribution of encodings is exactly the same as if we had computed the matrix inverse.
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We can perform a similar procedure to simulate the secret key queries. In the end, if Ti are
only encodings in Rα, then this correctly simulates the left side in slot duplication, where slot
β is empty. If Ti are encodings in Rα × Rβ, then this correctly simulates the right side of slot
duplication, where slot β is sometimes a copy of slot α. Thus, if Assumption 1 holds, the two cases
are indistinguishable.

Ciphertext moving We will prove ciphertext moving from Assumption 2. Let α 6= β, where α
is the slot the ciphertext is in, and β is the slot we wish to move the ciphertext to. Obtain the
challenge for assumption 2, and re-order the rings so that the challenge has the form(

Si,j = [si,j ]
j
{i}

)
i∈V,j /∈{α,β}

,
(
Si,j = [si,j ]

j
{i}

)
i∈W,j∈[d]

,
(
Ti = [ti]

α,β
{i}

)
i∈V

,

E = extend†
(
params,W,

{(
Ui,j = [ui,j ]

j
{i}

)
i∈W,j>1

,
(
Vi = [vi]

γ
{i}

)
i∈W

} )
where γ = α or γ = β.

We now simulate the view of the adversary as follows. Choose random matrices Ri ∈ R for
i ∈ [`− 1], as well as random α′i,b, and set Aji,b = α′i,b ·Ri−1 · (Si,j ·Bi,b) ·R

−1
i for i ∈ V, j /∈ {α, β},

and all i ∈W, j ∈ [d]. This formally sets αi,b = α′i,bsi,j in ring Rj , which leaves αi,b in rings α and

β undetermined for i ∈ V. Define Aαi,b +Aβi,b = α′i,b ·Ri−1 · (Ti ·Bi,b) ·R
−1
i for i ∈ V, which formally

sets αi,b = α′i,bTi in rings Rα and Rβ.

Now using the Aji,b values, we can simulate the public parameters (since we have all the values
for i ∈W, j = 0), as well as all the secret key queries (since all the secret key queries are identical

in slots α and β, meaning we will always have Aαi,b +Aβi,b together, neither being used separately).
To generate the challenge ciphertext, we use the result E of extension. Let U ′i,j be the components
in E corresponding to the Ui,j , and V ′i the components corresponding to the Vi. Then the challenge
ciphertext is set as

C = fW′→W,

βi ·Ri−1 ·
(V ′i ·Bi,x∗bit(i)) +

∑
j:x[j] 6=⊥,j /∈{α,β}

(U ′i,j ·Bi,x[j]bit(i))

 ·R−1i

i∈W

Note that the randomization terms given in E must be used to randomize the components
above.

Where x∗ is the ciphertext term that is either in slot α or slot β. It is straightforward to show
that if the Vi are encodings in Rα, then this simulates the challenge ciphertext with x∗ in slot α,
and similarly if Vi are encodings in Rβ, the challenge ciphertext has x∗ in slot β. Therefore, since
the two cases are indistinguishable, ciphertext moving follows.

Weak key moving. This is basically the same as ciphertext moving, except that we swap the
roles of W and V. The main difference is that, because now the public parameters lie in V, and we
are not given terms in V containing α separate from β, we must have α, β 6= 0 so that we can still
generate the public parameters in R0.

4.3 Adaptively Secure FE for NC1

Our slotted FE scheme easily gives adaptively secure FE for NC1:

Theorem 4. If assumptions 1 and 2 above hold, then adaptively secure FE for NC1 exists.
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Proof. Set d = 4 in our slotted FE scheme. Then Lemma 1, 2, 3, and 4 gives a slotted scheme with
d = 1 that satisfies strong ciphertext indistinguishability, which implies adaptive FE security.

5 Randomized Adaptive Functional Encryption for all Circuits

We now use our slotted FE scheme for NC1 to build functional encryption for all circuits. Our
construction proceeds in two steps:

• First, we build a randomized functional encryption scheme for NC1. In a randomized FE
scheme, the result of decryption is no longer a fixed value C(x, y), but a (pseudorandom)
sample from a distribution determined by x and y: f(x, y; r). Now we allow the secret keys
to decrypt the challenge ciphertext differently, but require that the resulting distributions are
computationally indistinguishable. This will require puncturable PRFs that can be evaluated
in NC1.

• Second, we will bootstrap the scheme above and obtain a randomized functional encryption
scheme for all circuits. This will require a randomized encoding scheme that can be computed
in NC1.

5.1 Slotted FE for NC1 to Randomized FE for NC1

We present the definition of a randomized FE scheme, first defined by Goyal et al. [GJKS13]. The
semantics of a randomized FE scheme are similar to standard FE, except that the ciphertext x and
secret key attribute y no longer define a fixed value C(x, y), but now define a distribution C(x, y; r).
Correctness is relaxed to requiring that the output of decryption is equal to C(x, y; r) for some r.

Security is defined by the following experiment:

- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker.

- Query Phase I: The attacker queries the challenger for private keys corresponding to at-
tribute strings y1, . . . , yq1 , which the challenger provides.

- Challenge: The attacker declares two messages x0, x1. We require that ∀i ∈ [q1] we have
that the distributions C(x1, yi; r) and C(x0, yi; r) are computationally indistinguishable. The
challenger flips a random coin β ∈ {0, 1} and runs C ← Encrypt(MPK,xβ). The challenger
gives the ciphertext C to the adversary.

- Query Phase II: The attacker queries the challenger for private keys corresponding to the
attribute strings yq1+1, . . . , yq, with the added restriction that ∀i ∈ {q1, . . . , q} we have that
the distributions C(x0, yi; r) and C(x1, yi; r) are computationally indistinguishable.

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

We note that the above security notion is not falsifiable in general; indeed, the condition that
C(x1, yi; r) and C(x0, yi; r) be indistinguishable is not even computable. However, in our application,
the distributions will be guaranteed to be indistinguishable.
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Our Construction. Let (Setup′,KeyGen′,Encrypt′,Decrypt′) be a slotted FE scheme for
NC1 circuits. Let PRF,Punct be a puncturable PRF that can be evaluated in NC1. Let f(x, y; r)
be some randomized two-input function that can be evaluated in NC1. We now give our randomized
FE scheme:
Setup(λ, f): Run Setup′(λ,C, d) for constant d to be chosen later, and where C is defined as:

C( (x, k, e0, b) , (y, s, e1) ) =

{
f(x, y;PRF (k, s)) if k is not punctured at s

eb if k is punctured at s

KeyGen(MSK, y): Choose a random s ∈ {0, 1}λ, and define y = ((y, s, ε),⊥,⊥, . . . ), where ε is
the empty string. Then run KeyGen′(MSK,y)
Encrypt(MPK,x): Choose a random k ∈ {0, 1}λ, and define x′ = (x, k, ε, 0). Then run Encrypt′(MPK,x′).
Decrypt(MPK,SK,C): Run Decrypt′(MPK,SK,C).

Theorem 5. If a slotted FE scheme satisfying properties 1 through 7 for d = 4 exists, and punc-
turable PRFs exist that can be evaluated in NC1, then randomized FE for NC1 exists.

Before proving this, we get the following corollary:

Corollary 1. If assumptions 1 and 2 hold, and puncturable PRFs exist that can be evaluated in
NC1, then randomized functional encryption for NC1 exists

Proof. Set d = 6. Then applying Lemmas 1, 2, and 3 gives a slotted encryption scheme with d = 4
satisfying properties 1 through 7. Together with the puncutrable PRF evaluatable in NC1 and
Theorem 5, the corollary follows.

We now return to the proof of Theorem 5.

Proof. Our proof follows a sequence of hybrids, given below. We start with the challenge ciphertext
encrypting x0. Then, we “detach” the ciphertext form the public parameters as in the proof of
Lemma 4 by copying the secret keys into a new slot (say slot 1), and then moving the challenge
ciphertext to this slot. Then, similar to the proof of Lemma 3, we create an additional new slot
(say slot 2) in the ciphertext containing x1, and gradually shift all the secret keys from being in
slots 0 and 1 to being in slots 0 and 2. We then eliminate slot 1 (which contains x0), and finally,
we rely on slot symmetry to swap the roles of slots 1 and 2. At the end, the ciphertext encrypts
x1 and all the secret keys are returned to normal.

However, moving the secret keys turns out to be a much more involved task than in the proof
of Lemma 3, namely because the result of decrypting the challenge ciphertext with a secret key
actually changes when we move the secret key to slot 2, meaning we cannot rely on strong secret
key moving. Nonetheless, by carefully combining secret key moving with PRF puncturing, we show
that we can, in fact, move the secret keys to slot 2.

Now we present the hybrids:

Hybrid 0. We start with the case where the challenge ciphertext encrypts x0. Then the ciphertext
contains x0, k, ε, 0 in 0, secret key i encrypts (yi, si, ε) in 0. Slots j ≥ 1 are inactive for the ciphertext
and all keys.

C[j] SKi[j]

j = 0 (x0, k, ε, 0) (yi, si, ε)

j = 1, 2, 3 ⊥ ⊥
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Hybrid 1. This is identical to Hybrid 0, except that now all the secret keys are active in slots 0
and 1. We move from Hybrid 0 to Hybrid 1 using slot duplication.

C[j] SKi[j]

j = 0 (x0, k, ε, 0) (yi, si, ε)

j = 1 ⊥ (yi, si, ε)

j = 2, 3 ⊥ ⊥

Hybrid 2. This is identical to Hybrid 1, except that we “detach” the challenge ciphertext from
the public parameters by moving it from slot 0 to slot 1. This is done using ciphertext moving.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 (x0, k, ε, 0) (yi, si, ε)

j = 2, 3 ⊥ ⊥

Hybrid 3. This is identical to Hybrid 2, except that slot 2 is now active and contains x1, k, ε, 0.
This change follows from new slot.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 (x0, k, ε, 0) (yi, si, ε)

j = 2 (x1, k, ε, 0) ⊥
j = 3 ⊥ ⊥

Hybrid 4.` Hybrid 4.` is the same has Hybrid 3, except that the first ` secret keys are active in
slots 0 and 2, whereas the remaining q − ` secret keys are still active in slots 0 and 1.

C[j] SKi[j] : i ≤ ` SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥
j = 3 ⊥ ⊥ ⊥

The ciphertexts are different in these slots, and the result of C may be different (though indistin-
guishable), so we cannot perform these hybrid steps directly using strong key moving and instead
need additional hybrids.

For ` ≤ q1 (i.e., the secret key queries before the challenge ciphertext is provided), this is relatively
easy:

Hybrid 4.`.1`≤q1 This is identical to Hybrid 4.(`−1), except that the PRF key k in the ciphertext
is punctured at the `th secret key tag, namely s`. Moreover, the value f` = f(x0, y`, PRF (k, s`)) =
C( (x0, k, ε, 0) , (y`, s`, ε) ) is hard-coded into the e0 component of the challenge ciphertext (since the
challenge ciphertext comes after the secret key here, we will know the value of f` when generating
the challenge ciphertext). Lastly, the indicator bit b is set to 0, telling C it should use the value
hard-coded in e0 as the output when needed.

Since si 6= s` for all i 6= `, puncturing at s` does not affect the evaluation of C for secret keys
other than `. Moreover, f` is set to the value that C outputted on the encryption of x0 before
puncturing, so this puncturing does not affect the evaluation of secret key ` in slot 1. Lastly, secret
key ` is not active in slot 2. Therefore, wee move from Hybrid 4.(` − 1) to 4.`.1`≤q1 using two
invocations of weak ciphertext indistinguishability, once for slot 1 and once for slot 2.
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C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x0, y`, PRF (k, s`)), 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k
s` , f(x0, y`, PRF (k, s`)), 0) (yi, si, ε) ⊥ ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.2`≤q1 This is the same as Hybrid 4.`.1`≤q1 , except that we replace PRF (k, s`) with a
random r. The punctured PRF security of PRF shows that this change is indistinguishable. Now
f` is a fresh sample from the distribution f(x0, y`).

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x0, y`; r), 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k
s` , f(x0, y`; r), 0) (yi, si, ε) ⊥ ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.3`≤q1 This is the same as Hybrid 4.`.2`≤q1 , except that we replace f` with a random
sample from f(x1, y`), relying on the indistinguishability of samples.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x1, y`; r), 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k
s` , f(x1, y`; r), 0) (yi, si, ε) ⊥ ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.4`≤q1 This is the same as Hybrid 4.`.3`≤q1 , except that we move the `th secret key
from slots 0 and 1 to slots 0 and 2. Since the ciphertext is punctured at s` in slots 1 and 2,
when decrypting with the `th secret key, the hard-coded value f` will be outputted in both slots.
Therefore, we can rely on strong secret key moving to make this change.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x1, y`; r), 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , f(x1, y`; r), 0) (yi, si, ε) (y`, s`, ε) ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.5`≤q1 This is the same as Hybrid 4.`.3`≤q1 , except that we replace r with PRF (k, s`),
relying on punctured PRF security.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x1, y`;PRF (k, s`)), 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , f(x1, y`;PRF (k, s`)), 0) (yi, si, ε) (y`, s`, ε) ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.` for ` ≤ q1 We obtain Hybrid 4.` for ` ≤ q1 from Hybrid 4.`.5`≤q1 by unpuncturing the
PRF key in slots 1 and 2 of the ciphertext. This is obtained in a similar manner to the transition
from Hybrid 4.(`− 1) to Hybrid 4.`.1`≤q1 : we apply weak message indistinguishability twice, once
in each slot. Since the puncturing only affects the evaluation using the `th secret key, and slot 1
is inactive for key `, we can unpuncture in slot 1. Key ` is active in slot 2, but the correct value
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is hard-coded in the challenge ciphertext, so unpuncturing does not affect the final outcome of the
evaluation.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) (y`, s`, ε) ⊥
j = 3 ⊥ ⊥ ⊥ ⊥

For ` > q1, i.e. secret key queries after the challenge, things are harder, since we can no longer
embed the result in the ciphertext, and must instead use the secret key. However, we do not have
any form of secret key indistinguishability (as this would imply iO), so the argument is a bit more
involved.

Hybrid 4.`.1`>q1 This is identical to Hybrid 4.(` − 1), except that we copy slot one of the
ciphertext into a new slot, slot 3. This is obtained from Hybrid 4.(`− 1) using new slot in slot 3,
or slot duplication.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥ ⊥
j = 3 (x0, k, ε, 0) ⊥ ⊥ ⊥

Hybrid 4.`.2`>q1 This is identical to Hybrid 4.`.1`>q1 , except that we move the secret key from
slots 0 and 1 to slots 0 and 3. Since the ciphertext is identical in slots 1 and 3, we accomplish this
using weak secret key moving.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥ ⊥
j = 3 (x0, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.3`>q1 This is identical to 4.`.2`>q1 , except that the PRF key k in slots 1 and 2 of the
ciphertext is punctured at the `th secret key tag, namely s`. Since secret key ` is non-existent in
slots 1 and 2, this follows from two applications of weak ciphertext indistinguishability.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x1, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x2, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x1, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.4`>q1 This is identical to 4.`.3`>q1 , except that the PRF key k in slot 3 of the chipher-
text is punctured at s`. Moreover, the value f` = f(x0, y`, PRF (k, s`)) = C( (x0, k, ε, 0) , (y`, s`, ε) )
is hard-coded into the e1 component of slot 3 of the `th secret key (since the challenge ciphertext
comes before the secret key here, we will know the value of f` when generating the secret key).
Lastly, the indicator bit b in slot 3 is set to 1, telling C it should use the value hard-coded in e1 as
the output when needed. These changes only affect slot 3, which is only present in the ciphertext
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and `th secret key. Moveover, because the correct value is hard-coded in the secret key, the output
of C does not change. Therefore, we can rely on single-use hiding to make this transition.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x0, k
s` , ε, 1) ⊥ (y`, s`, f(x0, y`;PRF (k, s`)) ⊥

Hybird 4.`.5`>q1 This is identical to Hybrid 4.`.4`>q1 , except that we replace PRF (k, s`) with
a random r. Indistinguishability follows from the punctured PRF security of PRF . This amounts
to replacing f` with a fresh random sample from f(x0, s`).

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x2, k
s` , ε, 1) ⊥ (y`, s`, f(x0, y`; r)) ⊥

Hybrid 4.`.6`>q1 This is identical to Hybrid 4.`.5`>q1 , except that we eplace f` with a sample
from f(x1, s`). Indistinguishability follows from the indistinguishability of the samples.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x0, k
s` , ε, 1) ⊥ (y`, s`, f(x1, y`; r)) ⊥

Hybrid 4.`.7`>q1 This is identical to Hybrid 4.`.6`>q1 , except that we replace r with PRF (k, si));
indistinguishability follows from the punctured PRF security of PRF .

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x0, k
s` , ε, 1) ⊥ (y`, s`, f(x1, y`;PRF (k, s`)) ⊥

Hybrid 4.`.8`>q1 This is identical to Hybrid 4.`.7`>q1 , except for the following modification in
slot 3: unpuncture k in the ciphertext, replace x0 with x1, and the remove hard-coding in secret
key. That is, ciphertext now encrypts (x2, k, ε, 0) in both slots 2 and 3, and secret key i has
(yi, si, ε) in slots 1 and 3. When the secret key ` decrypts the challenge ciphertext, the output is
still f(x1, y`;PRF (k, s`)), so the output remains unchanged. Thus this modification is made using
single-use hiding.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x1, k, ε, 0) ⊥ (y`, s`, ε) ⊥
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Hybrid 4.`.9`>q1 This is identical to Hybrid 4.`.8`>q1 , except that we unpuncture the PRF key
k in the ciphertext in slots 1 and 2, using two applications of weak ciphertext indistinguishability.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥ ⊥
j = 3 (x1, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.10`>q1 This is identical to Hybrid 4.`.9`>q1 , except that we move secret key ` to from
slots 0 and 3 to slots 0 and 2 using weak key moving.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) (y`, s`, ε) ⊥
j = 3 (x1, k, ε, 0) ⊥ ⊥ ⊥

Hybrid 4.` for ` > q1 We arrive at Hybrid 4.` for ` > q1 from 4.`.10`>q1 by deactivating slot 3
in the ciphertext. This is done using new slot or slot duplication.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x1, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x2, k, ε, 0) (yi, si, ε) (y`, s`, ε) ⊥
j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.q Setting ` = q, we now have that all the secret keys are in slots 0 and 2. We finish
off the proof by making a few more hybrid steps.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥
j = 2 (x1, k, ε, 0) (yi, si, ε)

j = 3 ⊥ ⊥

Hybrid 5 This is identical to Hybrid 4.q, except that we deactive slot 1 of the ciphertext. This
is accomplished using new slot.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 ⊥ ⊥
j = 2 (x1, k, ε, 0) (yi, si, ε)

j = 3 ⊥ ⊥

Hybrid 6 This is identical to Hybrid 5, except that we move the ciphertext to slot 0 using
ciphertext moving.

C[j] SKi[j]

j = 0 (x1, k, ε, 0) (yi, si, ε)

j = 1 ⊥ ⊥
j = 2 ⊥ (yi, si, ε)

j = 3 ⊥ ⊥
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Hybrid 7 Finally, this hybrid is identical to Hybrid 6, except that we deactivate slot 2 of the
secret keys using slot duplication. At this point, we have an encryption of x1.

C[j] SKi[j]

j = 0 (x1, k, ε, 0) (yi, si, ε)

j = 1 ⊥ ⊥
j = 2 ⊥ ⊥
j = 3 ⊥ ⊥

Through this sequence of hybrids, we have shown that Hybrid 0, which encrypts x0, is indistin-
guishable from Hybrid 7, which encrypts x1. This completes the proof.

5.2 Randomized adaptive FE for NC1 to FE for all circuits

Let (Setup′,KeyGen′,Encrypt′,Decrypt′) be an adaptive FE scheme for randomized NC1 cir-
cuits. For an arbitrary polynomial-sized circuit C, let Ĉ(x, y; s) be a randomized encoding for
the evaluation of C on inputs x, y, and Rec the corresponding reconstruction function such that
Rec(Ĉ(x, y; s)) = C(x, y). We require that Ĉ can be evaluated in NC1.

We now give our construction of functional encryption for all circuits.
Setup(λ,C): Run Setup′(λ, Ĉ).
KeyGen(MSK, y): Run KeyGen′(MSK,y)
Encrypt(MPK,x): Encrypt′(MPK,x).
Decrypt(MPK,SK,C): Run e← Decrypt′(MPK,SK,C), and then output Rec(e)

Correctness follows from the correctness of the underlying randomized FE scheme and the
correctness of the randomized encodings.

Theorem 6. If (Setup′,KeyGen′,Encrypt′,Decrypt′) is a randomized adaptive FE for NC1

circuits, Ĉ is a randomized encoding for C, then the construction above is an adaptive FE for all
circuits

Proof. Given an adversary A for the adaptive FE scheme above, we will construct an adversary
B for the underlying randomized adaptive FE scheme that simulates A, playing the role of FE
challenger. When B receives the public parameters, it forwards them to A. When A makes a
secret key query on attribute y, B makes a secret key query on the same attribute y, and gives the
resulting key to A. When A makes a challenge on messages (x0, x1), B makes the same challenge,
and forwards the resulting challenge ciphertext to A. When A makes a guess b′, B outputs the
guess.

It is straightforward to see that B perfectly simulates the view of A, and also that B has
the same advantage in breaking the randomized FE security as A does in breaking FE security.
It remains, then, to show that B makes legal queries. Indeed, A is restricted to queries such
that C(x0, yi) = C(x1, yi) for all secret key queries i. Therefore, by the security of the randomized
encodings, Ĉ(x0, yi; r) is indistinguishable form Ĉ(x1, yi; r), and so B makes valid queries. Therefore,
B breaks the security of the underlying randomized adaptive FE scheme, a contradiction.

References

[Bar86] D A Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in nc1. In STOC, 1986.

24



[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014: 17th International Workshop
on Theory and Practice in Public Key Cryptography, volume 8383 of Lecture Notes
in Computer Science, pages 501–519, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Berlin, Germany.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth
Oswald, editors, Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 221–238, Copenhagen, Denmark, May 11–15,
2014. Springer, Berlin, Germany.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in
Computer Science, pages 410–428, Santa Barbara, CA, USA, August 18–22, 2013.
Springer, Berlin, Germany.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014: 11th Theory of
Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages
1–25, San Diego, CA, USA, February 24–26, 2014. Springer, Berlin, Germany.

[BS02] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography.
Cryptology ePrint Archive, Report 2002/080, 2002. http://eprint.iacr.org/2002/
080.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference,
volume 6597 of Lecture Notes in Computer Science, pages 253–273, Providence, RI,
USA, March 28–30, 2011. Springer, Berlin, Germany.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their appli-
cations. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASI-
ACRYPT 2013, Part II, volume 8270 of Lecture Notes in Computer Science, pages
280–300, Bengalore, India, December 1–5, 2013. Springer, Berlin, Germany.
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A Instantiation of Graded Encoding Scheme

In this section we briefly recall the CLT encodings using description taken essentially verbatim
from [GLW14]. We adapt the construction to include the new extension functionality that our
scheme crucially relies on.

A.1 Overview of CLT Encodings

CLT encodings have a couple of properties that make them more attractive in our setting than
the original multilinear maps of Garg, Gentry and Halevi (GGH) [GGH13a]. First, as Garg et
al. noted in their paper, GGH encodings are subject to a weak discrete log attack. This attack
can be avoided by working with multilinear jigsaw puzzle pieces [GGH+13b] consisting of matrices
of encodings (rather than individual encodings). However, we find it simpler to work with CLT
encodings, which (as far as we know) do not seem to be vulnerable to this attack in the first place.
Second, GGH encodings are built for a prime-order encoding space. While it is probably relatively
straightforward to modify GGH encodings to support a composite-order encoding space, we prefer
to work with CLT encodings, which inherently support a composite integer encoding space already.
Unfortunately, the translation from composite order groups to CLTs composite order encoding
space is not quite as direct as one would like - the most “direct” translation is subject to attacks,
as discuss in [CLT13, Section B.6] - but it is still relatively straightforward.

A κ-linear symmetric CLT encoding system uses a “small” inner modulus N = p1 . . . ps that is
the product of s = s(λ, κ) “small” primes, and a “large” outer modulus Q = P1 . . . Ps that is the

product of s “large” primes. It uses a random z ← Z∗Q. An encoding c ∈ S(m)
1 is an element of ZQ

such that

c ≡ [m]pi + ci · pi
z

mod Pi for i ∈ [s], (1)

where [m]pi is m reduced modulo pi into a small range such as (−pi/2, pi/2), and the xi’s are
random small integers. An encoding in Sκ has a similar form, but with zκ in the denominator.

For random small integers h1, . . . , hs, the system includes a zero-testing parameter pzt for level
κ of the form:

pzt =
s∑
i=1

hi · (zκ · p−1i ) ·
∏
j 6=i

Pj mod Q.
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If c is a level-κ encoding of 0 ∈ ZN - i.e., each [m]pi = 0 - we have:

c · pzt =
s∑
i=1

(xi · pi/zκ) · hi · (zκ · p−1i ) ·
∏
j 6=i

Pj mod Q

=

s∑
i=1

xi · hi ·
∏
j 6=i

Pj mod Q

which is a number substantially smaller than Q assuming the xi’s and hi’s satisfy certain smallness
constraints - in particular, that each xi · hi � Pi. On the other hand, if c encodes something other
than 0, c cot pzt likely will not be a small number, due to uncanceled p1i ’s in the expression above.
Thus, pzt enables zero-testing. (Actually, CLT uses a polynomial number of such zero-testing
parameters, and they prove that c encodes 0 if it passes the tests with respect to all of them, and
does not encode 0 otherwise.)

By CRT, we can add and multiply CLT encodings while preserving their form (per Equation 1)
as long as the numerators in Equation 1 do not grow too large - i.e., they do not “wrap” modulo Pi
for any i. The Pi’s must be chosen large enough to ensure that such wrapping never occurs for the
functions we will compute over the encodings. These additions and multiplications induce addi-
tions and multiplications on the underlying “messages” that are encoded, much like homomorphic
encryption.

Asymmetric settings. Like GGH, CLT generalizes easily to allow asymmetric graded encodings.
The simplest way to build asymmetric multilinear CLT encodings is simply to generate a random

zi ← Z∗Q for each asymmetric group, rather than a single z. For i ∈ [κ], an encoding in S
(m)
i now

has the form

c ≡ [m]pi + ci · pi
zi

mod Pi for i ∈ [s], (2)

The form of the zero-test parameter changes to:

pzt =
s∑
i=1

hi · ((
∏
i∈[κ]

zi) · p−1i ) ·
∏
j 6=i

Pj mod Q.

Similar to the symmetric case, multiplying pzt with an encoding in S
(0)
T (which has

∏
i∈[κ] zi in the

denominator) results in a mod-Q number that is small relative to Q.
Intuitively, the asymmetric form of the encodings limits how a user can meaningfully multiply

together encodings, so that each monomial it computes corresponds to multiplying together exactly
one encoding from each source group, so that it obtains an encoding with

∏
i∈[κ] zi in the denom-

inator. For example, the multilinear map cannot be used directly to solve decision Diffie-Hellman
over elements in S1, since this would involve multiplying together encodings from S1, which would
induce an uncancellable z21 in the denominator.

In the asymmetric setting the construction can naturally be translated to a setting where the
levels are described as sets rather than just a number as described in Definition 2.

Composite order setting. Finally we want to be able to encode subrings of ZN with CLT
encodings. Unfortunately as described in [GLW14, Section B.6] it is not safe, to give an encoding
of some m that is in the index-pi subring of ZN . However, GLW present a simple way to fix the
problem. They avoid letting any pi be “isolated” by giving it many - i.e., poly(λ) - “buddies”: any
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encoding that an attacker sees is 0 modulo pi and all of its prime buddies {pj}, or is (whp) nonzero
for all of them. As we discuss in [GLW14, Section B.6], this approach seems resilient to attacks.
We will not provide further details on specific parameters needed for the implementation of this
scheme and refer the reader to [GLW14, Section B.4] for more details.

A.2 Implementing the Extension Functionality

Now we are ready to describe how the CLT graded encoding scheme can be extended to support the
extension functionality that we need. Recall that, we need to realize the function extend(params,V, {ei}i)
that takes as input a set V ⊆ U and a sequence of encodings ei each at level vi ⊆ V and outputs a new
set V′ and encodings e′i at appropriate levels v′i ⊆ V′ such that if V = {1, . . . t} then V′ = {1′, . . . t′}
and for each i we have that if vi = {j1, . . . jk} then v′i = {j′1, . . . j′k} where j1, . . . jk ∈ {1, . . . , t}.

For each i ∈ V sample a fresh z′i ← Z∗Q subject to the constraint that
∏
i∈V z

′
i = 1 and translate

each encoding ei at level vi to e′i = ei∏
j∈vi

z′j
.

Note that we also need to generate the description of the function fV′→V(e′,W′) that takes as

input e′ ∈ S(α)
W′ where V′ ⊆W′ and outputs an encoding e ∈ S(α)

V∪(W′\V′). Since
∏
i∈V z

′
i = 1 therefore

we note that just the identity function serves the purpose of fV′→V.
Finally note that the extend† function also outputs additionally randomizers (encodings of 0)

for each level it outputs an encoding at. This can be achieved by generating encodings of 0 at levels
v′i and then taking random linear combinations.
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