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Abstract

Previously known functional encryption (FE) schemes for general circuits relied on indistin-
guishability obfuscation, which in turn either relies on an exponential number of assumptions
(basically, one per circuit), or a polynomial set of assumptions, but with an exponential loss in
the security reduction. Additionally these schemes are proved in the weaker selective security
model, where the adversary is forced to specify its target before seeing the public parameters.
For these constructions, full security can be obtained but at the cost of an exponential loss in
the security reduction.

In this work, we overcome the above limitations and realize a fully secure functional en-
cryption scheme without using indistinguishability obfuscation. Specifically the security of our
scheme relies only on the polynomial hardness of simple assumptions on multilinear maps.

As a separate technical contribution of independent interest, we show how to add to exist-
ing graded encoding schemes a new extension function, that can be though of as dynamically
introducing new encoding levels.

1 Introduction

In traditional encryption schemes, decryption control is all or nothing: the sender encrypts its
message under a particular key, and anyone with the corresponding secret key can recover the mes-
sage. In contrast, functional encryption (FE) schemes [BSW11, O’N10] allow the sender to embed
sophisticated functions into secret keys. More specifically, an FE scheme includes an authority,
which holds a master secret key and publishes public system parameters. The sender uses the
public parameters to encrypt its message m to obtain a ciphertext ct. A user may obtain a secret
key skf for the function f from the authority (if the authority deems that the user is entitled).
This key skf can be used to decrypt ct to recover f(m); and nothing more. In a recent result, Garg
et al. constructed the first FE scheme for general circuits using indistinguishability obfuscation
(iO) [GGH+13b].

While tremendous progress has been made on justifying the security of iO [BR14, BGK+14,
PST14, GLW14, GLSW14], ultimately the security of the resulting constructions still either re-
lies on an exponential number of assumptions [BR14, BGK+14, PST14] (basically, one per cir-
cuit), or a polynomial set of assumptions, but with an exponential loss in the security reduc-
tion [GLW14, GLSW14]. For example, the recent iO scheme based on the MSE assumption
[GLSW14] crucially uses complexity leveraging in its proof — specifically, the number of hybrids
in the proof is proportional to 2|x| where x is the input, and each hybrid “examines” a particular
input x and implicitly “verifies” that the circuits C0, C1 in question satisfy C0(x) = C1(x). Garg et
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al. [GGSW13] provide an intuitive argument suggesting that either of these shortcoming might be
inherent when realizing indistinguishability obfuscation.1 This intuitive argument however is not
applicable to FE schemes. In this work we ask the following fundamental question:

Can we construct a functional encryption scheme for general circuits assuming only polynomial
hardness of simple computational assumptions?

Another limitation of the Garg et al. [GGH+13b] scheme is that it is only selectively secure –
that is, they have been proved secure only in a weaker model in which the adversary is required
to specify the message m for its challenge ciphertext before it sees the public parameters of the
FE scheme. We would like FE for circuits that is fully secure — i.e., that allows the adversary to
choose m∗ adaptively after seeing the public parameters and even responses to some of its private
key queries. In general, one can trivially reduce full security to selectively security via complexity
leveraging – essentially the reduction tries to guess the adversary’s chosen m, and succeeds with
probability 2−|m| – but complexity leveraging loses a 2|m| factor in the reduction to the underlying
hard problem that we would like to avoid.

Can we construct a fully secure functional encryption scheme for general circuits without an
exponential loss in the security reduction?

Achieving full security without the lossiness of complexity leveraging is just as important for
FE for circuits as it was for identity-based encryption (IBE) ten years ago [Wat05, Gen06, Wat09],
for both efficiency and conceptual reasons.

1.1 Our Results

In this work, we give positive answers to both questions above. Specifically we construct the first
fully secure FE scheme for circuits without using indistinguishability obfuscation or any exponential
loss in security reductions. Our scheme uses composite order multilinear maps in the asymmetric
settings [BS02, GGH13a, CLT13] and security is based on polynomial hardness of fixed, relatively
simple assumptions.

We extend the existing graded encoding schemes [GGH13a, CLT13] with a new extension func-
tion that serves as a crucial ingredient in our construction. This extension function serves a role
similar to that of the straddling set systems of [BGK+14], binding various encodings so that only
certain subsets can be paired together. The important difference is that the extension function
allows the binding to happen dynamically and publicly. This allows, for example, an encrypter to
bind ciphertext encodings together so that encodings from different ciphertexts cannot be “mixed
and matched.” We believe that this new technique will be useful in other contexts as well.

Theorem 1 (informal). Assuming (1) simple polynomial assumptions on extendable graded en-
codings and (2) the existence of PRFs that are both puncturable (in the sense of [BW13, BGI14,
KPTZ13]) and can be evaluated in NC1, then fully secure functional encryption for all polynomial-
sized circuits exists.

An immediate consequence of our scheme is a traitor tracing scheme where ciphertexts, se-
cret keys, and public keys are short, namely logarithmic in the number of users. Previous such
schemes [GGH+13b, BZ14] all relied on iO. Our scheme is therefore the first traitor tracing scheme
with small parameters whose security does not rely on iO or an exponential loss in the security
reductions.

1Garg et al. [GGSW13] only provide the intuition for witness encryption but it extends to iO.
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Overcoming Cheon et al. [CHL+14] attacks. In a very recent result Cheon et al. [CHL+14]
noted that giving out encodings of zero makes the CLT multilinear maps totally insecure. In
particular, given encodings of zero, they can recover all quantities that were meant to be kept
secret. We describe more details of the attack in Section 7.

In our constructions we do need to use composite order multilinear maps and we do need to give
out encodings of zero for re-randomization. However given the Cheon et al. attack we can not give
these out directly under the CLT scheme. Therefore we provide a transformation on CLT maps
that seems to resist these attacks. In particular we provide a technique for embedding an encoding
inside a matrix that allows for us to give out implicit encodings of zero that are still sufficient for
re-randomization. Since these encodings are not given out explicitly we can plausibly expect the
attacks to not work in these settings. A similar technique was used by Garg et al. [GGH+13b] to
hide encodings of zero to the Barrington’s permutation matrices. This hiding was achieved by pre-
multiplying and post-multiplying the Barrington’s matrices by additional randomization matrices.
We describe the fix in detail in Section 7.

We also describe a variant of our scheme that eliminates re-randomization parameters alto-
gether. The drawback of this variant is that the underlying computational assumptions we need to
prove security become somewhat more complicated.

We state the computational assumptions needed for our construction formally and note that
even in light of these new attacks, it still seems plausible that some variant of the known schemes,
e.g. the one we describe in the paper, satisfies these assumptions.

1.2 Independent Work

In a very recent independent work, Waters [Wat14] constructs a fully secure functional encryp-
tion (FE) scheme using indistinguishability obfuscation (iO) [GGH+13b] and one-way functions.
Water’s result has the advantage of being generic: any indistinguishability obfuscator or one-way
function will suffice for his construction, whereas we require multilinear maps with specific proper-
ties. However, the focus of this work is to avoid indistinguishability obfuscation altogether and to
build fully secure functional encryption using simpler, though less generic tools (multilinear maps
and simple assumptions involving them).

One may try to combine Waters [Wat14] fully secure FE scheme with the indistinguishability
obfuscator of Gentry et al. [GLSW14], whose security is based on simple assumptions on multilinear
maps. The result would be a fully secure functional encryption scheme whose security is based
on simple assumptions on multilinear maps. However, the reduction in [GLSW14] involves an
exponential loss of security, meaning complexity leveraging is required and the assumptions on
multilinear maps must be assumed secure against sub-exponential time adversaries. In this setting,
static security and full adaptive security are equivalent, and so a fully secure scheme can be obtained
by combining [GLSW14] with any selectively secure FE scheme, such as the original scheme of Garg
et al. [GGH+13b].

In contrast, all reductions for our scheme are polynomial, meaning we only require polynomial
hardness of the underlying multilinear map assumptions. Ours is the first scheme to obtain security
in this setting, even among selectively secure schemes.

1.3 Overview of Our Techniques

In this section we describe the high-level ideas behind our construction. We start by providing
general intuition on how we aim to avoid obfuscation. Subsequently, we will elaborate on our
methodology and the intermediate abstraction of slotted FE that we use.
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Though the final aim of this work is to avoid the use of obfuscation in realizing functional
encryption, we build upon techniques that have previously been used to realize indistinguishability
obfuscation. We start by recalling some of these tools. An indistinguishability obfuscator iO guar-
antees that given two functionally equivalent circuits C1 and C2, i.e. for every input x we require
that C1(x) = C2(x), the two distributions of obfuscations iO(C1) and iO(C2) are computationally
indistinguishable. Known constructions of obfuscation build on the information theoretic argument
of Kilian [Kil88] which provides security only when evaluation on a single input is allowed. In more
detail, consider a circuit C that takes n bits as input. Kilian provides a mechanism for garbling
C into garbled components {C̃i,b}i∈[n],b∈{0,1}, such that access to the components {C̃i,xi}i∈[n] al-
low computation of C(x) while simultaneously preserving perfect secrecy of the circuit C. Note
that here for each i ∈ [n] only one of the two values C̃i,0 and C̃i,1 is disclosed. This is similar to
Yao’s [Yao82] garbled circuits construction except that Kilian’s construction is limited to log depth
circuits but achieves a stronger information theoretic security. However, obfuscation schemes need
to enable secure evaluation on potentially any input and not just on one pre-specified input. All
known constructions of obfuscation achieve this additional functionality as follows: the obfuscation
of a circuit C consists of the terms {Ĉi,b}i∈[n],b∈{0,1} where all these values are simultaneous dis-

closed. Just like Kilian, terms {Ĉi,xi}i∈[n] allow for evaluation of C(x). This new garbling method,

denoted by notation Ĉ, has the additional property that it hides the circuit C in the sense of
indistinguishability obfuscation.

Intuition behind previous constructions of Functional Encryption. Typical obfuscation
based functional encryption schemes are constructed as follows. The setup procedure of the func-
tional encryption scheme generates a public-secret key pair (pk, sk) of a public key encryption
scheme and sets the public parameters for the functional encryption scheme to be pk. A message m
is encrypted under the functional encryption scheme by just encrypting it to pk. Finally a private
key for a function f is set to be the obfuscation of a circuit that outputs the evaluation of the
function f on the message obtained by decrypting the ciphertext provided to it as input. The
secret key sk is embedded inside this circuit for enabling decryption.

Our Starting Idea. Our starting idea in trying to avoid the use of obfuscation in realizing
functional encryption is that even though a private key (which is an obfuscation) should work for
arbitrary ciphertexts, the security requirement is much weaker — specifically, security is required
only for the challenge ciphertext. We build on this observation; isolating the specific input for
which security is desired and using the Kilian’s information theoretic argument just for this input.
Doing this isolation and enabling the Kilian’s information theoretic argument is technically quiet
challenging and requires us to build new techniques. We elaborate on this next.

As described earlier obfuscation of a circuit C consists of {Ĉi,b}i∈[n],b∈{0,1} and knowledge of

{Ĉi,xi}i∈[n] allow for evaluation of C(x). The starting point for our new functional encryption
scheme is to split these components of garbled C being generated as part of the obfuscation between
the ciphertext and the private key. In other words the ciphertext and secret key provide parts of
the obfuscation, that when put together allow for computation.

We interpret the input x to constitute of two parts m and f and the circuit C to be universal
circuit that evaluates and outputs f(m). Here m is the message being encrypted and the encrypter
is expected to provide the components corresponding to these parts. The components for the private
key itself are provided by the trusted authority. More concretely, denoting Im = {0, 1, . . . , |m| − 1}
and If = {m,m+1, . . . , |m|+|f |−1}, the public key consists of {Ĉi,b}i∈Im,b∈{0,1}. In order to encrypt

a message m the encrypter chooses the components {Ĉi,mi}i∈Im and further randomizes and bundles
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them (using an extension function that is explained later) to obtain the ciphertext {Ci,mi}i∈Im .
The trusted authority generates the private keys analogously by randomizing and bundling together
appropriate components, namely {Ĉi,fi}i∈If and obtaining {Ci,fi}i∈If as the secret key. Additional

private keys can be generated in an analogous manner. Note that {Ci,mi}i∈Im and {Ci,fi}i∈If
together form a whole program that is executable on one input alone, bringing us closer to Kilian
for arguing security.

Making this idea work involves a careful hybrid argument, isolating one secret key and a cipher-
text at a time in order to apply Kilian’s information theoretic argument. We specifically achieve
this via a primitive that we call slotted FE :

Slotted FE. In a slotted FE scheme, ciphertexts and secret keys contain multiple slots, and each
slot i can either be “active” (i.e., contain an actual message or function) or “inactive” (empty).
Decryption is defined by taking all slots that are active in both the ciphertext and secret key,
and computing fi(mi) for those slots. If all slots agree on the result, that result is the output of
decryption. If the slots do not agree, the output is unspecified. Ciphertexts and secret keys are
generated by the following procedures:

• Slotted encryption is a procedure requiring the master secret, and it can produce an
arbitrary ciphertext, containing any number of active slots with any messages in those slots.

• Unslotted encryption is a public procedure that can produce a ciphertext where a special
slot 0 contains an arbitrary message, and the rest of the slots are inactive.

• Slotted key generation is a procedure requiring the master secret, and it can produce an
arbitrary secret key containing any number of active slots with any functions in those slots.

• Unslotted key generation is a convenient shorthand for the special case of slotted key
generation, producing a secret key with active slot 0 and the rest of the slots inactive.

Clearly, slotted FE is a strict generalization of standard FE, we can recover the standard notion by
only using slot 0 and the unslotted procedures. However the new primitive lets us consider more
refined security properties. Specifically, we define a small set of “local security properties” that can
be mapped to simple assumptions on the underlying graded-encoding scheme, and prove that they
imply our desired security notion for the induced FE scheme. Importantly, these properties should
be strong enough to yield adaptive security, but not too strong so as to imply function-hiding (and
thus obfuscation). This is somewhat similar on a high level to the approach from [GLW14, GLSW14]
(e.g., the notion of “tribes schemes”), but the technical details are very different.

Our security properties for slotted FE are defined in Sections 3.1 and 3.2. They all follow the
standard indistinguishability game between the FE adversary and a challenger, but limit the types
of queries that the adversary can use. For example, one such notion requires indistinguishability
only when each key-pair-query that the adversary makes contains two identical sets of slots, the
two challenge plaintexts only differ in a single pair of slots in which one plaintext has (x∗,⊥) and
the other has (⊥, x∗), and moreover all the secret-key queries have the same function between these
two slots. (We call this property “Ciphertext moving,” see Section 3.1.)

Another advantage of using slotted FE is that it allows us to “bootstrap” the construction from
NC1 to all circuits. Our basic slotted FE scheme in Section 4 can only handle log-depth circuits
(NC1), and unfortunately we do not know of any black-box way of boosting FE for NC1 into FE
for all circuits without requiring function hiding (and thus obfuscation)2. However, we show that

2We note that Gorbunov, Vaikuntanathan and Wee [GVW12] show a general transformation from NC1 to poly-
size circuits, but the security proof relies on the underlying FE scheme being simulation secure. Such security is
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the “local properties” of our slotted FE can be used for this “bootstrapping” transformation. In
this sense, slotted FE seems to be “the right level of abstraction” for this construction.

Our Slotted FE for NC1. Our slotted FE for NC1 is related to current constructions of iO for
NC1 [GGH+13b, BR14, BGK+14, PST14, GLSW14]. Roughly, we choose a universal NC1 circuit
U(f,m) = f(m), and convert U into a branching program BP . We then randomize BP using
Kilian randomization, and place the resulting matrices “in the exponent” of an asymmetric graded
encoding roughly as follows:

• In order to implement slots, we use a composite-order graded encoding, where each slot
corresponds to a subgroup.

• The setup procedure generates the public parameters by taking the matrices corresponding
to the m input, projecting them down into the first subgroup (corresponding to slot 0), and
publishing encodings of these matrices in the appropriate levels.

• The key generation procedure takes as input a vector (f0, . . . , fn−1), where some of the fi = ⊥.
For all fi 6= ⊥, it selects the matrices corresponding to fi, and projects them down to the ith
subgroup, and encodes these matrices in the appropriate levels. Then it adds the encodings
for different fi together, and outputs the resulting encodings. By the Chinese Remainder
Theorem, the ith subgroup of the resulting encoding will contain the matrices for function
fi. The result is that the secret key encodes function fi in slot i.

• The slotted encryption procedure is analogous to the slotted key generation procedure, except
that it operates on the matrices corresponding to the message input.

• The unslotted encryption procedure on input m takes the public parameters, selects the
matrices corresponding to m, re-randomizes those matrices, and outputs the results.

• Finally, the decryption procedure multiplies the matrices for a secret key and ciphertext
together, and then performs a zero test on one entry of the resulting matrix. Each of the
subgroups act independently, and the result of multiplication will be a matrix where subgroup
i contains the matrix corresponding to fi(mi) (or the subgroup is empty if either ciphertext or
secret key are inactive). If all of the fi(mi) = 0, the zero test gives 0. If all of the fi(mi) = 1,
then the zero test gives 1.

Using subgroup-decision assumptions on multilinear graded encodings, we are able to prove
various security properties for our scheme, such as the “ciphertext moving” property mentioned
above. These properties allow us to move messages and secret keys between slots. However, for
the application to (un-slotted) functional encryption, we actually want the ability to change the
values of messages. To accomplish this, we first use the existing properties to isolate the ciphertext
and one secret key in their own slot. At this point, we can invoke Kilian’s information-theoretic
argument in the corresponding subgroup, since the matrices given out all correspond to a single
input. We prove a new property called “single-use hiding” which allows us to arbitrarily change the
ciphertext and secret key in this slot, provided decryption is unaffected. By carefully repeating this
process for each secret key, we are ultimately able to change the message encrypted, thus proving
the security of the derived un-slotted functional encryption scheme.

impossible in the setting where the number of secret key queries in unbounded [AGVW13] , which is the setting
studied in this work.
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Extending graded encodings. A major issue with the above sketch is that matrices from
different ciphertexts can be “mixed and matched” (in particular, a target matrix can be mixed
with a ciphertext generated from the public parameters) which may allow the adversary to learn
more than he should. Different secret keys can be mixed and matched as well. Similar problems
arose in the obfuscation setting, and one way it was solved was by using so-called straddling set
systems [BGK+14].

In our setting, this would involve assigning a different set of levels to each ciphertext, and
requiring that the levels assigned to two different ciphertext are incompatible. However, ciphertext
generation is a public procedure, meaning the public parameters must include enough information
to encrypt into any possible level that a ciphertext component will be in. But then the adversary
can always generate a ciphertext in levels matching the target ciphertext, which then allows mixing
the ciphertexts together. Roughly, the problem is that access control to levels is all or nothing:
either anyone can generate encodings in a level, or no one except the master party can.

We solve this problem by developing a new extension procedure on graded encodings, which
lets any user extend the graded encoding by generating new levels. The user that ran the extension
procedure will have to ability to map components from existing levels to the new level, but other
users will not. If we apply the procedure to ciphertext components, the components will effectively
be bound together in the new extended levels, since the adversary cannot move other ciphertexts
into these levels.

In order to allow decryption, the new levels need to be mapped back to the original set of
levels. However, the extension procedure publishes just enough information to map back to the
original levels only after all the ciphertext components have been combined. Once the ciphertext
components are all combined, it is impossible to mix the ciphertext with another ciphertext.

While the extension procedure falls outside of the traditional graded encoding abstraction, we
stress that current graded encoding candidates [GGH13a, CLT13] support the procedure without
any modification to the graded encodings.

Using our new notion of extendable graded encodings, we prove the following:

Lemma 1 (informal). Assuming simple polynomial assumptions on extendable graded encodings,
then fully secure slotted functional encryption exists for NC1 circuits.

Boosting to FE for all circuits. In order to boost to functional encryption for all circuits, we
proceed in two steps.

• We first build functional encryption for NC1 randomized functionalities from our slotted
functional encryption scheme. This is accomplished by including a secret key k for a PRF in
the ciphertext, and generating the randomness for the functionality by applying the PRF to
a seed s contained in the secret key. In order to prove security, we will need to puncture the
key k at s, so we need puncturable PRFs that can be evaluated in NC1 [BLMR13].

• Next, we boost to FE for all circuits. Basically, a secret key for a function f will output not
f(m), but instead a randomized encoding [IK00] f̂(m), from which f(m) can be computed,
but m itself is hidden. Notably, f̂(m) can be computed in log-depth, so our randomized
functional encryption for NC1 suffices.

Lemma 2 (informal). Assuming fully secure slotted functional encryption for NC1 and PRFs that
are both puncturable and can be evaluated in NC1, then fully secure functional encryption for all
polynomial-sized circuits exists.
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2 Preliminaries

In this section, we start by providing the definition of adaptively secure FE for general circuits. Next
we recall the notions of branching programs and graded encoding schemes and develop notation
that will be needed in our context.

2.1 Adaptively Secure FE

A functional encryption system consists of four algorithms: Setup,KeyGen,Encrypt, and Decrypt.

- Setup(λ): The setup algorithm takes in the security parameter λ as input and outputs the
public parameters MPK and a master secret key MSK.

- KeyGen(MSK, y): The key generation algorithm takes in the master secret key MSK, and
an attribute string y as input. It outputs a private key SKy for y. y is included as part of
the secret key.

- Encrypt(MPK,x): The encryption algorithm takes in the public parameters MPK, and a
message x as input. It outputs a ciphertext C.

- Decrypt(SKy, C): The decryption algorithm takes a private key SKy for attribute string y
and a ciphertext C (encrypting say the message x) as input and outputs the value C(x, y),
where C is a fixed universal circuit.

Correctness of the scheme requires that for correctly generated private keys for y and correctly
generated ciphertexts encrypting x, decryption yields C(x, y) except with negligible probability.

We will now give the security definition for adaptive FE. This is described by a security game
between a challenger and an attacker that proceeds as follows.

- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker.

- Query Phase I: The attacker queries the challenger for private keys corresponding to at-
tribute strings y1, . . . , yq1 , which the challenger provides.

- Challenge: The attacker declares two messages x0, x1. We require that ∀i ∈ [q1] we have
that C(x1, yi) = C(x0, yi). The challenger flips a random coin β ∈ {0, 1} and runs C ←
Encrypt(MPK,xβ). The challenger gives the ciphertext C to the adversary.

- Query Phase II: The attacker queries the challenger for private keys corresponding to
the attribute strings yq1+1, . . . , yq, with the added restriction that ∀i ∈ {q1, . . . , q} we have
C(x1, yi) = C(x0, yi).

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .
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2.2 Branching Programs

A branching program consists of a sequence of steps, where each step is defined by a pair of
permutations. In each step the the program examines one input bit, and depending on its value the
program chooses one of the permutations. The program outputs 1 if and only if the multiplications
of the permutations chosen in all steps is the identity permutation. In our setting, just like in
previous work it will be easier to work with matrix branching programs that we define next.

Definition 1 (Matrix Branching Program). A branching program of width w and length ` on n-bit
inputs is given by two 0/1 permutation matrices M0,M1 ∈ {0, 1}w×w, M0 6= M1 and by a sequence:

BP =
(
inp(i), Bi,0, Bi,1

)`
i=1

,

where each Bi,b is a permutation matrix in {0, 1}w×w, and inp(i) ∈ [n] is the input bit position
examined in step i. We require that, for all inputs x ∈ {0, 1}n,

∏̀
i=1

Bi,xinp(i) ∈ {M0,M1}

Let (α, β) be a position where M1[α, β] = 1 and M0[α, β] = 0. Call (α, β) a distinguishing
coordinate. The output of the branching program on input x ∈ {0, 1}n is as follows:

BP (x) =

(∏̀
i=1

Bi,xinp(i)

)
[α, β]

Theorem 2 ([Bar86]). For any depth-d fan-in-2 boolean circuit C, there exists an oblivious branch-
ing program of width 5 and length at most 4d that computes the same function as the circuit C.

Remark 1. In our functional encryption construction we do not require that the branching program
is of constant width. In particular we can use any reductions that result in a polynomial size
branching program.

For simplicity of notation, it will be convenient to consider two-input branching programs.3

Here, the input x ∈ {0, 1}2n is split into two inputs (x[0], x[1]). We then split inp into two functions:

• inp′ : [`] → {0, 1} where inp′(i) = dinp(i)/ne − 1. Basically, inp′ chooses which of the inputs
x[0] and x[1] inp points to.

• bit : [`]→ [n] where bit(i) = inp(i) mod n. Basically, bit chooses which bit of x[b] inp points
to, where b is the bit chosen by inp′.

Then we can write the branching program evaluation as

BP (x) =

(∏̀
i=1

Bi,x[inp′(i)]bit(i)

)
[α, β]

Remark 2. It is also straightforward to consider two-input branching programs where x[0] and x[1]
have different sizes. We treat them as the same size for convenience.

3Not to be confused with dual-input branching programs from [BGK+14].
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Kilian Randomization of Branching Programs. Let BP be a branching program as above.
Fix a ring R. Choose random invertible matrices R1, . . . , R`−1, and define a new branching program
BP ′ which is identical to BP , except that the matrices Bi,b are replaced with B̃i,b = Ri−1 ·Bi,b ·R−1i ,
where we take R0 = R` = Iw. We observe that

∏̀
i=1

B̃i,xinp(i) =
∏̀
i=1

Bi,xinp(i)

so that for every x we have that BP ′(x) = BP (x).
Moreover, we have the following theorem of Kilian:

Theorem 3 ([Kil88]). Fix any input x ∈ {0, 1}`, and let b = BP (x) = BP ′(x). Then the set of
matrices multiplied together to evaluate BP ′(x), namely the set{

B̃i,xinp(i)

}
i∈[`]

are distributed as uniform random w × w invertible matrices over R, conditioned on their product
being Mb.

2.3 Graded Encoding Scheme

Now, we describe the graded encoding scheme abstraction that will be needed in our context, mostly
following [GGH13a, CLT13, GLW14]. To instantiate the abstraction, we can use Gentry et al.’s
variant [GLW14] of the Coron-Lepoint-Tibouchi (CLT) graded encodings [CLT13]. This variant
is designed to emulate multilinear groups of composite order, and to allow assumptions regarding
subgroups of the multilinear groups. One key difference in our abstraction is a new extension
function that we add to the GGH graded encoding abstraction. This new functionality will be
crucial in our scheme. In Section 6 we briefly recall the CLT graded encodings and show how they
can be adapted to also support this extension functionality.4

Definition 2 (U-Graded Encoding System). A U-Graded Encoding System consists of a ring R

and a system of sets S = {S(α)
T ⊂ {0, 1}∗ : α ∈ R, T ⊆ U, }, with the following properties:

1. For every fixed set T , the sets {S(α)
T : α ∈ R} are disjoint (hence they form a partition of

ST
def
=
⋃
α S

(α)
T ).

2. There is an associative binary operation ‘+’ and a self-inverse unary operation ‘−’ (on {0, 1}∗)
such that for every α1, α2 ∈ R, every set T ⊆ U, and every u1 ∈ S(α1)

T and u2 ∈ S(α2)
T , it

holds that
u1 + u2 ∈ S(α1+α2)

T and − u1 ∈ S(−α1)
T

where α1 + α2 and −α1 are addition and negation in R.

3. There is an associative binary operation ‘×’ (on {0, 1}∗) such that for every α1, α2 ∈ R, every

T1, T2 with T1 ∪T2 ⊆ U, and every u1 ∈ S(α1)
T1

and u2 ∈ S(α2)
T2

, it holds that u1×u2 ∈ S(α1·α2)
T1∪T2 .

Here α1 · α2 is multiplication in R, and T1 ∪ T2 is set union.

4We note that the GGH encodings can also be extended to deal with this functionality as well but here we provide
this it only for the CLT encodings.
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CLT (and GGH) encodings do not quite meet the definition of graded encoding systems above,
since the homomorphisms required in the definition eventually fail when the “noise” in the encodings
becomes too large, analogously to how the homomorphisms may eventually fail in lattice-based ho-
momorphic encryption. However, these noise issues are relatively straightforward (though tedious)
to deal with.

Now, we define some procedures for graded encoding schemes. We start with the procedures
standard in the graded encoding literature [GGH13a, CLT13].

Instance Generation. The randomized InstGen(1λ,U, r) takes as inputs the parameters λ,U, r,
and outputs params, where params is a description of a U-Graded Encoding System as above
for a ring R = R1 × . . .×Rr. We assume R is chosen such that the density of zero divisors
in each Ri is negligible.

Note that setting r = 1 corresponds to the prime order setting, while r > 1 corresponds to
the composite-order setting.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S
(α)
φ for a

nearly uniform element α ∈R R. (Note that we require that the “plaintext” α ∈ R is nearly

uniform, but not that the encoding a is uniform in S
(α)
φ .)

Encoding. The (possibly randomized) enc(params, T, a) takes a “level-zero” encoding a ∈ S(α)
φ for

some α ∈ R and index T ⊆ U, and outputs the “level-T” encoding u ∈ S(α)
T for the same α.

Re-Randomization. The randomized reRand(params, T, u) re-randomizes encodings relative to

the same index. Specifically, for an index T ⊆ U and encoding u ∈ S
(α)
T , it outputs an-

other encoding u′ ∈ S
(α)
T . Moreover for any two u1, u2 ∈ S

(α)
T , the output distributions of

reRand(params, T, u1) and reRand(params, T, u2) are statistically indistinguishable.

Addition and negation. Given params and two encodings relative to the same index, u1 ∈ S(α1)
T

and u2 ∈ S
(α2)
T , we have an addition function add(params, T, u1, u2) = u1 + u2 ∈ S

(α1+α2)
T ,

and a negation function neg(params, T, u1) = −u1 ∈ S(−α1)
T .

Multiplication. For u1 ∈ S
(α1)
T1

, u2 ∈ S
(α2)
T2

such that T1 ∪ T2 ⊆ U, we have a multiplication

function mul(params, T1, u1, T2, u2) = u1 × u2 ∈ S(α1·α2)
T1∪T2 .

Zero-test. The procedure isZero(params, u) outputs 1 if u ∈ S(0)
U and 0 otherwise. Note that in

conjunction with the subtraction procedure, this lets us test if u1, u2 ∈ SU encode the same
element α ∈ R.

Next, we define two new extension procedures on graded encodings that we will use. Informally,
these procedures allow the creation of new levels, using only the public parameters of the graded
encoding. In particular, they take as input a subset of levels V of the universe U, and create a new
“clone” V′ of the levels in V that is disjoint from U. Since the levels lie outside U, they cannot
be zero-tested. Instead, the procedures output a function fV′→V which maps the level V′ back to
V, but does not allow mapping levels corresponding to any subsets of V′. Thus, the entire set V′
must be “filled out” before zero testing can happen. In particular, it is impossible to multiply an
element encoded at a subset of V′ with an element encoded at a subset of V and still be able to
perform zero-testing. In effect, this binds the encodings in V′ together, similar to how straddling
sets [BGK+14] where used in obfuscation.
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Extension. This procedure allows extending the graded encoding system by fresh asymmetric
levels. Specifically, extend(params,V, {ei}i) takes as input a set V ⊆ U and a sequence of
encodings ei each at level vi ⊆ V and outputs a new set V′,V′ ∩U = ∅ and encodings e′i each
at level v′i ⊆ V′ along with a public transformation function fV′→V such that:-

• Addition and multiplication procedures from above can be applied to encodings at these
new levels as well.

• Let V = {1, . . . t} then V′ = {1′, . . . t′} and for each i we have that if vi = {j1, . . . jk}
then v′i = {j′1, . . . j′k} where j1, . . . jk ∈ {1, . . . , t}.

• fV′→V(e′,W′) takes as input e′ ∈ S
(α)
W′ where V′ ⊆ W′ and outputs an encoding e ∈

S
(α)
V∪(W′\V′).

Extension†. This function extend† is the same as the previous function extend(params,V, {ei}i)
except that it also outputs additionally randomizers (encodings of 0) for each level it outputs
an encoding at.

In Section 6, we demonstrate how to obtain the above extension procedures from the GLSW
variant of the CLT encodings. We stress that, except for the new extension procedures, all the
procedures above are exactly the same as in [GLW14]. The extension functions are built on top
of the underlying graded encoding without any modifications to the existing procedures — in
particular, no extra terms are needed in the public parameters.

2.4 Other Cryptographic Primitives

Punctured PRFs. A punctured pseudorandom function (PRF) [BW13, BGI14, KPTZ13] is a
pseudorandom function PRF where the secret key k for the function can be punctured at an
arbitrary input x, arriving at a punctured key kx. kx allows the evaluation of PRF at all points
other than x: that is, PRF (kx, x′) = PRF (k, x′) as long as x′ 6= x. For security, we require that
the pair (kx, PRF (k, x)) is indistinguishable from the pair (kx, r) where r is chosen at random
independent of k.

The original pseudorandom function of Goldreich, Goldwasser, and Micali [GGM84] is punc-
turable. However, we will need puncturable PRFs that can be evaluated in NC1, and the GGM
construction does not satisfy this requirement. Instead, we will use the PRFs of Boneh, Lewi,
Montgomery, and Raghunathan [BLMR13], which are puncturable and can be evaluated in NC1.

Randomized Encodings Given a circuit C, a randomized encoding [IK00] is a pair of functions
Ĉ, Rec. Ĉ(x; r) is a randomized function taking the same inputs as C that “encodes” the evaluation
of C on input x. Rec takes as input e = Ĉ(x; r), and output C(x).

The goal of randomized encodings is to take a complex circuit C and “encode” the evaluation
of C on input x, where the encoding operation is much simpler than evaluating C directly. In our
case, C will be an arbitrary polynomial-sized circuit, and we require that Ĉ be computable in NC1.

The security notion we require from randomized encodings is weaker than typically required in
the literature. We require that, for two inputs x, x′ such that C(x) = C(x′), that Ĉ(x) and Ĉ(x′)
are computationally indistinguishable distributions.
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3 Slotted Functional Encryption

In this section, we define the notion of slotted functional encryption. Later we will show how
this scheme can be used to realize a functional encryption scheme for general circuits. A slotted
functional encryption scheme, is roughly a functional encryption with multiple “slots,” where each
slot roughly serves as an independent copy of the functional encryption scheme. For any ciphertext
or secret key, each slot is either active or inactive, and active slots will contain some bit string that
potentially varies from slot to slot. Decryption is well-defined only if all slots that are active in
both the ciphertext and the secret key agree on the output, in which case the result of decryption
is the agreed-upon output. Otherwise, the output is undefined. Slot 0 is a special slot and where
the public parameters rest. This is the slot that anyone can encrypt a message to; all the other
slots require secret parameters.

- Setup(λ, d,C): The setup algorithm takes in the security parameter λ, a number d of slots,
and a fixed universal circuit description C as inputs and outputs the public parameters MPK
and a master secret key MSK.

- KeyGenS(MSK,y): The slotted key generation algorithm takes in the master secret key
MSK, and a vector of attribute strings y ∈ {{0, 1}n ∪⊥}d as input. It outputs a private key
SK for y.

- KeyGen(MSK, y): The unslotted version of the key generation is just a convenient short-
hand, it runs KeyGen(MSK,y) where y = (y,⊥, . . . ).

- EncryptS(MSK,x): A private slotted encryption algorithm takes in the secret parameters
MSK, and a vector of messages x ∈ {{0, 1}n ∪ ⊥}d as input. It outputs a ciphertext C.

- Encrypt(MPK,x): a public unslotted encryption algorithm takes in the public parameters
MPK, and a single message x ∈ {0, 1}n as input. It outputs an encryption of the message
vector (x,⊥,⊥, ...)

- Decrypt(SK,C): The decryption algorithm takes a private key SK for attribute string y
and a ciphertext C (encrypting say the messages x). Let S ⊆ [d] be the set of active indices,
namely those i ∈ [d] where x[j] 6= ⊥ and y[j] 6= ⊥. If C(x[j], y[j]) = b for all active indices
i ∈ S, it outputs b. Otherwise, the output is undefined.

We note that a slotted functional encryption scheme yields in particular a functional encryption
using only the unslotted versions of the KeyGen and Encrypt procedures. Our goal will be to prove
security of the derived (unslotted) functional encryption scheme, using various security properties
of the full slotted scheme.

For security of slotted FE, consider the following general security game, parameterized by a
predicate P (which encodes the security property that we want to capture).

- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker. The challenger also flips a random coin β ∈ {0, 1}, which it keeps secret.

- Query Phase I: The attacker adaptively queries the challenger for private keys corresponding

to attribute vectors pairs y
(0)
i ,y

(1)
i ∈ {{0, 1}n ∪⊥}d for i = 1, ..., q1. The challenger responds

with the secret keys for y
(β)
i .

- Challenge: The attacker declares two message s vector x(0),x(1) ∈ {{0, 1}n ∪ ⊥}d. The
challenger responds with the ciphertext C ← EncryptS(MSK,x(β)).
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- Query Phase II: The attacker continues to adaptively queries the challenger for private

keys corresponding to attribute vectors pairs y
(0)
i ,y

(1)
i ∈ {{0, 1}n ∪ ⊥}d for i = q1 + 1, ..., q.

The challenger responds with the secret keys for y
(β)
i .

- Guess: The attacker outputs a guess β′ for β.

- Check: The challenger evaluates a predicate P on the secret-key and challenge queries:

c = P ({y(b)
i }i∈[q],b∈{0,1},x(0),x(1)). If the predicate holds (c = 1) then the challenger outputs

β′′ = β′. Otherwise the challenger outputs a random independent bit β′′.

The advantage of an attacker in this game is defined to be Pr[β = β′′]− 1
2 (and note that if c = 0

then the advantage is 0). The scheme is secure relative to the given predicate if feasible adversaries
can only have a negligible advantage.

The predicate P . The security game varies depending on the predicate P , with more permissive
predicates yielding stronger notions of security. At a minimum, we need P to exclude queries that
let the adversary trivially distinguish the left and right sides by applying the decryption procedure
on the secret keys and ciphertext received. Similarly, P must also exclude queries that let the
adversary distinguish the left and right sides by generating its own ciphertexts.

However, it is not hard to see that using a permissive predicate P that only excludes these trivial
attacks results in a security notion that is too strong: such permissive P would allow arbitrary
secret-key queries (y, y′) so long as C(x, y) = C(x, y′) for all x ∈ {0, 1}n, which means that we
directly get indistinguishability obfuscation. Specifically, for a universal circuit U , we obfuscate a
function f(x) = U(f, x) by publishing the FE secret key SKf . This lets anyone evaluate f(x) for
any x by encrypting x under the scheme, and then using SKf to decrypt f(x), and the security
notion would say that any two functionally equivalent f and f ′ are indistinguishable.

Below we therefore describe some simple predicates which are more restrictive, and hence they
correspond to weaker notions of security (which are still strong enough for our purposes). Very

roughly speaking, they all require that most of the time we have y
(0)
i = y

(1)
i and/or x(0) = x(1),

and they differ only in a handful of slots and/or a handful of queries.

3.1 Core Predicates

We begin by describing some simple core predicates that our slotted FE scheme should satisfy. In
the next section we show that the corresponding security properties imply also stronger properties,
including adaptively security of the induced unslotted FE scheme.

0. Slot Symmetry. P checks that there are two distinct non-special slots α 6= β, α, β 6= 0 such
that:

• x(0),x(1) are equal in all the slots other than α, β, and they swap the content of these two
slots. Namely x(0)[j] = x(1)[j] := x[j] for all j /∈ {α, β}, and x(b)[α] = x(1−b)[β] := x(b∗)

for b = 0, 1.

• Similarly for all i y
(0)
i ,y

(1)
i are equal in all the slots other than α, β, and they swap

the content of these two slots. Namely y
(0)
i [j] = y

(1)
i [j] := yi[j] for all j /∈ {α, β}, and

y
(b)
i [α] = y

(1−b)
i [β] := y

(b∗)
i for b = 0, 1.
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b = 0

x(0)[j] y
(0)
i [j]

j = α x(0∗) y
(0∗)
i

j = β x(1∗) y
(1∗)
i

j 6= α, β x[j] yi[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α x(1∗) y
(1∗)
i

j = β x(0∗) y
(0∗)
i

j 6= α, β x[j] yi[j]

Intuitively, this allows us to permute the contents of different slots without the adversary’s
notice.

1. Single-Use Message and Function Hiding. P checks that there is a non-special slot
α 6= 0 and a secret key query γ ∈ [q] such that:

• All key-queries other than γ contain two identical functions, y
(0)
i = y

(1)
i := yi ∀i 6= γ.

• Key-query γ has two keys that differ only in slot α, y
(0)
γ [j] = y

(1)
γ [j] := yγ [j] ∀j 6= α.

• The challenge query has two plaintexts that differ only in slot α, x(0)[j] = x(1)[j] := x[j]
∀j 6= α.

• Moreover, we have either the same functionality C(x(0)[α],y
(0)
γ [α]) = C(x(1)[α],y(1)[α]),

or the two plaintext slots are inactive x(0)[α] = x(1)[α] = ⊥, or the two key slots are

inactive y
(0)
γ [α] = y

(1)
γ [α] = ⊥.

b = 0

x(0)[j]
y
(0)
i [j]

i = γ i 6= γ

j = α x(0∗) y(0∗) yi[α]

j 6= α x[j] yi[j]

b = 1

x(1)[j]
y
(1)
i [j]

i = γ i 6= γ

j = α x(1∗) y(1∗) yi[α]

j 6= α x[j] yi[j]

Requirements:

C(x(0∗), y(0∗)) = C(x(1∗), y(1∗)) or

x(0∗) = x(1∗) = ⊥ or

y(0∗) = y(1∗) = ⊥

This allows us to argue both message and function hiding for one slot in one query, as long
as that slot is not the special slot that the public parameters can encrypt to.

2. Slot Duplication. P checks that there are two distinct slots α 6= β with β 6= 0 such that:

• All the slots other than β are the same between left and right, x(0)[j] = x(1)[j] := x[j]

for all j 6= β, and y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i and all j 6= β.

• Slots β on the left are inactive, x(0)[β] = ⊥ and y
(0)
i [β] = ⊥ for all i

• Slots β on the right are either inactive or equal to slots α, x(0)[β] ∈ {x[α],⊥} and

y
(0)
i [β] ∈ {yi[α],⊥} for all i.

b = 0

x(0)[j] y
(0)
i [j]

j = α x∗ y∗i
j = β ⊥ ⊥
j 6= α, β x[j] yi[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α x∗ y∗i
j = β x∗ or ⊥ y∗i or ⊥
j 6= α, β x[j] yi[j]

We stress that slot duplication can duplicate the slots of the ciphertext and secret keys
simultaneously. We can choose to duplicate the slots of all keys and the ciphertext, or any
subset of them.

3. Ciphertext Moving. P checks that there are two distinct slots α 6= β such that:
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• For each secret key, all slots (including α and β) are the same on the left and right:

y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i and j.

• For each secret key, slot α is identical to slot β on both the left and right: yi[α] =
yi[β] := y∗i (y∗i is potentially ⊥).

• For the challenge ciphertext, all slots other than α, β are the same between left and
right: x(0)[j] = x(1)[j] := x[j] for all j /∈ {α, β}.
• For the challenge ciphertext, slot β on the left and slot α on the right are inactive:

x(0)[β] = x(1)[α] = ⊥.

• For the challenge ciphertext, slot α on the left is equal to slot β on the right: x(0)[α] =
x(1)[β] = x∗.

b = 0

x(0)[j] y
(0)
i [j]

j = α x∗ y∗i
j = β ⊥ y∗i
j 6= α, β x[j] yi[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α ⊥ y∗i
j = β x∗ y∗i
j 6= α, β x[j] yi[j]

This lets us rearrange the slots of the challenge ciphertext, as long as each secret keys is
identical among the affected slots. We stress that ciphertext moving allows one of the slots
being rearranged to be the special slot.

4. Weak key moving. P checks that there are two distinct non-special slots α 6= β, α, β 6= 0
and secret-key query γ such that:

• For the challenge ciphertext, all slots (including α and β) are the same between left and
right: x(0)[j] = x(1)[j] := x[j] for all j.

• For the challenge ciphertext, slot α is identical to slot β on both the left and right:
x[α] = x[β] := x∗

• For each secret key query other than γ, all slots (including α and β) are the same on

the left and right: y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i 6= γ and all j.

• For secret key query γ, all slots other than α, β are the same on the left and right:

y
(0)
γ [j] = y

(1)
γ [j] := yγ [j] for all j /∈ {α, β}.

• For secret key query γ, slot β on the left and slot α on the right are inactive: y
(0)
γ [β] =

y
(1)
γ [α] = ⊥.

• For secret key query γ, slot α on the left is identical to slot β on the right: y
(0)
γ [α] =

y
(1)
γ [β] = y∗γ := y∗.

b = 0

x(0)[j]
y
(0)
i [j]

i = γ i 6= γ

j = α x∗ y∗

yi[j]j = β x∗ ⊥
j 6= α x[j] yγ [j]

b = 1

x(1)[j]
y
(1)
i [j]

i = γ i 6= γ

j = α x∗ ⊥
yi[j]j = β x∗ y∗

j 6= α x[j] yγ [j]

This is the secret key version of ciphertext moving, allowing us to rearrange the slots of a
secret key, as long as the challenge ciphertext is identical among the affected slots. The main
difference from ciphertext moving is that weak key moving does not allow us to modify the
special slot 0.
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We observe that the above properties, even in combination, will never allow the changing of
a secret key in slot 0. Thus, we will not be able to obtain any form of function hiding for the
derived unslotted functional encryption scheme just from the properties above. This serves as a
sanity check that the above properties are not too strong, and might be obtainable from simple
assumptions, and indeed we give a construction meeting these in Section 4.

3.2 Additional Derivable Predicates

Now we describe several additional properties that can be derived from the core properties above,
potentially “using up” several additional slots.

5. New Slot. P checks that there are distinct slots α 6= β with α not being the special 0 slot
(but β may be), such that:

• For each secret key, all slots (including α and β) are the same on the left and right:

y
(0)
i [j] = y

(1)
i [j] for all i and j.

• For each secret key, slot α is inactive on both the left and the right: y
(0)
i [α] = y

(1)
i [α] = ⊥

for all i

• For the challenge ciphertext, all slots other than slot α are the same on the left and
right: x(0)[j] = x(1)[j] for all j 6= α.

• For the challenge ciphertext, slot β is active on both the left and the right: x(0)[β] =
x(1)[β] 6= ⊥.

• For the challenge ciphertext, slot α is inactive on the left: x(0)[α] = ⊥

b = 0

x(0)[j] y
(0)
i [j]

j = α ⊥ ⊥
j = β x[β] 6= ⊥

yi[j]j 6= α, β x[j]

b = 1

x(1)[j] y
(1)
i [j]

j = α x∗ ⊥
j = β x[β] 6= ⊥

yi[j]j 6= α, β x[j]

Notice that there is no restriction to the value in slot α of the ciphertext on the right. Thus,
the allows us to take a slot that is inactive for all secret keys and the challenge ciphertext,
and place an arbitrary value in the slot for the ciphertext.

6. Strong key moving. P checks that there are distinct non-special slots α 6= β, α, β 6= 0, and
secret key query γ such that:

• For the challenge ciphertext, all slots (including α and β) are the same between left and
right: x(0)[j] = x(1)[j] := x[j] for all j.

• For each secret key query other than γ, all slots (including α and β) are the same on

the left and right: y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i 6= γ and all j.

• For secret key query γ, all slots other than α, β are the same on the left and right:

y
(0)
γ [j] = y

(1)
γ [j] := yγ [j] for all j /∈ {α, β}.

• For secret key query γ, slot β on the left and slot α on the right are inactive: y
(0)
γ [β] =

y
(1)
γ [α] = ⊥.

• For secret key query γ, slot α on the left is identical to slot β on the right: y
(0)
γ [α] =

y
(1)
γ [β] := y∗γ .
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• When decrypting the challenge with secret key γ, slot α on the left and slot β on the
right give the same result. In other words, C(x[α],y∗γ) = C(x[β],y∗γ)

b = 0

x(0)[j]
y
(0)
i [j]

i = γ i 6= γ

j = α x∗0 y∗

yi[j]j = β x∗1 ⊥
j 6= α x[j] yγ [j]

b = 1

x(1)[j]
y
(1)
i [j]

i = γ i 6= γ

j = α x∗0 ⊥
yi[j]j = β x∗1 y∗

j 6= α x[j] yγ [j]

Requirements:
C(x∗0, y

∗) = C(x∗1, y
∗)

This is a stronger form of secret key moving where we can actually rearrange secret key slots
even if the challenge ciphertext differs in those slots, as long as decryption is unaffected.

7. Weak ciphertext indistinguishability. P checks that there is a non-special slot α 6= 0
such that:

• For each secret key, all slots (including slot α) are the same on the left and right:

y
(0)
i [j] = y

(1)
i [j] := yi[j] for all i and j.

• For the challenge ciphertext, all slots except slot α are the same on the left and right:

x
(0)
i [j] = x

(1)
i [j] := x[j] for all j 6= α.

• For the challenge ciphertext, slot α decrypts to the same result for each secret key query:
C(x(0)[α],yi[α]) = C(x(1)[α],yi[α]).

b = 0

x(0)[j] y
(0)
i [j]

j = α x∗0 y∗i
j 6= α x[j] yi[j]

b = 0

x(1)[j] y
(1)
i [j]

j = α x∗1 y∗i
j 6= α x[j] yi[j]

Requirements:
C(x∗0, y

∗
i ) = C(x∗1, y

∗
i )∀i

In other words, we can change the value of the ciphertext in any slot other than the special
0 slot as long as decryption is unaffected. This almost gives us functional encryption, except
for the requirement that the slot is not the special slot.

8. Strong ciphertext indistinguishability. Same as above, except α can be 0.

3.3 Reductions

Now we describe several reductions showing that core properties described above are sufficient for
obtaining the additional derivable properties also described above, at the cost of “using up” several
additional slots. We note that in all of the reductions below, any existing property, whether core
or derived, is preserved in the reduction.

Lemma 3. (1) Single-use hiding and (2) slot duplication imply (5) new slot.

Proof. Use slot duplication to duplicate contents of the β slot into the originally empty α slot of the
ciphertext (don’t duplicate the secret keys), and then use single-use message and function hiding
to change the message to x∗, which is possible since there are no secret keys components in the α
slot.

Lemma 4. (1) Single-use hiding, (2) slot duplication, (3) and weak key moving for d + 1 slots
implies (6) strong key moving for d slots (all existing properties being preserved).
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Proof. We prove for α = 1, β = 2, the other cases being identical. We will move secret key γ ∈ [q].
Let slot d + 1 be a “scratch” slot, that is unused by the normal scheme. We will use slot d + 1
in the security proof. Below is the table of hybrids. For secret keys i ∈ [q], i 6= γ not included in
the table, slot d + 1 is inactive, and the rest of the slots remain the same throughout all hybrids.
Similarly, slots j 6= 1, 2, d+ 1 remain the same for the ciphertext and the γth secret key.

Hybrid
x[j] yγ [j]

comments
j = 1 j = 2 j = d+ 1 j = 1 j = 2 j = d+ 1

H0 x∗0 x∗1 ⊥ y∗ ⊥ ⊥
H1 x∗0 x∗1 x∗0 y∗ ⊥ ⊥ Slot duplication

H2 x∗0 x∗1 x∗0 ⊥ ⊥ y∗ Weak secret key moving

H3 x∗0 x∗1 x∗1 ⊥ ⊥ y∗ Single-use message hiding

H4 x∗0 x∗1 x∗1 ⊥ y∗ ⊥ Weak secret key moving

H5 x∗0 x∗1 ⊥ ⊥ y∗ ⊥ Slot duplication

Lemma 5. (0) Slot symmetry, (5) new slot, and (6) strong key moving for d+1 slots implies weak
(7) weak ciphertext indistinguishability for d slots (all existing properties being preserved).

Proof. We prove for α = 1, the other cases being identical. The slot d + 1 will be the “scratch”
slot, that is unused by the normal scheme but used in the security proof. In the hybrids below we
will use the strong key moving property. Note that the strong key moving only allows for changing
one key at a time but in the hybrids below we will need to change all the keys and this can be done
by a sequence of hybrids changing one key at a time.

Hybrid
x[j] ∀γ ∈ [q], yγ [j]

comments
j = 1 j = d+ 1 j = 1 j = d+ 1

H0 x∗0 ⊥ y∗ ⊥
H1 x∗0 x∗1 y∗ ⊥ New slot

H2 x∗0 x∗1 ⊥ y∗ Strong key moving (×q)
H3 ⊥ x∗1 ⊥ y∗ New slot

H4 x∗1 ⊥ y∗ ⊥ Slot Symmetry

Lemma 6. (2) Slot duplication, (3) weak ciphertext moving, and (7) weak ciphertext indistin-
guishability for d+ 1 slots implies (8) strong ciphertext indistinguishability for d slots (all existing
properties preserved).

Proof. Only need to add the case for slot 0. Just as before, the slot d+ 1 will be the “scratch” slot,
that is unused by the normal scheme but used in the security proof.

Hybrid
x[j] yi[j] Comments

j = 0 j = d+ 1 j = 0 j = d+ 1

H0 x∗0 ⊥ y∗i ⊥
H1 x∗0 ⊥ y∗i y∗i Slot duplication

H2 ⊥ x∗0 y∗i y∗i Weak ciphertext moving

H3 ⊥ x∗1 y∗i y∗i Weak ciphertext indistinguishability

H4 x∗1 ⊥ y∗i y∗i Weak ciphertext moving

H5 x∗1 ⊥ y∗i ⊥ Slot duplication
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4 Slotted Functional Encryption for NC1

We now give our slotted FE scheme for NC1. We will describe our scheme in terms of matrix
branching programs, and rely on Barrington’s Theorem (Theorem 2) to realize slotted FE for NC1

circuits. We describe our scheme for single bit outputs — it can easily be extended to multi-bit
outputs by running multiple instances of the scheme in parallel.
Setup(λ,BP, d): Given a universal 2-input matrix branching program

BP =
(
bit, inp, (Bi,b)i∈[`],b∈{0,1}

)
run params ← InstGen(1λ, {1, . . . , `}, d). Then, choose random matrices Ri ∈ R for i ∈ [` − 1], as
well as random αi,b for i ∈ [`], b ∈ {0, 1}. Let B̃i,b = αi,b · Ri−1 · Bi,b · R−1i for i ∈ [2, ` − 1], and

B̃1,b = α1,b ·B1,b ·R−11 and B̃`,b = α`,b ·R`−1 ·B`,b5. Compute Aji,b = [B̃i,b]
j
{i} for j ∈ [d]. (Here R0

and R` are set to identity.)
Let V be the subset of [`] that corresponds to the secret key: V = {i ∈ [`] : inp(i) = 0}, and

W be the subset of [`] that corresponds to the ciphertext: W = {i ∈ [`] : inp(i) = 1}. Then the
universe U = V ∪W.

The master public key is

MPK = (params, (A0
i,b)i∈W,b∈{0,1})

The master secret key consists of the Aji,b for i ∈ V ∪W.

KeyGenS(MSK,y): Given an attribute y ∈ {{0, 1}n ∪ ⊥}d, choose random βi ∈ R for i ∈ V, b ∈
{0, 1}, and output the secret key

SKy = extend

params,V,

βi ·
 ∑
j:y[j]6=⊥

Aji,y[j]bit(i)


i∈V


EncryptS(MSK,x): Given an attribute x ∈ {{0, 1}n ∪⊥}d, choose random βi ∈ R for i ∈W, b ∈
{0, 1}, and output the ciphertext

C = extend

params,W,

βi ·
 ∑
j:x[j] 6=⊥

Aji,x[j]bit(i)


i∈W


Encrypt(MPK,m): Given a message m ∈ {0, 1}n, choose random βi ∈ R for i ∈W, and output
the ciphertext

C = extend
(
params,W,

(
βi ·A0

i,mbit(i)

)
i∈W

)
Remark 3. Note that all the encodings given out in the ciphertext can be re-randomized (to noise σ′)
using the randomizer provided in the public parameters. We do not mention the re-randomization
above explicitly, for the sake of simplicity of notation.

5Using current graded encodings, it is not possible to publicly compute matrix inverses since users do not have direct
access to the underlying ring. However, the setup procedure would know a trapdoor for the graded encodings that
does allow computing the matrix inverse. Alternatively, we can replace R−1

i with the adjugate matrix Radj
i , encodings

of which can be computed publicly. The adjugate and matrix inverse only differ by a scalar multiple (namely, the
determinant), and since we multiply everything by a random scalar anyway, the distributions of encodings obtained
are identical in both approaches.
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Decrypt(MPK,SK,C): Given a secret key SK = fV′→V, (Ki)i∈V′ and a ciphertext C = fW′→W, (Ci)i∈W′ ,

let Di =

{
Ki if i ∈ V′

Ci if i ∈W′
, and compute the product

D = fV′→V

(
fW′→W

(∏
i∈U

Di

))

Then run the zero-test procedure on a distinguishing coordinate of D.

Correctness. Evaluation is carried out slot by slot. In slot j, if either K or C is inactive, then
the corresponding ring will be empty. Therefore, the result of the computation is 0 in slot j.

In a slot j where K and C are both active, then write Ki[j] = [βiαi,y[j]bit(i)B̃i,ybit(i) ]
j
{i′} and

Ci[j] = [βiαi,mbit(i)
B̃i,mbit(i)

]j{i′} for some index elements i′ to be the components of K,C in the ring

Rj . Let d[j] = (y[j],m[j]) ∈ {0, 1}2n. Then we can write

Di[j] = [βiαi,d[j]inp(i),bit(i)B̃i,d[j]inp(i),bit(i) ]
j
{i}

Therefore, the product
∏
i∈UDi[j] is equal to[∏

i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

B̃i,d[j]inp(i),bit(i)

]j
U′

=

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

Bi,d[j]inp(i),bit(i)

]j
U′

Where U′ = V′ ∪W′. Applying fW′→W to this encoding gives an encoding of the same product,
but relative to the set V′∪W, and then applying fV′→V gives the encoding relative to U. Therefore,

D[j] =

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)∏
i∈U

Bi,d[j]inp(i),bit(i)

]j
U

=

[∏
i∈U

(
βiαi,d[j]inp(i),bit(i)

)
MBP (d[j])

]j
U

We only care about ciphertexts and secret keys where the branching program evaluates the
same in every slot, so BP (d[j]) is the same for all active slots j; call the result b. Define γ[j] =
βiαi,d[j]inp(i),bit(i) projected down to ring Rj , and γ =

∑
j∈S γ[j] where S is the set of active slots.

Note that we only care about secret keys and ciphertext where there is at least one active slot.
Therefore with overwhelming probability γ 6= 0.

We can now write
D = [γMb]U

Then when we zero test a distinguishing coordinate of D, with overwhelming probability, the
result will match b.

4.1 Hardness Assumptions

Fix a universe U, a dimension d, and a partition of U into subsets V,W. For the assumptions below
we will assume that randomizers (encodings of zero) are provided for each index in U.

Definition 3 (Assumption 1). The following distributions are indistinguishable:( (
[si,j ]

j
{i}

)
i∈U,j>0

,
(

[ti]
1
{i}

)
i∈U

)
and

( (
[si,j ]

j
{i}

)
i∈U,j>0

,
(

[ti]
0,1
{i}

)
i∈U

)
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Assumption 1 appears hard because, in order to distinguish the challenge elements, it is required
to eliminate the component in R1. However, the only way to accomplish this is to pair with one of
the [si,j ]

j
{i} for j ≥ 2, which will zero out both R1 and R0.

Definition 4 (Assumption 2). The following two distributions are indistinguishable:( (
[si,j ]

j
{i}

)
i∈V,j>1

,
(

[si]
j
{i}

)
i∈W,j∈[d]

,
(

[ti]
0,1
{i}

)
i∈V

,

extend†
(
params,W,

{(
[ui,j ]

j
{i}

)
i∈W,j>1

,
(

[vi]
0
{i}

)
i∈W

} ) )
and( (

[si,j ]
j
{i}

)
i∈V,j>1

,
(

[si]
j
{i}

)
i∈W,j∈[d]

,
(

[ti]
0,1
{i}

)
i∈V

,

extend†
(
params,W,

{(
[ui,j ]

j
{i}

)
i∈W,j>1

,
(

[vi]
1
{i}

)
i∈W

} ) )
Assumption 2 appears hard because the challenge elements can only be paired with other

extended elements and elements in V, and the non-challenge extended elements and elements in V
are all identical in R0 and R1.

4.2 Security Proof

Theorem 4. Assuming Assumptions 1 and 2, the scheme described above satisfies the core prop-
erties of the slotted FE scheme.

Slot Symmetry. Our scheme satisfies perfect slot symmetry, where the advantage of an even
infinitely powerful adversary is 0. This follows from the fact that slots correspond to sub-rings in
our scheme, and our subrings are generated in a totally symmetric manner.

Single-use Message and Function hiding. In our scheme, the matrices are just the matrices
from Kilian-randomized branching programs, where the randomization in each sub-ring is inde-
pendent. In the single slot j where changes are made, only the ciphertext and a single public key
are active. Let z = (x0, y0) be the ciphertext and secret key values active on the left side, and
z′ = (x1, y1) be the values on the right side. Then on the left side, only the matrices B̃i,z[inp(i)]bit(i) are
handed out in ring Rj , and by Theorem 3, these matrices are uniform random matrices subject to
their product being MC(x0,y0). Similarly, on the left size, the matrices handed out are uniform ran-
dom matrices subject their product being MC(x1,y1). Since C(x0, y0) = C(x1, y1), these distributions
are identical, so our scheme satisfies perfect single use hiding.

Slot duplication. We will prove slot duplication from Assumption 1. Let α ∈ [d] and β 6= α, 0.
Obtain the challenge for assumption 1, and re-order the rings so that the challenge has the form(
Si,j = [si,j ]

j
{i}

)
i∈U,j 6=β

, (Ti)i∈U where Ti = [ti]
α
{i} or Ti = [ti]

α,β
{i} . We now simulate the view of the

adversary as follows. Given a 0/1 matrix B and an encoding e, let e ·B be the matrix of encodings,
where e · B has e in any position where B has a 1, and an encoding of 0 in any position where B
has a 0 (note that we will be multipling e ·B by other matrices of encodings, so the encodings of 0
do not actually have to be computed, but merely serve as placeholders in the computation).
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Choose random matrices Ri ∈ R for i ∈ [` − 1], as well as random α′i,b, and set Aji,b = α′i,b ·
Ri−1 · (Si,j ·Bi,b) ·R−1i for j 6= β6. This formally sets αi,b = α′i,bsi,j in ring Rj , which leaves αi,b in

ring β undetermined. Define Dj
i,b = α′i,b ·Ri−1 · (Ti ·Bi,b) ·R

−1
i .

Using the Aji,b, we can simulate the public paramters as in the scheme. To answer the challenge
ciphertext query, there are two cases. If slot β is empty, then we can answer the challenge ciphertext
query as in the slotted FE scheme with the Aji,b (since β is empty, we do not need Aβi,b). If slot β is
not a copy of slot α on either side of the challenge, then we answer the challenge query by choosing
a random β′i ∈ R for i ∈W, b ∈ {0, 1}, and output the ciphertext

C = extend

params,W,

β′i ·
 ∑
j:x[j] 6=⊥,j /∈{α,β}

Aji,x[j]bit(i)
+Dj

i,x[α]bit(i)


i∈W


If the Ti are only encodings in ring Rα, then this correctly simulates the ciphertext when slot

β empty, formally setting βi = βi in rings other that Rα,Rβ, and setting βi = β′iti in rings Rα,Rβ

(the value in Rβ is irrelevant in this case). If the Ti are encodings in Rα ×Rβ, then this correctly
simulates the ciphertext when slot β is a copy of slot α, with the same formal settings of variables
as before.

We can perform a similar procedure to simulate the secret key queries. In the end, if Ti are
only encodings in Rα, then this correctly simulates the left side in slot duplication, where slot
β is empty. If Ti are encodings in Rα × Rβ, then this correctly simulates the right side of slot
duplication, where slot β is sometimes a copy of slot α. Thus, if Assumption 1 holds, the two cases
are indistinguishable.

Ciphertext moving We will prove ciphertext moving from Assumption 2. Let α 6= β, where α
is the slot the ciphertext is in, and β is the slot we wish to move the ciphertext to. Obtain the
challenge for assumption 2, and re-order the rings so that the challenge has the form(

Si,j = [si,j ]
j
{i}

)
i∈V,j /∈{α,β}

,
(
Si,j = [si,j ]

j
{i}

)
i∈W,j∈[d]

,
(
Ti = [ti]

α,β
{i}

)
i∈V

,

E = extend†
(
params,W,

{(
Ui,j = [ui,j ]

j
{i}

)
i∈W,j>1

,
(
Vi = [vi]

γ
{i}

)
i∈W

} )
where γ = α or γ = β.

We now simulate the view of the adversary as follows. Choose random matrices Ri ∈ R for
i ∈ [`− 1], as well as random α′i,b, and set Aji,b = α′i,b ·Ri−1 · (Si,j ·Bi,b) ·R

−1
i for i ∈ V, j /∈ {α, β},

and all i ∈W, j ∈ [d]. This formally sets αi,b = α′i,bsi,j in ring Rj , which leaves αi,b in rings α and

β undetermined for i ∈ V. Define Aαi,b +Aβi,b = α′i,b ·Ri−1 · (Ti ·Bi,b) ·R
−1
i for i ∈ V, which formally

sets αi,b = α′i,bTi in rings Rα and Rβ.

Now using the Aji,b values, we can simulate the public parameters (since we have all the values
for i ∈W, j = 0), as well as all the secret key queries (since all the secret key queries are identical

in slots α and β, meaning we will always have Aαi,b +Aβi,b together, neither being used separately).
To generate the challenge ciphertext, we use the result E of extension. Let U ′i,j be the components
in E corresponding to the Ui,j , and V ′i the components corresponding to the Vi. Then the challenge
ciphertext is set as

6We actually cannot compute the quantities R−1
i since we do not have access to the trapdoor for the encodings.

Therefore, we must actually compute Radj
i instead of R−1

i . However, since we multiply by a random scalar anyway,
the distribution of encodings is exactly the same as if we had computed the matrix inverse.
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C = fW′→W,

βi ·Ri−1 ·
(V ′i ·Bi,x∗bit(i)) +

∑
j:x[j] 6=⊥,j /∈{α,β}

(U ′i,j ·Bi,x[j]bit(i))

 ·R−1i

i∈W

Note that the randomization terms given in E must be used to randomize the components
above.

Where x∗ is the ciphertext term that is either in slot α or slot β. It is straightforward to show
that if the Vi are encodings in Rα, then this simulates the challenge ciphertext with x∗ in slot α,
and similarly if Vi are encodings in Rβ, the challenge ciphertext has x∗ in slot β. Therefore, since
the two cases are indistinguishable, ciphertext moving follows.

Weak key moving. This is basically the same as ciphertext moving, except that we swap the
roles of W and V. The main difference is that, because now the public parameters lie in V, and we
are not given terms in V containing α separate from β, we must have α, β 6= 0 so that we can still
generate the public parameters in R0.

4.3 Adaptively Secure FE for NC1

Our slotted FE scheme easily gives adaptively secure FE for NC1:

Theorem 5. If assumptions 1 and 2 above hold, then adaptively secure FE for NC1 exists.

Proof. Set d = 4 in our slotted FE scheme. Then Lemma 3, 4, 5, and 6 gives a slotted scheme with
d = 1 that satisfies strong ciphertext indistinguishability, which implies adaptive FE security.

5 Randomized Adaptive Functional Encryption for all Circuits

We now use our slotted FE scheme for NC1 to build functional encryption for all circuits. Our
construction proceeds in two steps:

• First, we build a randomized functional encryption scheme for NC1. In a randomized FE
scheme, the result of decryption is no longer a fixed value C(x, y), but a (pseudorandom)
sample from a distribution determined by x and y: f(x, y; r). Now we allow the secret keys
to decrypt the challenge ciphertext differently, but require that the resulting distributions are
computationally indistinguishable. This will require puncturable PRFs that can be evaluated
in NC1.

• Second, we will bootstrap the scheme above and obtain a randomized functional encryption
scheme for all circuits. This will require a randomized encoding scheme that can be computed
in NC1.

5.1 Slotted FE for NC1 to Randomized FE for NC1

We present the definition of a randomized FE scheme, first defined by Goyal et al. [GJKS13]. The
semantics of a randomized FE scheme are similar to standard FE, except that the ciphertext x and
secret key attribute y no longer define a fixed value C(x, y), but now define a distribution C(x, y; r).
Correctness is relaxed to requiring that the output of decryption is equal to C(x, y; r) for some r.

Security is defined by the following experiment:
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- Setup: The challenger runs the Setup algorithm and gives the public parameters MPK to
the attacker.

- Query Phase I: The attacker queries the challenger for private keys corresponding to at-
tribute strings y1, . . . , yq1 , which the challenger provides.

- Challenge: The attacker declares two messages x0, x1. We require that ∀i ∈ [q1] we have
that the distributions C(x1, yi; r) and C(x0, yi; r) are computationally indistinguishable. The
challenger flips a random coin β ∈ {0, 1} and runs C ← Encrypt(MPK,xβ). The challenger
gives the ciphertext C to the adversary.

- Query Phase II: The attacker queries the challenger for private keys corresponding to the
attribute strings yq1+1, . . . , yq, with the added restriction that ∀i ∈ {q1, . . . , q} we have that
the distributions C(x0, yi; r) and C(x1, yi; r) are computationally indistinguishable.

- Guess: The attacker outputs a guess β′ for β.

The advantage of an attacker in this game is defined to be Pr[β = β′]− 1
2 .

We note that the above security notion is not falsifiable in general; indeed, the condition that
C(x1, yi; r) and C(x0, yi; r) be indistinguishable is not even computable. However, in our application,
the distributions will be guaranteed to be indistinguishable.

Our Construction. Let (Setup′,KeyGen′S ,KeyGen′,Encrypt′S ,Encrypt′,Decrypt′) be a
slotted FE scheme for NC1 circuits. Let PRF,Punct be a puncturable PRF that can be evaluated
in NC1. Let f(x, y; r) be some randomized two-input function that can be evaluated in NC1. We
now give our randomized FE scheme:
Setup(λ, f): Run Setup′(λ,C, d) for constant d to be chosen later, and where C is defined as:

C( (x, k, e0, b) , (y, s, e1) ) =

{
f(x, y;PRF (k, s)) if k is not punctured at s

eb if k is punctured at s

KeyGen(MSK, y): Choose a random s ∈ {0, 1}λ, and define y = ((y, s, ε),⊥,⊥, . . . ), where ε is
the empty string. Then run KeyGen′(MSK,y)
Encrypt(MPK,x): Choose a random k ∈ {0, 1}λ, and define x′ = (x, k, ε, 0). Then run Encrypt′(MPK,x′).
Decrypt(MPK,SK,C): Run Decrypt′(MPK,SK,C).

Theorem 6. If a slotted FE scheme satisfying properties 1 through 7 for d = 4 exists, and punc-
turable PRFs exist that can be evaluated in NC1, then randomized FE for NC1 exists.

Before proving this, we get the following corollary:

Corollary 1. If assumptions 1 and 2 hold, and puncturable PRFs exist that can be evaluated in
NC1, then randomized functional encryption for NC1 exists

Proof. Set d = 6. Then applying Lemmas 3, 4, and 5 gives a slotted encryption scheme with d = 4
satisfying properties 1 through 7. Together with the puncutrable PRF evaluatable in NC1 and
Theorem 6, the corollary follows.

We now return to the proof of Theorem 6.
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Proof. Our proof follows a sequence of hybrids, given below. We start with the challenge ciphertext
encrypting x0. Then, we “detach” the ciphertext form the public parameters as in the proof of
Lemma 6 by copying the secret keys into a new slot (say slot 1), and then moving the challenge
ciphertext to this slot. Then, similar to the proof of Lemma 5, we create an additional new slot
(say slot 2) in the ciphertext containing x1, and gradually shift all the secret keys from being in
slots 0 and 1 to being in slots 0 and 2. We then eliminate slot 1 (which contains x0), and finally,
we rely on slot symmetry to swap the roles of slots 1 and 2. At the end, the ciphertext encrypts
x1 and all the secret keys are returned to normal.

However, moving the secret keys turns out to be a much more involved task than in the proof
of Lemma 5, namely because the result of decrypting the challenge ciphertext with a secret key
actually changes when we move the secret key to slot 2, meaning we cannot rely on strong secret
key moving. Nonetheless, by carefully combining secret key moving with PRF puncturing, we show
that we can, in fact, move the secret keys to slot 2.

Now we present the hybrids:

Hybrid 0. We start with the case where the challenge ciphertext encrypts x0. Then the ciphertext
contains x0, k, ε, 0 in 0, secret key i encrypts (yi, si, ε) in 0. Slots j ≥ 1 are inactive for the ciphertext
and all keys.

C[j] SKi[j]

j = 0 (x0, k, ε, 0) (yi, si, ε)

j = 1, 2, 3 ⊥ ⊥

Hybrid 1. This is identical to Hybrid 0, except that now all the secret keys are active in slots 0
and 1. We move from Hybrid 0 to Hybrid 1 using slot duplication.

C[j] SKi[j]

j = 0 (x0, k, ε, 0) (yi, si, ε)

j = 1 ⊥ (yi, si, ε)

j = 2, 3 ⊥ ⊥

Hybrid 2. This is identical to Hybrid 1, except that we “detach” the challenge ciphertext from
the public parameters by moving it from slot 0 to slot 1. This is done using ciphertext moving.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 (x0, k, ε, 0) (yi, si, ε)

j = 2, 3 ⊥ ⊥

Hybrid 3. This is identical to Hybrid 2, except that slot 2 is now active and contains x1, k, ε, 0.
This change follows from new slot.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 (x0, k, ε, 0) (yi, si, ε)

j = 2 (x1, k, ε, 0) ⊥
j = 3 ⊥ ⊥

Hybrid 4.` Hybrid 4.` is the same has Hybrid 3, except that the first ` secret keys are active in
slots 0 and 2, whereas the remaining q − ` secret keys are still active in slots 0 and 1.
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C[j] SKi[j] : i ≤ ` SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥
j = 3 ⊥ ⊥ ⊥

The ciphertexts are different in these slots, and the result of C may be different (though indistin-
guishable), so we cannot perform these hybrid steps directly using strong key moving and instead
need additional hybrids.

For ` ≤ q1 (i.e., the secret key queries before the challenge ciphertext is provided), this is relatively
easy:

Hybrid 4.`.1`≤q1 This is identical to Hybrid 4.(`−1), except that the PRF key k in the ciphertext
is punctured at the `th secret key tag, namely s`. Moreover, the value f` = f(x0, y`, PRF (k, s`)) =
C( (x0, k, ε, 0) , (y`, s`, ε) ) is hard-coded into the e0 component of the challenge ciphertext (since the
challenge ciphertext comes after the secret key here, we will know the value of f` when generating
the challenge ciphertext). Lastly, the indicator bit b is set to 0, telling C it should use the value
hard-coded in e0 as the output when needed.

Since si 6= s` for all i 6= `, puncturing at s` does not affect the evaluation of C for secret keys
other than `. Moreover, f` is set to the value that C outputted on the encryption of x0 before
puncturing, so this puncturing does not affect the evaluation of secret key ` in slot 1. Lastly, secret
key ` is not active in slot 2. Therefore, wee move from Hybrid 4.(` − 1) to 4.`.1`≤q1 using two
invocations of weak ciphertext indistinguishability, once for slot 1 and once for slot 2.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x0, y`, PRF (k, s`)), 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k
s` , f(x0, y`, PRF (k, s`)), 0) (yi, si, ε) ⊥ ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.2`≤q1 This is the same as Hybrid 4.`.1`≤q1 , except that we replace PRF (k, s`) with a
random r. The punctured PRF security of PRF shows that this change is indistinguishable. Now
f` is a fresh sample from the distribution f(x0, y`).

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x0, y`; r), 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k
s` , f(x0, y`; r), 0) (yi, si, ε) ⊥ ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.3`≤q1 This is the same as Hybrid 4.`.2`≤q1 , except that we replace f` with a random
sample from f(x1, y`), relying on the indistinguishability of samples.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x1, y`; r), 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k
s` , f(x1, y`; r), 0) (yi, si, ε) ⊥ ⊥

j = 3 ⊥ ⊥ ⊥ ⊥
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Hybrid 4.`.4`≤q1 This is the same as Hybrid 4.`.3`≤q1 , except that we move the `th secret key
from slots 0 and 1 to slots 0 and 2. Since the ciphertext is punctured at s` in slots 1 and 2,
when decrypting with the `th secret key, the hard-coded value f` will be outputted in both slots.
Therefore, we can rely on strong secret key moving to make this change.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x1, y`; r), 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , f(x1, y`; r), 0) (yi, si, ε) (y`, s`, ε) ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.`.5`≤q1 This is the same as Hybrid 4.`.3`≤q1 , except that we replace r with PRF (k, s`),
relying on punctured PRF security.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , f(x1, y`;PRF (k, s`)), 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , f(x1, y`;PRF (k, s`)), 0) (yi, si, ε) (y`, s`, ε) ⊥

j = 3 ⊥ ⊥ ⊥ ⊥

Hybrid 4.` for ` ≤ q1 We obtain Hybrid 4.` for ` ≤ q1 from Hybrid 4.`.5`≤q1 by unpuncturing the
PRF key in slots 1 and 2 of the ciphertext. This is obtained in a similar manner to the transition
from Hybrid 4.(`− 1) to Hybrid 4.`.1`≤q1 : we apply weak message indistinguishability twice, once
in each slot. Since the puncturing only affects the evaluation using the `th secret key, and slot 1
is inactive for key `, we can unpuncture in slot 1. Key ` is active in slot 2, but the correct value
is hard-coded in the challenge ciphertext, so unpuncturing does not affect the final outcome of the
evaluation.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) (y`, s`, ε) ⊥
j = 3 ⊥ ⊥ ⊥ ⊥

For ` > q1, i.e. secret key queries after the challenge, things are harder, since we can no longer
embed the result in the ciphertext, and must instead use the secret key. However, we do not have
any form of secret key indistinguishability (as this would imply iO), so the argument is a bit more
involved.

Hybrid 4.`.1`>q1 This is identical to Hybrid 4.(` − 1), except that we copy slot one of the
ciphertext into a new slot, slot 3. This is obtained from Hybrid 4.(`− 1) using new slot in slot 3,
or slot duplication.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ (y`, s`, ε) (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥ ⊥
j = 3 (x0, k, ε, 0) ⊥ ⊥ ⊥

Hybrid 4.`.2`>q1 This is identical to Hybrid 4.`.1`>q1 , except that we move the secret key from
slots 0 and 1 to slots 0 and 3. Since the ciphertext is identical in slots 1 and 3, we accomplish this
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using weak secret key moving.
C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥ ⊥
j = 3 (x0, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.3`>q1 This is identical to 4.`.2`>q1 , except that the PRF key k in slots 1 and 2 of the
ciphertext is punctured at the `th secret key tag, namely s`. Since secret key ` is non-existent in
slots 1 and 2, this follows from two applications of weak ciphertext indistinguishability.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x1, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x2, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x1, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.4`>q1 This is identical to 4.`.3`>q1 , except that the PRF key k in slot 3 of the chipher-
text is punctured at s`. Moreover, the value f` = f(x0, y`, PRF (k, s`)) = C( (x0, k, ε, 0) , (y`, s`, ε) )
is hard-coded into the e1 component of slot 3 of the `th secret key (since the challenge ciphertext
comes before the secret key here, we will know the value of f` when generating the secret key).
Lastly, the indicator bit b in slot 3 is set to 1, telling C it should use the value hard-coded in e1 as
the output when needed. These changes only affect slot 3, which is only present in the ciphertext
and `th secret key. Moveover, because the correct value is hard-coded in the secret key, the output
of C does not change. Therefore, we can rely on single-use hiding to make this transition.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x0, k
s` , ε, 1) ⊥ (y`, s`, f(x0, y`;PRF (k, s`)) ⊥

Hybird 4.`.5`>q1 This is identical to Hybrid 4.`.4`>q1 , except that we replace PRF (k, s`) with
a random r. Indistinguishability follows from the punctured PRF security of PRF . This amounts
to replacing f` with a fresh random sample from f(x0, s`).

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x2, k
s` , ε, 1) ⊥ (y`, s`, f(x0, y`; r)) ⊥

Hybrid 4.`.6`>q1 This is identical to Hybrid 4.`.5`>q1 , except that we eplace f` with a sample
from f(x1, s`). Indistinguishability follows from the indistinguishability of the samples.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x0, k
s` , ε, 1) ⊥ (y`, s`, f(x1, y`; r)) ⊥
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Hybrid 4.`.7`>q1 This is identical to Hybrid 4.`.6`>q1 , except that we replace r with PRF (k, si));
indistinguishability follows from the punctured PRF security of PRF .

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x0, k
s` , ε, 1) ⊥ (y`, s`, f(x1, y`;PRF (k, s`)) ⊥

Hybrid 4.`.8`>q1 This is identical to Hybrid 4.`.7`>q1 , except for the following modification in
slot 3: unpuncture k in the ciphertext, replace x0 with x1, and the remove hard-coding in secret
key. That is, ciphertext now encrypts (x2, k, ε, 0) in both slots 2 and 3, and secret key i has
(yi, si, ε) in slots 1 and 3. When the secret key ` decrypts the challenge ciphertext, the output is
still f(x1, y`;PRF (k, s`)), so the output remains unchanged. Thus this modification is made using
single-use hiding.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k
s` , ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k
s` , ε, 0) (yi, si, ε) ⊥ ⊥

j = 3 (x1, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.9`>q1 This is identical to Hybrid 4.`.8`>q1 , except that we unpuncture the PRF key
k in the ciphertext in slots 1 and 2, using two applications of weak ciphertext indistinguishability.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) ⊥ ⊥
j = 3 (x1, k, ε, 0) ⊥ (y`, s`, ε) ⊥

Hybrid 4.`.10`>q1 This is identical to Hybrid 4.`.9`>q1 , except that we move secret key ` to from
slots 0 and 3 to slots 0 and 2 using weak key moving.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x1, k, ε, 0) (yi, si, ε) (y`, s`, ε) ⊥
j = 3 (x1, k, ε, 0) ⊥ ⊥ ⊥

Hybrid 4.` for ` > q1 We arrive at Hybrid 4.` for ` > q1 from 4.`.10`>q1 by deactivating slot 3
in the ciphertext. This is done using new slot or slot duplication.

C[j] SKi[j] : i < ` SK`[j] SKi[j] : i > `

j = 0 ⊥ (yi, si, ε) (y`, s`, ε) (yi, si, ε)

j = 1 (x1, k, ε, 0) ⊥ ⊥ (yi, si, ε)

j = 2 (x2, k, ε, 0) (yi, si, ε) (y`, s`, ε) ⊥
j = 3 ⊥ ⊥ ⊥ ⊥
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Hybrid 4.q Setting ` = q, we now have that all the secret keys are in slots 0 and 2. We finish
off the proof by making a few more hybrid steps.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 (x0, k, ε, 0) ⊥
j = 2 (x1, k, ε, 0) (yi, si, ε)

j = 3 ⊥ ⊥

Hybrid 5 This is identical to Hybrid 4.q, except that we deactive slot 1 of the ciphertext. This
is accomplished using new slot.

C[j] SKi[j]

j = 0 ⊥ (yi, si, ε)

j = 1 ⊥ ⊥
j = 2 (x1, k, ε, 0) (yi, si, ε)

j = 3 ⊥ ⊥

Hybrid 6 This is identical to Hybrid 5, except that we move the ciphertext to slot 0 using
ciphertext moving.

C[j] SKi[j]

j = 0 (x1, k, ε, 0) (yi, si, ε)

j = 1 ⊥ ⊥
j = 2 ⊥ (yi, si, ε)

j = 3 ⊥ ⊥

Hybrid 7 Finally, this hybrid is identical to Hybrid 6, except that we deactivate slot 2 of the
secret keys using slot duplication. At this point, we have an encryption of x1.

C[j] SKi[j]

j = 0 (x1, k, ε, 0) (yi, si, ε)

j = 1 ⊥ ⊥
j = 2 ⊥ ⊥
j = 3 ⊥ ⊥

Through this sequence of hybrids, we have shown that Hybrid 0, which encrypts x0, is indistin-
guishable from Hybrid 7, which encrypts x1. This completes the proof.

5.2 Randomized adaptive FE for NC1 to FE for all circuits

Let (Setup′,KeyGen′,Encrypt′,Decrypt′) be an adaptive FE scheme for randomized NC1 cir-
cuits. For an arbitrary polynomial-sized circuit C, let Ĉ(x, y; s) be a randomized encoding for
the evaluation of C on inputs x, y, and Rec the corresponding reconstruction function such that
Rec(Ĉ(x, y; s)) = C(x, y). We require that Ĉ can be evaluated in NC1.

We now give our construction of functional encryption for all circuits.
Setup(λ,C): Run Setup′(λ, Ĉ).
KeyGen(MSK, y): Run KeyGen′(MSK,y)
Encrypt(MPK,x): Encrypt′(MPK,x).
Decrypt(MPK,SK,C): Run e← Decrypt′(MPK,SK,C), and then output Rec(e)

Correctness follows from the correctness of the underlying randomized FE scheme and the
correctness of the randomized encodings.
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Theorem 7. If (Setup′,KeyGen′,Encrypt′,Decrypt′) is a randomized adaptive FE for NC1

circuits, Ĉ is a randomized encoding for C, then the construction above is an adaptive FE for all
circuits

Proof. Given an adversary A for the adaptive FE scheme above, we will construct an adversary
B for the underlying randomized adaptive FE scheme that simulates A, playing the role of FE
challenger. When B receives the public parameters, it forwards them to A. When A makes a
secret key query on attribute y, B makes a secret key query on the same attribute y, and gives the
resulting key to A. When A makes a challenge on messages (x0, x1), B makes the same challenge,
and forwards the resulting challenge ciphertext to A. When A makes a guess b′, B outputs the
guess.

It is straightforward to see that B perfectly simulates the view of A, and also that B has
the same advantage in breaking the randomized FE security as A does in breaking FE security.
It remains, then, to show that B makes legal queries. Indeed, A is restricted to queries such
that C(x0, yi) = C(x1, yi) for all secret key queries i. Therefore, by the security of the randomized
encodings, Ĉ(x0, yi; r) is indistinguishable form Ĉ(x1, yi; r), and so B makes valid queries. Therefore,
B breaks the security of the underlying randomized adaptive FE scheme, a contradiction.

6 Instantiation of Graded Encoding Scheme

In this section, we briefly recall CLT encodings, using description essentially verbatim from [GLW14].
The translation from composite order groups to CLT’s composite order encoding space is not quite
as direct as one would like – the most “direct” translation is subject to attacks, as discuss in
[GLW14, Section B.6] – but it is still relatively straightforward. We adapt the construction to
include the new extension functionality that our scheme crucially relies on.

6.1 Overview of CLT Encodings

A κ-linear symmetric CLT encoding system uses a “small” inner modulus N = p1 . . . ps that is
the product of s = s(λ, κ) “small” primes, and a “large” outer modulus Q = P1 . . . Ps that is the

product of s “large” primes. It uses a random z ← Z∗Q. An encoding c ∈ S(m)
1 is an element of ZQ

such that

c ≡ [m]pi + xi · pi
z

mod Pi for i ∈ [s], (1)

where [m]pi is m reduced modulo pi into a small range such as (−pi/2, pi/2), and the xi’s are
random small integers. An encoding in Sκ has a similar form, but with zκ in the denominator.

For random small integers h1, . . . , hs, the system includes a zero-testing parameter pzt for level
κ of the form:

pzt =

s∑
i=1

hi · (zκ · p−1i ) ·
∏
j 6=i

Pj mod Q.
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If c is a level-κ encoding of 0 ∈ ZN – i.e., each [m]pi = 0 – we have:

c · pzt =
s∑
i=1

(xi · pi/zκ) · hi · (zκ · p−1i ) ·
∏
j 6=i

Pj mod Q

=

s∑
i=1

xi · hi ·
∏
j 6=i

Pj mod Q

which is a number substantially smaller than Q assuming the xi’s and hi’s satisfy certain smallness
constraints - in particular, that each xi · hi � Pi. On the other hand, if c encodes something other
than 0, c·pzt likely will not be a small number, due to uncanceled p1i ’s in the expression above. Thus,
pzt enables zero-testing. (Actually, CLT uses a polynomial number of such zero-testing parameters,
and they prove that c encodes 0 if it passes the tests with respect to all of them, and does not
encode 0 otherwise.)

By CRT, we can add and multiply CLT encodings while preserving their form (per Equation 1)
as long as the numerators in Equation 1 do not grow too large - i.e., they do not “wrap” modulo Pi
for any i. The Pi’s must be chosen large enough to ensure that such wrapping never occurs for the
functions we will compute over the encodings. These additions and multiplications induce addi-
tions and multiplications on the underlying “messages” that are encoded, much like homomorphic
encryption.

Asymmetric settings. Like GGH, CLT generalizes easily to allow asymmetric graded encodings.
The simplest way to build asymmetric multilinear CLT encodings is simply to generate a random

zi ← Z∗Q for each asymmetric group, rather than a single z. For i ∈ [κ], an encoding in S
(m)
i now

has the form

c ≡ [m]pi + ci · pi
zi

mod Pi for i ∈ [s], (2)

The form of the zero-test parameter changes to:

pzt =
s∑
i=1

hi · ((
∏
i∈[κ]

zi) · p−1i ) ·
∏
j 6=i

Pj mod Q.

Similar to the symmetric case, multiplying pzt with an encoding in S
(0)
T (which has

∏
i∈[κ] zi in the

denominator) results in a mod-Q number that is small relative to Q.
Intuitively, the asymmetric form of the encodings limits how a user can meaningfully multiply

together encodings, so that each monomial it computes corresponds to multiplying together exactly
one encoding from each source group, so that it obtains an encoding with

∏
i∈[κ] zi in the denom-

inator. For example, the multilinear map cannot be used directly to solve decision Diffie-Hellman
over elements in S1, since this would involve multiplying together encodings from S1, which would
induce an uncancellable z21 in the denominator.

In the asymmetric setting the construction can naturally be translated to a setting where the
levels are described as sets rather than just a number as described in Definition 2.

Composite order setting. Finally we want to be able to encode subrings of ZN with CLT
encodings. Unfortunately, as described in [GLW14, Section B.6], it is not safe to give an encoding
of some m that is in the index-pi subring of ZN . However, GLW present a simple way to fix the
problem. They avoid letting any pi be “isolated” by giving it many - i.e., poly(λ) - “buddies”:
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any encoding that an attacker sees that is 0 modulo pi will also be 0 modulo all of pi’s buddies,
and if it is nonzero modulo pi it will (whp) be nonzero modulo each of pi’s buddies. As discussed
in [GLW14, Section B.6], this approach seems resilient to attacks. We will not provide further
details on specific parameters needed for the implementation of this scheme and refer the reader
to [GLW14, Section B.4] for more details.

Encodings of 0 in CLT Recently Cheon et al. [CHL+14] presented a total break of CLT en-
codings when encodings of 0 are given out. See Section 7 for a discussion of plausible methods to
obviate the Cheon et al. attack while using CLT encodings in our scheme.

6.2 Implementing the Extension Functionality

Now we are ready to describe how the CLT graded encoding scheme can be extended to support the
extension functionality that we need. Recall that, we need to realize the function extend(params,V, {ei}i)
that takes as input a set V ⊆ U and a sequence of encodings ei each at level vi ⊆ V and outputs a new
set V′ and encodings e′i at appropriate levels v′i ⊆ V′ such that if V = {1, . . . t} then V′ = {1′, . . . t′}
and for each i we have that if vi = {j1, . . . jk} then v′i = {j′1, . . . j′k} where j1, . . . jk ∈ {1, . . . , t}.

For each i ∈ V sample a fresh z′i ← Z∗Q subject to the constraint that
∏
i∈V z

′
i = 1 and translate

each encoding ei at level vi to e′i = ei∏
j∈vi

z′j
.

Note that we also need to generate the description of the function fV′→V(e′,W′) that takes as

input e′ ∈ S(α)
W′ where V′ ⊆W′ and outputs an encoding e ∈ S(α)

V∪(W′\V′). Since
∏
i∈V z

′
i = 1 therefore

we note that just the identity function serves the purpose of fV′→V.
Finally note that the extend† function also outputs additionally randomizers (encodings of 0)

for each level it outputs an encoding at. This can be achieved by generating encodings of 0 at levels
v′i and then taking random linear combinations.

7 Overcoming Cheon et al. [CHL+14] attacks

We recall the CLT multilinear maps in Section 6. Here we will describe the new Cheon et al. attack
and propose a fix to avoid the attack.

Attack. Given a, a level-1 encoding of 1 and b a level-t encoding of 0 and a c a level-t encoding

of m – i.e. c ≡ [m]pi+xi·pi
z mod Pi – the Cheon attack proceeds as follows.

w := c · b · aκ−t−1 · pzt =

s∑
i=1

([m]pi + xi · pi) · (xbi · pi) · (xai · pi + 1)κ−t−1

zκ
· hi · (zκ · p−1i ) ·

∏
j 6=i

Pj mod Q

=
s∑
i=1

([m]pi + xi · pi) · xbi · (xai · pi + 1)κ−t−1 · hi ·
∏
j 6=i

Pj mod Q

=
s∑
i=1

([m]pi + xi · pi) · h′i ·
∏
j 6=i

Pj mod Q

where h′i = xbi · (xai · pi + 1)κ−t−1 · hi.
Note that the number on the left hand side is substantially smaller than Q, by the smallness

constraints that CLT places on the various values. Therefore the above equation holds over integers
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and not just modulo Q. Cheon et al. show that collecting enough of similar equations allows one
to learn all the secret parameters.

Our fix. We modify CLT encodings by giving out a matrix corresponding to a each encoding.
Similar to the obfuscation scheme of Garg et al. [GGH+13b], we modify the scheme by embedding
the “naked” CLT encoding in randomized matrices, thereby eliminating from the scheme the native
encodings of zero that enabled the weak Cheon et al. attack. In a nutshell, if c is a native level-i
CLT encoding of some m ∈ ZN , then the level-i matrix encoding of the same m ∈ ZN is a 2κ + 1
matrix U of the form

U =

T ×


$ 0 . . . 0
0 $ . . . 0
...
0 0 . . . c

× T−1


Q

,

where the ‘$’s represent native level-i CLT-encoding of random elements, the 0’s are native level-i
CLT-encodings of zero, T is a random (2κ+ 1)× (2κ+ 1) matrix modulo Q, and T−1 is its inverse.

It is easy to note that adding two such matrices encoding the underlying values m and m′

result in a matrix that encodes has m + m′ in the lower-right corner, and hence can be seen as
a matrix encoding for the underlying value m + m′. It is also easy to check that multiplying two
such matrices yields another matrix of the same form with an encoding of m ·m′ in the lower right
corner, but now this encoding is at an appropriate higher level.

Note that in order to allow for randomization, we would be give out matrix encodings of 0. By
adding enough matrix encodings of 0, one can re-randomize U . This is analogous to native CLT
re-randomization.

Finally in order to allow for zero-test on these encoded matrices. We also replace the CLT
single-element zero-test parameter pzt by two “bookend” vectors qzt = (s, t) of the form

s =
[
(

κ︷ ︸︸ ︷
$ . . . $

κ︷ ︸︸ ︷
0 . . . 0 $)× T−1

]
Q

and t =
[
T × (

κ︷ ︸︸ ︷
0 . . . 0

κ︷ ︸︸ ︷
$ . . . $ $)T × pzt

]
Q

where 0 and ‘$’ are level-0 native CLT encodings of zero and random elements. Again it is easy to
check that for a matrix U as above at level κ, if we multiply it from the left and right by s and t
then we get a single element of the form

s×U × t = ($× c+ 0) · pzt (mod Q),

where again 0 and ‘$’ are level-0 native CLT encodings of zero and random elements. Clearly
($ × c + 0) is a CLT encoding of zero when c is (and whp is not when c is not), hence we get the
zero test that we need. However, the ‘0’ in ($ × c + 0) perturbs the result of the zero-test, and
this perturbation helps mess up a direct application of the Cheon et al. attack, which relies on the
algebra structure of CLT.

Finally, since in our scheme we know that encodings are only multiplied in a fixed order, we
can further strengthen our construction as follows. Instead of just using one pair of matrices T
and T−1 for pre and post multiplication with a matrix U , we consider a sequence of matrices
T 0,T

−1
0 . . .T κ,T

−1
κ . This allows for multiplication of encodings in only a specific order.

We note that the description above naturally extends to the settings of asymmetric maps.
In particular, the matrix encoding U corresponding to a native CLT encoding c with index i is
associated to a matrix of CLT encodings with the same index i.
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An alternative fix. We also describe a variant of our construction that eliminates re-randomization
terms altogether, thus giving a plausibly secure construction in the event that the above fix is in-
secure.

Instead of choosing a single random value αi,b during setup, the setup procedure chooses t such
values αi,b,u for u ∈ [t]. Then it constructs the matrices B̃i,b,u = αi,b,u · Ri−1 · Bi,b · R−1i , and

computes the encodings Aji,b,u = [B̃i,b,u]j{i}. The secret parameters consist of all the Aji,b,u, while

the public parameters then consist of the A0
i,b,u for i corresponding to the ciphertext input.

To encrypt a message m using the public parameters, instead of computing a random multiple
of A0

i,b, simply take a random subset-sum of the A0
i,mbit(i),u

. If u is set large enough, this will be

statistically close to a fresh encoding, thus achieving the same effect as re-randomization. Using
the secret parameters to compute encryptions of vectors x or secret keys for attributes y follows a
similar procedure.

Proving the security of this modified scheme relative to our original assumptions is problematic,
because there is no way for the simulator to compute the encodings Aji,b,u himself without re-

randomization terms. Instead, the assumption provides the matrices Aji,b,u the simulator needs

itself. Since Aji,b,u depends on Bi,b, which comes form the branching program input, it appears the
security assumptions will depend on the exact branching program. However, we can assume the
Bi,b are simply 5x5 permutation matrices, in which case there are only 120 possibilities for each Bi,b.

Therefore, the assumption simply hands out all possible Aji,b,u. Unfortunately, this complicates our
assumptions somewhat, but may be necessary to avoid generalizations of the Cheon et al. attack.
It is straightforward to adapt our slotted FE proof to this setting.
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