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ABSTRACT
Oblivious RAMs (ORAMs) have traditionally been mea-
sured by their bandwidth overhead and client storage. We
observe that when using ORAMs to build secure computa-
tion protocols for RAM programs, the size of the ORAM
circuits is more relevant to the performance.

We therefore embark on a study of the circuit-complexity
of several recently proposed ORAM constructions. Our care-
ful implementation and experiments show that asymptotic
analysis is not indicative of the true performance of ORAM
in secure computation protocols with practical data sizes.

We then present scoram, a heuristic compact ORAM de-
sign optimized for secure computation protocols. Our new
design is almost 10x smaller in circuit size and also faster
than all other designs we have tested for realistic settings
(i.e., memory sizes between 4MB and 2GB, constrained by
2−80 failure probability). scoram makes it feasible to per-
form secure computations on gigabyte-sized data sets.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-
security and protection

Keywords
Oblivious RAM; Secure Computation

1. INTRODUCTION
Secure two-party computation allows Alice, who holds pri-

vate input x and Bob, who holds private input y, to jointly
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compute f(x, y) without revealing any information other
than the output f(x, y) . All known efficient constructions
of such generic cryptographic protocols require an oblivious
representation of the function f to ensure that the control
flow of the algorithm does not depend on its input and there-
fore leak partial information. The standard approach to
creating an oblivious representation is to generate a boolean
circuit from the description of f . This strategy is employed
by dozens of prior works [1,14,16,17,19,22,23,29] on secure
computation.

When f is given as a RAM (Random Access Memory
model) program, transforming f into a binary circuit may be
problematic. A naive transformation replaces each indexed
access to memory with a scan of the entire memory in order
to keep the index hidden. To overcome this issue, Gordon
et al. [12] used an Oblivious RAM (ORAM) data structure
proposed first by Goldreich [7] to compile RAM programs
into secure computation protocols.

Intuitively, ORAM is a technique to transform a mem-
ory access (with secret index i) into a sequence of memory
accesses (whose indices are revealed to the adversary but ap-
pear independent of the secret value i). ORAM techniques
have been widely studied in other contexts [2–4, 7, 9–11, 18,
26–28,30,34,37–39]. However, the goals of these prior works
were (1) reducing the bandwidth overhead between the client
and server; (2) reducing the client storage; and (3) reducing
the server’s overall memory overhead. Remarkably, state of
the art approaches to ORAM design limit the overhead in all
three aspects to various combinations of O(logc(n)) where
c ∈ {0, 1, 2, 3}.
Towards large-scale secure computation. Secure
computation is presently limited to small instances because
large datasets incur very-large overheads in the circuit-model.
The RAM model offers an asymptotically more efficient ap-
proach to many types of secure computation so as to po-
tentially scale to large datasets. Indeed, the development of
practical ORAM techniques and demonstrations of practical
ORAM implementations [34] have lead to notable works that
demonstrate how ORAM-based secure computation proto-
cols enable dramatic efficiency improvements in processing
large, secret datasets. For example, Gordon et al. [12] show
how repetitive binary searches can be securely computed in
amortized sublinear time. Liu et al. [19] show how, under
big data sizes, RAM-model secure computation significantly
outperforms the circuit model even for run-once tasks, in-
cluding KMP-string matching and shortest path. Keller and
Scholl [15] also show how the PATH-ORAM scheme can lead



ORAM Circuit Size Circuit Size (gates) Number of Inputs
(Asymptotic Bounds) N = 220 N = 229 N = 220 N = 229

Linear Scan ORAM O(DN) 142.6M ≈82678.1M 33.5M 17180.0M
LO ORAM O((D + CPRF)logN)

CLP ORAM (w/ oblivious queue) O(log4N +D log2N)ω(1)
CLP ORAM (w/o oblivious queue) O(log5N +D log3N)ω(1) 29.4M 121.8M 0.6M 2.1M

Binary Tree ORAM O(log4N +D log2N)ω(1) 38.5M 127.7M 7.0M 24.2M
Naive Path ORAM O(log4N +D log2N)ω(1) 56.2M 163.1M 0.1M 0.3M

Path-SC ORAM Õ(log3N +D logN)ω(1) 37.2M 111.7M 0.1M 0.3M
scoram N/A (heuristic) 4.6M 13.0M 0.3M 0.9M

Table 1: Performance metrics for different ORAM schemes for secure computation. N is the number of blocks
in the ORAM, D is number of bits in each block (i.e., the payload bit length), CPRF is the circuit complexity of a PRF
function, and the security parameter is set to be O(logN)ω(1). We use the notation g(N) = O(f(N))ω(1) to denote that for

any α(N) = ω(1), it holds that g(N) = O(f(N)α(N)). The notation Õ hides log logN factors. All concrete measurements
are for D = 32 bits with failure probability set to 2−80 and include all levels of recursion for recursive ORAM constructions.
The circuit size reports all gates, and the number of inputs defines cost of input preprocessing, e.g., OT. For CLP ORAM, a
O(logN) oblivious queue [24] can lower the asymptotic bound but will introduce a larger circuit size in practice than trivial
oblivious queue because of the small queue size. Details can be found in Section 2.2.

to dramatic improvements for certain secure computation
problems. This work tackles the problem of finding very ef-
ficient ORAM constructions to enable secure computation
on giga-byte sized datasets.

1.1 Contribution
We embark on a comprehensive study of practical secure

computation ORAM techniques. We do so via both theo-
retical analysis of several metrics used to judge ORAMs and
experiments performed on optimized implementations of 4
state-of-the-art ORAM schemes. We report a new heuris-
tic ORAM design that outperforms all other ORAMs we
considered.

Our first observation is that traditional measures of ORAM
schemes do not properly indicate the ORAM performance in
secure computation setting. Previously, ORAM was primar-
ily considered in storage outsourcing [9, 32, 33], and secure
processor execution [5,21] settings. Thus, ORAM construc-
tions were mainly evaluated by the bandwidth overhead (i.e.,
the number of data blocks retrieved per memory query).

Since the client-side computational logic needs to process
secret values (e.g., the original index), their cost cannot be
ignored as in traditional ORAMs designed merely for out-
sourcing storage. On the contrary, the overhead due to
securely computing the client-side ORAM logic can easily
dominate the overall cost in both bandwidth and CPU cy-
cles. Therefore, the circuit complexity of the ORAM al-
gorithm plays a critical role in evaluating the efficiency of
ORAM schemes used in secure computation.

Re-evaluate and improve existing ORAMs. We con-
duct a systematic evaluation of several state-of-the-art ORAM
schemes (e.g., Binary Tree ORAM [30], Path ORAM [34],
CLP ORAM [3]) in the secure computation setting. Table 1
reports both the theoretical and concrete complexity of these
existing ORAM schemes.

We find that, asymptotically speaking, the Binary Tree
ORAM by Shi et al. [30] performs the same as a naively
implemented Path ORAM [34], although Path ORAM is
asymptotically faster in the data outsourcing scenario. In
fact, due to the circuit size, Path ORAM is significantly

slower for practical parameter settings. Next, we derive
Path-SC ORAM, an optimized construction of Path ORAM
that is O(logn) faster than its naive implementation. How-
ever, because of the 3 oblivious sorts (resulting in a large
constant factor in practice), its performance in practical pa-
rameter settings is still inferior to those theoretically slower
schemes such as Binary Tree ORAM [30] and CLP ORAM [3].

A new ORAM scheme. While we do not present an
asymptotically more efficient ORAM, we propose a scheme
that is empirically the most efficient. We argue that within
poly logN complexity ranges, optimizing for asymptotic per-
formance can be misguided. For conceivable data sizes (220 ∼
240 blocks), logN is typically 20 to 40, and can be easily
dominated by even moderate constants (e.g. 100). Sim-
ilar observations of asymptotics vs. practical performance
are not uncommon, e.g. by Stefanov et al. in constructing
small-domain PRPs [31].

Our new ORAM scheme, scoram, is almost 10x smaller
in circuit size than the best previous one derived from a
tranditional ORAM protocol. It is significantly faster than
all existing ORAM constructions in secure computation set-
ting. Further, this new scheme can also be used to build ef-
ficient oblivious data structures [36] for secure computation.
Our implementation of scoram will be available online at
http://www.oblivm.com.

1.2 Related Work
Gordon et al. [12] studied the feasibility of constructing

sublinear-time secure computation protocols. They showed
generically how any function f(·, ·) that can be computed
in time t and space s in the RAM model can be securely
computed by a protocol that requires amortized time O(t ·
poly log(s)). They reported an implementation of Binary
Tree ORAM; using security parameter less than 20, and
N = 220, their ORAM scheme requires roughly 6.6M non-
free gates and 12M total gates per memory access. To the
best of our ability, we attempted to recreate their parame-
ters: our implementation of the same scheme required 3.3M
non-free gates and 16M total gates; while our best scheme



configured at a much higher security parameter results a cir-
cuit approximately 1/3 of theirs . See Section 6 for details.

Gentry et al. [6] optimized the binary tree ORAM for
secure computation, reducing the tree height using larger
buckets. We do not include the scheme in Table 1 because
their scheme is subsumed both asymptotically and empir-
ically by Path ORAM [34]. This observed can be verified
with a simple back-of-the-envelope calculation: Their evic-
tion algorithm is similar to Path ORAM’s, except that they
directly compute where a block should be dropped along
the path — closest to the leaf respecting invariant. Naively
implementing their eviction would result in O(A2) overhead
where A is the total number of blocks on the path, i.e., A
= (bucket size)*(path length). Notice that Path ORAM
also has O(A2) overhead for a naive eviction circuit, but
Path ORAM’s A value is both asymptotically and empiri-
cally smaller than that of Gentry et al. In both schemes,
we can have an asymptotically smaller eviction circuit with
oblivious sorting, but as we show, oblivious sorting intro-
duces a large constant such that the practical performance
is worse than that of the original binary-tree ORAM.

Keller and Scholl [15] implemented secure oblivious data
structures using both the Binary Tree ORAM [30] and a vari-
ation of Path ORAM [34]. However, from their result, the
variation does not perform better than Binary Tree ORAM
even with small security parameters. In contrast, scoram
outperforms Binary Tree ORAM by 7x even with large se-
curity parameter(80).

Lu and Ostrovksy [20] proposed asymptotically the best
ORAM in the literature. Their 2-server design can perform a
sequence of n reads or writes with O(logn) amortized over-
head per access while using O(n) storage for the servers
and O(1) client memory. As these parameters meet the
lower-bound for the performance of a single-server ORAM,
it appears to be a perfect candidate for ORAM in secure
computation. Unfortunately, there are two serious practical
bottlenecks to the implementation of LO ORAM.

To understand the first issue, recall that the LO ORAM
was built upon the KLO ORAM [18] which was further
built upon1 the map-reduce based cuckoo-hashing ORAM
of Goodrich and Mitzenmacher [9]. In order to read or write
at index x, the scheme iteratively queries a hierarchy of hash
tables Hk, Hk+1, . . . , HL with either x or a dummy address
t depending on whether x has been found or not. The se-
curity relies on issuing the dummy query once x has been
found in order to maintain the invariant that every lookup
is unique (i.e, there is never a lookup for the same address
x at any two levels in the hierarchy). This means that read
queries require several sequential executions of separate se-
cure computation protocols; in contrast, tree-based ORAM
designs require only 1 secure computation protocol to be run
per read/write operation.

The second serious problem is a large overhead constant
for cuckoo hashing. All cuckoo-hashing based ORAMs de-
pend on a lemma proven by Goodrich and Mitzenmacher [9]
which bounds the collision rate of a cuckoo-hashing struc-
ture via a combinatorial analysis of a graph G that is based
on the cuckoo-hashing function. This lemma requires the
cuckoo hash table size to be at least Ω(log7(N)); this tech-
nique therefore only starts to beat the Linear Scan ORAM
when N > 237.

1
KLO pointed out a subtle security issue that affects almost all

cuckoo-basing based ORAM schemes, and explain how to fix it.

2. BACKGROUND: TREE-BASED ORAMS
Notation. We use N to denote the number of (real) data
blocks in ORAM, D to denote the bit-length of a block in
ORAM, Z to denote the capacity of each bucket in the
ORAM tree, and λ to denote the ORAM’s statistical se-
curity parameter. When discussing binary trees of depth L
in this paper, we say the leaves are at level 0 and the root is
at level L− 1. Although unconventional, this simplifies the
description of our algorithms.

2.1 Tree-based ORAM Construction
Shi et al. [30] proposed a new binary-tree based framework

for constructing a class of ORAM schemes. Many recent ef-
ficient ORAM schemes [3,30,34] extend this construction, so
we briefly review this framework below. The key difference
between the schemes is the choice of eviction strategy.

Data organization. The server organizes N blocks into a
binary tree of height L = logN ; each node of the tree is a
bucket containing Z blocks of the form:

{idx||label||data},

where idx is the index of a block, e.g., the (logical) address
of desired block; label is a leaf identifier specifying the path
on which the block resides; and data is the payload of the
block.

The client stores a position map, mapping memory ad-
dresses to leaf labels. Position map storage can be reduced
to O(1) by recursively storing the position map in a smaller
ORAM (see [30] for details). These leaf labels are assigned
randomly and are reassigned as blocks are accessed. If we
label the leaves from 0 to N−1, then each label is associated
with a path from the root to the corresponding leaf. Tree-
based ORAMs maintain the invariant that a block marked
label resides either on the path leading to the corresponding
leaf node specified by label or in the stash.

Operations. Tree-based ORAM support three operations.
Among these, the Eviction algorithm is the key difference
between schemes.
• ReadAndRemove: Given an index idx, the client looks

up its label from the position map, and fetches all
blocks on the path leading to label. The client finds
the block idx (due to the main invariant) and removes
it from the path.
• Add: The retrieved block is potentially updated, reen-

crypted and written back.
• Eviction: Percolate blocks towards leaves such that no

bucket will overflow except with negligible probability.
Various ORAMs use different eviction schemes which
we explain below.

Recursion. Instead of storing the entire position map in
the client’s local memory, the client can store it in a smaller
ORAM on the server. In particular, this position map ORAM
needs to storeN log(N)-bit labels. By storing χ labels in one
block, this ORAM only needs N/χ blocks. Finally, by apply-
ing recursion, the position map can be reduced to O(1) size,
after which a linear scan ORAM can be used. See Section 5
for a discussion of how we set the recursion parameters. Un-
less otherwise noted, our discussion of the complexity of the
eviction strategy applies to a single ORAM (i.e., not taking
into consideration the recursion, which applies equally to all
tree-based strategies).



2.2 Various Eviction Strategies
Original binary-tree ORAM. The original Binary Tree
ORAM scheme [30] adopts random eviction: with every data
access, pick two random buckets from each level, and evict
one block from each selected bucket by placing the block
into the correct child node (subject to the invariant). Shi
et al. show that this eviction strategy requires a bucket
size of O(logN)ω(1) to avoid overflow except with negligible
probability.

Path ORAM. Path ORAM adopts a greedy eviction strat-
egy that works with a stash maintained in client storage.
Blocks on the path P are first unioned with the stash. Each
block in this set is then placed as close as possible to its desti-
nation leaf in path P subject to the path invariant. Stefanov
et al. [34] show that this aggressive eviction strategy works
with a bucket size of 4.

CLP ORAM. In CLP ORAM [3], internal nodes of the
binary tree contain O(log logN) blocks per bucket, and the
stash is replaced by a queue of length ω(log2N) that requires
add, pop and find operations. The eviction strategy works as
follows: in each level pick the“deepest”block on the eviction
path and push it to the next level. If blocks in a bucket
trigger a certain property, a special overflow procedure will
be called, which will add a block in the current bucket to the
queue. However, the fact that every level can overflow makes
the worst case running time much worse then average case:
the overflow procedure needs to be called logN times in the
worst case. An asymptotically better oblivious queue [24]
can be used for CLP ORAM, however, linear scan performs
better in practice because the size of queue is small.

2.3 ORAM for Secure Computation
Unlike the traditional ORAM scenario, in the Ostrovsky-

Shoup framework, both the server memory and the client
storage of the ORAM are secret-shared between the par-
ties2. Each instruction of a RAM program consists of an
address to read from memory, an operation to perform, and
an address to write back to memory. These three steps are
accomplished via a secure computation protocol between the
parties that takes as input (a) secret shares of the memory,
(b) secret shares of the ORAM client state, (c) and secret
shares of the program state.

In the RAM-model secure computation framework, both
the program logic and memory operations are implemented
over secure computation. The cost of memory operations
can be significant since evaluating ORAM over secure com-
putation is expensive. For tree-based ORAM schemes, typ-
ically, the eviction procedure can account for the majority
of the cost. In the next section, we start with implementing
Naive Path ORAM in circuit.

3. PATH-SC ORAM
We first investigate Path ORAM since it has the smallest

empirical bandwidth overhead among all tree-based ORAMs.
Naturally a good question is whether we can implement Path
ORAM with a small circuit as well. Since ReadAndRemove
and Add algorithm are trivial to turn into O(D logN)ω(1)-
sized circuits, we focus our discussion on how to implement
Path ORAM’s eviction algorithm in circuit.
2
We note that Gordon et al. propose an asymmetric division of the

server and client state to enable one party in the secure computation
protocol to have a sublinear number of input bits.

1: P [0..L− 1][Z] stores the block to be put back
2: for i from 0 to L− 1 do //from leaf to root
3: for j from 1 to Z do
4: for k from 1 to LZ + stsize do
5: if LCA(A[k].label, P ) ≤ i then
6: P [i][j] := A[k]
7: A[k] := ⊥

Figure 1: Naive oblivious algorithm for Path ORAM’s
Eviction. Variable A denotes a buffer created by concatenat-
ing the stash and the path P read in Path ORAM. This algo-
rithm writes as many blocks back to P as possible, packing
them as close to the leaf as possible.

Expressing circuits. In the remainder of the paper, we
will need to describe circuit constructions. Since oblivious
algorithms with constant client memory size can be easily
transformed into circuits preserving complexity, we hence-
forth equate the notions of oblivious algorithms and circuits,
and describe circuits using oblivious algorithms.

Notations. Suppose each of p1 and p2 represents a leaf or
a root-to-leaf path. We use LCA(p1, p2) to denote the level
of the lowest common ancestor of the leaves, or equivalently
the node where the two paths diverge when traversing from
the root. In the remainder of the paper, we sometimes use
the notation label and a path p interchangeably, since a path
p is defined by the label of a leaf node. When we sort lexi-
cographically according to a key pair (key1, key2), we mean
first sort according to key1, and if there is a tie on key1, then
we sort according to key2.

Let A denote a buffer created by concatenating the stash
with a path p (the data read path) in Path ORAM. Path
ORAM’s eviction writes as many blocks from A to p as pos-
sible and packs them as close to the leaf as possible.

Naive O(D log2N) eviction circuit. A naive way to turn
Path ORAM’s eviction algorithm into a circuit would result
in a O(D log2N)ω(1)-sized circuit. We describe this naive
method in Figure 1.

3.1 A New Õ(D logN) Eviction Circuit
The rearrangement problem. Path ORAM’s eviction
can be recast as a rearrangement problem: we would like to
obliviously rearrange the entries in A (by pairwise swapping)
with respect to the following conditions:

1. The blocks in A[1...LZ] will be written back to the
path P , where the block at i = kZ+j (where k = b i−1

Z
c

and 1 ≤ j ≤ Z) will go to bucket k. We require that for
each i, if A[i] is a real block, then LCA(A[i].label, P ) ≤
k. If less than Z real blocks are assigned to a bucket,
dummy blocks will be added to that bucket.

2. For the real blocks that cannot be written in the path,
they will be stored in A[LZ+1...LZ+stsize]. Hence, if
A[LZ + stsize + 1] contains a real block, this indicates
stash overflow.

Circuit construction. First, we add three extra fields
bucket, offset and dummy (used only in this improved evic-
tion algorithm) to each entry A[i]. bucket takes values from
{0, . . . , L − 1} ∪ {⊥}. For a dummy block, bucket is set to
⊥. For a real block, bucket := LCA(label, P ), where label
denotes the leaf label of the block. In other words, bucket



1. Initialization. For each i ∈ {1, 2, . . . , LZ}: letA[i].bucket := LCA(A[i].label, P ), let A[i].dummy denote whether A[i]
is a dummy block.

2. O-sort: real before dummy. Oblivious sort based on the key bucket. After sorting, all real blocks come first, in
bucket ascending order.

3. Scan A to compute the final offset (from leaf) for each block. We give the algorithm to calculate offset from
bucket in Figure 4.

4. Append dummy. Append LZ dummy blocks at the end whose offset are 1, . . . , LZ, respectively.
5. O-sort: reorder based on offset. Oblivious sort A by offset (where blocks with offset = ⊥ are put at the end).
6. Suppress unnecessary dummy. Scan A to “eliminate” unnecessary dummy blocks. A dummy block is considered

unnecessary if it is preceded by a real block with the same offset value. We “eliminate” this dummy block by setting
its offset to “⊥”.

7. O-sort: fall into place. Sort A by offset so that unnecessary dummys are moved to the end A.

Figure 2: Eviction algorithm of Path-SC ORAM.

is the lowest level (i.e., closest to leaf) where the block is
allowed to reside on the path P . Recall that we assume
bucket = 0 refers to the leaf level while bucket = L−1 refers
to the root level. offset takes values from {1, . . . , LZ}∪{⊥}.
dummy indicates if a block is dummy.

The improved eviction algorithm is described in Figure 2.
At the end of the algorithm, the first Z blocks of A can go
to the leaf, path, and the next Z blocks should go to leaf but
one level, and so forth. The idea of using oblivious sorting
to design efficient oblivious algorithms is also used in other
scenarios [25].

In Appendix A, we also consider how to construct a low-
depth circuit for our new eviction algorithm.

Examples. The most sophisticated part of the algorithm is
Step 3 in Figure 2, i.e., computing the offset of blocks. This
part of the algorithm is further explained in Figure 4. Below
we give an example of this step. Assume that Z = 3. Then,
a sequence of bucket values [0 0 0 0 1] should result in offset
values [1 2 3 4 5]. Additionally, bucket values [0 1 1 1 1]
should result in offset values [1 4 5 6 7].

An example of the full eviction circuit is given in Figure 3.

1: available := 1
2: for i from 1 to LZ + stsize do
3: if available ≥ Z ∗A[i].bucket + 1 then
4: A[i].offset := available
5: available := available + 1
6: else
7: A[i].offset := Z ∗A[i].bucket + 1
8: available := A[i].offset + 1

Figure 4: Computing offset from bucket.

Theorem 1. The Path-SC ORAM with Eviction described
above can be fully implemented (i.e., including all the recur-

sive ORAMs used to store the position map) in Õ(log3N +
D logN) boolean gates.

Proof. The circuit to implement the data level ORAM
requires O(D logN log logN) gates due to the oblivious sort-
ing operations in Figure 2. For recursion levels, we use
O(logN) for each block, and with O(logN) levels of recur-
sion, the total circuit size for position map recursion levels
is O(log3N log logN). Therefore, the total circuit size for

all levels is Õ(log3N +D logN).

Findings. We implement our Path-SC ORAM and com-
pare its empirical performance with that of the Binary Tree
ORAM and CLP ORAM. While Path-SC ORAM is asymp-
totically superior to both Binary Tree ORAM and CLP
ORAM in terms of circuit size, for practical ranges of N ,
empirical results suggest that both the Binary Tree ORAM
and CLP ORAM perform better. Detailed empirical results
are presented in Section 6.

Upon closer examination, we realize that Path-SC ORAM
requires 3 oblivious sorts in its circuit construction, which
leads to a very large constant. This motivated our search
for a scheme that could avoid sorts altogether.

4. A HEURISTIC ORAM
We devise a heuristic ORAM scheme called scoram op-

timized for empirical performance (as opposed to asymp-
totical performance). Our key idea is to have an effective
eviction algorithm that can be implemented in small circuit.
In this section, we focus on presentation of the algorithm,
leaving optimal parameter choices to the next section.

4.1 SCORAM
Our scoram is another tree-based ORAM with a novel

Eviction algorithm. Overall, Eviction will perform flush()

(Algorithm 1) α times. In our implementation, we choose
α = 4 which we determine to be the optimal choice (see
Section 5 for more details). Below we explain the intuition.

Greedy push pass (lines 7 to 10) We opt for a greedy
push pass similar to that of the CLP ORAM, but avoid their
bucket overflows handling strategy. First, a random path is
selected for eviction with every data access. Next, for each
bucket from root to the leaf-1 level on the selected path:
pick a block that can be evicted deepest along this path,
and push it to the child bucket if there is room.

In CLP ORAM, a bucket overflow occurs when more than
half of the bucket capacity number of blocks can be evicted
to one of its children. Overflow events are indicative of get-
ting too crowded in some parts of the tree. Chung et al.
handle this event by choosing a block to remove from the
bucket, remapping its label, and putting it back into the
queue. This is an expensive operation, since (1) removing
(adding) blocks from a bucket (to the stash) requires a linear
scan; (2) it needs to be done for every bucket on the evic-
tion paths because we cannot reveal where the actual over-
flows happen; (3) updating the (recursively stored) position
map is also very expensive. Although some of the above
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Figure 3: A toy example of Path-SC ORAM eviction algorithm. Here we assume L = 2, Z = 3 and stsize = 3. b stands
for the bucket field while k the offset field. d=1 indicates dummy blocks, where the contents of other fields are not applicable.

Algorithm 1 flush()

1: path := UniformRandom(0, ..., N − 1)
2: bucket[0, ..., L− 1] := array of buckets from leaf to root
3: B1 := the block in the stash with smallest LCA(path, B.label).
4: for i from 0 to L− 1 do (from leaf to root)
5: if bucket[i] is not full and LCA(path, B.label) ≤ i and B1 has not been added already then
6: Add B1 to bucket[i].

7: for i from L− 1 to 1 do (from root to leaf)
8: B2 := the block in bucket[i] with smallest LCA(path, B2.label).
9: if bucket[i− 1] is not full and LCA(path, B2.label) < i then

10: Move B2 from bucket[i] to bucket[i− 1].

overflow handling logic can be implemented asymptotically
better using oblivious sorting, this actually worsens the em-
pirical overhead due to the large constant factor associated
with oblivious sorting.

In contrast, in scoram, a block will only be evicted if the
child bucket is not full. Unfortunately, such a “greedy push
pass” alone would make the eviction less effective, as it is
more likely for a bucket to be full and the stash could grow
unduly large. This motivates our idea of compensating with
a “reverse dropping pass”.

Reverse dropping pass (lines 3 to 6). Pick a block from
stash that can be pushed deepest along the path, then put
it into the bucket as deep along the path as possible. This
can be implemented by scanning the eviction path in reverse
order from leaf to root and placing the block into the first
non-full bucket that satisfies the block’s path-invariant.

Security. Security of the scheme follows as per all other
tree-based ORAMs; the server’s view observes accesses along
random paths.
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5. OPTIMIZATIONS
Our optimizations largely fall into two categories: (1) de-

termining the best parameters for scoram (Section 5.1);
(2) improving the circuit design for frequently used logic
components (Section 5.2).

In general, ORAM schemes have several decisive parame-
ters including bucket size, stash size (if it uses a stash) and
recursion factor. Depending on the specific eviction algo-
rithms employed, there are additional parameters describ-
ing the eviction process. For example, in scoram, we use α
to denote the number times to call flush. These parameters
are subtly inter-related. For instance, a larger bucket size
allows for smaller α and smaller stash at the same security
parameter.

5.1 Parameter Optimization
We now systematically explore this parameter space to

determine heuristically good choices for scoram.

Methodology. Some of our optimizations rely on simula-
tions to count, for any particular ORAM setup, the number
of ORAM failures (for estimating the security guarantee)
and the total number of encryptions per memory access.
We use simulations because all of the proofs that upper-
bound the failure probabilities are too conservative in their
approximations.

For each ORAM, we first run 16 million ORAM accesses
to warm up the ORAM, such that it enters a steady state,
we then start collecting numbers to determine the security
parameters associated with this setup (including e.g., vari-
ous bucket and stash sizes). Since the time average is equal
to ensemble average for regenerative processes [13], we sim-
ulate each ORAM setup for a single long run of 1 billion
accesses to estimate the security parameter (instead of mul-
tiple runs). This allows us to estimate ORAM parameters
that achieve up to 2−80 security. A similar approach was
suggested by Stefanov et al. [34].

Number of flushes and bucket size. We have run simu-
lations of our new ORAM that indicate a good choice of α
is 4.

After α is fixed, we consider two strategies to configure
bucket size: 1) a uniform bucket size everywhere; and 2)
varying bucket sizes across levels. For the former, we empir-
ically determine an optimal bucket size of 6. However, we
observe that, in scoram, buckets at the middle and lower
part of the path tend to be more congested. This motivates
us to redistribute the bucket size across levels. For example,
for a binary tree of 21 levels, we find that increasing the
bucket size by 1 for the first 10 buckets from root and de-
creasing the bucket size by 1 for the last 10 bucket at leaf is
a better distribution than evenly distributing buckets. As-
suming 80-bit security, varying the bucket size in this way
allows us to reduce the stash size from 66 to 50, resulting in
a circuit of size of 4,094,832 gates versus 4,562,988 for the
version of scoram reported in Table 1, i.e., roughly a 10%
reduction.

Stash size. We plot the stash size versus security param-
eters with different logN in Figure 5. Each point (x, y) on
the curve should be read as “with a stash size of more than
y, ORAM failures were observed 2−x fraction of the time”.
the stash size grows linearly with security parameters, sug-
gesting the failure probability decreases exponentially with

χ ` Total # gates
N = 220 N = 229

2 9 6,657,629 20,363,468
4 5 4,562,988 13,619,451
8 3 4,657,921 13,382,510
16 2 5,518,948 15,657,910
32 1 6,933,117 21,455,341
64 1 11,120,697 34,165,313

Table 2: How to pick χ and the recursion level. This
table shows how we concretely optimize recursion parame-
ters needed to implement the position maps in scoram. χ
describes how many addresses are packed into each block,
and ` describes the number of recursive steps before we use
the linear-scan ORAM as the base case.

the stash size. Note that unlike the Path-SC ORAM, the
stash size is super-linear in logN .

Recursion factor. Here we study the choices needed to re-
cursively implement the position-map in all tree-based ORAM
designs. We formulate the choice as an optimization prob-
lem as follows.

As before, let N denote the number of blocks (and thus
the size of the position map), D denote the number of bit per
blocks, and for our given scheme, let f(N,D) = O(D logeN)ω(1)
denote the the circuit size for one ORAM access excluding
the cost of the position map lookup. Let LS(N,D) denote
the circuit size of the linear scan ORAM.

In our top-level ORAM, we have D0 = 32. When imple-
menting the position map recursively with another ORAM,
we must select the number of labels, χ, to pack into a block
and the number of times, `, to do recursion before finally
using the linear scan ORAM as the base case. Note, the
ORAM for the ith recursive level has Ni = N

χi blocks of size

Di = χ logNi−1. Thus, the total cost with recursion is

∑̀
i=0

f(Ni, Di) + LS(N`+1, D`+1)

For example, when N = 220, χ = 8 and ` = 3, we have
total cost: f(220, 32)+f(217, 160)+f(214, 136)+f(211, 112)+
LS(28, 88). Since we can empirically determine f for any
parameter setting, we can thus minimize the total cost. In
our case, we limit χ to a power of 2 and use the same χ
at each recursive level. See Table 2 for the results of this
optimization. When N = 220, we use χ = 4 and ` = 5, and
when N = 229, we use χ = 8 and ` = 3.

5.2 Circuit-Level Optimizations
We make several circuit-level optimizations to reduce the

total number of gates and number of non-free gates. The
latter (i.e., non-free gates) is a metric specific to certain
backends such as garbled circuits [40] and GMW [8].

Backend-independent optimizations. A frequently-used
logic is to determine if a block is dummy. We add a single
bit field isDummy to each block indicating whether the block
is dummy. This simple trick reduces the circuit size to deter-
mine if a block is dummy from logN AND gates to 1 AND
gate. In addition, an important side benefit is that it en-
ables efficient oblivious removal of a block from the bucket.



We only need to set the isDummy field instead of resetting
all bits of a block.

Backend-dependent optimizations. Some secure com-
putation protocols such as the garbled circuit and the GMW
protocol support almost-free XOR gates. We make several
circuit level optimizations exploiting this opportunity.

A common operation in some Eviction algorithms (e.g.,
CLP ORAM, scoram) is to compute the block among a
given bucket of Z blocks {b1, . . . , bZ} that can be pushed
deepest along the path P without violating the path invari-
ant. Intuitively, we can calculate LCA(bi.label, P ) for every
i, which involves counting number of zeros of (bi.label⊕ P ).
Since each label has logN bits, counting the number of lead-
ing zeros for every label requires O(logN log logN) AND
gates and computing the maximum for all Z blocks requires
O(Z log logN) AND gates. Therefore, it uses a total of
O(Z logN log logN) AND gates.

In our implementation, we use a circuit of size O(Z logN)
to compute exactly this function: (1) compute label′i =
bi.label⊕P .(More zeros in label′ means deeper). (2) in label′,
set all bits lower than the most significant 1 bit to 1. (3)
find the block with smallest label′, which corresponds to the
deepest block. This works because a label′ is smaller after
processed by (2) if and only if it has more zeros.

6. PERFORMANCE EVALUATION

6.1 Methodology and Metrics
Our evaluation focuses on the following types of metrics:
1. Cryptographic backend independent metrics, such as

gate count. This characterizes the performance of a
ORAM when used in secure computation in general,
relatively independent of the cryptographic backends.

2. Cryptographic backend dependent metrics, such as the
number of encryptions, non-free gates, and bandwidth.
These metrics characterize the performance of an ORAM
scheme with a semi-honest Garbled Circuit backend in
a manner that is independent of the specific hardware
configuration or implementation artifacts.

3. Implementation and machine dependent metrics, such
as runtime and breakdown of runtime. We will de-
scribe our specific hardware configuration and the spe-
cific Garbled Circuit implementation as the context of
our results. We also discuss the interpretation of these
results and project the performance had the experi-
ments been run on a different hardware configuration
or with a more optimized Garbled Circuit implemen-
tation.

6.2 Performance Comparison
We reevaluate the state-of-the-art ORAMs over secure

computation, and compare their performance with our sco-
ram. The metrics we considered include total gate count
(Figure 6a), non-free gate count (Figure 6b), number of AES
encryptions (Figure 6c), and input size of circuit (Figure 6d).

Table 3 summarizes the margin by which our scoram
outperforms existing schemes. In particular, we show that
across all metrics, we achieve 7.6× to 9.8× performance im-
provements comparing to the respective second best ones.

As mentioned earlier, even though Path-SC ORAM is
asymptotically better than Binary Tree ORAM, for prac-
tical ranges of N , Binary Tree ORAM outperforms Path-SC
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Figure 8: The amount of data transferred per access
for scoram. Payload bitlength is 32 bit, 80-bit security
parameter.

ORAM due to lower constants in the asymptotic bound.
This is shown in Figure 6.

The most popular ORAM scheme used previously is Bi-
nary Tree ORAM. scoram is 7 times smaller and requires
27x fewer inputs. Note that each input bit involves an obliv-
ious transfer, which, even with OT extension, incurs 2 en-
cryptions. For the sake of reproducibility, we report all pa-
rameter settings that we used to run our experiments in
Table 4 in the Appendix.

6.3 Performance Profiling for SCORAM
We further investigate the performance breakdown of sco-

ram scheme. Specifically, the cost can be broken down into
I/O overhead and computation overhead.

Our machine/implementation-dependent measurements are
taken on a single server (Intel Xeon 2.13G Hz) running the
circuit generator and evaluator as two independent processes
(communicating through Socket). The memory usage ranges
from 4–12 GB for both processes depending on the data size.

Interpreting the measurements. First, our implemen-
tation does not currently exploit AES-NI instructions to
speed-up garbling. We expect a noticeable speedup for the
computation time when hardware AES is implemented.

Second, the Garbled Circuit backend we used is a Java-
based implementation. Therefore, our timing measurements
are subject to the artifacts of the Java-based implemen-
tation. There are two main sources of artifacts, memory
garbage collector and I/O synchronization. In Figure 7, we
note that a substantial portion of the time is due to I/O.
Since the experiments is run on the same machine where
network bandwidth is not a bottleneck, we infer majority of
the I/O time we recorded are due to I/O synchronization.
Note that for the circuit generator, we observe the computa-
tion time spent on OT and garbling is roughly the same. On
the circuit evaluator side, the portion of I/O cost is larger
because the evaluator indeed has less computational work
to do (thanks to the garbled row reduction technique) while
being stuck more often waiting for the generator.

Network transmission. Figure 8 plots the bandwidth
consumption for our scoram, under different security pa-
rameters. Note that the bandwidth overhead is proportional
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Figure 6: Comparison of various ORAMs. Payload bitlength = 32 bits, security parameter = 80.

to the total number of non-free gates in our garbled cir-
cuit system. The non-free-gate counts (Figure 6b) correlates
with growth in the bandwidth.

Comparison with existing implementations. We are
aware of two other ORAM implementations over secure com-
putation. Gordon et al. [12] report on an ORAM with
N = 220 and D = 512 with secure parameter less than
20. The paper does not clearly report the bucket size they
use, but we assume the bucket size is 40 based on our in-
terpretation of their paper. Their ORAM requires 11.9M
gates and takes approximately 50 seconds for one operation.
In contrast, our best implementation for their parameters
requires 3,743,213 total gates, and our implementation at
significantly higher security parameters(80) runs in under 30
seconds. Further, Gordon et al. reported a break-even point
with the trivial Linear Scan ORAM at 216 blocks with 512
bits per block and security parameter less than 20. In com-
parison, we achieve a break-even point at 214 blocks with
32 bits per block, with a much higher security parameter
of 80. Note that typically, bigger blocks would reduce the
break-even point because meta-data operations that are in-
dependent of block size can be amortized to more bits per
block.

The second implementation is by Keller and Scholl [15].
Their implementation was based on the SPDZ protocol, run-
ning in the preprocessing model. Their flagship scheme was

based on Path ORAM, with heuristic modifications. How-
ever, their result shows that their new Path ORAM variant
is worse than Binary Tree ORAM, while our implementa-
tion is much better than Binary Tree ORAM. We expect
that scoram would also outperform Binary Tree ORAM
when implemented over SPDZ.

6.4 End-to-End Applications
In this section, we show the performance of scoram when

used in practical applications. We assume Alice holds a
sorted array and Bob holds queries. They would like to re-
peatedly search for some element over the sorted array with-
out revealing any information except the result. The array
is put into an ORAM in a one-time offline setup phase, and
henceforth the parties will securely evaluate binary searches
on multiple queries. Whenever the binary search program
accesses a cell of the array, an ORAM access is called. In
Figure 9, we show the clock time to do a binary search
with different data size and payload size. The evaluation
here reports the online cost of performing the searches, not
counting the offline ORAM setup phase.

Gordon et al. [12] also implement a binary search applica-
tion. However, they report performance only for a security
parameter of 20. To achieve a security parameter of 80, their
bucket size choice must be 4 times larger. Based on this, we
estimate that when both schemes are parametrized with a
security parameter of 80 and 512 bits payload, our imple-



Metric Second best
Performance gain of scoram
N = 220 N = 229

Gate Count CLP ORAM 6.7X 9.4X

Non-Free Gates Binary Tree ORAM 7.6X 7.6X

Number of Encryptions
CLP ORAM 7.2X −
Binary Tree ORAM − 9.8X

Table 3: Performance comparison of scoram over the second best candidates. (Data payload: 32 bits. Security
parameter: = 80). Considering the number of encryptions, the second best is the CLP ORAM when N = 220, and the Binary
Tree ORAM when N = 229.

10 12 14 16 18 20 22 24 26
log(Number of Blocks in ORAM)

0

5

10

15

20

25

30

T
im

e
/

se
co

n
d

s

Computation for Garbling

Computation for OT

I/O for Garbling

I/O for OT

(a) Breakdown for the Garbled Circuit generator.

10 12 14 16 18 20 22 24 26
log(Number of Blocks in ORAM)

0

5

10

15

20

25

30

T
im

e
/

se
co

n
d

s

Computation for Garbling

Computation for OT

I/O for Garbling

I/O for OT

(b) Breakdown for the Garbled Circuit evaluator.
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mentation is about 16x times faster than that by Gordon et
al. [12]. Specifically, our SCORAM has about 8x times fewer
AND gates; and our garbled circuit backend (including hard-
ware configuration) is about 2x faster than Gordon et al.’s
backend implementation and hardware.

7. CONCLUSION
As an enabling primitive of RAM-based secure computa-

tion, the construction of efficient ORAM for secure computa-
tion is of great importance. We are the first ones to observe

that ORAM for secure computation requires a different met-
ric than popular existing metrics for ORAM. We perform a
thorough re-evaluation of state-of-the-art ORAM schemes
based on a new circuit complexity metric. Further, we pro-
posed a new, heuristic scheme called scoram, that empiri-
cally reduces the circuit size by 8X-10X compared with all
existing ORAMs. scoram code will be released in the near
future on our project webpage http://www.oblivm.com.

Since scoram does not provide a theoretical bound for its
circuit size, this work leaves open the intriguing question of
how to construct a scheme that is both practically efficient,
and has rigorous theoretical bounds. scoram has inspired
a subsequent work called Circuit ORAM [35], which not
only answers this open question in the positive, but also
as a by-product, partially addresses a long-standing open
question by showing that certain stronger interpretations of
the Goldreich-Ostrovsky ORAM lower bound [7] are tight.
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oram with Õ(log2 n) overhead. arXiv preprint
arXiv:1307.3699, 2013.

[4] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly
secure oblivious RAM without random oracles. In
TCC, 2011.

[5] C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure
processor architecture for encrypted computation on
untrusted programs. In STC, 2012.

[6] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla,
M. Raykova, and D. Wichs. Optimizing ORAM and
using it efficiently for secure computation. In Privacy
Enhancing Technologies Symposium (PETS), 2013.

[7] O. Goldreich. Towards a theory of software protection
and simulation by oblivious RAMs. In STOC, 1987.

[8] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In ACM symposium on Theory
of computing (STOC), 1987.

[9] M. T. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious RAM simulation. In ICALP, 2011.

[10] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Oblivious RAM simulation with
efficient worst-case access overhead. In CCSW, 2011.

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Privacy-preserving group data
access via stateless oblivious RAM simulation. In
SODA, 2012.

[12] S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell,
T. Malkin, M. Raykova, and Y. Vahlis. Secure
two-party computation in sublinear (amortized) time.
In CCS, pages 513–524, 2012.

[13] M. Harchol-Balter. Performance Modeling and Design
of Computer Systems: Queueing Theory in Action.
Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge
University Press, 2013.

[14] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
Secure Two-Party Computation Using Garbled
Circuits. In USENIX Security Symposium, 2011.

[15] M. Keller and P. Scholl. Efficient, oblivious data
structures for mpc. Cryptology ePrint Archive, Report
2014/137, 2014. http://eprint.iacr.org/.

[16] B. Kreuter, B. Mood, A. Shelat, and K. Butler. PCF:
A Portable Circuit Format for Scalable Two-Party
Secure Computation. In USENIX Security
Symposium, 2013.

[17] B. Kreuter, A. Shelat, and C. hao Shen. Billion-Gate
Secure Computation with Malicious Adversaries. In
USENIX Security Symposium, 2012.

[18] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in)security of hash-based oblivious RAM and a new
balancing scheme. In SODA, 2012.

[19] C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks.
Automating efficient ram-model secure computation.
IEEE S & P, 2014.

[20] S. Lu and R. Ostrovsky. Distributed oblivious ram for
secure two-party computation. In Proceedings of the
10th Theory of Cryptography Conference on Theory of
Cryptography, TCC’13, pages 377–396, Berlin,
Heidelberg, 2013. Springer-Verlag.

[21] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. Phantom:
Practical oblivious computation in a secure processor.
In CCS, 2013.

[22] P. MacKenzie, A. Oprea, and M. Reiter. Automatic
Generation of Two-party Computations. In ACM
Conference on Computer and Communications
Security, 2003.

[23] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella.
Fairplay: A secure two-party computation system. In
USENIX Security, 2004.

[24] J. C. Mitchell and J. Zimmerman. Data-Oblivious
Data Structures. In STACS 2014, pages 554–565, 2014.

[25] V. Nikolaenko, S. Ioannidis, U. Weinsberg, M. Joye,
N. Taft, and D. Boneh. Privacy-preserving matrix
factorization. In CCS, pages 801–812, 2013.

[26] R. Ostrovsky. Efficient computation on oblivious
RAMs. In STOC, 1990.

[27] R. Ostrovsky and V. Shoup. Private information
storage (extended abstract). In STOC, 1997.

[28] B. Pinkas and T. Reinman. Oblivious RAM revisited.
In CRYPTO, 2010.

[29] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria:
A programming language for generic, mixed-mode
multiparty computations. IEEE S & P, 2014.

[30] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li.
Oblivious RAM with O((logN)3) worst-case cost. In
ASIACRYPT, 2011.

[31] E. Stefanov and E. Shi. Fastprp: Fast pseudo-random
permutations for small domains. Cryptology ePrint
Archive, 2012. http://eprint.iacr.org/.

[32] E. Stefanov and E. Shi. Multi-cloud oblivious storage.
In CCS, 2013.

[33] E. Stefanov and E. Shi. Oblivistore: High performance
oblivious cloud storage. In IEEE Symposium on
Security and Privacy (S & P), 2013.

[34] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,
X. Yu, and S. Devadas. Path ORAM: an extremely
simple oblivious ram protocol. In In CCS, 2013.

[35] X. S. Wang, T.-H. H. Chan, and E. Shi. Circuit
ORAM and on tightness of the goldreich-ostrovsky
lower bound. Manuscript, 2014.

[36] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi,
E. Stefanov, and Y. Huang. Oblivious data structures.
In CCS, 2014.

[37] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.

[38] P. Williams and R. Sion. Round-optimal access
privacy on outsourced storage. In CCS, 2012.



[39] P. Williams, R. Sion, and B. Carbunar. Building
castles out of mud: Practical access pattern privacy
and correctness on untrusted storage. In CCS, 2008.

[40] A. C.-C. Yao. How to generate and exchange secrets.
In FOCS, 1986.

APPENDIX
A. A LOGARITHMIC DEPTH CIRCUIT

We describe how to construct a low-depth circuit for Path-
SC ORAM. The main steps of the algorithm are:

1. Setting temporary offset fields. As described be-
fore, we first sort the array A obliviously according to
the field bucket. For each entry A[i], if it is a dummy
block, set its field A[i].offset := ⊥. Otherwise, for
1 ≤ i ≤ LZ, set A[i].offset := Z · A[i].bucket + 1; recall
that our final goal is to rearrange blocks such that the
entry A[i] should go to bucket b i−1

Z
c, and so the offset

value is the smallest index at which the block can re-
side in A. For LZ + 1 ≤ i ≤ LZ + stsize, the block
A[i] cannot be written back in the path P , and we set
A[i].offset := st. Setting the offset fields takes circuit
of size O(S) and depth O(1). For sorting the key val-
ues, we use the natural order for positive integers Z+,
and use the convention Z+ < st < ⊥. Observe that for
stsize +LZ + 1 ≤ i ≤ stsize + 2LZ, A[i] must contain a
dummy block.

2. Determining final offset of real blocks. The blocks
that are going to be written back in the path P can
come from only A[1..LZ], which is sorted according to
the field offset, that currently indicates the lowest index
at which the block can reside in A. The purpose of this
step is to update the offset field to the final position
of each real block within A before being written back
to the path P . This can be achieved by linear scan as
described in Figure 4 in Section 3.1. However, a naive
implementation will incur a circuit depth of Θ(LZ).
We shall describe a more careful implementation using
divide and conquer with circuit depth of O(logLZ).

A naive way to implement linear scan will incur a circuit
depth of Θ(LZ) = Θ(logN). We shall describe a more care-
ful implementation such that the circuit depth is dominated
by that for oblivious sorting. Recall the input of the prob-
lem is an array A[1 . . .m] that is sorted according to the
offset field, which indicates the smallest integer that can be
received by the entry. The problem is equivalent to increas-
ing the offset field of each entry as little as possible such
that the array A is still sorted according to offset and no
two entries have the same offset value.

The high level idea is to use divide and conquer. The
standard procedure is to first solve the problem recursively
on A[1..j] and A[j+1..m], where j = bm

2
c. Observe that the

offset fields of entries in A[1..j] do not have to be changed,
and in order to achieve O(1) circuit depth, we need to update
the entries A[j + 1..m] in parallel.

Observe that at this point, the next available integer for
A[j + 1] is p := A[j].offset + 1. Hence, r := max{p − A[j +
1].offset, 0} is the amount that we need to increase A[j +
1].offset. The issue is whether we are able to deduce the
increment readily for entries A[i], for all j + 1 ≤ i ≤ m.

For such an i, observe that ri := (A[i].offset − A[j +
1].offset) − (i − j − 1) is the number of integers in [A[j +
1].offset..A[i].offset] that have not been assigned to any en-

try. Hence, the amount we need to increase A[i].offset is
max{r − ri, 0}. Hence, this step can be done in parallel for
all j + 1 ≤ i ≤ m. The whole procedure is achieved by
calling UpdateOffset(A[1..m]), whose pseudocode is given in
Algorithm 2. A standard analysis shows that this leads to a
circuit of size O(m logm) and depth O(logm).

Algorithm 2 UpdateOffset(A[a..b])

1: if a=b then return;

2: j := ba+b
2
c;

3: UpdateOffset(A[a..j]);
4: UpdateOffset(A[j + 1..b]);
5: r := max{A[j].offset + 1−A[j + 1].offset, 0};
6: s := A[j + 1].offset;
7: for i from j + 1 to b in parallel do
8: A[i].offset := A[i].offset+

max{r − (A[i].offset− s) + (i− j − 1), 0};
9: return;

B. A DESCRIPTION OF ALL EXPERIMENTS
Figure 4 includes detailed parameters used in this paper

in order to facilitate reproducible experiments.

ORAM design N Other Parameters Gates Inputs
Z Stash, Evict, ` (M) (M)

Binary Tree ORAM 220 120 N/A,2, 4 38.5 7.0
229 120 N/A,2, 8 127.7 24.2

CLP ORAM 220 4 120,2, 4 29.4 0.7
229 4 144,2, 8 121.8 2.1

Naive Path ORAM 220 4 89,1, 4 56.2 0.1
229 4 89,1, 8 163.1 0.3

Path-SC ORAM 220 4 89,1, 4 37.2 0.1
229 4 89,1, 8 111.7 0.3

scoram 220 6 88,4, 4 4.4 0.3
229 6 141,4,8 13.0 0.9

Table 4: A listing of all parameters used in our ex-
periments. The parameters are set to achieve statistical
security of 2−80. Gates and Inputs are obtained with pay-
load bitlength = 32bits; Cutoff threshold is set at 210


