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Abstract

Oblivious RAM (ORAM) constructions have traditionally been measured by their bandwidth cost,
or the blowup in the ORAM’s running time in comparison with the non-oblivious baseline. While these
metrics can suitably characterize an ORAM’s performance in secure processor and cloud outsourcing
applications, recent works have observed that other applications such as secure multi-party computation
demand a different metric, namely, the ORAM’s circuit complexity.

Following the tree-based ORAM paradigm by Shi et al., we propose a new ORAM scheme called
Circuit ORAM. Circuit ORAM achieves O(D logN)ω(1) total circuit size1 (over all protocol interactions)
for memory words of D = Ω(log2 N) bits, while achieving a negligible failure probability. For memory
words of D = Ω(log2 N) bits, Circuit ORAM achieves smaller circuits both asymptotically and in practice
than all previously known ORAM schemes. Empirical results suggest that Circuit ORAM yields circuits
that are 8x to 48x smaller than Path ORAM for datasets of roughly 1GB. The speedup will be even
greater for larger data sizes.

Circuit ORAM is also theoretically interesting when interpreted under the traditional metrics. Pa-
rameterizing the scheme slightly differently, we show the following. Let 0 < ε < 1 denote any constant,
and consider a family of RAMs with N words each of which N ε bits in size. Any RAM in this class can
be compiled to an Oblivious RAM with O(1) words of CPU cache, running in O(T logN)ω(1) time, and
achieving negligible statistical failure probability (or running in O(T logN) time but with inverse polyno-
mial failure probability). This suggests that certain stronger interpretations of the Goldreich-Ostrovsky
ORAM lower bound are tight — in particular their lower bound trivially generalizes to any O(1) failure
probability, and works for arbitrary memory word sizes.

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [16,18], is a general cryptographic
primitive that allows oblivious accesses to sensitive data, such that access patterns during the computation
reveal no secret information. Since the original proposal of ORAM [18], it has been studied in various
application settings including secure processors [8–10, 35, 41], cloud outsourced storage [19, 43, 44, 51] and
secure multi-party computation [11,12,23,26,30,47].

1.1 ORAM with Small Circuit Complexity

Traditionally, an ORAM scheme is measured by its bandwidth cost [19, 42, 44–46] or the blowup in the
RAM’s running time [16, 18]. While these metrics are suitable for characterizing an ORAM’s performance
in the secure processor and cloud outsourced storage settings, recently, Wang et al. [47] observe that in
cryptographic applications such as secure multi-party computation [17,53] or (reusable) Garbled RAM [13–

1We use the notation g(N) = O(f(N))ω(1) to denote that for any α(N) = ω(1), it holds that g(N) = O(f(N)α(N)).
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Scheme Circuit Size Security

Hierarchical ORAMs

Goldreich-Ostrovsky [16,18] O(D log3 N + CPRF log2 N) Comp.

Goodrich-Mitzenmacher [19] O(D log2 N + CPRF logN) Comp.

Kushilevitz, Lu, and Ostrovsky [29] O((D + CPRF) · log2 N/ log logN) Comp.

Lu and Ostrovsky [32] (Note: 2-server model) O((D + CPRF) · logN) Comp.

Tree-based ORAMs

Binary-tree ORAM [42] O((D + log2 N) log2 N)ω(1) Stat.

Chung, Liu, and Pass [5] (naive circuit) O((D + log2 N) log3 N)ω(1) Stat.

Chung, Liu, and Pass [5] (w/ oblivious queue [36,40,54]) O((D + log2 N) log2 N)ω(1) Stat.

Path ORAM (naive circuit) [46] O((D + log2 N) log2 N)ω(1) Stat.

Path ORAM (o-sort circuit) [47] O((D + log2 N) logN log logN)ω(1) Stat.

Circuit ORAM (This Paper) O((D + log2N)logN)ω(1) Stat.

Table 1: Circuit size of various ORAM schemes. All schemes are parameterized to have 1
Nω(1) failure

probability. The variable CPRF denotes the circuit size of a PRF function with input size of O(logN) bits.
Among all single-server ORAM schemes, Circuit ORAM has asymptotically the smallest circuit size if CPRF

is at least ω(logN log logN) — which is true for all known PRF constructions provably secure based on
computationally hard problems. When the memory word size is Ω(log2N), Circuit ORAM’s circuit size
is competitive with Lu and Ostrovsky’s multi-server ORAM [32] asymptotically, and in practice orders of
magnitude better.

15, 33, 34], the circuit complexity of the ORAM scheme is a more appropriate metric. Specifically, Wang et
al. define the circuit complexity of an ORAM scheme to be the total size of ORAM circuits over all protocol
interactions (when we express the ORAM algorithm in smallest possible circuits). In this paper, all circuits
are assumed to be boolean circuits with constant fan-in and fan-out, with AND and XOR gates. Besides
introducing the circuit complexity metric, Wang et al. also point out the following:

• Among known constructions, Path ORAM has the smallest circuit size for reasonably large mem-
ory word sizes. Specifically, they demonstrate this by implementing Path ORAM with circuits of
O(D logN log logN) · ω(1) total size for memory words of D = Ω(log2N) bits.

• Additionally, Wang et al. give a heuristic tree-based construction called SCORAM [47], and show that
empirically SCORAM achieves roughly 10x improvement in circuit size in comparison with the state-
of-the-art Path ORAM [46]. Unfortunately, SCORAM did not have a formal security proof; further,
empirical simulations of SCORAM suggest that SCORAM’s circuit complexity is asymptotically worse
than that of Path ORAM (while in practice SCORAM is 10x better for moderately large data sizes).

The work by Wang et al. leaves open the intriguing question of how to design ORAM schemes with
asymptotically smaller circuit complexity. Following the tree-based ORAM paradigm by Shi et al. [42], we
construct a novel ORAM scheme called Circuit ORAM. For a memory word size of D = Ω(log2N), Circuit
ORAM achieves O(D logN) · ω(1) circuit complexity. Notably, Circuit ORAM outperforms all existing
(single-server) ORAM schemes in terms of circuit complexity both asymptotically and in practice. A more
detailed asymptotical comparison is provided in Table 1 (note that existing hierarchical ORAMs rely on
PRFs. All existing provably secure PRFs require ω(logN log logN) cost for input size of O(logN) bits). On
the practical front, our empirical results suggest that Circuit ORAM outperfoms Path ORAM by 8x to 48x
in terms of circuit size at a 1GB dataset size, and outperforms SCORAM by 4x — this speedup will be even
greater for bigger datasets. Like most other tree-based ORAMs, Circuit ORAM is statistically secure, i.e.,
security holds against a computationally unbounded adversary.

Remark 1 (Model) For showing that certain stronger interpretations of the Goldreich-Ostrovsky lower
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bound are tight, we will use the standard ORAM model (with a uniform memory word size). However, the
remainder of paper will mostly consider a slight variant of the standard ORAM model. For a given RAM with
N memory words, each D bits in length, we assume that its ORAM counterpart is a RAM with non-uniform
memory word sizes. This means that we allow the ORAM to have memory words of different sizes.

1.2 When the Goldreich-Ostrovsky Lower Bound is Tight

Goldreich and Ostrovsky [16, 18] show that for any N -word RAM, its oblivious simulation must incur at
least Ω(logN) blowup in the RAM’s running time — assuming O(1) words of CPU cache. That is, if the
non-oblivious RAM ran in time T , then its oblivious counterpart would run in time Ω(T logN). Whether
this lower bound is tight has been one of the biggest open questions in this line of research for the past
twenty-seven years [16].

Circuit ORAM can also be recast in terms of traditional ORAM metrics. As an interesting by-product
of our work, we show that certain stronger interpretations of the famous Goldreich-Ostrovsky lower bound
are tight. This gives a partial solution to this open question in the following sense.

First, observe that while not made explicit in their theorem statement [16,18], Goldreich and Ostrovsky’s
lower bound proof clearly shows that the Ω(logN) lower bound holds even for any constant statistical failure
probability, and for arbitrary memory word sizes, as formally stated below:

Theorem 1 (Goldreich-Ostrovsky ORAM lower bound [16,18], a stronger interpretation) For any
N -word RAM with arbitrary memory word size and running in time T , its oblivious simulation must incur at
least Ω(T logN) run-time, even when tolerating up to any O(1) failure probability against a computationally
unbounded adversary.

In fact, the Goldreich-Ostrovsky lower bound can be interpreted in even stronger ways. Notably, their
lower bound proof does not account for the cost of the CPU-caching and transmission of metadata (i.e., any
helper data structures that are independent of the actual contents of memory words). Therefore, their lower
bound holds even when all metadata caching and transmission comes for free! In this sense, the Goldreich-
Ostrovsky lower bound is very powerful. Ideally, one wishes to show that even weaker interpretations of the
lower bound are tight. In this paper, we are only able to show the tightness of certain stronger interpretations.

Circuit ORAM can easily be parameterized and viewed in a different light, as stated in the following
informal theorem:

Theorem 2 (Informal.) Let 0 < ε < 1 denote an arbitrary constant. For any N -word RAM running in
time T where each word is D = O(N ε) bits in size, there exists an ORAM counterpart running in time
O(T logN), consuming O(1) words of CPU cache, and with a uniform memory word size of D · (1 + o(1)).
Further, the ORAM counterpart tolerates inverse polynomial statistical failure probability.

Hence, the stronger interpretation of the Goldreich-Ostrovsky lower bound as stated in Theorem 1 is tight.

As will soon become clear, the large memory word size assumption is to allow O(1) depths of recursion using
the standard recursion trick of tree-based ORAMs [42].

It is also helpful to compare Circuit ORAM with the state-of-the-art Path ORAM [46] in terms of the
traditional metric, i.e., blowup in the ORAM’s running time. In comparison, Path ORAM requires Ω(logN)
words of CPU cache to achieve the same asymptotic overhead in terms of blowup of the ORAM’s runtime.
This is necessary since in Path ORAM, the CPU must locally store the the eviction path and the stash to
perform the eviction algorithm in O(logN) time. In contrast, Circuit ORAM requires only O(1) blocks of
CPU cache.

Regarding the tightness of the Goldreich-Ostrovsky lower bound, even though the partial answers we
give are not yet entirely satisfying, we are nevertheless the first ones to show that any interpretation of
the Goldreich-Ostrovsky lower bound (or its proof) is tight. Our work leaves open the intriguing question
whether weaker interpretations of the Goldreich-Ostrovsky lower bound are tight. A tighter lower bound,
however, can only be shown if 1) we consider a model that tolerates negligible or no statistical failures; or
2) the lower bound proof explicitly makes use of small block size assumptions.
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Scheme Amortized Bandwidth Cost Client Storage Server Storage

Hierarchical ORAMs

Goldreich-Ostrovsky [18] O(D log3 N) O(D) O(DN logN)

Goodrich-Mitzenmacher [19] O(D log2 N) O(D) O(DN)

Kushilevitz et al. [29] O(D log2 N/ log logN) O(D) O(DN)

Lu and Ostrovsky [32]
O(D logN) O(D) O(DN)(Note: 2-server model)

Tree-based ORAMs

Binary-tree ORAM [42] O(D log2 N + log4 N) · ω(1) O(D) O(DN logN) · ω(1)

Chung et al. [5] O
((
D logN + log3 N

)
log logN

)
O(D log2 N) · ω(1) O(DN logN log logN)

Path ORAM(naive circuit) [46] O(D logN + log3 N) O(D logN) · ω(1) O(DN)
Path ORAM(o-sort circuit) [47] O

((
D logN + log3 N

)
log logN

)
· ω(1) O(D) O(DN)

Circuit ORAM (This paper) O(D logN + log3 N) · ω(1) O(D) O(DN)

Table 2: Comparison of various ORAMs in terms of bandwidth cost. The bounds are expressed for negligible
failure probabilities. For all ORAMs based on the tree-based framework, their bandwidth cost includes two parts,
a part for transferring blocks, and a part for transferring metadata. The metadata part would be absorbed into the
other term if D = Ω(log2N).

1.3 Technical Highlights

Terminology. For convenience, in this paper, we use the terms “memory word”, “word”, or “block”
interchangably. Further, we use the terms “CPU” and “ORAM client” interchangably. We also use the
terms “memory” and “ORAM server” interchangably.

Path ORAM has a complex eviction circuit. Wang et al. show that Path ORAM can be implemented
with circuits of O(D logN logN logN) ·ω(1) total size (for negligible security failures). Our goal is to remove
the log logN factor. One immediate question is whether we can implement Path ORAM itself with a smaller
circuit. This seems inherently difficult, since it is not hard to see that Path ORAM’s eviction algorithm
implies sorting for a path of Θ(logN) length (imagine that bucket size were 1). Therefore, the log logN gap
for Path ORAM seems inherent.

Reducing eviction complexity. Our idea is to find an eviction circuit that is less complex than that of
Path ORAM’s, and yet preserving the effectiveness of eviction. Achieving this is non-trivial. We first tested
numerous ideas empirically, most of which failed to empirically bound the stash size since the eviction algo-
rithm is not as aggressive as Path ORAM. After months of trying, we eventually identified a good empirical
candidate, which in turn inspired the design of its provable variant, Circuit ORAM, that is documented in
this paper. Just like Path ORAM [46] and its variants [9, 12], Circuit ORAM performs eviction on O(1)
number of paths upon each data access. Our key idea is to complete the eviction algorithm within a single
block scan of the current eviction path (while evicting as aggressively as we can). Achieving this directly
introduces some difficulties due to a “lack-of-foresight” problem, i.e., the ORAM client does not know when
to pick up a block and remove it from the path, and when to drop it into an empty slot on the path. To
tackle this problem, we leveraged two additional metadata scans to precompute the foresight required, before
beginning the real block scan. Our construction and proofs borrow ideas from Path ORAM [46] and the
CLP ORAM [5]. And yet our construction and proofs differ in a substantial and non-trivial manner from
either.
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1.4 Related Work

Hierarchical ORAMs. As mentioned earlier, Oblivious RAM was first proposed in a groundbreaking
work by Goldreich and Ostrovsky [18]. In addition to the aforementioned lower bound, Goldreich and
Ostrovsky were the first to propose a poly-logarithmic hierarchical construction, which was subsequently
improved in numerous works [4, 16, 18–22, 29, 31, 32, 37–39, 48–51]. In particular, Goodrich and Mitzen-
macher [19] achieves bandwidth cost of O(D log2N) under constant client storage and cost of O(D logN)
under O(N ε) client storage for 0 < ε < 1. Later, Lu et al. show that O(D log2N/ log logN) bandwidth
cost can be achieved under O(D) client storage [29]. Further, hierarchical ORAMs with O(

√
N) client-side

storage have been applied to secure outsourced storage applications [19,22,48,51,52].

Tree-based ORAM framework. The tree-based ORAM framework, initially proposed by Shi et al. [42],
departs fundamentally from the hierarchical framework [18], and is a new paradigm for constructing a class
of ORAM schemes. Several later works [5, 11, 46] improved Shi et al.’s initial construction [42] (commonly
referred to as binary-tree ORAM). These schemes are conceptually simpler, statistically secure, and easy
to implement in secure processors [8–10, 35, 41] or secure computation [12, 23, 26, 30, 47]. A more detailed
description of tree-based ORAMs are provided in Section 2.

Remarks about the ORAM lower bound. Besides efforts at constructing more efficient upper bounds,
the community has also been interested in tightening the lower bound. Beame and Machmouchi [3] show
a super-logarithmic lower bound for oblivious branching programs. Although some works cited their lower-
bound as being applicable to the ORAM setting [6,19], it was later recognized that Beame et al.’s super-
logarithmic lower bound is not applicable to the standard model of Oblivious ORAM. As the
authors noted themselves in an updated version [3], one key difference is that the standard ORAM model
requires that the probability distribution of the observed access patterns be statistically close regardless
of the input; whereas Beame’s model requires that for each given random string r, the access pattern be
independent of the input. Therefore, their super-logarithmic lower-bound is in a much stronger model than
standard ORAM, and hence inapplicable to ORAM. To date, Goldreich and Ostrovsky’s original lower bound
is still the best we know; and this is for a good reason: their lower bound is indeed tight in their model. One
subtlety regarding the Goldreich-Ostrovsky lower bound was pointed out by Apon et al. [2], who show that
the lower bound holds only when the storage server (i.e., memory) is passive and incapable of computation,
and is no longer applicable when the storage server can actively perform computation. Apon et al. [2] referred
to the latter model with active server computation as Verifiable Oblivious Storage.

Additional related work. Williams and Sion propose schemes for cloud storage outsourcing while pre-
serving access pattern privacy [48, 51]. Their scheme works in a slightly different “Verifiable Oblivious
Storage” model as defined by Apon et al. [2], since it relies on the server to perform active computation
to support hash table queries. This model is incomparable and not subject to Goldreich-Ostrovsky’s lower
bound. Later, Williams et al. also relied on these ideas to further design a single-roundtrip verifiable
oblivious storage system [49], and implemented an oblivious file systems [52].

Lu and Ostrovsky propose a two-server ORAM which has O(D logN) bandwidth cost under O(D) client
storage. Stefanov et al. propose a partition-based ORAM framework that partitions a big ORAM into
O(
√
N) smaller ORAMs [45]. The partition-based framework is later used in constructing cloud-based

oblivious storage [43,44]. In two independent works, Ajtai [1] and Damg̊ard et al. [6] both propose statistically
secure ORAM constructions. In particular, the construction by Damg̊ard et al. [6] is error-free, i.e., has 0
failure probability. Fletcher et al. [9] propose a new technique for recursive, position map based ORAMs.
This can slightly reduce the assumption on the block size to obtain the same asymptotic overhead. However,
this technique requires computational assumptions instead of being statistically secure.
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2 Preliminary: Tree-Based ORAM Framework

Since Circuit ORAM follows the tree-based ORAM paradigm [42], we describe the tree-based ORAM frame-
work as background knowledge.

Notation. We use N to denote the number of (real) data blocks in ORAM, D to denote the bit-length of
a block in ORAM, Z to denote the capacity of each bucket in the ORAM tree, and λ to denote the ORAM’s
statistical security parameter. When discussing binary trees of depth L in this paper, we say the leaves
are at level L and the root is at level 1. For convenience in algorithm descriptions, we sometimes treat the
stash as a depth-0 bucket with some capacity R that is the imaginary parent of the root. We also denote
〈L〉 := {0, 1, 2, . . . , L}, and [a..b] := {a, a+ 1, . . . , b}.

2.1 Tree-based ORAM Construction

Shi et al. [42] proposed a new tree-based framework, which is used to build efficient ORAM schemes in many
work [5, 42,46,47]. We now briefly review the framework.

Data structure. The server organizes blocks into a binary tree of height L = logN ; each node of the tree
is a bucket containing Z blocks. Each block is of the form:

{idx||label||data},

where idx is the index of a block, e.g., the (logical) address of desired block; label is a leaf identifier
specifying the path on which the block resides; and data is the payload of the block, of D bits in size.

The client stores a stash for buffering overflowing blocks. In certain schemes such as the original binary-
tree scheme [42], such a stash is not necessary. In this case, we can simply treat this as a degenerate stash
of size 0.

The client also stores a position map, mapping a block’s idx to a leaf label. As described later, position
map storage can be reduced to O(1) by recursively storing the position map in a smaller ORAM. These
leaf labels are assigned randomly and are reassigned as blocks are accessed. If we label the leaves from 0 to
N − 1, then each label is associated with a path from the root to the corresponding leaf.

Main path invariant. Tree-based ORAMs maintain the invariant that a block marked label resides on
the path from the stash (to the root) to the leaf node marked label.

Figure 1: Access(op, idx, data∗)

//where op = “read” or “write”

1: label := PositionMap[idx]
2: {idx||label||data} := ReadAndRm(idx, label)
3: PositionMap[idx] := UniformRandom(0 . . . N − 1)
4: If op = “read”: data∗ := data

5: stash.add({idx||PositionMap[idx]||data∗})
6: Evict()
7: Return data

Operations. Tree-based ORAMs all follow a sim-
ilar recipe as shown in Figure 1. In particular, the
ReadAndRm operation would read every block on
the path leading to the leaf node marked label, and
fetches and removes the block idx from the path.

Various tree-based ORAMs are differentiated by
the eviction algorithm denoted Evict(). For exam-
ple, the original binary-tree ORAM adopts a simple
eviction algorithm engineered to make their proof
easy: with each data access, two distinct buckets
are chosen at random from each level to evict from.
By contrast, the Path ORAM algorithm performs eviction on the read path, and the eviction strategy is
aggressive: pack all blocks as close to the leaf as possible respecting the main invariant. In Path ORAM, a
O(logN) · ω(1) stash is necessary to buffer overflowing blocks.

6



Recursion. Instead of storing the entire position map in the client’s local memory, the client can store it
in a smaller ORAM on the server. In particular, this position map ORAM needs to store N labels each of
logN bits. We can apply this idea recursively until we get down to a constant amount of metadata, which
the client could store locally.

Recursion can be done using either uniform or non-uniform block sizes. For optimizing the circuit size
we will use the “big data block, little metadata block” trick described in the Path ORAM work [46]. For
the position map levels of the recursion, we use a block size of D′ := χ logN for some constant χ, i.e.,
each little block stores χ position labels. Note that D′ is not necessarily the same as the data block size
D. Due to this “big data block, little metadata block” trick, our asymptotical bounds in Tables 1 and 2
have two terms, one term corresponding to the data level, and the other term corresponding to all metadata
levels of the recursion. For example, in Tables 1, the binary tree ORAM’s Circuit Size has two terms: the
O(D log2N) ·ω(1) part is incurred from operating on blocks (0-th level of recursion), and the O(log4N) ·ω(1)
cost is incurred due to the metadata recursion levels.

To show the tightness of certain stronger interpretations of the Goldreich-Ostrovsky lower-bound, we will
use a uniform block size, and assume that blocks are of D = N ε bits in size — this ensures that the recursion
is of O(1) depth assuming 0 < ε < 1 is a constant.

2.2 ORAM Metrics

Traditionally, ORAM schemes are ususally measured by the following metrics:

• Bandwidth cost. An ORAM’s bandwidth cost refers to the average number of bits transferred for
accessing each block of D bits.

• Bandwidth blowup. An ORAM’s bandwidth blowup is defined as its bandwidth cost divided by D
(i.e., the bit-length of a data block). Effectively, the bandwidth blowup means the multiplicative factor
in bandwidth one needs to pay to get obliviousness.

• Runtime blowup. An ORAM’s runtime blowup is defined as the runtime of the Oblivious RAM
divided by the runtime of the non-oblivious RAM.

Note that in the standard RAM model with uniform block size, the bandwidth blowup and the runtime
blowup metrics are equivalent. However, when the ORAM scheme adopts non-uniform block sizes, these
two metrics may not be equal. For example, Path ORAM [46] proposes a “big data block, little metatdata
block” trick, resulting in O(logN) bandwidth blowup for Ω(log2N)-sized blocks; however, its blowup in
running time is O(log2N). Path ORAM achieves O(logN) blowup in running time with N ε-sized blocks,
where 0 < ε < 1. These above statements about Path ORAM assume O(logN)ω(1) blocks of client storage.

As mentioned earlier, the circuit complexity metric for ORAMs was first raised by Wang et al. [47].
Below are some simple but useful observations regarding the new circuit size metric [47] for ORAM:

• If there exists an ORAM scheme with O(f(N)) circuit complexity (regardless of client space), then there
exists an ORAM scheme with O(D) of client space and O(f(N)) bandwidth cost.

• Conversely, for any “non-wasteful” ORAM scheme that has Ω(f(N)) bandwidth cost, its circuit com-
plexity must be at least Ω(f(N)) – otherwise, some bits read from the server are not fed as inputs to the
ORAM client’s circuits – and hence these bits need not have been transferred.

Note that an ORAM with with O(f(N)) bandwidth cost does not necessarily imply an ORAM with
O(f(N)) circuit complexity. For example, many existing hierarchical ORAM schemes [18, 19] require the
computation of hash functions or PRFs on blocks of D bits. In these schemes, the circuit complexity metric
would be asymptotically greater than the bandwidth cost – since for bandwidth cost, these PRF or hash
computations come for free.
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3 Circuit ORAM

3.1 Overview

Circuit ORAM follows the tree-based ORAM framework, by building a binary tree containing N nodes
(referred to as buckets), where each bucket can store Z = O(1) number of blocks.

Stash. As later proved in Theorem 3 and 4, with probability at least 1−2−Ω(R), the stash holds at most R
blocks. We can parameterize R = O(logN) · ω(1) to obtain a failure probability negligible in N . To achieve
O(D) bits of client space, this stash can be stored on the server side, and operated on by the client in
each data access obliviously. For convenience, we will often refer to the stash as being the 0-th level on the
path, i.e., path[0].

Operations. The data access algorithm Access follows the same strucure as in the binary-tree ORAM [42]
or Path ORAM [46] – explained in Figure 1 in Section 2. It suffices for us to describe how eviction is
implemented in Circuit ORAM, which we will focus on in the remainder of this section.

Definition 1 (Legally reside) We say that a block B can legally reside in path[`] if by placing B in path[`],
the main path invariant is satisfied.

Definition 2 (Deepness w.r.t eviction path) For a given eviction path denoted path, B0 is deeper than
B1 (with respect to path), if there exists some path[`] such that B0 can legally reside in path[`], but B1 cannot;
in the case when both blocks can legally reside in the same buckets along path, the block with smaller index
idx will be considered deeper.

In other words, B0 is deeper on the current eviction path than B1 if it can legally reside nearer to the
leaf along path. If two blocks have the same deepness, we use their indices idx to resolve ambiguity. This
will be useful later in our proofs.

Our notion of deepness and the greedy eviction choice of the deepest block on a path are inspired by the
novel ideas of the CLP ORAM [5] – but it will soon become apparent that we apply it in a fundamentally
different manner.

3.2 Intuition

As mentioned earlier, Path ORAM’s eviction algorithm is too complex when implemented as a circuit.
Alternatively, we would like to have an eviction algorithm that is easy to implement as a small circuit.
Based on this idea, we would like to have an eviction algorithm that ideally makes a single scan of the data
blocks on the eviction path from the stash to leaf (and only a constant number of metadata scans).

Initial failed attempt. We explain an initial attempt that unfortunately fails to work, but will inspire
our Circuit ORAM construction. As mentioned above, we will make a linear scan of the path from stash to
root.

During the one-pass scan, we would like the client to “pick up” (i.e., remove from path) and hold onto
one block, which can later be “dropped” somewhere further along the path. At any point of time, the client
should hold onto at most one block. Further, it makes sense for the client to hold onto the currently deepest
block when it does decide to hold a block. This way, the block in holding will have the maximum chance of
being dropped later. On encountering a deeper block, the client could swap it with the one in holding.

However, a dilemma arises. How does the client decide when it should pick up a block and hold onto it?
Maybe this block will never get a chance to be dropped later, in which case there will be two equally bad
choices: 1) put the block into the stash – which results in rapid stash growth; and 2) go back and revisit the
path to write the block back. However, doing this obliviously results in high cost.
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Algorithm 1 EvictOnceSlow(path)
/*A slow, non-oblivious version of our eviction algorithm, only for illustration purpose*/

1: i := L /* start from leaf */
2: while i ≥ 1 do:
3: if path[i] has empty slot then
4: (B, `) := Deepest block in path[0..i− 1] that can legally reside in path[i].

/* B := ⊥ if such a block does not exist.*/
5: end if
6: if B 6= ⊥ then
7: Move B from path[`] to path[i].
8: i := ` // skip to level `
9: else

10: i := i− 1
11: end if
12: end while

Remedy: lookahead mechanism with two metadata scans. The above issues result from the lack of
foresight. If the client could only know when to pick up a block and place it in holding, and when to write
the block back into an available slot, then these issues would have been resolved. Our idea, therefore, is to
rely on two metadata scans prior to the real block scan, to compute all the information necessary for the
client to develop this foresight. These metadata scans need not touch the actual blocks on the eviction path,
but only metadata information such as the leaf label for each block, and the dummy bit indicator for each
block.

3.3 Detailed Scheme Description

A slow and non-oblivious version of the eviction algorithm. To aid understanding, we first describe
a slow, non-oblivious version of our eviction algorithm, EvictOnceSlow, as shown in Algorithm 1. This slow
version only serves to illustrate the effect of the eviction algorithm, but does not describe how the algorithm
can be efficiently implemented in circuit. Furthermore, this slow, non-oblivious version of our eviction
algorithm gives a simpler way to reason about the stash usage of the algorithm, and hence will facilitate
our proofs later. Later in this section, we describe how to implement our eviction algorithm efficiently and
obliviously by making use of two metadata scans and a one real block scan; this can be readily converted
into a small-sized circuit.

The EvictOnceSlow algorithm makes a reverse (i.e., leaf to stash) scan over the current eviction path.
When it first encounters an empty slot in path[i], it will try to evict the deepest block B in path[0..i− 1] to
this empty slot, provided that the block B can legally reside in path[i]. Suppose this deepest block B resides
in path[`] where ` < i. After relocating the block B to path[i], the algorithm now skips levels path[`+1..i−1],
and continues its reverse scan at level ` instead (Line 8 in Algorithm 1). In case no block in path[0..i − 1]
can fill the empty slot in path[i], the scan simply continues to level path[i− 1].

Efficient and oblivious implementation of our eviction algorithm. In Algorithm 1, Line 4 is in-
efficient, and Line 8 is non-oblivious. We now explain how to implement the same EvictSlow algorithm
obliviously and efficiently, but using two metadata scans (Algorithms 2 and 3) plus a single real block scan
(Algorithm 4). Since metadata is typically much smaller than real data blocks, a metadata scan is faster
than a real block scan.

The two metadata scans will generate two helper data structures:
• An array deepest[1..L], where deepest[i] = ` means that the deepest block in path[0..i − 1] that can

legally reside in path[i] is now in level ` < i. If no block in path[0..i−1] can legally reside in path[i], then
deepest[i] := ⊥. In the pre-processing state, we will use one metadata scan, namely the PrepareDeepest
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Algorithm 2 PrepareDeepest(path)
/*Make a root-to-leaf linear metadata scan to prepare the deepest array.
After this algorithm, deepest[i] stores the source level of the deepest block in path[0..i − 1] that can legally
reside in path[i]. */

1: Initialize deepest := (⊥,⊥, ...,⊥), src := ⊥, goal := −1.
2: if stash not empty then

src := 0,
goal := Deepest level that a block in path[0] can legally reside on path.

3: end if
4: for i = 1 to L do:
5: if goal ≥ i then deepest[i] := src
6: end if
7: ` := Deepest level that a block in path[i] can legally reside on path.
8: if ` > goal then
9: goal := `, src := i

10: end if
11: end for

Algorithm 3 PrepareTarget(path)
/*Make a leaf-to-root linear metadata scan to prepare the target array. */
After this algorithm, if target[i] 6= ⊥, then one block shall be moved from path[i] to path[target[i]] in
EvictOnceFast(path). */

1: dest := ⊥, src := ⊥, target := (⊥,⊥, . . . ,⊥)
2: for i = L downto 0 do:
3: if i == src then
4: target[i] := dest, dest := ⊥, src := ⊥
5: end if
6: if ((dest = ⊥ and path[i] has empty slot) or (target[i] 6= ⊥)) and (deepest[i] 6= ⊥) then
7: src := deepest[i] /* deepest is populated earlier using the PrepareDeepest algorithm.*/
8: dest := i
9: end if

10: end for

subroutine (see Algorithm 2), to populate the deepest array. This allows us to avoid Line 4 in Algo-
rithm 1 causing an additional Θ(L) overhead.

• An array target[0..L], where target[i] stores which level the deepest block in path[i] will be evicted to.
This target array is prepopulated using a backward metadata scan as depicted in the PrepareTarget

algorithm (see Algorithm 3).
Observe that the prepopulated target arrary basically gives a precise prescription of the client’s actions

(including when to pick up a block and when to drop it) during the real block scan. At this moment, the
client performs a forward block scan from stash to leaf, as depicted in the EvictOnceFast algorithm (see
Algorithm 4). The high level idea here is to “hold a block in one’s hand” as one scans through the path,
where the block-in-hand is denoted as hold in the algorithm. This block hold will later be written to its
appropriate destination level, when the scan reaches that level.

Example. To aid understanding, a detailed example, including the PrepareDeepest, PrepareTarget, and the
EvictOnceFast steps, is given in Figure 2.
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PrepareDeepest
−−−−−−−−−−−→
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(b)

PrepareTarget
−−−−−−−−−−→

0
1
2
3
4
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6

(c)

EvictOnceFast
−−−−−−−−−−−→

0
1
2
3
4
5
6

(d)

Figure 2: An example of Circuit ORAM eviction. An eviction path with 6 levels with stash at level 0.
Bucket size and stash size are both 2. If there are two blocks in a level, × represents a block that is not the
deepest in its level.
(a) s→t: A block in path[s] can legally reside in path[t]; but no block in path[s] can legally reside in
path[t+ 1..L]. Here s < t.
(b) s→t: The deepest block in path[0..s − 1] that can legally reside in path[s] currently resides in path[t].
Here t < s.
(c) s→t: During the real block scan, the client should pick up the deepest block in path[s], and drop it in
path[t]. Here s < t.
(d) Blocks are evicted according to target pointers (in green).

Eviction rate and choice of eviction path. For each data access, two paths are chosen for eviction
using the EvictOnceFast algorithm. While other approaches are conceivable, we describe two simple ways
for choosing the eviction paths:

• A random-order eviction strategy denoted EvictRandom() (see Algorithm 5). The randomized strategy
chooses two random paths that are non-overlapping except at the stash and the root. This means that
one path is randomly chosen from each of the left and the right branches of the root.

• A deterministic-order strategy denoted EvictDeterministic() (see Algorithm 6). The deterministic-
order strategy is inspired by Gentry et al. [11] and several subsequent works [9, 12].

Recursion. So far, we have assumed that the client stores the entire position map. Based on a standard
trick [42,45,46], we can recursively store the position map on the server. In the position map recursion levels,
we will use a different block size than the main data level as suggested by Stefanov et al. [46]. Specifically, we
group c number of labels in one block for an appropriate constant c > 1. In this way, our total bandwidth
cost over all recursion levels would be O(D logN+log3N) ·ω(1) (for negligible failure probability), assuming
that the stashes reside on the server side, and the hence client only needs to hold a constant number of blocks
at any time. For inverse polynomial failure probability, the total bandwidth cost is O(D logN + log3N).

3.4 Formal Results

A slightly modified Circuit ORAM construction. For subtle technical reasons, in our proofs we need
to make a minor modification to the main construction. Since this modification is not very interesting, we did
not document it in our main scheme for clarity. The modification involves introducing an additional partial
eviction performed on the read path, simply to fill up the hole that is newly created by the ReadAndRm
operation. A partial eviction works just like a normal eviction, but works on only part of the path upto the
point where the the block is removed (and for obliviousness dummy eviction operations are performed for
the rest of the path). We refer the readers to Appendix A for a detailed description of the modification. This
additional modified partial eviction is only necessary to to show an equivalence between a post-processed
∞-ORAM and the real ORAM (see Section 4 and Appendix A for more details).
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Algorithm 4 EvictOnceFast(path)

1: Call the PrepareDeepest and PrepareTarget subroutines to pre-process arrays deepest and target.
2: hold := ⊥, dest := ⊥.
3: for i = 0 to L do
4: towrite := ⊥
5: if (hold 6= ⊥) and (i == dest) then

/* The block stored in hold will be placed in bucket path[i]. */
6: towrite := hold
7: hold := ⊥, dest := ⊥.
8: end if
9: if target[i] 6= ⊥ then

10: hold := read and remove deepest block in path[i]
11: dest := target[i]
12: end if
13: Place towrite into bucket path[i] if towrite 6= ⊥.
14: end for

Algorithm 5 EvictRandom()

1: Choose a leaf from each of the left and the right branches of the root independently, and denote the two
corresponding (stash-to-leaf) paths by path0 and path1.

2: Call EvictOnceFast(path0) and EvictOnceFast(path1)

In our experiments described in Section 5, we also chose not to implement this partial eviction — this
leads to slightly better empirical results. However, even if one chooses to implement this partial eviction in
practice, it would only incur a small constant factor penalty.

The formal theorem statements below are for this slightly modified Circuit ORAM scheme.

Theorem 3 (Stash growth for random-order eviction.) Let the bucket size Z ≥ 5. Let st(ORAMZ [s])
be a random variable denoting the stash size after access sequence s for a Circuit ORAM with bucket size Z
and randomized eviction. Then, for any access sequence s,

Pr
[
st(ORAMZ [s]) > R

]
≤ 42 · 0.6R

where probability is taken over the ORAM algorithm’s randomness.

Theorem 4 (Stash growth for deterministic-order eviction.) Let the bucket size Z ≥ 4. Let st(ORAMZ [s])
be a random variable denoting the stash size after access sequence s for a Circuit ORAM with bucket size Z
and deterministic eviction. Then, for any access sequence s,

Pr
[
st(ORAMZ [s]) > R

]
≤ 14 · e−R,

where probability is taken over the ORAM algorithm’s randomness.

While our formal proof requires Z ≥ 5 for randomized eviction and Z ≥ 4 for deterministic-order eviction,
empirical results show that choosing Z = 3 for randomized eviction and Z = 2 for deterministic eviction
would result in bounded stash size R with failure probability 2−Θ(R).

Theorem 5 (Circuit size under the non-uniform block size model) Under the model with non-uniform
memory word size, for any N -word RAM with word size D = Ω(log2N) bits and client storage of O(D) bits,
there exists an ORAM construction with circuit size of O(D logN)ω(1) achieving negligible statistical failure
probability and an ORAM construction with circuit size of O(D logN) achieving inverse polynomial statistical
failure probability.
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Algorithm 6 EvictDeterministic()

In timestep t:
1: Choose two paths, path0 and path1, corresponding to the leaves labeled with integers bitrev(2t mod N)

and bitrev((2t+1) mod N), respectively. In the above bitrev(i) denotes the integer obtained by reversing
the bit order of i when expressed in binary.

2: Call EvictOnceFast(path0) and EvictOnceFast(path1)
3: Increase t by 1 for the next access.

Proof: For D = Ω(log2N), consider Circuit ORAM with big data blocks of O(D) bits, and little metadata
blocks of O(logN) bits (used in the position map levels of the recursion). The rest immediately follows.

Theorem 6 (Runtime blowup under the uniform block size model) Under the model with uniform
memory word size, for any constant 0 < ε < 1, for a N -word RAM with word size D = Ω(N ε) bits and client
storage of O(D) bits, there exists an ORAM construction with runtime blowup of O(logN)ω(1) achieving
negligible statistical failure probability and an ORAM construction with runtime blowup of O(logN) achieving
inverse polynomial statistical failure probability.

Proof: When D = Ω(N ε), and using a uniform block size of D for both data and metadata blocks, we
obtain O(1) levels of recursion. The rest immediately follows.

Corollary 1 The stronger interpretation of the Goldreich-Ostrovsky ORAM lower bound as stated in The-
orem 1 is tight.

Proof: Immediate from Theorem 6 and Theorem 1.

4 Proof Intuition

Our proof borrows ideas from both Path ORAM [46] and the CLP ORAM [5], but differs from both in a
non-trivial manner. We informally describe the high-level proof intuition in this section, and defer the formal
proofs to the Appendix.

Equivalence to post-processed ∞-ORAM. Inspired by Path ORAM [46]’s novel proof technique, we
also define an∞-ORAM analog of Circuit ORAM, where buckets are of infinite size. At the end of each data
access, an admissible post-processing is defined in the same way as in the Path ORAM proof. During the
post-processing, blocks in the ∞-ORAM are relocated towards the root such that there are no more than Z
blocks in each bucket. Overflowing blocks are placed in the stash.

Similar to Path ORAM, we show that at the end of each data access, the real ORAM is an admissible
post-processing of the ∞-ORAM; and hence to bound the stash size of the real ORAM, we only need to
bound the stash size of a post-processed ∞-ORAM.

To show this equivalence to a post-processed ∞-ORAM, we give an elementary, inductive proof. While
elementary, our equivalence proof is much more complicated than that of Path ORAM. The fact that the
equivalence holds in our case is very non-obvious and may even be counter-intuitive at first sight. The
following are essential elements in our equivalence proof:

• Extract several key properties of our algorithm — our slow, non-oblivious counterpart, namely, Algo-
rithm 1 facilitates us in gaining these insights.

• Introduce a new notion of episode, which corresponds to a contiguous group of full buckets on a path;
translate the admissibility of a post-processing to some requirements defined with respect to every
episode on every path (Fact 2).

• Perform a rather intricate induction step that involves a thorough case-by-case analysis.
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Bounding the number of blocks in each subtree in ∞-ORAM. For every subtree T containing the
root, its usage is defined as the number of blocks in the subtree in ∞-ORAM. Based on the aforementioned
equivalence, we can translate the stash bound to bounding the usage of each subtree in∞-ORAM (Lemma 2
in Appendix A) — this step is similar to an argument used in the Path ORAM proof.

Interestingly, to bound the usage for a given subtree, we observe that the stochastic process defined on
the ∞-ORAM is similar to the supermarket problem mentioned in the CLP ORAM’s proof [5] — but now
“cashiers” are at the tree boundary instead of in a flat level as in the CLP ORAM.

Based on CLP’s terminology, we can imagine the following stochastic process.

• Every node at the boundary of the subtree is a cashier. In this intuition section, let us only consider the
simple case when all cashiers correspond to internal nodes of the ORAM tree. The harder case when the
subtree contains leaf nodes will be analyzed formally in Section B.

• A queue is associated with every cashier.

• Whenever a block is newly written back, it is assigned a random label. Suppose the path defined by
label (i.e., the path to the leaf node marked label) intersects the tree boundary at some node v. Then,
this block is assigned to the queue of cashier v.

• Whenever a path is selected for eviction, suppose the path exits the subtree at some boundary node v′.
Then, a block will be dequeued from the queue corresponding to cashier v′ — if such a block exists.

The total queue sizes of all cashiers (at the subtree boundary) would give the usage of the subtree.
In other words, each arriving block will be assigned to one queue depending on its newly selected label.
Whenever a path is selected for eviction, suppose the path exits the subtree at some boundary node v′.
Circuit ORAM’s eviction algorithm on the ∞-ORAM guarantees that if cashier v′ has a non-empty queue,
a block will be evicted out of the subtree at the tree boundary v′. See the “eviction certainty” property
described in Section A.3.

For our randomized eviction strategy, whenever a new block is added to the root, two random eviction
paths are chosen (that are non-overlapping except at the root and the stash). Hence, it is not difficult to
see that each cashier’s enqueue rate is half its dequeue rate. Therefore, for randomized eviction, the queue
length distribution behaves just like a discrete-time M/M/1 queue, and the probability that the queue length
exceeds x is exponentially small in x. Each cashier’s queue length therefore has constant expectation and
an exponentially small tail bound. At this point, we simply need to apply a measure concentration bound
for the sum of the queue lengths of all cashiers. To achieve this, we need to overcome two barriers:

1. Since the queue length is an unbounded variable, standard Chernoff or Hoeffding bounds do not
immediately apply. Hence, we need to prove a measure concentration bound from first principles using
moment-generating functions.

2. The queue lengths of all cashiers are not independent, and hence a direct Chernoff-like bound does not
apply. To tackle this issue, we show that the queue lengths of the cashiers are negatively associated.

Finally, in the formal proof, we also have to additionally deal with subtrees that include leaf nodes of the
ORAM tree.

We also give an explicit proof for the deterministic-order eviction variant. The proof is similar, but
requires a result on the queue length distribution of a discrete-time M/D/1 queue [27].

5 Simulation

We now report our simulation results, including the stash growth and the total circuit size for moderately
large datasets.
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Type Of ORAM
Circuit ORAM Path ORAM(naive) Path ORAM(o-sort) SCORAM
Det. Rand. Det. Rand. Det. Rand. Det. Rand.

Circuit size 3.1M 5.5M 25.5M 148.5M 46.9M 104.1M 9.5M 11.4M
Relative overhead 1X 1.8X 8X 48X 15X 34X 3X 3.7X

#AND gates 0.8M 1.4M 8.5M 49.3M 14.7M 32.7M 2.6M 3.1M
Relative overhead 1X 1.7X 10.6X 61.6X 18.4X 40.1X 3.3X 3.9X

Table 3: Comparison of Circuit ORAM and variant of Path ORAM. ORAM size = 228, block size
= 32 bits, security parameter = 80. Path ORAM(o-sort) [47] uses 3 oblivious sorts. “Rand.” stands for
eviction with randomly chosen paths; “Det.” stands for eviction with reverse-lexicographical-ordered paths,
as described in earlier works [9, 11,12].

(a) The stash exceeds R with probability 2−Θ(R).
An ORAM capacity of N = 210 is used.
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(b) The stash size is independent of the ORAM
capacity N . A bucket size of 3 is used.

Figure 3: Empirical evaluation of stash size. Deterministic-order eviction is adopted.

5.1 Stash Size Distribution

We simulate Circuit ORAM for a single long run, for about 1010 accesses, after performing 225 accesses to
warm-up the ORAM data structure. It is well-known that if a stochastic process is regenerative, the time
average over a single run is equivalent to the ensemble average over multiple runs (see Chapter 5 of Harchol-
Balter [24]). In our experiments, we use the following request sequence: 1, 2, . . . , N, 1, 2, . . . , N . Using the
same argument as in Path ORAM [46], it is not hard to see that this is the worst-case access sequence.

As shown in Figure 3a, for a bucket size of 2 or 3, the stash exceeds R with probability of 2−Θ(R). Further,
Figure 3b shows that the stash size is independent of the ORAM’s capacity N . For a bucket size of 4, we
never observed the stash growing beyond 5 for the first 1010 accesses.

5.2 Comparison of Circuit Size

In Table 3, we compare the circuit sizes of Circuit ORAM and other state-of-the-art ORAM schemes.
Results in this table are obtained using the following parameters: N = 228, block size = 32 bits, and security
parameter = 80. For Path ORAM, we consider a naive circuit implementation, and an asymptotically
more efficient circuit implementation relying on three oblivious sorts [47]. For all schemes, we consider two
strategies for choosing the eviction path: random-order eviction and deterministic-order eviction (based on
digit-reversed lexicographic order [11]) The table shows that Circuit ORAM results in 8x to 48x smaller
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circuit size than Path ORAM, and is 3x to 3.7x better than SCORAM [47]. The relative overhead will
become bigger if the block size is greater(e.g. 4K bits), because Circuit ORAM performs more meta data
computation than SCORAM.
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Algorithm 7 PartialEvictSlow(path, `∗)
/*A slow, non-oblivious version of our partial eviction algorithm, only for illustration purpose. The first line
is the only difference from the EvictSlow algorithm described in the main body.*/

1: i := `∗ /* start from level `∗ */
2: while i ≥ 1 do:
3: if path[i] has empty slot then
4: (B, `) := deepest block and its level in path[0 . . . i− 1] that can reside in path[i] respecting

the path invariant. /* B := ⊥ if such a block does not exist.*/
5: end if
6: if B 6= ⊥ then
7: Move B from path[`] to path[i].
8: i := `
9: else

10: i := i− 1
11: end if
12: end while

A Analyzing Stash Size via Infinity ORAM

A.1 A Slight Variant of Circuit ORAM

We would like to prove bounds for stash usage in the main scheme described in Section 3. For technical
reasons, we will prove bounds for a slight variant of the scheme that performs some additional evictions.
Recall that we use hole to mean an available slot in a bucket that was previously occupied by another block,
or the only available slot in a bucket.

In the main scheme described in Section 3, we do not perform eviction on the read path, but perform
ν number of evictions for paths chosen in a deterministic order. In this new variant, however, we will also
perform a “partial eviction” on the read path. The purpose of this is to fill the hole created by reading
and removing a block, so that we can prove a strong equivalence property to relate the real ORAM to a
post-processed ∞-ORAM, whose purpose is solely for analysis. The eviction is partial, because it is only
performed on the segment path[0 . . . `∗], i.e., from the stash to the level `∗ where a block is fetched and
removed.

For simplicity, in Algorithm 7, we describe a slow, non-oblivious version of the partial eviction. Using
the same techniques described in Section 3, this partial eviction can be done by calling the PrepareDeepest

and PrepareTarget subroutines, followed by the EvictFast on the segment path[0 . . . `∗]. To hide where
the level `∗ is, one needs to perform the corresponding dummy operations on the segment path[`∗ + 1 . . . L].

One could also implement this partial eviction in our real scheme. This would add a small constant
factor to our overhead. For our real implementation, we chose not to implement this partial eviction as an
empirical optimization.

A.2 Infinity ORAM

Recall that we treat the stash as a bucket path[0] that is the imaginary “parent” of the root path[1].

Definition 3 (∞-ORAM for Circuit ORAM) ∞-ORAM is defined in the same way as our ORAM,
except that each bucket has infinite capacity.

We stress that ∞-ORAM is only a construct used in our proof to analyze stash usage – in fact, ∞-ORAM is
not oblivious, since the current bucket load leaks information. To distinguish between the buckets along path
in real ORAM and ∞-ORAM, we use pathR and path∞; the subscripts are dropped when the description
applies to both ORAMs.
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Post-processed ∞-ORAM. At the end of each time step, let S denote the state of the∞-ORAM, let S′

denote the state of a real ORAM with bucket capacity Z. We say that S′ is an admissible post-processing
of S, iff the following conditions hold:

1. For every block B residing in some node bucket in S, B must reside in an ancestor of bucket or bucket
itself in S′.

2. If a block resides in pathR[`′] in S′, and resides in path∞[`] in S, where ` > `′, then it must be the case
that all buckets in pathR[`′ + 1 . . . `] are full in S′.

In the real-world algorithm in Section 3.3, we allow an arbitrary choice when two blocks can be legally
evicted to the same depth along the eviction path. For the purpose of the proof, we assume that the tie is
resolved by choosing the block with the smaller block index. This rule is applied to both the real ORAM and
the ∞-ORAM. By resolving the ambiguity, we can keep the real ORAM and the ∞-ORAM synchronized,
such that we can prove a strong equivalence condition between the two.

Lemma 1 (Strong equivalence) After any request sequence s, and randomness sequence r, the real ORAM
is an admissible post-processing of the ∞-ORAM.

In particular, this implies that the stash usage in a post-processed ∞-ORAM is exactly the same as the
stash usage in the real ORAM.

Below, we will prove Lemma 1 by induction.

Fact 1 (Base case.) At time step 0, the strong equivalence condition (Lemma 1) holds between an admissible
post-processed ∞-ORAM and the real ORAM.

The above fact can be trivially observed, since at time t = 0, there is no block in either the ∞-ORAM or
the real ORAM.

We assume that the ORAM proceeds in steps. In each step, one of the following things happen: 1) eviction
is performed on a path selected in a deterministic order; and 2) a block is read and removed from a read-path,
and a partial eviction is performed. These operations are applied to both the real ORAM and the∞-ORAM.

Lemma 2 (Induction step.) If for any t < k, the strong equivalence condition (Lemma 1) holds, then the
condition holds for time step t = k.

The remainder of this section will focus on the proof of the induction step.

A.3 Useful Properties of Our Eviction Algorithm

Observe that our eviction algorithm in Section 3.3 or partial eviction algorithm has the following properties
for both the real ORAM and ∞-ORAM.

• Eviction certainty. For full-path eviction: if level ` is non-full2, and there exists a block in path[0 . . . `−1]
that can legally reside in path[`] or its descendant, then a block will move from path[0 . . . ` − 1] into
path[` . . . L].

For partial eviction, this holds for the levels ` ≤ `∗ where `∗ is the level of the block being read and
removed.

• Choice of block. For full-path eviction: for a non-full level ` ≥ 1, suppose that there exists a block in
path[0 . . . `−1] that can legally reside in path[` . . . L]. Then, the block in path[0 . . . `−1] that can be moved
deepest along path (where ties are resolved by choosing the block with the smallest index) will be chosen
to be moved to path[` . . . L].

For partial eviction, this holds for the levels ` ≤ `∗ where `∗ is the level of the block being read and
removed.

2We assume that every level is non-full in the ∞-ORAM.
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• Mutually exclusive. At most one block from path[0 . . . `− 1] will be evicted into path[` . . . L].

• Filling a hole created during read-and-remove or eviction. Suppose a block is removed from path[`]
to create a “hole”, either in the case ` = `∗ due to a read-and-remove, or in Line 7 of Algorithm 1 or 7.
Suppose at this moment, there exists a block in path[0 . . . ` − 1] that can legally reside in path[`]. Then,
in the round (in Algorithm 1 or 7) where i is set to `, this hole will be filled. Notice that other available
slots in level ` will not be filled.

A.4 Proof of Lemma 2

Recall that in the induction step, there is an eviction path; in the case that the eviction is partial, eviction
is performed from level 0 (the stash) to some level `∗, at which level a block is read and removed.

To avoid ambiguity, in our induction proof, we will use epath := epath[0..L] (or epath := epath[0..`∗]
in the case of a partial eviction) to denote the eviction path in the k-th step, and use path to denote any
arbitrary path.

We use the notation pathkR to denote a path in the real ORAM at the end of the k-th time step, and use
pathk∞ to denote a path in the ∞-ORAM at the end of the k-th step. Sometimes we omit the superscript or
the subscript if it does not matter which ORAM or what time step we refer to.

We partition each path pathR[0..L] in the real ORAM into episodes.

Definition 4 (Episode) For 0 ≤ a ≤ b ≤ L, we say that pathR[a..b] is an episode in the real ORAM, iff
the following holds:

1. Bucket pathR[a] is not full (recall that the stash pathR[0] is by default not full), while for all other levels
i in the episode, the bucket pathR[i] is full.

2. Either b = L, or pathR[b + 1] is not full in the real ORAM; in the latter case, we say that b is an
episode boundary.

Notice that the smallest possible episode contains a single non-full level. A path is partitioned into
contiguous groups of buckets, where each group of buckets is indexed by an episode. For convenience, we
will number the episodes on a path from the stash to the leaf.

Fact 2 (Characterizing admissibility via episodes) A real ORAM is an admissible post-processing of
some ∞-ORAM iff the following conditions hold.

(a) As before, every block residing in some bucket of ∞-ORAM must reside in an ancestor (not necessarily
proper) bucket in the real ORAM.

(b) For every path and every episode pathR[a..b], the blocks in path∞[a..b] are contained in pathR[a..b] in
the real ORAM.

Remark. Observe that Fact 2(a) is always satisfied, as eviction is carried out more aggressively in∞-ORAM
because there is no bucket capacity constraint. Hence, in our proofs, we mainly concentrate on proving the
condition Fact 2(b).

Fact 3 Suppose a real ORAM is an admissible post-processing of some ∞-ORAM. Then, for any episode
pathR[a..b], and ` ∈ [a..b], the blocks in path∞[a..`] are contained in pathR[a..`].

Fact 3 is obvious by the definition of post-processing and by Fact 2(b).

Recall that if pathR[a..`] and pathR[`+ 1..b] are adjacent episodes, then ` is called an episode boundary.

Lemma 3 Suppose a real ORAM is an admissible post-processing of some ∞-ORAM. Then, for any path,
for any episode boundary ` (defined with respect to pathR[0..L]), the blocks in path[0..`] that can legally reside
in path[`+ 1] are exactly the same in the real ORAM and ∞-ORAM.
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Proof: Suppose a real ORAM is an admissible post-processing of some ∞-ORAM. If a block resides in
path∞[0..`], then it must reside in pathR[0..`] by definition of post-processing.

For the other direction, we prove by contradiction. Suppose a block B resides in pathR[0..`] and can
legally reside somewhere in path[` + 1..L], but block B is not in path∞[0..`]. Then, by definition of post-
processing, it must be in path∞[`+ 1..L]. Now, by Fact 2(b), since ` is an episode boundary, block B must
be in pathR[`+ 1..L], leading to a contradiction.

Lemma 4 Let pathk−1
R [a..b] be an episode at the end of the (k− 1)-th step, and let ` ∈ [a..b]. If a block B is

in pathk−1
∞ [a..`] and remains in pathk∞[a..`], then block B is in pathkR[a..`].

Proof: If path[a..`] does not intersect with the eviction path epath in the k-th step, then the result is
trivial, because no block is moved into or out of path[a..`] in both the real ORAM or ∞-ORAM in the k-th
step; the induction hypothesis implies the result. Otherwise, path[a..`] intersects with epath on levels [a..`′],
where `′ ∈ [a..`]. We consider two cases.
Case (1): a block B is in pathk−1

∞ [`′ + 1..`]. By the induction hypothesis, B is in pathk−1
R [a..`], and must still

be in pathkR[a..`], since it cannot have been moved elsewhere in the real ORAM.
Case (2): a block B is in pathk−1

∞ [a..`′]. Observe that in the k-th step, at most one block from pathk−1
∞ [a..`′]

will be moved to epath[`′ + 1] or its descendants. By Fact 3 and the induction hypothesis, all blocks in
pathk−1

∞ [a..`′] must be in pathk−1
R [a..`′]. If B stays in pathk∞[a..`′] at the end of the k-th step, it means either

B cannot legally reside in epath[`′ + 1] on the eviction path, or B is not the deepest block in pathk−1
∞ [0..`′]

(with respect to epath). If the former happens, B must still be in pathkR[a..`′] at the end of the k-th step;
if the latter happens, by Lemma 3 we know that B will not be the deepest in pathk−1

R [0..`′] (with respect

to epath), and hence will also stay in pathkR[a..`′]. Note that this implicitly relies on using a block’s idx to
resolve any ambiguity in the notion of deepness.

Lemma 5 Let pathk−1
R [a..b] be an episode at the end of time step (k−1). A block B newly enters pathk∞[a..b]

in the k-th step iff it also does so in pathkR[a..b].

Proof: Not hard to see given Lemma 3, the definition of an episode, and by the properties of our eviction
algorithm.

Lemma 6 Let pathk−1
R [a..b] be an episode at the end of the (k − 1)-st step. Then, all blocks in pathk∞[a..b]

must be in pathkR[a..b].

Proof: If a block in pathk−1
∞ [a..b] remains in pathk∞[a..b], then it must be in pathkR[a..b]. At most one new

block B could enter pathk∞[a..b]; in this case, B must also enter pathkR[a..b] by Lemma 5.

Fact 4 Suppose that the induction hypothesis holds at the end of (k − 1)-th step, and pathk−1
R [a..b] is an

episode. Then, pathkR[a+ 1..b] has at most one hole in it.

Definition 5 (Sub-episode after k-th step) Let pathk−1
R [a..b] be an episode. Suppose after the k-th step,

a hole is created in bucket pathkR[h], where h ∈ [a+ 1..b]. Then, we say that episode pathk−1
R [a..b] is split into

two sub-episodes pathkR[a..h− 1] and pathkR[h..b] after the k-th step. If no new hole is created in [a+ 1..b],
then there is a single sub-episode pathkR[a..b] at the end of the k-th step.

Remark. Observe that the sub-episode pathkR[a..b] might not be an episode after the k-th step, because in
the k-th step, a block might fill the only available slot in pathkR[a], causing the sub-episode to be merged
with the one preceding it.

Fact 5 For any path, each sub-episode as defined above must be contained entirely within an episode at the
end of the k-th step, or disjoint with an episode at the end of the k-th step. In other words, each episode at
the end of the k-th step can be partitioned into one or more (actually at most two) sub-episodes.
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Due to Fact 5, in order for us to prove the induction step of Lemma 2, it suffices to prove the following
condition in Lemma 7 that is stronger than the condition in Fact 2(b).

Lemma 7 Suppose pathkR[a..b] is a sub-episode after the k-th step. Then, every block in pathk∞[a..b] must be
in pathkR[a..b] as well.

Proof: We consider cases according to how the sub-episode pathkR[a..b] is formed.
Case 1: pathk−1

R [a..b] is an episode at the end of the (k − 1)-st step. This case follows from Lemma 6.
Otherwise, the sub-episode is the result of splitting an episode during the k-th step; there are two subcases.

Case 2(a): pathkR[a..b] is a sub-episode resulting from splitting an episode pathk−1
R [â..b], for some â < a;

during the k-th step, one block is removed from the full bucket pathk−1
R [a] to create a hole in pathkR[a], either

due to a read-and-remove or an eviction. In either case, path[0..a] is on the eviction path (partial for a
read-and-remove) epath.

Suppose, for contradiction’s sake, that there is some block B in pathk∞[a..b] that is not in pathkR[a..b].
Then, since Fact 2(a) always holds, block B must be in pathkR[0..a− 1]. Since block B is in pathk∞[a..b], it

can legally reside in path[a]. By the eviction certainty property in Section A.3, one block would have been
moved from pathk−1

R [0..a− 1] to fill the hole in pathkR[a], causing a contradiction.

Case 2(b): pathkR[a..b] is a sub-episode resulting from splitting an episode pathk−1
R [a..̂b], for some b̂ > b;

during the k-th step, one block is removed from the full bucket pathk−1
R [b+1] to create a hole in pathkR[b+1],

either due to a read-and-remove or an eviction. In either case, path[0..b+ 1] is on the eviction path (partial
for a read-and-remove) epath.

Suppose a block B is in pathk∞[a..b]. Then, either B is also in pathk−1
∞ [a..b], or newly enters pathk∞[a..b].

In the first case, Lemma 4 states that block B is in pathkR[a..b]. In the second case, Lemma 5 states that

block B newly enters pathkR[a..̂b]; however, since there is a hole in pathkR[b+ 1], this newly entering block B
could not have moved beyond level b, and so must stay in pathkR[a..b].

B Analyzing Stash Usage of Infinity ORAM

In Section A, we show an equivalence relationship (Lemma 1) between the real ORAM and a post-processed
∞-ORAM. Following the proof strategy and the notation as in [46], we use oramZ to denote a real ORAM
with bucket size Z, and oram∞ to denote ∞-ORAM. Given an access sequence s, the configurations of
the ORAMs are denoted by oramZ [s] and oram∞[s]. The stash usage of the real ORAM is denoted
as st(oramZ [s]), and the stash usage of a post-processed ∞-ORAM to an ORAM with bucket size Z is
denoted as stZ(oram∞[s]). Then, the strong equivalence lemma (Lemma 1) states that st(oramZ [s]) =
stZ(oram∞[s]).

Given a subtree T of the∞-ORAM tree, the number of blocks contained in the buckets of subtree T after
∞-ORAM processes the request sequence s is denoted as uT (oram∞[s]). An observation made in [46] is
that for any R ≥ 0, stZ(oram∞[s]) > R iff there exists a subtree T such that uT (oram∞[s]) > n(T ) ·Z+R,
where n(T ) is the number of buckets in subtree T .

The following equations summarize the above discussion.

Pr[st(oramZ [s]) > R]

= Pr[stZ(oram∞[s]) > R]

= Pr[∃T uT (oram∞[s]) > n(T )Z +R]

≤
∑
T

Pr[uT (oram∞[s]) > n(T )Z +R],

where T ranges over all subtrees containing the root, and the inequality follows from the union bound.
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Since the number of ordered binary trees of size n is equal to the Catalan number Cn, which is ≤ 4n,

Pr[st(oramZ [s]) > R] ≤
∑
n≥1

4n max
T :n(T )=n

Pr[uT (oram∞[s]) > nZ +R]. (1)

Fixing some subtree T with n nodes (buckets), we next give a uniform upper bound for Pr[uT (oram∞[s]) >
nZ + R] in terms of n, Z and R. Although we make measure concentration argument similar to [46], the
underlying random processes are actually very different. For instance, the blocks in [46] are evicted inde-
pendently from one another, while the blocks in this case are dependent upon one another.

B.1 Analyzing Usage of Subtree

We consider the usage uT (ORAM∞[s]) of a subtree T in ORAM∞ after a sequence s of τ accesses, starting
from an initially empty ORAM. Recall that N is the number of distinct blocks; we assume that N is a power
of 2, and the ORAM binary tree has N leaves. We shall prove the following lemma in this subsection.

Lemma 8 (Subtree usage with random eviction) Suppose s is an access sequence, and T is a subtree
with n = n(T ) nodes containing the root of the binary ORAM tree. Then, for Z = 5, for any R > 0,

Pr[uT (ORAM∞[s]) > n · Z +R] ≤ 3 · 1
4n · (0.93312)n · (0.6)−R.

We next define some notations relating to the subtree T .

Definition 6 (Exit node) For a given path P from the root to some leaf node, suppose that some node
v is the first node of the path P that is not part of T , then we refer to node v as the exit node, denoted
v := exit(P, T ). If the whole path P is contained in T , then the exit node exit(P, T ) is null.

Let F be the set of nodes in T that are also leaves of the ORAM binary tree; we denote l := |F |. We

augment the tree T by adding nodes to form T̂ in the following way. If a node in T has any child node
v that is not in T , then node v will be added to T̂ . The added nodes in T̂ are referred to as exit nodes,
denoted by E; the leaves of T̂ are denoted by Ê = E ∪ F . Observe that if T contains n nodes and |F | = l,

then |Ê| = n − l + 1. Define ÊL and ÊR to be the nodes of Ê in the left and the right branch of the root

respectively; hence, Ê is the union of the disjoint sets ÊL and ÊR.
For each node u ∈ Ê, define pu to be the fraction of leaves in the original ORAM tree that are descendants

of u. Observe that pu ≤ 1
2 . In particular, if u ∈ F , pu = 1

N ; moreover,
∑
u∈Ê pu = 1.

We summarize the notations we use in the following table.

Variable Meaning

T a subtree rooted at the root of the ORAM∞ binary tree

T̂ augmented tree by including every child (if any) of every node in T
F nodes of a subtree T that are leaves to the ORAM binary tree
E set of exit nodes of a subtree T

Ê := E ∪ F set of all leaves of T̂
Z capacity of each bucket

Defining usage for nodes in Ê. Consider the blocks that reside in tree T after the access sequence s is
processed for i steps. For each node u ∈ Ê, define Xi

u to be the number of blocks in T after step i that
have labels corresponding to root-to-leaf paths that intersect node u. When the context is clear, we may
simplify the notation by dropping the superscript i. Hence, after the access sequence is performed, it follows
that uT (ORAM∞[s]) =

∑
u∈Ê Xu. Even though the Xu’s are not independent, we shall show that they are

negative associated in order to prove large deviation bounds.
Stochastically dominating assumptions. To simplify the proof, we make worst case scenario assumptions
in the sense that under these assumptions, the random variable for the usage of the subtree T stochastically
dominates the original random variable without these assumptions.
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Exit nodes

Nodes in the subtree T

Leaves of ORAM tree

Figure 4: A subtree containing some leaves of the original ORAM binary tree, augmented with the exit
nodes. This diagram is also used in the paper [46].

1. For a block whose label corresponds to a root-to-leaf path that intersects an exit node u ∈ E, the block
is not removed from the subtree T when a read request is made for that block (even though a new
block with a new label is added to the stash); in other words, we assume that such a block can only
leave the subtree T by eviction through the exit node u. For a block whose label corresponds to some
leaf in F , the block is removed as usual when a read request is made for it.

2. No partial eviction is performed on the reading path.
Defining the random process corresponding to the ORAM operations. Consider an access sequence
s := {si : i ∈ [τ ]}, where si is the identity of the block requested at step i. For every i ∈ [τ ], we define
random variables that capture the randomness used in the ORAM operations.

1. Read. After the desired block is read, a fresh random leaf is assigned as its label, and the block is put
at the root bucket. Since we are concerned only about which node in Ê is the ancestor of the new label,
for each u ∈ Ê, we define a random variable Riu ∈ {0, 1} such that

∑
u∈Ê R

i
u = 1 and Pr[Riu = 1] = pu.

2. Evict. A random eviction path is picked independently for each of the left and the right branch
of the root. This corresponds to sampling random variables Siu ∈ {−1, 0} for u ∈ Ê such that∑
u∈ÊL

Siu =
∑
u∈ÊL

Siu = 1 and Pr[Siu = −1] = 2pu; moreover, the randomness for the left branch is
independent of that for the right branch.

Observe that given an access sequence s, for each u ∈ Ê, the random variables {(Riu, Siu)}i∈[τ ] contain
all the information to determine Xu at the end of the process. In particular, we describe the cases whether
u is in F or E.

1. Case u ∈ F . In this case, u has no descendant and no block can be evicted from u. Hence, the Siu’s are
irrelevant. Therefore, Xu corresponds to the blocks that are last assigned to u. In the worst case where
all N blocks appear in the access sequence, Xu has the same distribution as the sum of N independent
{0, 1}-random variables, each of which has expectation 1

N .
2. Case u ∈ E. In this case, u is an exit node. Recall we assume that the blocks that can be evicted

through u can leave subtree T only by eviction through u. Hence, at every step i, if Riu = 1, then Xu

is increased by 1; if Siu = −1 and Xu is non-zero (possibly just increased because Riu = 1), then Xu is
decreased by 1.
Observe that this defines a Markov process with non-negative integral states having arrival rate α = pu
and departure rate β = 2pu. From the result by Hsu and Burke [25], this process has stationary
distribution πj = (1− qu)jqu, where qu := β−α

β(1−α) = 1
2(1−pu) ≥

1
2 .

Instead of starting at X0
u = 0, if we consider the stochastically dominating process such that X0

u has
the stationary distribution (with independent randomness), then at the end of the access sequence,
the corresponding random variable X∞u stochastically dominates Xu, and also has the stationary
distribution.

Moment generating functions. It is standard technique to consider moment generating functions in large
deviation bounds. The following upper bounds on the moment generating functions will be used later.

Lemma 9 (Upper Bounds on Moment Generating Functions) Suppose Xu’s are defined as above.
1. For u ∈ F , any real t, E[etXu ] ≤ exp(et − 1).
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2. For u ∈ E, for 0 < t ≤ ln 2, E[etXu ] ≤ 1
2−et .

Moreover, for
∏
u∈Ê E[etXu ] ≤ ( 1

2−et )n+1, where n is the number of nodes in the subtree T .

Proof: For u ∈ F , observe that in our construction, we can assume that Xu is the sum of N independent
{0, 1}-random variables, each of which has mean 1

N . Hence, for any real t, we have E[etXu ] = ((1 − 1
N ) +

1
N e

t)N ≤ exp(et − 1).
For u ∈ E, as described in our construction, Xu is stochastically dominated by X∞u , which has stationary

distribution πj = (1− qu)jqu, for j ≥ 0, where qu = 1
2(1−pu) . Hence, for 0 ≤ t ≤ ln 2 ≤ ln 1

1−qu , we have

E[etXu ] ≤ E[etX
∞
u ] = qu

1−(1−qu)et ≤
1

2−et , because the maximum is attained when qu approaches 1
2 .

As for the product, observe that the number of terms is at most |Ê| = n + 1 − l ≤ n + 1. Since for
t ∈ [0, ln 2], exp(et − 1) ≤ 1

2−et , the result follows.

Negative association. We remark that Xu is a non-decreasing function of {(Riu, Siu)}i∈[τ ], which means
that if a single variable is increased (either from 0 to 1 or from −1 to 0), the function does not decrease.
Hence, from [7, Proposition 7(2)], in order to show that the random variables Xu’s are negative associated,
it suffices to show that the whole collection {(Riu, Siu)}u,Ê,i∈[τ ] are negatively associated. We first recall the

definition of negative association.

Definition 7 (Negative association [7]) A set of random variables X1, X2, . . . , Xk are negatively asso-
ciated, if for every two disjoint index sets, I, J ⊆ [k], for all non-decreasing functions f : R|I| → R and
g : R|J| → R, E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)].

Observe that if each of two mutually independent collections of random variables are negatively associated,
then so are their union [7, Proposition 7(1)]. Hence, it suffices to show that each collection of correlated
random variables in our construction are negatively associated.

The following lemma is the generalization of the Zero-One Lemma [7, Lemma 8]. As mentioned in [7],
the idea of the proof is due to Colin McDiarmid.

Lemma 10 (At Most One Non-Zero Random Variable) Suppose X is a collection of random vari-
ables either all having non-negative support or all having non-positive support. Moreover, with probability 1,
at most one of them can be non-zero. Then, the collection X are negatively associated.

Proof: Suppose XI and XJ are disjoint subsets of the collection, and f and g are non-decreasing functions
on XI and XJ respectively.

If the random variables have non-negative support, then both f and g attains their minimum at 0;
otherwise, all random variables have non-positive support, and both f and g attains their maximum at 0.
Hence, either both E[f(XI)− f(0)] and E[g(XJ)− g(0)] are non-negative, or both are non-positive. In any
case, 0 ≤ E[f(XI)− f(0)] · E[g(XJ)− g(0)].

On the other hand, with probability 1, at most one of XI and XJ can be non-zero. Hence, with
probability 1, (f(XI)−f(0)) · (g(XJ)−g(0)) = 0, which implies that E[(f(XI)−f(0)) · (g(XJ)−g(0))] = 0.

Therefore, we have E[(f(XI)− f(0)) · (g(XJ)− g(0))] ≤ E[f(XI)− f(0)] · E[g(XJ)− g(0)], which gives
E[f(XI)g(XJ)] ≤ E[f(XI)] · E[g(XJ)], as required.

Corollary 2 The random variables {Xu : u ∈ Ê} are negatively associated.

Proof of Lemma 8: Recall that Z is the capacity for each bucket in the binary ORAM tree, and R is the
number blocks overflowing from the binary tree that need to be stored in the stash. The quantity that we
wish to analyze is uT (ORAM∞[s]) =

∑
u∈Ê Xu.

We next perform a standard moment generating function argument. For 0 < t ≤ 1
4 , Pr[uT (ORAM∞[s]) ≥

nZ + R] = Pr[et
∑

u∈Ê Xu ≥ et(nZ+R)], which by Markov’s Inequality, is at most E[et
∑

u∈Ê Xu ] · e−t(nZ+R),
which, by negative association (Corollary 2), is at most

∏
u∈Ê E[etXu ] · e−t(nZ+R). Putting Z = 5, and
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t = ln 5
3 ≤ ln 2, using Lemma 9, we conclude that the probability is at most 3 · 1

4n · (0.93312)n · 0.6R, as
required.

Proof of Theorem 3. By applying Lemma 8 to inequality (1), we have the following:
Pr[st(ORAMZ [s]) > R] ≤

∑
n≥1 4n · 3 · 1

4n · (0.93312)n · 0.6R ≤ 42 · 0.6R, as required.

B.2 Slight Improvement in Analysis Using Deterministic Eviction

Bottleneck for Measure Concentration. In Lemma 9, we see the bottleneck that puts a lower bound
on the bucket size is caused by the moment generating function of Xu associated with an exit node u ∈ E
(whose parent is an internal node in the binary ORAM tree).

In order for the proof to work, we look for the smallest bucket size Z such that there exists some t > 0
such that for all u ∈ Ê, 4E[et(Xu−Z)] < 1. It can be checked that for a leaf u ∈ F , it is possible to set Z = 4
and t = 1 such that the above term is at most 1

2 ; hence, we try to improve the eviction process when an exit
node u ∈ E is involved.

Intuitively, the moment generating function measures how much a random variable varies; hence, we
could get a better measure concentration bound if we remove some randomness from the process.
Deterministic Eviction. Recall that in each round, one random eviction path from each of the left and
the right branch is picked. Instead of picking the eviction paths randomly, the path at each branch can be
picked deterministically in a way such that if a (non-root) exit node u ∈ E has weight pu, then the eviction
path will intersect u once in exactly 1

2pu
rounds.

The modified process will induce a Markov process with non-negative state Xu, which represents the
number of blocks residing in the (proper) ancestors of node u immediately after the step in which the
eviction path intersects u. Specifically, the following occurs in each phase (which corresponds to 1

2pu
steps

of ORAM operations).
• A random number M of items arrive, where in this case M follows the binomial distribution of 1

2pu
independent trials, each of which has success probability pu.

• If the state is positive (possibly because items have just arrived), then exactly one item departs.

Denote X̂u as the stationary distribution of the Markov process. Then, the result from [28] implies that

E[etX̂u ] = (1−E[M ])·(et−1)
et−E[etM ]

≤ 1
2 ·

et−1
et−exp[ 12 (et−1)]

,

where we have used E[M ] = 1
2 , and E[etM ] = (1 + pu(et − 1))

1
2pu ≤ exp[ 1

2 (et − 1)], which is at most et for
t ∈ [0, 1.2].

It can be checked that setting Z = 3 and t = 1, we have 4E[et(X̂u−Z)] ≤ 1
2 . However, observe that X̂u

represents the number of blocks above node u just after a step when the eviction path intersects u. Hence,
just before eviction, the number of blocks is at most 1 larger. Therefore, using bucket size 4 is sufficient.

It can be checked that for a subtree T with n buckets and Z = 4,
Pr[uT (oram∞[s])] > n · Z +R] ≤ 7 · 1

4n · ( 1
2 )n · e−R.

Hence, a similar calculation gives Pr[st(ORAMZ [s]) > R] ≤
∑
n≥1 4n · 7 · 1

4n · ( 1
2 )n · e−R ≤ 14 · e−R, as

stated in Theorem 4.

C Circuit Size of Circuit ORAM

It can be seen easily that the circuit size for ReadAndRm is O(D logN) · ω(1) and the circuit size to add a
block to the stash is O(D logN) · ω(1). It remains to calculate the circuit size of eviction. Eviction can be
done in a circuit of size O(D logN + log2N) · ω(1) given the following fact mentioned in Wang et al. [47].

Fact 6 Given Z blocks of a bucket denoted {idxi||labeli||datai}0≤i≤Z and the leaf label for the current
eviction path, there is a circuit of size O(Z logN) that finds the deepest block w.r.t. to the eviction path.
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Let Bi := {idxi||labeli||datai} denote the i-th block. Let p denote the leaf label of the eviction path. It is
not hard to see that block Bi can be placed deepest along the path while maintaining the main invariant
if and only if labeli ⊕ p has more leading zeros. However, counting number of leading zeros of an L-bit
string requires a circuit of size O(L logL). Instead of counting the number of leading zeros and finding the
maximum value in a bucket, we use an alternative method. For a bit string s, we denote s′ to be the string
constructed by setting all bits lower than the most significant one bit as one. The idea is based on the fact
that leading zero(s1) > leading zero(s2) if and only if s′1 < s′2. So, instead of counting number of leading
zeros and find the maximum value, we can 1) for each labeli, compute label′i by setting all bits lower than
the most significant one bit as one; 2) find the block with minimum label′i.

D More Details on the Goldreich-Ostrovsky Lower Bound

In this section, we elaborate on why the Goldreich-Ostrovsky lower bound works for even O(1) failure
probabilities. The argument is simple, but we write it down for completeness.

Based on the Goldreich-Ostrovsky lower bound proof, we define a p-long physical access sequence to be
one that is compatible with at least p fraction of logical request sequences of length t. If 0 < p < 1 is a
constant, then a p-long physical sequence must be of length q = Ω(t logN).

Definition 8 (Sufficiently long physical access sequence) Let 0 < p < 1 denote a constant. A physi-
cal access sequence is p-long, if cq > pN t, where c is an appropriate constant, q is the length of the physical
access sequence, and t is the runtime of the non-oblivious RAM.

When a physical access sequence is not p-long, we say that it is p-short.
Consider the following stochastic process: pick a random logical request sequence of length t, run the

ORAM simulation. In this stochastic process, randomness is defined with respect to the choice of the logical
sequence, as well as the ORAM’s randomness.

We would like to show the following theorem:

Theorem 7 Let 0 < p < 1 denote a constant. For any ORAM with (1− p)/2 failure probability, then, with
probability 1/2 in the above stochastic process, the physical access sequence must be p-long.

Proof: We now prove by contradiction. Assume that with probability more than 1
2 , the physical access

sequence is p-short.
We construct the following adversary and show that it can win the ORAM game with (1−p)/2 probability.

The adversary picks two random logical access sequences of length t, and gives them to the challenger. The
challenger picks a logical sequence at random, runs the ORAM simulation, and returns the physical access
sequence to the adversary.

Conditioned on the physical access sequence being p-short, the probability that the physical access
sequence is compatible with the other (i.e., not chosen by the challenger) logical sequence is bounded by p.
Therefore, the adversary can win the ORAM security game with probability (1− p)/2.
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