Circuit ORAM: On Tightness of the Goldreich-Ostrovsky
Lower Bound

Xiao Shaun Wang T-H. Hubert Chan Elaine Shi
wangxiao@cs.umd.edu hubert@cs.hku.hk elaine@cs.umd.edu
University of Maryland University of Hong Kong University of Maryland

May 15, 2015

Abstract

We propose a new tree-based ORAM scheme called Circuit ORAM. Circuit ORAM makes
both theoretical and practical contributions. From a theoretical perspective, Circuit ORAM
shows that the well-known Goldreich-Ostrovsky logarithmic ORAM lower bound is tight under
certain parameter ranges, for several performance metrics. Therefore, we are the first to give an
answer to a theoretical challenge that remained open for the past twenty-seven years. Second,
Circuit ORAM earns its name because it achieves (almost) optimal circuit size both in theory
and in practice for realistic choices of block sizes. We demonstrate compelling practical perfor-
mance and show that Circuit ORAM is an ideal candidate for secure multi-party computation
applications.

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [16, 18], is a general
cryptographic primitive that allows oblivious accesses to sensitive data, such that access patterns
during the computation reveal no secret information. Since the original proposal of ORAM [18],
it has been studied in various application settings including secure processors [1 1—-13,36,16], cloud
outsourced storage [20,18,19,56] and secure multi-party computation [14,15,24,27 32, 52].

1.1 Rethinking ORAM Metric for Secure Computation

When ORAM was previously considered for cloud outsourcing and secure processor applications,
its bandwidth cost [20,17,19-51] was used as a primary metric of performance, since it is well-
understood that bandwidth is the main performance bottleneck in these scenarios. As a result,
many existing ORAM schemes focused on optimizing the bandwidth metric [20,47,49-51].

With the new tree-based ORAM framework, it became feasible to implement ORAM atop secure

multi-party computation (MPC) [24,27,52]. Tt is well-understood that ORAM carries the promise
of scaling MPC to big data [32,52].As a result, the community is interested in optimized ORAM
constructions for MPC [14,24,27,35,52]. One recent revelation [52] is that ORAMs optimized for

the bandwidth metric are not necessarily the best for the MPC scenario. Instead, MPC demands
a new metric of ORAM schemes, namely, the circuit complexity. In a standard ORAM setting, a
client interacts with a server multiple rounds to make an ORAM access, and performs computation
in between these accesses. In an MPC scenario, the ORAM client’s computation will be expressed as

circuits that will be securely evaluated between the multiple parties. Therefore, an ORAM’s circuit
complexity is the total circuit size of the ORAM client algorithm over all rounds of interaction [52].
Furthermore, for several MPC protocols [17,57] where XOR operations are essentially free [29], the
number of AND gates is the primary performance metric.

1.2 The Quest for ORAMs with Optimal Circuit Complexity

Due to increasing interest of implementing ORAMSs to scale up MPC, the hunt is on for an ORAM
scheme with optimal circuit complexity. Our new ORAM scheme, Circuit ORAM, is the first to
give a compelling solution to this question in both practical and theoretical senses.

Compelling practical performance. Incomparison with known ORAM schemes, Circuit ORAM
achieves 58.4X improvement in terms of number of non-free gates [29] over a straightforward im-
plementation of Path ORAM [51], 31X improvement over the binary-tree ORAM [17], and 5.1X
improvement over the recent SCORAM [52] — a heuristic ORAM scheme without theoretical per-
formance bounds. These performance numbers are attained for a moderately large database of
4GB and with a 2789 security failure probability. Our performance gains are asymptotic, so Circuit
ORAM’s improvement will be even greater for bigger data sizes.

Several earlier works on RAM-model MPC also investigated at what data sizes ORAM starts
to outperform the trivial linear-scan ORAM, a metric referred to as the breakeven point with trivial
ORAM. Previous implementations reported this breakeven point to be rather large. For example,
Gordon et al. [24] who implemented the binary-tree ORAM [17] reported a breakeven point of SMB
with a block size of 512 bits and a security failure probability of roughly 27'4. Under the same
block size, we achieve an 8KB breakeven point (an 1000X improvement) at a much tighter failure
probability of 280!

Theoretical near-optimality. For block sizes of D = Q(log? N) bits or higher, Circuit ORAM
achieves a circuit size of O(Dlog N)w(1) gates for a negl(IN) failure probability!. This is almost
optimal since the well-known logarithmic ORAM lower bound [18] is immediately applicable to the
circuit size metric as well. We discuss situations when the logarithmic ORAM lower bound [15] is
tight in the following section.

Table 1 compares the circuit size of Circuit ORAM and existing works, both in terms of asymp-
totics and concrete performance numbers.

1.3 On Tightness of the Goldreich-Ostrovsky ORAM Lower Bound

For theoretical discussions regarding the tightness of the Goldreich-Ostrovsky ORAM lower bound,
we consider several additional metrics besides circuit size, such as number of accesses and bandwidth
blowup. We elaborate on these various metrics in Section A.2.

In their seminal work, Goldreich and Ostrovsky [16, 18] showed a logarithmic lower bound for
any ORAM construction. While not explicitly stated in their work, it is clear that this lower bound
is very “powerful” in the sense that it holds i) for arbitrary block sizes, ii) for several relevant

!Throughout this paper, the notation g(N) = O(f(N))w(l) denotes that for any a(N) = w(l), g(N) =
O(f(N)a(N)).

Scheme Circuit Size # AND gates

(asymptotic)* (concrete)**
Hierarchical ORAMs
GO96 [16, 1] O(Dlog® N + Cpgy log® N) >476.1M
GM11 [20] O(Dlog® N + Cpgy log N)
KLO12 [31] O((D + Cprr) - log? N/loglog N) >linear scan
LO13 [37] (63488M)
(Note: 2-server model) O((D + Cprr) - log N)
Tree-based ORAMs
Binary-tree ORAM [47] O((D + log® N)log® N)w(1) 30.1M
CLP13 [7] (naive circuit) O((D + log® N)log® N)w(1) 37.9M
CLP13 [7] (w/ oblivious queue [38,44,58]) O((D + log® N)log® N)w(1) 37.9M
Path ORAM (naive circuit) [51] O((D + log? N) log? N)w(1) 56.6M
Path ORAM (o-sort circuit) [52] O((D + log® N)log N loglog N)w(1) 41.4M
Circuit ORAM (This Paper) O((D + log®N)logN)w(1) 0.97M

Table 1: Circuit size of various ORAM schemes. All schemes are parameterized to have
failure probability.

*. The variable Cprp denotes the circuit size of a PRF function with input size of O(log N) bits.
Among all single-server ORAM schemes, Circuit ORAM has asymptotically the smallest circuit size
if Cpry is at least w(log N loglog N) — which is true for all known PRF constructions provably
secure based on computationally hard problems.

**. The concrete circuit size is calculated based on 4GB data with a 32-bit block size, with 2780
security failure probability.

_1
Nw(1)

metrics including number of accesses, bandwidth blowup, and circuit size?; and iii) even when
tolerating up to O(1) statistical failure probability.

For mildly large block sizes of Q(log? N), Circuit ORAM achieves O(Dlog N + Dlog$) cost
in terms of both circuit size and bandwidth cost, where § is the failure probability. This means
that for any f(N) = w(1), there is an ORAM scheme that achieves O(D log N)f(N) circuit size or
bandwidth cost, such that its statistical failure probability is bounded by some negligible function
negl(N). In other words, for the circuit size or bandwidth cost metrics, the Goldreich-Ostrovsky
lower bound is asymptotically tight for Q(log2 N) block size and negligible failure prob-
abilities. Equivalently, we rule out any g(N) lower bound where g(N) = w(log V).

As we elaborate in Appendix B, we also show the tightness of the lower bound for the classical
runtime blowup metric, but under a bigger block size of Q(N€) bits for an arbitrary constant
O<e<1.

To summarize, one way to view our tightness result is the following: we give explicit and broad
parameter ranges under which no asymptotically tighter lower bound can be proven. While this
provides only a partial answer to the tightness of the Goldreich-Ostrovsky lower bound, we stress
that for the past twenty-seven years, the tightness of the lower bound has not been demonstrated

for any parameter ranges at all.

2 For number of accesses and bandwidth blowup, the lower bound is applicable to O(1) client storage.

1.4 Technical Highlights

Path ORAM has a complex eviction circuit. In the secure processor setting, Path ORAM [51]
and its improved variants [12,15,410] offer the best performance in terms of bandwidth cost. There-
fore, the first natural idea is to try out Path ORAM for the MPC setting too. Unfortunately, Path
ORAM’s eviction circuit is complex, and would result in O(D log? N) size with a naive implementa-
tion. Although Wang et al. noted that Path ORAM’s eviction algorithm can be implemented with a
circuit of size O(D log N log N log N)w(1) using oblivious sorting [19], they also show that oblivious
sorting makes the practical performance even worse than the naive O(Dlog? N) implementation
for typical parameter ranges.

One thing to note is that Path ORAM’s eviction algorithm in some sense performs (oblivious)
sorting on ©(log N) items (imagine that bucket size were 1). Therefore, to do better we need a
fundamentally different idea.

Reducing eviction complexity. Our idea is to find an eviction circuit that is less complex than
that of Path ORAM'’s, and yet preserves the effectiveness of eviction. Achieving this is non-trivial.
We first tested numerous ideas empirically, most of which failed to empirically bound the stash
size since the eviction algorithm is not as aggressive as Path ORAM. After months of trying, we
eventually identified a good empirical candidate, which in turn inspired the design of its provable
variant, Circuit ORAM, that is documented in this paper.

Just like Path ORAM [51] and its variants [12, 15], Circuit ORAM performs eviction on O(1)
number of paths upon each data access. Our key idea is to complete the eviction algorithm within a
single block scan of the current eviction path (while evicting as aggressively as we can). Achieving
this directly introduces some difficulties due to a “lack-of-foresight” problem, i.e., the ORAM client
does not know when to pick up a block and remove it from the path, and when to drop it into
an empty slot on the path. To tackle this problem, we leverage two additional metadata scans
to precompute the foresight required, before beginning the real block scan. Our construction
and proofs share common themes with Path ORAM [51] and the CLP ORAM [7]. However, our
construction and proofs differ in a substantial and non-trivial manner from either Path ORAM or
CLP ORAM.

1.5 Related Work

Hierarchical ORAMs. Oblivious RAM was first proposed in a groundbreaking work by Goldre-
ich and Ostrovsky [18]. In addition to the aforementioned lower bound, Goldreich and Ostrovsky
were the first to propose a poly-logarithmic hierarchical construction, which was subsequently
improved in numerous works [0, 16, 18, 20-23, 31, 34, 35, 411-13,53-56]. Most of these hierarchical
ORAM schemes are expensive in practice for MPC applications, not only due to their asymptotical
poly-logarithmic cost (as opposed to logarithmic), but also crucially, because the ORAM client
in these schemes must compute a PRF function — in an MPC application, this PRF would have
to be securely evaluated using a multi-party protocol. Further, all schemes dependent on cuckoo
hashing [20,31,35] (including the two-server ORAM by Lu and Ostrovsky [35]) require the smallest
level to have size Q(log7 N) to tightly bound the failure probability of cuckoo hashing. Technically,
this means that these schemes basically reduce to the trivial ORAM (or the Goldreich-Ostrovsky
ORAM [16,18]) for N < 237,

Tree-based ORAM framework. The tree-based ORAM framework, initially proposed by Shi
et al. [17], departs fundamentally from the hierarchical framework [158], and is a new paradigm for
constructing a class of ORAM schemes. Several later works [7, 14,51] improved Shi et al.’s initial
construction [17] (commonly referred to as binary-tree ORAM). These schemes are conceptually
simpler, statistically secure, and easy to implement in secure processors [l 1-13,36,46] or MPC
applications [15,24,27,32,52]. A more detailed description of tree-based ORAMs are provided in
Section 2.

Remarks about the ORAM lower bound. Besides efforts at constructing more efficient upper
bounds, the community has also been interested in tightening the lower bound. Beame and Mach-
mouchi [5] show a super-logarithmic lower bound for oblivious branching programs. Although some
works cited their lower-bound as being applicable to the ORAM setting [2,20], it was later recog-
nized that Beame et al.’s super-logarithmic lower bound is not applicable to the standard
model of Oblivious ORAM. As the authors noted themselves in an updated version [5], one key
difference is that the standard ORAM model requires that the probability distribution of the ob-
served access patterns be statistically close regardless of the input; whereas Beame’s model requires
that for each given random string r, the access pattern be independent of the input. Therefore,
their super-logarithmic lower-bound is in a much stronger model than standard ORAM, and hence
inapplicable to ORAM. To date, Goldreich and Ostrovsky’s original lower bound is still the best
we know.

Oblivious storage and server-side computation. The original ORAM model proposed by

Goldreich and Ostrovsky assumes a passive server (or memory) that does not perform computation.

However, several subsequent works leveraged server-side computation to improve performance [2,
,37,45,50] or reduce the number of roundtrips [55].

To distinguish this server-computation setting from standard ORAM, we refer to it as oblivious
storage as suggested by several earlier works [3,6]. Apon et al. [3] point out that the Goldreich-
Ostrovsky lower bound is not applicable to the oblivious storage setting for the bandwidth metric.
In fact, one can construct oblivious storage schemes with constant bandwidth blowup but with
poly-logarithmic server work. [2].

Most of existing oblivious storage schemes (with server computation) are unsuitable for the
MPC setting, because they focus on optimizing the client-server bandwidth while paying the price
of higher, typically poly-logarithmic server work. In an MPC setting, all server-side work must be
securely evaluated using an MPC protocol which immediately incurs poly-logarithmic circuit size,
and is thus expensive.

Subsequent work. Circuit ORAM is now provided as the default ORAM implementation in the
ODbliVM secure computation framework by Liu et al. [33]. ObliVM is based on garbled circuits,
and at the front-end provides expressive programming abstractions and language features for non-
specialist programmers. Using Liu et al.’s ObliVM framework, in Appendix E we provide more
detailed end-to-end performance of Circuit ORAM.

Figure 1: Access(op) // where op = (“read”, idx) or op = (“write”, idx, data®)

label := PositionMap|[idx]

{idx||1labell||data} := ReadAndRm(idx, label)
PositionMap[idx] := UniformRandom(0... N — 1)
If op is “read”: data® := data
stash.add({idx||PositionMap[idx|||data*})
Evict()

Return data

2 Preliminaries

Definitions. Our definition of Oblivious RAM (ORAM) is standard, and we therefore defer
formal definitions to Appendix A.1. Below, we introduce the tree-based ORAM framework.

2.1 Tree-based ORAM Framework

Shi et al. proposed a new tree-based framework [17], which was adopted subsequently by several
improved constructions [7,14,39,51,52]. We now briefly review the framework.

Notation. We use N to denote the number of (real) data blocks in ORAM, D to denote the
bit-length of a block in ORAM, Z to denote the capacity of each bucket in the ORAM tree, and
A to denote the ORAM’s statistical security parameter. When discussing binary trees of depth
L = log N 4+ 1 in this paper, we say the leaves are at level L and the root is at level 1. For
convenience in algorithm descriptions, we sometimes treat the stash as a depth-O0 bucket with
some capacity R that is the imaginary parent of the root. We assume that leaves are numbered
sequentially from 0 to N — 1. We also denote [a..b] := {a,a +1,...,b}.

Data structure. The server organizes blocks into a binary tree of height L = log N + 1; each
node of the tree is a bucket containing Z blocks. Each block is of the form:

{idx||1labell||data},

where idx is the index of a block, e.g., the (logical) address of desired block; 1label is a leaf identifier
specifying the path on which the block resides; and data is the payload of the block, of D bits in
size.

The client stores a stash for buffering overflowing blocks. In certain schemes such as the original
binary-tree scheme [17], such a stash is not necessary. In this case, we can simply treat this as a
degenerate stash of size 0.

The client also stores a position map, mapping a block’s idx to a leaf label. As described later,
position map storage can be reduced to O(1) by recursively storing the position map in a smaller
ORAM. These leaf labels are assigned randomly and are reassigned as blocks are accessed. If we
label the leaves from 0 to N — 1, then each label is associated with a path from the root to the
corresponding leaf.

Main path invariant. Tree-based ORAMs maintain the invariant that a block marked label
resides on the path from the stash (to the root) to the leaf node marked label.

Operations. Tree-based ORAMSs all follow a similar recipe as shown in Figure 1. In particular,
the ReadAndRm operation would read every block on the path leading to the leaf node marked
label, and fetches and removes the block idx from the path.

Various tree-based ORAMs are differentiated by the eviction algorithm denoted Evict(). For
example, the original binary-tree ORAM adopts a simple eviction algorithm engineered to make
their proof easy: with each data access, two distinct buckets are chosen at random from each level
to evict from. By contrast, the Path ORAM algorithm performs eviction on the read path, and the
eviction strategy is aggressive: pack all blocks as close to the leaf as possible respecting the main
invariant. In Path ORAM, a O(log N) - w(1) stash is necessary to buffer overflowing blocks.

Recursion. Instead of storing the entire position map in the client’s local memory, the client can
store it in a smaller ORAM on the server. In particular, this position map ORAM needs to store
N labels each of log N bits. We can apply this idea recursively until we get down to a constant
amount of metadata, which the client could store locally.

As mentioned in Appendix B, we will leverage the “big block, little block” trick first proposed
by Stefanov et al. [51] to parametrization the recursion, such that the recursion does not introduce
additional asymptotic cost in terms of circuit size.

3 Circuit ORAM

3.1 Overview

Circuit ORAM follows the tree-based ORAM framework, by building a binary tree containing N
nodes (referred to as buckets), where each bucket can store Z = O(1) number of blocks.

Stash. As later proved in Theorem 1 and 2, with probability at least 1—2~%) the stash holds at
most R blocks. We can parameterize R = O(log N) - w(1) to obtain a failure probability negligible
in N. To achieve O(D) bits of client space, this stash can be stored on the server side, and
operated on by the client in each data access obliviously. For convenience, we will often refer to
the stash as being the 0-th level on the path, i.e., path[0].

Operations. The data access algorithm Access follows the same structure as in the binary-tree
ORAM [17] or Path ORAM [51] — explained in Figure 1 in Section 2. It suffices for us to describe
how eviction is implemented in Circuit ORAM, which we will focus on in the remainder of this
section.

Definition 1 (Legally reside) We say that a block B can legally reside in path[l] if by placing B
in path[¢], the main path invariant is satisfied.

Definition 2 (Deepness w.r.t eviction path) For a given eviction path denoted path, block By
is deeper than block By (with respect to path), if there exists some path[f] such that By can legally
reside in path[{], but By cannot; in the case when both blocks can legally reside in the same buckets
along path, the block with smaller index idx will be considered deeper.

Algorithm 1 EvictOnceSlow(path)

/*A slow, non-oblivious version of our eviction algorithm, only for illustration purpose*/
L. i:=1L /% start from leaf */
2: while 7 > 1 do:
3: if path[i] has empty slot then

4: (B, ¢) := Deepest block in path[0.. — 1] that can legally reside in path][i].
/*B:= L if such a block does not exist.*/

5: end if

6: if B # 1 then

7 Move B from path[{] to path[i].

8: i:=40 // skip to level ¢

9: else

10: 1:=1—1

11: end if

12: end while

In other words, By is deeper on the current eviction path than B if it can legally reside nearer
to the leaf along path. If two blocks have the same deepness, we use their indices idx to resolve
ambiguity. This will be useful later in our proofs.

Our notion of deepness and the greedy eviction choice of the deepest block on a path are inspired
by the novel ideas of the CLP ORAM [7] — but it will soon become apparent that we apply it in a
fundamentally different manner.

3.2 Intuition

We would like to have an eviction algorithm that is easy to implement as a small circuit. Ideally
it should make a single scan of the data blocks on the eviction path from the stash to leaf (and
only a constant number of metadata scans), and still try to push blocks towards the leaf as much
as possible.

During the one-pass scan of the data blocks, we would like the client to “pick up” (i.e., remove
from path) and hold onto one block, which can later be “dropped” somewhere further along the
path. At any point of time, the client should hold onto at most one block. Further, it makes sense
for the client to hold onto the currently deepest block when it does decide to hold a block. This
way, the block in holding will have the maximum chance of being dropped later. On encountering
a deeper block, the client could swap it with the one in holding.

However, a dilemma arises. How does the client decide when it should pick up a block and hold
onto it? Maybe this block will never get a chance to be dropped later, in which case there will be
two equally bad choices: 1) put the block into the stash — which results in rapid stash growth; and
2) go back and revisit the path to write the block back. However, doing this obliviously results in
high cost.

Remedy: lookahead mechanism with two metadata scans. The above issues result from
the lack of foresight. If the client could only know when to pick up a block and place it in holding,
and when to write the block back into an available slot, then these issues would have been resolved.
Our idea, therefore, is to rely on two metadata scans prior to the real block scan, to compute all

Algorithm 2 PrepareDeepest (path)

/*Make a root-to-leaf linear metadata scan to prepare the deepest array.

After this algorithm, deepest[i] stores the source level of the deepest block in path[0..i — 1] that can
legally reside in path[i]. */

1: Initialize deepest := (L, L,..., 1), src:= L, goal := —1.
2: if stash not empty then
src := 0,

goal := Deepest level that a block in path[0] can legally reside on path.
3: end if
4: for i =1 to L do:
5: if goal > i then deepest]i] := src
6: end if
7 ¢ := Deepest level that a block in pathli] can legally reside on path.
8 if ¢ > goal then
9

goal := /¢, src:=1
10: end if
11: end for

the information necessary for the client to develop this foresight. These metadata scans need not
touch the actual blocks on the eviction path, but only metadata information such as the leaf label
for each block, and the dummy bit indicator for each block. If the bucket size is O(1), then the
bandwidth blowup is O(log N). The most technical part of the proof is to show that the stash size
is still O(log N) with similar failure probability as Path ORAM.

3.3 Detailed Scheme Description

A slow and non-oblivious version of the eviction algorithm. To aid understanding, we
first describe a slow, non-oblivious version of our eviction algorithm, EvictOnceSlow, as shown in
Algorithm 1. This slow version only serves to illustrate the effect of the eviction algorithm, but
does not describe how the algorithm can be efficiently implemented in circuit. Furthermore, this
slow, non-oblivious version of our eviction algorithm gives a simpler way to reason about the stash
usage of the algorithm, and hence will facilitate our proofs later. Later in this section, we describe
how to implement our eviction algorithm efficiently and obliviously by making use of two metadata
scans and a one real block scan; this can be readily converted into a small-sized circuit.

The EvictOnceSlow algorithm makes a reverse (i.e., leaf to stash) scan over the current eviction
path. When it first encounters an empty slot in pathli], it will try to evict the deepest block B in
path[0..i — 1] to this empty slot, provided that the block B can legally reside in path[i]. Suppose
this deepest block B resides in path[¢] where ¢ < i. After relocating the block B to pathli], the
algorithm now skips levels path[¢ + 1..i — 1], and continues its reverse scan at level ¢ instead (Line 8
in Algorithm 1). In case no block in path[0..i — 1] can fill the empty slot in path[i], the scan simply
continues to level path[i — 1].

Efficient and oblivious implementation of our eviction algorithm. In Algorithm 1, Line 4
is inefficient, and Line 8 is non-oblivious. We now explain how to implement the same EvictSlow
algorithm obliviously and efficiently, but using two metadata scans (Algorithms 2 and 3) plus a

Algorithm 3 PrepareTarget (path)
/*Make a leaf-to-root linear metadata scan to prepare the target array. */
After this algorithm, if target[i] # L, then one block shall be moved from path[i] to path|target[i]]
in EvictOnceFast (path). */
1. dest:= 1, src:= L, target:= (L, L,..., 1)
2: for ¢+ = L downto 0 do:

3: if i == src then

4: target[i] := dest, dest := L, src:= L

5: end if

6: if ((dest = L and path[i] has empty slot) or (target[i] # L)) and (deepest[i] # L) then
7 src := deepest[i]

8: /* deepest is populated earlier using the PrepareDeepest algorithm.*/

9: dest :=1

10: end if

11: end for

single real block scan (Algorithm 4). Since metadata is typically much smaller than real data
blocks, a metadata scan is faster than a real block scan.

The two metadata scans will generate two helper data structures:

e An array deepest[l..L], where deepest[i| = ¢ means that the deepest block in path[0..i — 1] that
can legally reside in path[i] is now in level £ < i. If no block in path[0..i — 1] can legally reside
in path[i], then deepest[i] := L. In the pre-processing state, we will use one metadata scan,
namely the PrepareDeepest subroutine (see Algorithm 2), to populate the deepest array.
This allows us to avoid Line 4 in Algorithm 1 causing an additional ©(L) overhead.

e An array target[0..L], where target[i] stores which level the deepest block in path[i] will be
evicted to. This target array is prepopulated using a backward metadata scan as depicted in
the PrepareTarget algorithm (see Algorithm 3).

Observe that the prepopulated target array basically gives a precise prescription of the client’s
actions (including when to pick up a block and when to drop it) during the real block scan.
At this moment, the client performs a forward block scan from stash to leaf, as depicted in the
EvictOnceFast algorithm (see Algorithm 4). The high level idea here is to “hold a block in one’s
hand” as one scans through the path, where the block-in-hand is denoted as hold in the algorithm.
This block hold will later be written to its appropriate destination level, when the scan reaches that
level.

Example. To aid understanding, a detailed example, including the PrepareDeepest, PrepareTarget,
and the EvictOnceFast steps, is given in Figure 2.

Eviction rate and choice of eviction path. For each data access, two paths are chosen for
eviction using the EvictOnceFast algorithm. While other approaches are conceivable, we describe
two simple ways for choosing the eviction paths:

e A random-order eviction strategy denoted EvictRandom() (see Algorithm 5). The randomized
strategy chooses two random paths that are non-overlapping except at the stash and the root.

10

depth deepest target
stash Q| X|<) 1] X) || X 1] X
ixO<[3] XO< o], xd< [2] X
repare- repare- EvictO b
217 i Deepest RS 1— Target B i vllf‘asfclce g
300 |<)[3] . [0 3 A o0 Lo
4 | 12| | LAY
51XIa] (6] XAl [] XA [6] X
leaf 6 5] L] VAN

(a) (b) (c)

Figure 2: An example of Circuit ORAM eviction. Consider an eviction path with the stash
at level 0, and the leaf at level 6. Bucket size and stash size are both 2. When there are two blocks
in a level, x represents a block that is the less deep. The eviction will not care about the x blocks,
but all other blocks are of potential interest, so we use distinct shapes to distinguish them.

At the beginning, depth[i] contains the deepest level of blocks in level i. The results of the two
metadata scans are stored in the arrays deepest and target respectively. To aid understanding,
we use arrows to visualize the arrays depth, deepest, and target. More detailed explanations of
the arrows in each subfigure are provided below.

(a) s—t: A black arrow from level s to level ¢ means the following: a block in path[s] can legally
reside in pathlt]; but no block in path[s] can legally reside in path[t + 1..L]. Here s < t.

(b) s—t: A blue arrow from level s to level ¢ means the following: the deepest block in path[0..s —1]
that can legally reside in path[s| currently resides in path[t]. Here t < s.

(c) s—t: A green arrow from level s to level ¢ means the following: during the real block scan, the
client should pick up the deepest block in path[s], and drop it in path[t]. Here s < t.

(d) Blocks are evicted according to target pointers (in green).

—~

d)

This means that one path is randomly chosen from each of the left and the right branches of
the root.

o A deterministic-order strategy denoted EvictDeterministic() (see Algorithm 6). The
deterministic-order strategy is inspired by Gentry et al. [11] and several subsequent works [

-

)

Recursion. So far, we have assumed that the client stores the entire position map. Based on a

standard trick [17,50,51], we can recursively store the position map on the server. In the position
map recursion levels, we will use a different block size than the main data level as suggested by
Stefanov et al. [51]. Specifically, we group ¢ number of labels in one block for an appropriate

constant ¢ > 1. In other words, the block size for position map levels is set to be D' = O(log N),
resulting in O(log N) depth of recursion. In this way, our total bandwidth cost over all recursion
levels would be O(Dlog N + log® N) - w(1) (for negligible failure probability), assuming that the
stashes reside on the server side, and the hence client only needs to hold a constant number

of blocks at any time. For inverse polynomial failure probability, the total bandwidth cost is
O(Dlog N +1log® N).

Security proof. The security proof is trivial. First, as in all tree-based ORAMSs, every time a
block is read or written, a random path is read, where the random choice has not been revealed to

11

Algorithm 4 EvictOnceFast(path)

1: Call the PrepareDeepest and PrepareTarget subroutines to pre-process arrays deepest and
target.
2: hold := L, dest := L.
3: for i =0 to L do
4: towrite := L
5: if (hold # 1) and (i == dest) then
/* The block stored in hold will be placed in bucket path[i]. */

6: towrite := hold

7 hold := 1, dest := L.

8: end if

9: if target[i] # L then

10: hold := read and remove deepest block in pathli]
11: dest := target][i]

12: end if

13: Place towrite into bucket path[i] if towrite # L.

14: end for

Algorithm 5 EvictRandom()
1: Choose a leaf from each of the left and the right branches of the root independently, and denote

the two corresponding (stash-to-leaf) paths by path, and path;.
2: Call EvictOnceFast(pathy) and EvictOnceFast(path,)

Algorithm 6 EvictDeterministic()

In timestep t:

1: Choose two paths, pathy and path;, corresponding to the leaves labeled with integers bitrev(2¢
mod N) and bitrev((2¢ + 1) mod N), respectively. In the above bitrev(i) denotes the integer
obtained by reversing the bit order of ¢ when expressed in binary.

2: Call EvictOnceFast(pathy) and EvictOnceFast(path;)

3: Increase t by 1 for the next access.

the server before. This part of the proof is trivial, and the same as Shi et al. [17]. We now show
that the eviction process is oblivious too. As we can see from Algorithms 2,3 and 4, eviction on a
selected path always reads blocks or metadata (stored on the server) in a sequential manner, either
from leaf to root or from root to leaf. Clearly this does not depend on the logical address being read
or written. In fact, saying that our eviction algorithm (Algorithms 4) is oblivious is the same as
saying that it can be implemented efficiently in circuit representation! Finally, no matter whether
we use random-order eviction (Algorithm 5) or deterministic order eviction (Algorithm 6), the
choice of the eviction path is also independent of the logical address sequence being read /written.

3.4 Theoretical Bounds

Although our scheme superficially borrows the “deepest” idea from the CLP ORAM, and borrows
the “eviction on a path” idea from Path ORAM, we stress that our construction is fundamentally

12

different from either which necessitates novel proof techniques.

A slightly modified Circuit ORAM construction. For subtle technical reasons, in our proofs
we need to make a minor modification to the main construction. Since this modification is not very
interesting, we did not document it in our main scheme for clarity. The modification involves
introducing an additional partial eviction performed on the read path, simply to fill up the hole
that is newly created by the ReadAndRm operation. A partial eviction works just like a normal
eviction, but works on only part of the path upto the point where the the block is removed (and
for obliviousness dummy eviction operations are performed for the rest of the path). We refer the
readers to Appendix C for a detailed description of the modification. This additional modified
partial eviction is only necessary to to show an equivalence between a post-processed co-ORAM
and the real ORAM (see Section 4 and Appendix C for more details).

In our experiments described in Section 5, we also chose not to implement this partial eviction
— this leads to slightly better empirical results. However, even if one chooses to implement this
partial eviction in practice, it would only incur a small constant factor penalty.

Stash bounds. We prove stash bounds for both random-order and deterministic-order eviction.
Below we give the formal theorem statements but defer their proofs to the appendices.

Theorem 1 (Stash growth for random-order eviction.) Let the bucket size Z > 5. Let st(ORAMZ[s])
be a random variable denoting the stash size after access sequence s for a Circuit ORAM with bucket
size Z and randomized eviction. Then, for any access sequence s,

Pr [st(ORAM?[s]) > R] < 42-0.6"
where probability is taken over the ORAM algorithm’s randomness.

The detailed proof of this theorem is deferred to Appendix C and D.1. .

Theorem 2 (Stash growth for deterministic-order eviction.) Let the bucket size Z > A4.
Let st(ORAMZ[s]) be a random variable denoting the stash size after access sequence s for a Circuit
ORAM with bucket size Z and deterministic eviction. Then, for any access sequence s,

Pr [st(ORAM?[s]) > R] < 14- e,
where probability is taken over the ORAM algorithm’s randomness.

The detailed proof of this theorem is deferred to Appendix C and D.2. .

While our formal proof requires Z > 5 for randomized eviction and Z > 4 for deterministic-
order eviction, empirical results show that choosing Z = 3 for randomized eviction and Z = 2 for
deterministic eviction would result in bounded stash size R with failure probability 2~ ©(%).

Theorem 3 (Circuit size bound) Circuit ORAM achieves O((D-+log? N)(log N+log 1)) circuit
size for a statistical failure probability of 6. Specifically, if the block size D = Q(log® N), then Circuit
ORAM achieves O(D(log N + log %)) circuit size for a statistical failure probability of d.

Proof: For D = Q(log? N), consider Circuit ORAM with big data blocks of O(D) bits, and little
metadata blocks of O(log N) bits (used in the position map levels of the recursion). In Theorems 1
and 2, we show that the stash size is O(log %) blocks for a failure probability of §. The rest

immediately follows. [
13

4 Proof Roadmap

We give a roadmap of how the probability statements concerning stash usage in Theorems 1 and 2
are proved. The full proofs are given in Appendices C and D. Although our proof borrows some high-
level ideas from both Path ORAM [51] and CLP ORAM [7], we stress that both our construction
and proof are non-trivial and differ from Path ORAM and CLP ORAM in significant ways.

Equivalence to post-processed co-ORAM. Similar to Path ORAM [51]’s analysis, we con-
sider an imaginary construct known as co-ORAM, which is the same as Circuit ORAM, except
that buckets have infinite capacity. co-ORAM is not a real-world efficient ORAM scheme, but a
construct that facilitates analysis.

Suppose we are given the state of the co-ORAM at some moment, and we would like to infer
from it the stash usage of the real ORAM. One natural way is to post-process the co-ORAM such
that if a bucket contains more blocks than its capacity, the extra blocks are pushed back to its
parent. This is performed repeatedly until all extra blocks are pushed from the root to the stash.
As in the analysis of Path ORAM, the hope is that the stash usage of the post-processed co-ORAM
is the same as that of the real ORAM. If this is true, then we can use the same approach [51] to
analyze co-ORAM.

It is intuitive that the stash usage of the real ORAM should be at least that of the post-processed
00-ORAM. Our 0o-ORAM shows how far blocks could be evicted towards the leaves even without
any restrictions because of bucket capacity. The post-processing adds back the bucket capacity
requirement. Hence, the post-processed co-ORAM gives some bound on how far the blocks could
be evicted towards the leaves in the real ORAM.

However, it is not obvious that the real ORAM could evict blocks towards the leaves to the
same extent as the post-processed co-ORAM. Indeed, if we do not perform partial eviction on the
read path in a ReadAndRm operation (see Appendix C.1), then a hole (an available slot that would
be filled in post-processing) could be created in the real ORAM. This could mean an extra block
has to be stored in the stash of the real ORAM, thereby breaking the equivalence of stash usage
between the real ORAM and the post-processed co-ORAM.

Fortunately, a partial eviction in a ReadAndRm operation is sufficient to fix this issue. However,
Path ORAM’s analysis, in our case it is highly non-trivial to show that indeed the post-processed
00-ORAM is equivalent to the real Circuit ORAM. The key insight is to maintain the invariant
(Fact 2 in Appendix C) that if some bucket in the real ORAM has an available slot, then during
the post-processing of co-ORAM, no blocks can be pushed through this bucket towards the root.
However, to formalize this argument requires an intricate induction proof that is presented in
Appendix C. This technical proof can be skimmed, if the reader is convinced of the validity of the
post-processed co-ORAM.

Probabilistic tools to analyze co-ORAM. Once it is established that the post-processed oo-
ORAM is equivalent to the real ORAM as in the analysis of Path ORAM [51], one can observe
that the post-processed co-ORAM has stash usage of R blocks iff there exists a subtree T' at the
root with n := n(T") buckets in co-ORAM such that the number of blocks residing in 7" is nZ + R,
where Z is the bucket capacity. The goal is to show that at some fixed moment, for a fixed subtree
T, the probability that T (in unprocessed co-ORAM) contains at least nZ + R blocks is at most
exp(—Cn — R), for some large enough constant C' > 0. Since there are at most 4™ subtrees with n

14

nodes, a union bound over all possible subtrees T' can establish the probability bound in Theorems 1
and 2.

The full proof is in Appendix D, and we outline the key ideas here. To analyze the usage of the
subtree T', we consider two cases at the subtree’s boundary, where blocks might possibly be evicted
from T.

e Suppose bucket u in T is also a leaf in co-ORAM, and let X,, be the number of blocks in T
whose label corresponds to u. Observe that these blocks cannot leave T'. Since there are N
distinct blocks, by a standard balls-into-bins argument, in the worst case, X, is a sum of N
independent {0, 1}-random variables each having mean %

e Suppose bucket u is not in T, but its parent bucket is in 7. In this case, we say that u is
an ezit node, and let X, be the number of blocks in T' that can legally reside in u. Since
in each ORAM access operation, a block is assigned a fresh random label and there are two
eviction paths, we shall argue that X, can be viewed as a Markov queue whose departure
rate is twice that of its arrival rate. For random eviction path selection, X, behaves like a
a discrete-time M/M/1 queue, while for deterministic-order eviction variant, X, behaves like
a discrete-time M/D/1 queue [28]. Assuming that Circuit ORAM is initially empty, we can
instead consider the stochastically dominating scenario when X, is already in the stationary
distribution, whose analysis does not depend on the number N of distinct blocks.

We shall see that in either of the above cases, the random variable X, has constant expectation.
Hence, the number of blocks in 7', which is the sum of the X,’s, has expectation ©(n). Observe
that in the analysis of CLP ORAM [7], they consider how often each X, reaches some threshold,
whereas we directly consider the sum of the X,,’s as in [51]. We next use a measure concentration
argument to prove that the probability that the sum deviates from its mean is exponentially small.

Observe that the X,,’s are not independent. In fact, the X,’s are negatively associated [10)],
because if a block is assigned to one of the X,,’s, then it cannot be assigned to another. Nevertheless,
negative associativity is enough to prove measure concentration results via moment generating
functions, which are standard tools used to derive results like Chernoff and Hoeffding bounds.

In Appendix D, we formally prove that the X,’s are negative associated using Lemma 10, and
give upper bounds for the moment generating functions ¢ — E[exp(¢X,)] of the X,’s in Lemma 9.
Finally, the probability calculations to achieve Theorems 1 and 2 are completed in the proof of
Lemma 8.

5 Evaluation

Stash size distribution. We simulate Circuit ORAM for a single long run, for about 233
accesses, after 22° accesses to warm up the ORAM to steady state. In our experiments, we
use the following request sequence where we repeatedly cycle through all NV logical addresses:
1,2,...,N,1,2,...,N,.... Using the same argument as in Path ORAM [51], it is not hard to see
that this is the worst-case access sequence. Instead of measuring multiple runs, we use a single,
very long run, and measure the fraction of time that the stash has a certain size. This method-
ology is well-founded, since it is well-known that if a stochastic process is regenerative, the time
average over a single run is equivalent to the ensemble average over multiple runs (see Chapter 5
of Harchol-Balter [25]).

Figure 3a plots the stash size against the quantity log(%) where 0 is the failure probability. A
point on the curve should be interpreted as: the stash exceeds R (value on y-axis) with probability

15

Stash Size

12+

10

Stash Size

=~ t [=>} -~
T T

w
T

| =& 16

log,(1/failure probability)

o—e 13 oo 20 *o 22 <+« 24

no
T
4

ﬁ

1 [) 1 1 1 1 1 1 1
25 10 12 14 16 18 20 22

log, (Number of Blocks in ORAM)

10 15 20
log,(1/failure probability)

(b) The stash size is independent of the ORAM
capacity N. Z = 3 is used.

(a) The stash exceeds R with probability 27©/),
N = 2'% is used.

Figure 3: Evaluation of stash size. Deterministic-order eviction is adopted.

Circuit ORAM Path ORAM(naive) Path ORAM(o-sort) SCORAM
Type Of ORAM Det. Rand. Det. Rand. Det. Rand. Det. Rand.
Circuit size 3.50M 6.6M 28.5M 170.1M 62.1M 124.1M 14.5M 179M
Relative overhead 1X 1.9X 8.2X 48.6X 17.7X 35.5X 414X 51X
#AND gates 0.97M 1.6M 9.5M 56.6M 20.7TM 41.4M 4.9M 6.1M
Relative overhead 1X 1.6X 9.79X 58.4X 21.34X 42.7X 5.1X 6.3X

Table 2: Comparison of Circuit ORAM and variant of Path ORAM. N = 230 D =
32,6 = 2780, Path ORAM(o-sort) [52] uses 3 o-sorts. “Rand.” stands for randomly chose eviction
paths; “Det.” stands for eviction with reverse-lexicographical-ordered paths, described in earlier
works [12, 14, 15].

0. The two curves correspond to a bucket size of 2 and 3 respectively. Clearly, the fact that
both curves are a linear line suggests that the stash exceeds R with probability of 27¢%, where the
constant ¢ in the exponent is different for the two curves. Further, Figure 3b shows that the stash
size is independent of the ORAM’s capacity N. Besides a bucket size of 2 and 3, we also tried
a bucket size of 4 — in this case, we never observed the stash growing beyond 5 for the first 233
accesses.

Circuit size. In Table 2, we compare the circuit sizes of Circuit ORAM and other state-of-the-art
ORAM schemes. Results in this table are obtained for a 4GB dataset with the following concrete
parameters: N = 230, D = 32 bits, and security failure 6 = 2780, For Path ORAM [51], we consider
a naive implementation, and an asymptotically more efficient implementation relying on 3 oblivious
sorts [52]. For all schemes, we consider two strategies for choosing the eviction path: random-order
eviction and deterministic-order eviction (based on digit-reversed lexicographic order [11]). The
table shows that Circuit ORAM results in 8.2x to 48.6x smaller circuit size than Path ORAM, and
is 4.1x to 5.1x better than SCORAM [52]. Circuit ORAM’s speedup will become even bigger when
the total data size N is greater.

16

Circuit ORAM GKKKMRV12 [21] KS12 [27]

5 — 980 a2 14 §=2"20
Block size (bits) 32 40 128 512 2048 8192 512 40
Bre&zléz‘t’ji:)’omt 256 256 128 128 64 64 131072 ~2000
Breakeven point o 1 sy 9KkB SKB 16KB 65KB SMB 9.77KB

(total data size)

Table 3: Breakeven point for different ORAMs. Circuit ORAM numbers correspond to a
security parameter of 80, whereas GKKKMRV12 and KS12 adopt a security parameter of roughly
14 and 20 respectively.

Breakeven point with trivial ORAM. Depending on the block size, the breakeven point
between Circuit ORAM and trivial ORAM varies — Table 3. We also compare our breakeven
point with Gordon et al. [24], and Keller and Scholl [27], and show that we achieve dramatic
improvement at much higher security parameters. Gordon et al. implemented the binary-tree
ORAM and reported a breakeven point of SMB with a block size D = 512 bits, and 27 failure
probability. Our breakeven point is 8KB with a block size D = 512 bits, and at 2780 failure
probability. Keller and Scholl [27] implement an optimized Path ORAM algorithm, and report a
breakeven point of 9.77KB with a block size D = 40 bits, and a 272° failure probability. We achieve
1.3KB breakeven point at D = 40 bits, and with 278 failure probability.

Implementation over garbled circuits. Since our work, Circuit ORAM has now been imple-
mented and provided as the default ORAM implementation in the ObliVM secure computation
framework [1,33]. In Appendix E, we report Circuit ORAM’s end-to-end performance over garbled
circuits based on numbers gathered from the ObliVM framework [1,33].

References

[1] http://www.oblivm.com.
[2] Anonymous. Onion ORAM: A constant bandwidth oram without FHE, 2015.

[3] D. Apon, J. Katz, E. Shi, and A. Thiruvengadam. Verifiable oblivious storage. In Public-Key
Cryptography—PKC 2014, pages 131-148. Springer, 2014.

[4] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and
extensions for faster secure computation. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer 6#38; Communications Security, CCS '13, pages 535548, New York, NY, USA,
2013. ACM.

[5] P. Beame and W. Machmouchi. Making branching programs oblivious requires superlogarith-
mic overhead. In Proceedings of the 2011 IEEE 26th Annual Conference on Computational
Complexity, CCC ’11, pages 12-22, Washington, DC, USA, 2011. IEEE Computer Society.

17

http://www.oblivm.com

[6]

[11]

[12]

[13]

[14]

[17]

[18]

[19]

[20]

D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage: Making
oblivious RAM practical. http://dspace.mit.edu/bitstream/handle/1721.1/62006/
MIT-CSAIL-TR-2011-018.pdf, 2011.

K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure oram with O~(log2 n) overhead. CoRR,
abs/1307.3699, 2013.

I. Damgard, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious RAM without random
oracles. In TCC| 2011.

J. Dautrich, E. Stefanov, and E. Shi. Burst oram: Minimizing oram response times for bursty
access patterns. In 23rd USENIX Security Symposium (USENIX Security 14), pages 749-764,
San Diego, CA, Aug. 2014. USENIX Association.

D. Dubhashi and D. Ranjan. Balls and bins: a study in negative dependence. Random Struct.
Algorithms, 13:99-124, September 1998.

C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor architecture for encrypted
computation on untrusted programs. In STC, 2012.

C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, E. Stefanov, and S. Devadas. RAW Path
ORAM: A low-latency, low-area hardware ORAM controller with integrity verification. TACR
Cryptology ePrint Archive, 2014:431, 2014.

C. W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, and S. Devadas. Suppressing the
oblivious RAM timing channel while making information leakage and program efficiency trade-
offs. In HPCA, pages 213-224, 2014.

C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and D. Wichs. Optimizing
ORAM and using it efficiently for secure computation. In Privacy Enhancing Technologies
Symposium (PETS), 2013.

C. Gentry, S. Halevi, C. Jutla, and M. Raykova. Private database access with he-over-oram
architecture. Cryptology ePrint Archive, Report 2014/345, 2014. http://eprint.iacr.org/.

O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In
ACM Symposium on Theory of Computing (STOC), 1987.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In ACM symposium
on Theory of computing (STOC), 1987.

O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. J.
ACM, 1996.

M. T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm run-
ning in o(n log n) time. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC ’14.

M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of outsourced data via
oblivious RAM simulation. In ICALP, 2011.

18

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
http://eprint.iacr.org/

[21]

22]

[23]

[24]

[25]

[26]

[27]

M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Oblivious RAM simula-
tion with efficient worst-case access overhead. In CCSW, 2011.

M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Practical oblivious
storage. In ACM Conference on Data and Application Security and Privacy, 2012.

M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving group
data access via stateless oblivious RAM simulation. In SODA, 2012.

S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and Y. Vahlis. Secure

two-party computation in sublinear (amortized) time. In CCS, 2012.

M. Harchol-Balter. Performance Modeling and Design of Computer Systems: Queueing Theory
in Action. Performance Modeling and Design of Computer Systems: Queueing Theory in
Action. Cambridge University Press, 2013.

J. Hsu and P. Burke. Behavior of tandem buffers with geometric input and Markovian output.
In IEEE Transactions on Communications. v24, pages 358-361, 1976.

M. Keller and P. Scholl. Efficient, oblivious data structures for mpc. In P. Sarkar and T. Iwata,
editors, Advances in Cryptology ASIACRYPT 2014, volume 8874 of Lecture Notes in Com-
puter Science, pages b06-525. Springer Berlin Heidelberg, 2014.

D. G. Kendall. Stochastic processes occurring in the theory of queues and their analysis by
the method of the imbedded markov chain. The Annals of Mathematical Statistics, 1953.

V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and Applications.
In International Colloguium on Automata, Languages and Programming, 2008.

C. P. Kruskal, M. Snir, and A. Weiss. The distribution of waiting times in clocked multistage
interconnection networks. IEEE Trans. Computers, 37(11):1337-1352, 1988.

E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious RAM
and a new balancing scheme. In SODA, 2012.

C. Liu, Y. Huang, E. Shi, J. Katz, and M. Hicks. Automating efficient ram-model secure
computation. In IEFE S & P. IEEE Computer Society, 2014.

C. Liu, X. S. Wang, E. Shi, Y. Huang, and K. Nayak. ObliVM: A Generic, Customizable, and
Reusable Secure Computation Architecture. Manuscript, 2014.

J. R. Lorch, B. Parno, J. W. Mickens, M. Raykova, and J. Schiffman. Shroud: Ensuring private
access to large-scale data in the data center. FAST, 2013:199-213, 2013.

S. Lu and R. Ostrovsky. Distributed oblivious ram for secure two-party computation. In Pro-
ceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography, TCC’13,
pages 377-396, Berlin, Heidelberg, 2013. Springer-Verlag.

M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, and D. Song.
Phantom: Practical oblivious computation in a secure processor. In CCS, 2013.

19

[37]

[38]

[39]

[40]

[42]

[43]
[44]

T. Mayberry, E.-O. Blass, and A. H. Chan. Efficient private file retrieval by combining oram
and pir. 2014.

J. C. Mitchell and J. Zimmerman. Data-Oblivious Data Structures. In $1st International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 25, pages 554-565,
2014.

T. Moataz, T. Mayberry, E.-O. Blass, and A. H. Chan. Resizable tree-based oblivious ram.
Financial Crypto, 2015.

M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In
Proceedings of the 1st ACM Conference on Electronic Commerce, EC '99, pages 129-139, New
York, NY, USA, 1999. ACM.

R. Ostrovsky. Efficient computation on oblivious RAMs. In ACM Symposium on Theory of
Computing (STOC), 1990.

R. Ostrovsky and V. Shoup. Private information storage (extended abstract). In ACM Sym-
posium on Theory of Computing (STOC), 1997.

B. Pinkas and T. Reinman. Oblivious RAM revisited. In CRYPTO, 2010.

N. Pippenger and M. J. Fischer. Relations among complexity measures. J. ACM, 26(2), Apr.
1979.

L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and S. Devadas. Ring
oram: Closing the gap between small and large client storage oblivious ram. Cryptology ePrint
Archive, Report 2014/997, 2014. http://eprint.iacr.org/.

L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas. Design space exploration and
optimization of path oblivious RAM in secure processors. In ISCA, pages 571-582, 2013.

E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((log N)?3) worst-case
cost. In ASIACRYPT, 2011.

E. Stefanov and E. Shi. Multi-cloud oblivious storage. In ACM Conference on Computer and
Communications Security (CCS), 2013.

E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud storage. In IEEE
Symposium on Security and Privacy (S € P), 2013.

E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In NDSS, 2012.

E. Stefanov, M. van Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path ORAM: an extremely simple oblivious ram protocol. Cryptology ePrint Archive, Report
2013/280, previous version published on CCS, 2013. http://eprint.iacr.org/2013/280.

X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi. Scoram: Oblivious ram for
secure computation. In ACM Conference on Computer and Communications Security (CCS),
2014.

20

http://eprint.iacr.org/
http://eprint.iacr.org/2013/280

[53] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.
[54] P. Williams and R. Sion. Single round access privacy on outsourced storage. In CCS, 2012.

[55] P. Williams and R. Sion. SR-ORAM: Single round-trip oblivious ram. In ACM Conference on
Computer and Communications Security (CCS), 2012.

[56] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud: Practical access pattern
privacy and correctness on untrusted storage. In C'CS, 2008.

[57] A. C.-C. Yao. Protocols for secure computations (extended abstract). In IEEE symposium on
Foundations of Computer Science (FOCS), 1982.

[58] S. Zahur and D. Evans. Circuit structures for improving efficiency of security and privacy
tools. In S & P, 2013.

[59] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole: Reducing data transfer in
garbled circuits using half gates. In FEUROCRYPT, 2015.

A ORAM Definitions and Metrics

A.1 Oblivious RAM Definitions

Notation. We use the notation {raddr} and {waddr} to refer to a set of physical addresses for
reading and writing. We use {fetched} to denote a set of most recently fetched memory reads.
Each logical operation op := (read,idx) or op := (write,idx,data) either reads logical address
idx or writes logical address idx. Here we use the terminology memory and server interchangeably.

Oblivious RAM. An ORAM scheme can be formulated as a PPT algorithm denoted Next, com-
monly referred to as the ORAM client algorithm:

(out, {raddr}, {waddr}, {data}, st) < Next(op, st, {fetched})

Specifically, Next is a probablistic stateful algorithm (whose state is denoted st) that computes the
physical memory operations for each round of interaction.

Given a sequence of memory access operations {op; }ic[as, Where each op; := (read,idx) or
op; := (write, idx,data) we can define the following execution:

oram-exec((opy,0py,---,0p))
1: Initialize mem := {0,0,...,0}; res := 0.
2: fori=1,2,...do
{fetched} := L
4 repeat
5 (out, {raddr}, {waddr}, {data}, st) < Next(op, st, {fetched}).
6 {fetched} := mem[{raddr}]; mem[{waddr}] := {data};
7: until out # L
8
9:

W

res := res||out
end for

21

Correctness. An ORAM scheme is said to be correct if, for any input sequence (op;,0ps, - - -,0pPxs),
with probability 1, the result array res from oram-exec agrees with the result res from a true
execution on the same input sequence.

true-exec((op;,0ps,.-.,0Pas))
1: Initialize mem := {0,0,...,0}; res := (.
2: fori=1,2,... do
3: if op; is a read then
4 res := res||mem[idx;]
5 else
6: res := res||data;; mem[idx;| := data;
7
8

end if
: end for

Security. Let addr(oram-exec(opy,...,0p,,)) denote the temporally ordered sequence of {raddr}
and {waddr} output by the Next algorithm during the entire execution oram-exec(opy,...,0py/))-
An ORAM scheme is said to be secure for any M € N, for any two sequences (opy,...,0p,,) and

(Op/1> B 7Op/]\4)7
addr(oram-exec(opy, . ..,op,,)) = addr(oram-exec(op’, . ..,op’;))

In particular, = denotes either statistical or computational indistinguishability. We refer to them
as statistical or computational security respectively.

A.2 ORAM Metrics

We elaborate on the commonly used metrics for ORAM schemes. Since ORAM has been applied to
several application settings such as storage outsourcing, secure processor, and MPC, several metrics
have been adopted by the community. We stress that these metrics are related but distinct, and
we elaborate on their definitions and relations below.

Bandwidth cost and bandwidth blowup. An ORAM’s bandwidth cost refers to the average
number of bits transferred for accessing each block of D bits. An ORAM’s bandwidth blowup is
defined as its bandwidth cost divided by D (i.e., the bit-length of a data block). Effectively, the
bandwidth blowup means the multiplicative factor in bandwidth one needs to pay to get oblivious-
ness.

Number of accesses. The “number of accesses” metric characterizes how many times the ORAM
client must access physical memory on average to satisfy each ORAM request. Two blocks at
different addresses count as two distinct accesses even if they are accessed in the same roundtrip.
This was the original metric considered by Goldreich and Ostrovsky in their original ORAM work
(where they equivalently call it the runtime blowup comparing the Oblivious RAM simulation and
the original non-oblivious RAM).

We note that the “number of accesses metric” is in fact the same as bandwidth blowup if block
sizes are uniform. However, these metrics do not necessarily agree when blocks have non-uniform
sizes, e.g., in recent tree-based ORAM schemes [17,51], a “big data block, little metadata block”
trick is commonly used to achieve better bandwidth costs.

22

Circuit size. The circuit size metric for ORAMs was first raised by Wang et al. [52], and is defined
as the total circuit size of the ORAM client algorithm Next over all execution rounds during each
ORAM request. Below are some simple but useful observations regarding the new circuit size
metric [52], and relate the circuit size to the traditional bandwidth metric:

e If there exists an ORAM scheme with O(f(NN)) circuit complexity (regardless of client space),
then there exists an ORAM scheme with O(D) of client space and O(f(N)) bandwidth cost.

e Conversely, for any “non-wasteful” ORAM scheme that has Q(f(N)) bandwidth cost, its
circuit complexity must be at least Q(f(IV)) — otherwise, some bits read from the server are
not fed as inputs to the ORAM client’s circuits — and hence these bits need not have been
transferred.

Note that an ORAM with with O(f(N)) bandwidth cost does not necessarily imply an ORAM
with O(f(INV)) circuit size, since the client work must be factored into the circuit size as well. Based
on the above observation, the circuit size metric is a more “stringent” metric than the traditional
bandwidth metric, since circuit size captures not only bandwidth but also client work (and server
work too for oblivious storage schemes that require server computation).

B Interpreting Circuit ORAM under Other Metrics

Circuit ORAM also outperforms previous schemes in terms of bandwidth costs and number of
accesses under wide parameter ranges. To obtain these costs, we first discuss ways to parametrize
the recursion to get different costs under different block size assumptions.

Parametrizing the recursion. Recursion can be done using either uniform or non-uniform block
sizes.

e Non-uniform block size. Of particular interest is when we set the block size of the recursive
position map levels to be D' = O(log N), a standard “big data block, little metadata block”
trick initially adopted by Path ORAM [51]. In this case, the recursion has O(log N) depth.

This parametrization trick is good for optimizing circuit size and bandwidth cost — see Table 1
(Section 1) and Table 4 (this section). Specifically, in these tables, observe that the costs for
tree-based ORAMs have two terms, where one term corresponds to the data level, and the
other term corresponds to all metadata levels of the recursion.

e Uniform block size. In this case, we use the same block size for all recursion levels. A special
case of interest later is when the block size is D = N€ for some constant 0 < € < 1 — in this
case, the depth of the recursion is O(1).

Circuit ORAM’s bandwidth cost and number of accesses. We now state the cost of Circuit
ORAM for the bandwidth and number of accesses metrics.

Theorem 4 (Circuit ORAM’s bandwidth cost and number of accesses) Circuit ORAM achieves
the following bandwidth cost and number of accesses for a negl(N) statistical failure probability.

e Suppose the position map levels adopt a block size D' = O(log N), then Circuit ORAM
achieves O(Dlog N + log® N)w(1) bandwidth cost and O(log? N) number of accesses. In
particular, for a D = Q(log® N) block size, the bandwidth cost is O(Dlog N)w(1).

23

Scheme Amortized Bandwidth Cost Client Storage
Hierarchical ORAMs

G096 [18] O(Dlog® N) O(D)
GMI11 [20] O(Dlog? N) O(D)
KLO12 [31] O(Dlog? N/loglog N) O(D)
LO13 [O(Dlog N) o(D)

(Note: 2-server model)

Tree-based ORAMs

Binary-tree ORAM [17] O(Dlog® N +log* N) - w(1) O(D)
CLP13 [7] O ((Dlog N +1log® N) loglog N) O(Dlog? N) - w(1)
Path ORAM(naive circuit) [51] O(Dlog N +log® N) O(DlogN) - w(1)
Path ORAM (o-sort circuit) [52] O ((Dlog N +log® N) loglog N) - w(1) O(D)
Circuit ORAM (This paper) O(Dlog N +log® N) - w(1) o(D)
Table 4: Comparison of various ORAMSs in terms of bandwidth cost. @ The bounds are

expressed for negl(N) failure probabilities. For all ORAMs based on the tree-based framework,
their bandwidth cost includes two parts, a part for transferring blocks, and a part for transferring
metadata. The metadata part would be absorbed into the other term if D = Q(log? N).

e Suppose all levels adopt a uniform block size of D = xlog N, then Circuit ORAM achieves
O(Dlog N log, N)w(1) bandwidth cost, and O(log N log, N)w(1) number of accesses. Of par-
ticular interest is when D = N°€ for some constant 0 < € < 1. In this case, Circuit ORAM
achieves O(D log N)w(1) bandwidth cost, and O(log N)w(1) number of accesses.

Proof: The proof is immediate given the stash bound analysis (Theorems 1 and 2), and the
stated methods for parametrizing the recursion. [|

Table 4 depicts the bandwidth cost of Circuit ORAM in comparison with existing works. For a
realistic block size of D = Q(log? N), Circuit ORAM asymptotically outperforms all known schemes
with O(1) blocks of client-side storage.

Tightness of the Goldreich-Ostrovsky lower-bound for various metrics. Further, Theo-
rem 3 (Section 3.4) and Theorem 4 also suggest that the Goldreich-Ostrovsky lower bound is tight
under the following conditions and for a negl(V) statistical failure probability:

e For the circuit size and bandwidth metrics when the block size D = Q(log?® N).

e For the “number of accesses” metric when the block size D = N€ for a constant 0 < € < 1.

C Analyzing Stash Size via Infinity ORAM
C.1 A Slight Variant of Circuit ORAM

We would like to prove bounds for stash usage in the main scheme described in Section 3. For
technical reasons, we will prove bounds for a slight variant of the scheme that performs some
additional evictions. Recall that we use hole to mean an available slot in a bucket that was
previously occupied by another block, or the only available slot in a bucket.

24

In the main scheme described in Section 3, we do not perform eviction on the read path,
but perform v number of evictions for paths chosen in a deterministic order. In this new variant,
however, we will also perform a “partial eviction” on the read path. The purpose of this is to fill the
hole created by reading and removing a block, so that we can prove a strong equivalence property
to relate the real ORAM to a post-processed co-ORAM, whose purpose is solely for analysis. The
eviction is partial, because it is only performed on the segment path[0...¢*], i.e., from the stash to
the level £* where a block is fetched and removed.

For simplicity, in Algorithm 7, we describe a slow, non-oblivious version of the partial evic-
tion. Using the same techniques described in Section 3, this partial eviction can be done by calling
the PrepareDeepest and PrepareTarget subroutines, followed by the EvictFast on the segment
path[0...¢*]. To hide where the level ¢* is, one needs to perform the corresponding dummy opera-
tions on the segment path[¢* +1...L].

One could also implement this partial eviction in our real scheme. This would add a small
constant factor to our overhead. For our real implementation, we chose not to implement this
partial eviction as an empirical optimization.

C.2 Infinity ORAM

Recall that we treat the stash as a bucket path[0] that is the imaginary “parent” of the root path[1].

Definition 3 (co-ORAM for Circuit ORAM) oco-ORAM is defined in the same way as our
ORAM, except that each bucket has infinite capacity.

We stress that co-ORAM is only a construct used in our proof to analyze stash usage — in fact,
00-ORAM is not oblivious, since the current bucket load leaks information. To distinguish between
the buckets along path in real ORAM and co-ORAM, we use pathp and path_; the subscripts are
dropped when the description applies to both ORAMs.

Post-processed co-ORAM. At the end of each time step, let S denote the state of the co-ORAM,
let S” denote the state of a real ORAM with bucket capacity Z. We say that S’ is an admissible
post-processing of S, iff the following conditions hold:

1. For every block B residing in some node bucket in S, B must reside in an ancestor of bucket

or bucket itself in S’.
2. If a block resides in pathp[¢'] in S’, and resides in path[¢] in S, where £ > ¢/, then it must
be the case that all buckets in pathp[¢/ +1...¢] are full in S’.

In the real-world algorithm in Section 3.3, we allow an arbitrary choice when two blocks can be
legally evicted to the same depth along the eviction path. For the purpose of the proof, we assume
that the tie is resolved by choosing the block with the smaller block index. This rule is applied to
both the real ORAM and the co-ORAM. By resolving the ambiguity, we can keep the real ORAM
and the co-ORAM synchronized, such that we can prove a strong equivalence condition between
the two.

Lemma 1 (Strong equivalence) After any request sequence s, and randomness sequence r, the
real ORAM is an admissible post-processing of the oco-ORAM.

In particular, this implies that the stash usage in a post-processed co-ORAM is exactly the same
as the stash usage in the real ORAM.

Below, we will prove Lemma 1 by induction.

25

Algorithm 7 PartialEvictSlow(path, ¢*)
/*A slow, non-oblivious version of our partial eviction algorithm, only for illustration purpose. The
first line is the only difference from the EvictSlow algorithm described in the main body.*/

L: /* start from level ¢£* */

2: while 7 > 1 do:
3: if path[i] has empty slot then

4: (B, ¢) := deepest block and its level in path[0...i—1] that can reside in path[i] respecting
the path invariant. /* B := L if such a block does not exist.*/

5: end if

6: if B# 1 then

7 Move B from path[¢] to path][i].

8: 1:=4

9: else

10: 1:=1—1

11: end if

12: end while

Fact 1 (Base case.) At time step 0, the strong equivalence condition (Lemma 1) holds between an
admissible post-processed co-ORAM and the real ORAM.

The above fact can be trivially observed, since at time ¢ = 0, there is no block in either the
00-ORAM or the real ORAM.

We assume that the ORAM proceeds in steps. In each step, one of the following things happen:
1) eviction is performed on a path selected in a deterministic order; and 2) a block is read and
removed from a read-path, and a partial eviction is performed. These operations are applied to
both the real ORAM and the co-ORAM.

Lemma 2 (Induction step.) If for any t < k, the strong equivalence condition (Lemma 1) holds,
then the condition holds for time step t = k.

The remainder of this section will focus on the proof of the induction step.

C.3 Useful Properties of Our Eviction Algorithm

Observe that our eviction algorithm in Section 3.3 or partial eviction algorithm has the following
properties for both the real ORAM and co-ORAM.

e Eviction certainty. For full-path eviction: if level ¢ is non-full®, and there exists a block
in path[0...¢ — 1] that can legally reside in path[¢] or its descendant, then a block will move
from path[0...¢ — 1] into path[¢... L].

For partial eviction, this holds for the levels £ < £* where ¢* is the level of the block being

read and removed.

e Choice of block. For full-path eviction: for a mon-full level £ > 1, suppose that there
exists a block in path[0...¢ — 1] that can legally reside in path[¢...L]. Then, the block in

3We assume that every level is non-full in the co-ORAM.

26

path[0...¢ — 1] that can be moved deepest along path (where ties are resolved by choosing
the block with the smallest index) will be chosen to be moved to path[¢...L].

For partial eviction, this holds for the levels ¢ < ¢* where £* is the level of the block being
read and removed.

e Mutually exclusive. At most one block from path|[0...¢—1] will be evicted into path[¢... L].

¢ Filling a hole created during read-and-remove or eviction. Suppose a block is removed
from path[¢] to create a “hole”, either in the case ¢ = £* due to a read-and-remove, or in Line 7
of Algorithm 1 or 7. Suppose at this moment, there exists a block in path[0...¢— 1] that can
legally reside in path[¢]. Then, in the round (in Algorithm 1 or 7) where 7 is set to ¢, this
hole will be filled. Notice that other available slots in level ¢ will not be filled.

C.4 Proof of Lemma 2

Recall that in the induction step, there is an eviction path; in the case that the eviction is partial,
eviction is performed from level 0 (the stash) to some level £*, at which level a block is read and
removed.

To avoid ambiguity, in our induction proof, we will use epath := epath[0..L] (or epath :=
epath[0..£*] in the case of a partial eviction) to denote the eviction path in the k-th step, and use
path to denote any arbitrary path.

We use the notation pathlﬁz to denote a path in the real ORAM at the end of the k-th time step,
and use path];o to denote a path in the co-ORAM at the end of the k-th step. Sometimes we omit
the superscript or the subscript if it does not matter which ORAM or what time step we refer to.

We partition each path pathy[0..L] in the real ORAM into episodes.

Definition 4 (Episode) For 0 < a < b < L, we say that pathg[a..b] is an episode in the real
ORAM, iff the following holds:
1. Bucket pathg|a] is not full (recall that the stash pathg[0] is by default not full), while for all
other levels i in the episode, the bucket pathgl[i] is full.
2. Either b = L, or pathg[b + 1] is not full in the real ORAM; in the latter case, we say that b
is an episode boundary.

Notice that the smallest possible episode contains a single non-full level. A path is partitioned
into contiguous groups of buckets, where each group of buckets is indexed by an episode. For
convenience, we will number the episodes on a path from the stash to the leaf.

Fact 2 (Characterizing admissibility via episodes) A real ORAM is an admissible post-processing
of some co-ORAM iff the following conditions hold.
(a) As before, every block residing in some bucket of co-ORAM must reside in an ancestor (not
necessarily proper) bucket in the real ORAM.
(b) For every path and every episode pathpla..b], the blocks in pathla..b] are contained in
pathp[a..b] in the real ORAM.

Remark. Observe that Fact 2(a) is always satisfied, as eviction is carried out more aggressively
in 0co-ORAM because there is no bucket capacity constraint. Hence, in our proofs, we mainly
concentrate on proving the condition Fact 2(b).

27

Fact 3 Suppose a real ORAM is an admissible post-processing of some co-ORAM. Then, for any
episode pathgla..b], and ¢ € [a..b], the blocks in path[a..f] are contained in pathp[a..f].

Fact 3 is obvious by the definition of post-processing and by Fact 2(b).

Recall that if pathp[a..f] and pathgy[¢ + 1..b] are adjacent episodes, then ¢ is called an episode
boundary.

Lemma 3 Suppose a real ORAM is an admissible post-processing of some oco-ORAM. Then, for
any path, for any episode boundary ¢ (defined with respect to pathg[0..L]), the blocks in path|0..4]
that can legally reside in path[¢ + 1] are ezactly the same in the real ORAM and co-ORAM.

Proof: Suppose a real ORAM is an admissible post-processing of some co-ORAM. If a block
resides in path[0..4], then it must reside in pathy[0..¢] by definition of post-processing.

For the other direction, we prove by contradiction. Suppose a block B resides in pathp[0..£] and
can legally reside somewhere in path[/+1..L], but block B is not in path[0../]. Then, by definition
of post-processing, it must be in path [+ 1..L]. Now, by Fact 2(b), since ¢ is an episode boundary,
block B must be in pathy[¢ + 1..L], leading to a contradiction. [

Lemma 4 Let path®![a..b] be an episode at the end of the (k — 1)-th step, and let £ € [a..b]. If a
block B is in path®>[a..f] and remains in path®_[a..f], then block B is in path%[a..(].

Proof: If path[a..f] does not intersect with the eviction path epath in the k-th step, then the result
is trivial, because no block is moved into or out of path[a../] in both the real ORAM or co-ORAM
in the k-th step; the induction hypothesis implies the result. Otherwise, path|a../] intersects with
epath on levels [a..0], where ¢' € [a..£]. We consider two cases.
Case (1): a block B is in path®;'[¢ +1..¢]. By the induction hypothesis, B is in path®![a..£], and
must still be in path’[a..¢], since it cannot have been moved elsewhere in the real ORAM.
Case (2): a block B is in path®>1[a../]. Observe that in the k-th step, at most one block from
path?>1a..'] will be moved to epath[¢ + 1] or its descendants. By Fact 3 and the induction
hypothesis, all blocks in path%'[a..¢'] must be in path%*[a..¢]. If B stays in path” [a..¢'] at the
end of the k-th step, it means either B cannot legally reside in epath[¢’ + 1] on the eviction path,
or B is not the deepest block in path];o_l[O..E’] (with respect to epath). If the former happens, B
must still be in path]fz[a..ﬁ’] at the end of the k-th step; if the latter happens, by Lemma 3 we know
that B will not be the deepest in path’;{l[O..E’] (with respect to epath), and hence will also stay in
path%[a..f’]. Note that this implicitly relies on using a block’s idx to resolve any ambiguity in the
notion of deepness.

|

Lemma 5 Let path’é_l[a..b] be an episode at the end of time step (k — 1). A block B newly enters
path’_[a..b] in the k-th step iff it also does so in path’[a..b].

Proof: Not hard to see given Lemma 3, the definition of an episode, and by the properties of our
eviction algorithm.]

Lemma 6 Let path%[a..b] be an episode at the end of the (k — 1)-st step. Then, all blocks in
path?_[a..b] must be in pathf[a..b].

28

Proof: If a block in path®;![a..b] remains in path®_[a..b], then it must be in path’[a..b]. At most
one new block B could enter path®_[a..b]; in this case, B must also enter path%[a..b] by Lemma 5. m

Fact 4 Suppose that the induction hypothesis holds at the end of (k — 1)-th step, and path’;%_l[a..b]
is an episode. Then, path%[a + 1..b] has at most one hole in it.

Definition 5 (Sub-episode after k-th step) Let path%‘l[a..b] be an episode. Suppose after the
k-th step, a hole is created in bucket path]f%[h], where h € [a + 1..b]. Then, we say that episode
pathlf{l[a..b] is split into two sub-episodes path’%[a..h — 1] and path%[h..b] after the k-th step. If
no new hole is created in [a + 1..b], then there is a single sub-episode path’[a..b] at the end of the
k-th step.

Remark. Observe that the sub-episode path%[a..b] might not be an episode after the k-th step,
because in the k-th step, a block might fill the only available slot in path’f%[a], causing the sub-episode
to be merged with the one preceding it.

Fact 5 For any path, each sub-episode as defined above must be contained entirely within an episode
at the end of the k-th step, or disjoint with an episode at the end of the k-th step. In other words,
each episode at the end of the k-th step can be partitioned into one or more (actually at most two)
sub-episodes.

Due to Fact 5, in order for us to prove the induction step of Lemma 2, it suffices to prove the
following condition in Lemma 7 that is stronger than the condition in Fact 2(b).

Lemma 7 Suppose path%[a..b] is a sub-episode after the k-th step. Then, every block in path®_[a..b]
must be in path¥[a..b] as well.

Proof: We consider cases according to how the sub-episode path]f%[a..b] is formed.
Case 1: pathf![a..b] is an episode at the end of the (k — 1)-st step. This case follows from
Lemma 6.

Otherwise, the sub-episode is the result of splitting an episode during the k-th step; there are
two subcases.

Case 2(a): pathf[a..b] is a sub-episode resulting from splitting an episode path]f%_l[a..b}, for some
a < a; during the k-th step, one block is removed from the full bucket path’f{l[a] to create a hole in
path¥[a], either due to a read-and-remove or an eviction. In either case, path[0..a] is on the eviction
path (partial for a read-and-remove) epath.

Suppose, for contradiction’s sake, that there is some block B in pathﬁo[a..b} that is not in
path%[a..b).

Then, since Fact 2(a) always holds, block B must be in path%[0..a — 1]. Since block B is in
path®_[a..b], it can legally reside in pathla]. By the eviction certainty property in Section C.3,
one block would have been moved from path%ﬁl[()..a — 1] to fill the hole in path%[a], causing a
contradiction.

Case 2(b): path’f%[a..b] is a sub-episode resulting from splitting an episode path’gl[a..g], for some
b > b; during the k-th step, one block is removed from the full bucket path’f{l[b + 1] to create a
hole in path%[b+ 1], either due to a read-and-remove or an eviction. In either case, path[0..b+ 1] is
on the eviction path (partial for a read-and-remove) epath.

29

Suppose a block B is in path® [a..b]. Then, either B is also in path®>![a..b], or newly enters
path?_[a..b].
In the first case, Lemma 4 states that block B is in path%[a..b]. In the second case, Lemma 5

states that block B newly enters path%[a..b]; however, since there is a hole in path%[b + 1], this
newly entering block B could not have moved beyond level b, and so must stay in path%[a..b]. [|

D Analyzing Stash Usage of Infinity ORAM

In Section C, we show an equivalence relationship (Lemma 1) between the real ORAM and a
post-processed co-ORAM. Following the proof strategy and the notation as in [51], we use ORAMZ
to denote a real ORAM with bucket size Z, and ORAM™ to denote co-ORAM. Given an access
sequence s, the configurations of the ORAMs are denoted by ORAMZ[s] and ORAM™[s]. The stash
usage of the real ORAM is denoted as st(ORAMZ[s]), and the stash usage of a post-processed oo-
ORAM to an ORAM with bucket size Z is denoted as st? (ORAM>[s]). Then, the strong equivalence
lemma (Lemma 1) states that st(ORAMZ[s]) = st? (ORAM™[s]).

Given a subtree T of the co-ORAM tree, the number of blocks contained in the buckets of
subtree T after co-ORAM processes the request sequence s is denoted as ul (ORAM™[s]). An
observation made in [51] is that for any R > 0, st?(ORAM™[s]) > R iff there exists a subtree T
such that uT (ORAM™[s]) > n(T) - Z + R, where n(T) is the number of buckets in subtree 7.

The following equations summarize the above discussion.

Pr[st(orRAMZ[s]) > R]
= Pr[st?(orRAM™[s]) > R]
= Pr[3T uT(orRAM™[s]) > n(T)Z + R]
<) Pru"(oraM™[s)) > n(T)Z + R,
T

where T ranges over all subtrees containing the root, and the inequality follows from the union
bound.

Since the number of ordered binary trees of size n is equal to the Catalan number C,,, which is
< 4™

—)

Prfst(orAM?[s]) > R] < 4" max Prlu”(orAM™[s]) > nZ + R). (1)
T:n(T)=n
n>1

Fixing some subtree 7' with n nodes (buckets), we next give a uniform upper bound for
Pr[uT(oraM™[s]) > nZ + R] in terms of n, Z and R. Although we make measure concentra-
tion argument similar to [51], the underlying random processes are actually very different. For
instance, the blocks in [51] are evicted independently from one another, while the blocks in this

case are dependent upon one another.

D.1 Analyzing Usage of Subtree

We consider the usage u’ (ORAM™([s]) of a subtree T in ORAM™ after a sequence s of T accesses,
starting from an initially empty ORAM. Recall that IV is the number of distinct blocks; we assume

30

@ Exit nodes
@ Nodes in the subtree T

Leaves of ORAM tre

Figure 4: A subtree containing some leaves of the original ORAM binary tree, augmented with the
exit nodes. This diagram is also used in the paper [71].

that N is a power of 2, and the ORAM binary tree has N leaves. We shall prove the following
lemma in this subsection.

Lemma 8 (Subtree usage with random eviction) Suppose s is an access sequence, and T is
a subtree with n = n(T') nodes containing the root of the binary ORAM tree. Then, for Z =5, for
any R >0,

Pr[u”(ORAM™[s]) > n- Z + R] < 3- 4 - (0.93312)" - (0.6)~~.

We next define some notations relating to the subtree T'.

Definition 6 (Exit node) For a given path P from the root to some leaf node, suppose that some
node v is the first node of the path P that is not part of T, then we refer to node v as the exit node,
denoted v := exit(P,T). If the whole path P is contained in T, then the exit node exit(P,T') is null.

Let F' be the set of nodes in T that are also leaves of the ORAM binary tree; we denote [:= |F|.
We augment the tree T' by adding nodes to form T in the following way. If a node in 71" has any
child node v that is not in T, then node v will be added to f./\The added nodes in T are referred to
as exit nodes, denoted by F; the leaves of T are denoted by E = EUF. Observe that if T' contains
n nodes and |F| =, then |E| =n — [+ 1. DeﬁneAlA?L and Epr to be the nodes of Ein the left and
the right branch of the root respectively; hence, E' is the union of the disjoint sets Ey, and Eg.

For each node u € E, define p, to be the fraction of leaves in the original ORAM tree that are
descendants of u. Observe that p, < % In particular, if u € F, p, = %; moreover, » 1.

We summarize the notations we use in the following table.

ueﬁpu =

Variable ‘ Meaning

T a subtree rooted at the root of the ORAMy, binary tree

T augmented tree by including every child (if any) of every node in T’
F nodes of a subtree T that are leaves to the ORAM binary tree

E set of exit nodes of a subtree T

E:=EUF | set of all leaves of T

Z capacity of each bucket

Defining usage for nodes in E. Consider the blocks that reside in tree T after the access
sequence s is processed for i steps. For each node u € E, define X! to be the number of blocks

31

in T after step ¢ that have labels corresponding to root-to-leaf paths that intersect node u. When
the context is clear, we may simplify the notation by dropping the superscript i. Hence, after
the access sequence is performed, it follows that u” (ORAM®[s]) = 37 5 X,. Even though the
X.’s are not independent, we shall show that they are negative associated in order to prove large
deviation bounds.

Stochastically dominating assumptions. To simplify the proof, we make worst case scenario
assumptions in the sense that under these assumptions, the random variable for the usage of the
subtree T' stochastically dominates the original random variable without these assumptions.

1. For a block whose label corresponds to a root-to-leaf path that intersects an exit node u € F,
the block is not removed from the subtree 7" when a read request is made for that block (even
though a new block with a new label is added to the stash); in other words, we assume that
such a block can only leave the subtree T' by eviction through the exit node u. For a block
whose label corresponds to some leaf in F', the block is removed as usual when a read request
is made for it.

2. No partial eviction is performed on the reading path.

Defining the random process corresponding to the ORAM operations. Consider an access
sequence s := {s; : i € [7]}, where s; is the identity of the block requested at step i. For every
i € [7], we define random variables that capture the randomness used in the ORAM operations.

1. Read. After the desired block is read, a fresh random leaf is assigned as its label, and the
block is put at the root bucket. Since we are concerned only about which node in E is the
ancestor of the new label, for each u € E, we define a random variable R!, € {0,1} such that
>uep Rl =1 and Pr[R}, = 1] = p,.

2. Evict. A random eviction path is picked independently for each of the left and the right
branch of the root. This corresponds to sampling random variables S% € {—1,0} for u € E
such that >° 5 St = > oueh, S! =1 and Pr[S!, = —1] = 2p,; moreover, the randomness for
the left branch is independent of that for the right branch.

Observe that given an access sequence s, for each u € E, the random variables {(RL, SZ)}iG[T]
contain all the information to determine X, at the end of the process. In particular, we describe
the cases whether « is in F' or E.

1. Case u € F. In this case, u has no descendant and no block can be evicted from u. Hence, the
Si’s are irrelevant. Therefore, X, corresponds to the blocks that are last assigned to u. In
the worst case where all N blocks appear in the access sequence, X, has the same distribution
as the sum of N independent {0, 1}-random variables, each of which has expectation %

2. Case u € E. In this case, u is an exit node. Recall we assume that the blocks that can be
evicted through u can leave subtree T only by eviction through u. Hence, at every step 1, if
R! =1, then X, is increased by 1; if S! = —1 and X, is non-zero (possibly just increased
because R, = 1), then X, is decreased by 1.

Observe that this defines a Markov process with non-negative integral states having arrival

rate « = p,, and departure rate 8 = 2p,,. From the result by Hsu and Burke [20], this process
has stationary distribution 7; = (1 — ¢y)” qu, where ¢, = ﬂ(ﬁl__oé) = 2(1;“) > %

Instead of starting at X0 = 0, if we consider the stochastically dominating process such that
X0 has the stationary distribution (with independent randomness), then at the end of the
access sequence, the corresponding random variable X°° stochastically dominates X, and
also has the stationary distribution.

32

Moment generating functions. It is standard technique to consider moment generating func-
tions in large deviation bounds. The following upper bounds on the moment generating functions
will be used later.

Lemma 9 (Upper Bounds on Moment Generating Functions) Suppose X,,’s are defined as
above.

1. Foru € F, any real t, E[e!**] < exp(e! — 1).

2. Foru€ E, for0 <t <In2, Ele/*«] < 2_—1&
Moreover, we have [, .5 Ele'Xv] < (525)"L, where n is the number of nodes in the subtree T.

Proof: For u € F, observe that in our construction, we can assume that X, is the sum of N
independent {0, 1}-random variables, each of which has mean % Hence, for any real ¢, we have
E[e!Xe] = ((1 - %) + %et)N < exp(el —1).

For u € E, as described in our construction, X, is stochastically dominated by X °, which has

stationary distribution 7; = (1 — qu) qu, for j > 0, where ¢, = 2(T1pu)' Hence, for 0 <t <In2 <
In ﬁ, we have
E[etXe] < E[e!Xd] = lf(quuqu)et < 2Eet7 because the maximum is attained when g, approaches

1
é-
As for the product, observe that the number of terms is at most |E| =n+1—1<n+ 1. Since
for t € [0,In2], exp(e! — 1) < fletv the result follows.
]

Negative association. We remark that X, is a non-decreasing function of {(R:, Sz)}ie[r]v which
means that if a single variable is increased (either from 0 to 1 or from —1 to 0), the function does not

decrease. Hence, from [10, Proposition 7(2)], in order to show that the random variables X,’s are
negative associated, it suffices to show that the whole collection {(R;,,S,)}, Biclr] are negatively

associated. We first recall the definition of negative association.

Definition 7 (Negative association [10]) A set of random variables X1, Xs, ..., Xy are nega-
tively associated, if for every two disjoint index sets, I,J C [k]|, for all non-decreasing functions
fRIVS R and g: RYI = R, B[f(X;,i € T)g(X;,j € J)] <E[f(Xi,i € DIE[g(X,,5 € J)].

Observe that if each of two mutually independent collections of random variables are negatively
associated, then so are their union [10, Proposition 7(1)]. Hence, it suffices to show that each
collection of correlated random variables in our construction are negatively associated.

The following lemma is the generalization of the Zero-One Lemma [10, Lemma 8]. As mentioned
in [10], the idea of the proof is due to Colin McDiarmid.

Lemma 10 (At Most One Non-Zero Random Variable) Suppose X is a collection of ran-
dom variables either all having non-negative support or all having non-positive support. Moreover,
with probability 1, at most one of them can be non-zero. Then, the collection X are negatively
associated.

Proof: Suppose X; and X ; are disjoint subsets of the collection, and f and ¢ are non-decreasing
functions on X; and X ; respectively.

If the random variables have non-negative support, then both f and g attains their minimum
at 0; otherwise, all random variables have non-positive support, and both f and g attains their

33

maximum at 0. Hence, either both E[f(X;) — f(0)] and E[g(X ;) — ¢(0)] are non-negative, or both
are non-positive. In any case, 0 < E[f(X;) — f(0)] - E[g(Xs) — g(0)].

On the other hand, with probability 1, at most one of X; and X ; can be non-zero. Hence, with
probability 1, (f(X)— £(0))- (9(X,) — g(0)) = 0, which implies that E[(f(X;) — £(0)) - (¢(X) —

9(0))] = 0.
Therefore, we have E[(f(X1) — f(0)) - (9(X.1) = ¢(0))] < E[f(X;) — f(0)] - E[g(Xs) — ¢(0)],
which gives E[f(X7)g9(X,)] < E[f(X1)] - E[g(X)], as required. []

Corollary 1 The random variables {X, : u € E} are negatively associated.

Proof of Lemma 8: Recall that Z is the capacity for each bucket in the binary ORAM tree,
and R is the number blocks overflowing from the binary tree that need to be stored in the stash.
The quantity that we wish to analyze is u’ (ORAM™[s]) = > ueh Xu-
We next perform a standard moment generating function argument. For 0 < ¢ < i, Pr[u” (ORAM®™[s]) >

nZ + R] = Pr[e!2ZucE X > ¢(nZ+R)] which by Markov’s Inequality, is at most Ele’Zuck Xu].
e~ tnZH+E) - which, by negative association (Corollary 1), is at most 1,5 Ele™"] - e~ HnZ+R)
Putting Z = 5, and t = ln% < In2, using Lemma 9, we conclude that the probability is at
most 3 - 4% -(0.93312)" - 0.6%, as required. [

Proof of Theorem 1. By applying Lemma 8 to inequality (1), we have the following:
Pr[st(ORAM?[s]) > R < 3 -, 4" -3 47 - (0.93312)" - 0.6% < 42 0.6%, as required.

D.2 Slight Improvement in Analysis Using Deterministic Eviction

Bottleneck for Measure Concentration. In Lemma 9, we see the bottleneck that puts a lower
bound on the bucket size is caused by the moment generating function of X,, associated with an
exit node u € E (whose parent is an internal node in the binary ORAM tree).

In order for the proof to work, we look for the smallest bucket size Z such that there exists
some t > 0 such that for all u € E, 4R[e!Xu=2)] < 1. Tt can be checked that for a leaf u € F, it is
possible to set Z = 4 and t = 1 such that the above term is at most %; hence, we try to improve
the eviction process when an exit node u € F is involved.

Intuitively, the moment generating function measures how much a random variable varies;
hence, we could get a better measure concentration bound if we remove some randomness from the
process.

Deterministic Eviction. Recall that in each round, one random eviction path from each of the
left and the right branch is picked. Instead of picking the eviction paths randomly, the path at
each branch can be picked deterministically in a way such that if a (non-root) exit node u € E has
weight p,, then the eviction path will intersect v once in exactly 2?%” rounds.

The modified process will induce a Markov process with non-negative state X,,, which represents
the number of blocks residing in the (proper) ancestors of node v immediately after the step in which
the eviction path intersects u. Specifically, the following occurs in each phase (which corresponds
to 21-% steps of ORAM operations).

e A random number M of items arrive, where in this case M follows the binomial distribution

of 2}% independent trials, each of which has success probability p,,.

34

e If the state is positive (possibly because items have just arrived), then exactly one item
departs.
Denote X,, as the stationary distribution of the Markov process. Then, the result from [30]

implies that

e _ Set—
E[etxu] =4 g%[)et(nf]).

1, el~1
2 el—explz(et-1)]’
where we have used E[M] = 1, and E[e'M] = (1 + py (e’ — 1))ﬁ < exp[3 (e’ —1)], which is at most
el for t €]0,1.2]. R

It can be checked that setting Z = 3 and t = 1, we have 4E[e/X«~2)] < % However, observe
that X, represents the number of blocks above node u just after a step when the eviction path
intersects u. Hence, just before eviction, the number of blocks is at most 1 larger. Therefore, using
bucket size 4 is sufficient.

It can be checked that for a subtree T" with n buckets and Z = 4,

Pru”(orRAM™[s])] >n-Z+ R] <7 -4 - (3)"-e .

Hence, a similar calculation gives Pr[st(ORAMZ[s]) > R < 3" 4" 7- & - ()" e R < 14.e7F,
as stated in Theorem 2.

IN

E Implementation over Garbled Circuits

As mentioned earlier, Circuit ORAM has now been implemented and provided as the default ORAM
implementation in the ObliVM secure computation framework [1,33]. Liu et al. [1,33] report some
Circuit ORAM performance numbers in the ObliVM framework. In this appendix, we report more
detailed performance numbers of Circuit ORAM atop the ObliVM framework.

Running time. We tested the performance of Circuit ORAM under different network bandwidth
configurations. Figure 5a and Figure 5b report the wallclock running time obtained, and the
performance breakdown. To maximize performance, we apply different optimizations for these
different settings. When the bandwidth is 1Gbps (Figure 5a), we use Garbled Row Reduction [10]
and Free XOR [29]. When the bandwidth is 20Mbps, we use the halfgate optimization [59] instead.

Interpreting the performance numbers. First, the present implementation of the ObliVM
framework does not exploit AES-NI instructions to speed up garbling. We expect a noticeable
speedup for the computation time when hardware AES is employed. Second, the present ObliVM
uses a Java-based implementation. Therefore, the timing measurements are subject to the artifacts
of Java.

In Figure 5a, when the bandwidth is 1Gbps, we observe that the garbler’s garbling I/0 is
negligible. The evaluator’s garbling I/0 is higher — and most of this stems from I/O synchronization
cost since in this case the bandwidth is ample. When the bandwidth is 20Mbps (Figure 5b) the
garbler spends noticeable time on transmitting garbled circuits to the evaluator (I/O for Garbling).
Since garbling is never blocked waiting for the evaluator, most of this cost is network transmission
cost. For the OT cost, presently ObliVM does not employ the known cache optimizations [1] (which
are difficult to realize in a Java-based implementation). We therefore expect significant savings in
performance when ObliVM transitions to a C-based implementation adopting state-of-the-art cache
optimizations for OT, and hardware AES-NI features.

35

ot

' A CPU for Garbling I 2 CPU for Garbling
=3 CPU for OT ! 4} B3 CPU for OT |
® Loy I/O for Garbling 1 _é =4 1/0 f.OI” Garbling
5 B 1/0 for OT l g 3l B 1/0 for OT
2 /| %
?j 1.0t : ol |
5 E
& 05} VEEINE B B
| | g g
N
0.0 ﬁa . . [Vi 0)) Nz . .
12 14 16 18 20 12 14 16 18 20
log(Number of Entries) log(Number of Entries)
(a) Bandwidth=1Gbps. Garbled Row Reduction [10] (b) Bandwidth=20Mbps. Halfgate [59] is used.

and Free XOR [29] are used.

Figure 5: Runtime breakdown for Circuit ORAM under different bandwidth config-
urations. In each pair of bars, the left is for the garbler while the right is for the evaluator.
Performance numbers are measured based on the ObliVM framework provided by Liu et al. [33].
The plots correspond to a data size D = 32 bits and § = 278 failure probability.

F Supplemental Details

F.1 Circuit Size of Circuit ORAM: A More Detailed Analysis

It can be seen easily that the circuit size for ReadAndRm is O(Dlog N) - w(1) and the circuit size
to add a block to the stash is O(Dlog V) - w(1). It remains to calculate the circuit size of eviction.
Eviction can be done in a circuit of size O(D log N +log® N)-w(1) given the following fact mentioned
in Wang et al. [52].

Fact 6 Given Z blocks of a bucket denoted {idx;||label;||data;}o<i<z and the leaf label for the
current eviction path, there is a circuit of size O(Zlog N) that finds the deepest block w.r.t. to the
eviction path.

Let B; := {idx;||label;||data;} denote the i-th block. Let p denote the leaf label of the eviction
path. It is not hard to see that block B; can be placed deepest along the path while maintaining
the main invariant if and only if label; & p has more leading zeros. However, counting number of
leading zeros of an L-bit string requires a circuit of size O(Llog L). Instead of counting the number
of leading zeros and finding the maximum value in a bucket, we use an alternative method. For
a bit string s, we denote s’ to be the string constructed by setting all bits lower than the most
significant one bit as one. The idea is based on the fact that leading_zero(s1) > leading_zero(sa) if
and only if s] < sb. So, instead of counting number of leading zeros and find the maximum value,
we can 1) for each label;, compute label, by setting all bits lower than the most significant one bit
as one; 2) find the block with minimum label.

36

F.2 More Details on the Goldreich-Ostrovsky Lower Bound

In this section, we elaborate on why the Goldreich-Ostrovsky lower bound works for even O(1)
failure probabilities (and therefore it works for negligible or inverse-poly failure probabilities too).
The argument is simple, but we write it down for completeness.

Based on the Goldreich-Ostrovsky lower bound proof, we define a p-long physical access sequence
to be one that is compatible with at least p fraction of logical request sequences of length t. If
0 < p < 1is a constant, then a p-long physical sequence must be of length ¢ = Q(tlog N).

Definition 8 (Sufficiently long physical access sequence) Let 0 < p < 1 denote a constant.
A physical access sequence is p-long, if ¢4 > pN*t, where c is an appropriate constant, q is the length
of the physical access sequence, and t is the runtime of the non-oblivious RAM.

When a physical access sequence is not p-long, we say that it is p-short.

Consider the following stochastic process: pick a random logical request sequence of length ¢,
run the ORAM simulation. In this stochastic process, randomness is defined with respect to the
choice of the logical sequence, as well as the ORAM’s randomness.

We would like to show the following theorem:

Theorem 5 Let 0 < p < 1 denote a constant. For any ORAM with (1 — p)/2 failure probability,
then, with probability 1/2 in the above stochastic process, the physical access sequence must be

p-long.

Proof: We now prove by contradiction. Assume that with probability more than %, the physical
access sequence is p-short.

We construct the following adversary and show that it can win the ORAM game with (1 —p)/2
probability. The adversary picks two random logical access sequences of length ¢, and gives them
to the challenger. The challenger picks a logical sequence at random, runs the ORAM simulation,
and returns the physical access sequence to the adversary.

Conditioned on the physical access sequence being p-short, the probability that the physical
access sequence is compatible with the other (i.e., not chosen by the challenger) logical sequence
is bounded by p. Therefore, the adversary can win the ORAM security game with probability

(1=p)/2. u

37

	Introduction
	Rethinking ORAM Metric for Secure Computation
	The Quest for ORAMs with Optimal Circuit Complexity
	On Tightness of the Goldreich-Ostrovsky ORAM Lower Bound
	Technical Highlights
	Related Work

	Preliminaries
	Tree-based ORAM Framework

	Circuit ORAM
	Overview
	Intuition
	Detailed Scheme Description
	Theoretical Bounds

	Proof Roadmap
	Evaluation
	ORAM Definitions and Metrics
	Oblivious RAM Definitions
	ORAM Metrics

	Interpreting Circuit ORAM under Other Metrics
	Analyzing Stash Size via Infinity ORAM
	A Slight Variant of Circuit ORAM
	Infinity ORAM
	Useful Properties of Our Eviction Algorithm
	Proof of Lemma 2

	Analyzing Stash Usage of Infinity ORAM
	Analyzing Usage of Subtree
	Slight Improvement in Analysis Using Deterministic Eviction

	Implementation over Garbled Circuits
	Supplemental Details
	Circuit Size of Circuit ORAM: A More Detailed Analysis
	More Details on the Goldreich-Ostrovsky Lower Bound

