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Abstract. The resistance of a cryptographic implementation with regards to side-channel analysis
is often quantified by measuring the success rate of a given attack. This approach cannot always be
followed in practice, especially when the implementation includes some countermeasures that may
render the attack too costly for an evaluation purpose, but not costly enough from a security point of
view. An evaluator then faces the issue of estimating the success rate of an attack he cannot mount. The
present paper addresses this issue by presenting a methodology to estimate the success rate of higher-
order side-channel attacks targeting implementations protected by masking. Specifically, we generalize
the approach initially proposed at SAC 2008 in the context of first-order side-channel attacks. The
principle is to approximate the distribution of an attack’s score vector by a multivariate Gaussian
distribution, whose parameters are derived by profiling the leakage. One can then accurately compute
the expected attack success rate with respect to the number of leakage measurements. We apply this
methodology to higher-order side-channel attacks based on the widely used correlation and likelihood
distinguishers. Moreover, we validate our approach with simulations and practical attack experiments
against masked AES implementations running on two different microcontrollers.

1 Introduction

Estimating the success rate of a side-channel attack –that uses a given number of leakage observations–
is a central issue regarding the physical security evaluation of a cryptographic implementation. The
empirical way is to perform the attack a certain number of times and to record the average number
of successes. However, this approach is prohibitive against implementations protected by effective
countermeasures since the attacks may become too costly to be performed several times (or even
once). This does not mean that the implementation is secure though; this only means that the
implementation is secure beyond the means of the evaluator (which may not compete with the
means of a motivated attacker). This situation is not satisfactory in practice where one desires that
the computational cost of performing a security evaluation be fairly low and uncorrelated to the
actual security of the target implementation.

In this paper, we propose a methodology to estimate the success rate of higher-order side-
channel attacks targeting implementations protected by masking. Our methodology is based on the
approach proposed by Rivain in [12] in the context of first-order side-channel attacks. The principle
of this approach is to study the multivariate distribution of the score vector resulting from an
attack. Specifically, Rivain suggests to approximate this distribution by a multivariate Gaussian
distribution, which is sound in the context of additive distinguishers such as the correlation and



the likelihood. We generalize this approach to higher-order side-channel analysis and we show how
to derive the distribution parameters with respect to the leakage parameters. We show that using
this methodology makes it possible to accurately estimate the success rate of a higher-order side-
channel attack based on a simple profiling of the leakage parameters. Moreover, we demonstrate
the soundness of our methodology by comparing its results to various attack experiments against
masked AES implementations running on two different microcontrollers.

Related Works. In [9] and [15], the success rate of first-order side-channel analysis based on
the correlation distinguisher is evaluated using Fisher’s transformation. The obtained formulas
are simple and illustrative, but they lack of accuracy. Indeed, it has been observed in [16] that
the estimated success rates using this approach do not well match to the experimental ones. As
explained in [16], this is mainly due to the incorrect assumption that the scores for the wrong
key guesses are independent of the score for the good key guess. That is why, one should rather
focus on the joint distribution of all scores as initially suggested in [12]. In the latter work, the
author provide accurate formulae for the success rate of first-order side-channel attacks based on
the correlation and likelihood distinguishers. A more recent work [6] further focuses on the mono-bit
difference-of-means distingusisher as originally described by Kocher et al. citeKJJ99.

Paper Organization. In Section 2, we provide some preliminaries about probability theory and
the (multivariate) Gaussian distribution. Then Section 3 introduces our theoretical model for higher-
order side-channel attacks and Section 4 describes the general methodology for estimating the
success rate of such attacks based on additive distinguishers. In Sections 5 and 6, we apply the
methodology to the correlation and the likelihood distinguishers respectively, and we show how to
compute the score vector distribution parameters. Eventually, some attack simulations and practical
attack experiments are reported in Sections 7 and 8 that demonstrate the soundness of our approach.

2 Preliminaries

Calligraphic letters, like X , are used to denote finite sets (e.g. Fn
2 ). The corresponding large letter

X denotes a random variable over X , while the lowercase letter x a value over X . The probability
of an event ev is denoted by P[ev]. The expectation and the variance of a random variable X are
respectively denoted by E [X] and Var [X]. The covariance between two random variables X and
Y is denoted by Cov [X,Y ].

The Gaussian distribution of dimension T with T -size expectation vectorm and T×T covariance
matrix Σ is denoted by N (m,Σ), and the corresponding probability density function (pdf) is
denoted by φm,Σ . We recall that this pdf is defined for every x ∈ RT as

φm,Σ(x) =
1√

(2π)T |Σ|
exp

(
−1

2
(x−m)′ ·Σ−1 · (x−m)

)
, (1)

where (x −m)′ denotes the transpose of the vector (x −m) and |Σ| denotes the determinant of
the matrix Σ. The corresponding cumulative distribution function (cdf) is denoted Φm,Σ and is
defined for a pair of vectors a = (a1, a2, . . . , aT ) and b = (b1, b2, . . . , bT ) over (R∪{−∞,+∞})T by

Φm,Σ(a, b) =

∫ b1

a1

∫ b2

a2

· · ·
∫ bT

aT

φm,Σ(x) dx . (2)
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If the dimension T equals 1, then the Gaussian distribution is said to be univariate and its
covariance matrix is reduced to the variance of the single coordinate denoted σ2. If T is greater
than 1, the Gaussian distribution is said to be multivariate.

3 Higher-Order Side-Channel Model

We consider a cryptographic algorithm protected by masking and running on a leaking device. A
(higher-order) side-channel attack exploits the leakage resulting from intermediate computations in
order to recover (part of) the secret involved in the cryptographic algorithm. Let s denote such an
intermediate variable satisfying:

s = ϕ(x, k∗) , (3)

where x is (part of) the public input of the algorithm, k∗ is (part of) the secret input of the
algorithm, and ϕ is some function from X ×K to S.

For an implementation protected with masking, such a variable s is never stored nor handled
in clear but in the form of several, say d+ 1, shares s0, s1, . . . , sd satisfying the relation

s0 ⊕ s1 ⊕ · · · ⊕ sd = s (4)

for some operation ⊕. In the common case of Boolean masking this operation is the bitwise addition
(or XOR), but it might be some other group addition law. One of the share, say s0, is sometimes
referred to as masked variable and the other shares, s1, s2, . . . , sd as the masks. For masking
approach to be sound, it is usually required that the masks are uniformly and independently
generated. In that case, the (d+1)-tuple of shares can be modeled as a random vector (S0, S1, . . . , Sd)
where S0 = s ⊕

⊕d
j=1 Sj and, for j > 1, the Sj are mutually independent random variables with

uniform distribution over S.

3.1 Leakage Model

During the execution of the algorithm, the processing of each share Sj produces some leakage Lj

revealing some information about the share value. In what follows, we shall denote by L the leakage
tuple:

L = (L0, L1, . . . , Ld) . (5)

We shall sometimes use the alternative notation Ls or Lx,k∗ to indicate that the leakage arises for
the shared value s = ϕ(x, k∗).

In this paper, we shall make the common assumption that given the values of the shares, the
leakage has a Gaussian distribution. This assumption is referred here as the Gaussian leakage
assumption, and it is formally stated by:

(Lj | Sj = s) ∼ N (mj,s,Σj,s) , (6)

for every j ∈ {0, 1, . . . , d} and for every s ∈ S, where mj,s are expectation vectors defined over RT

and Σj,s are (non-singular) covariance matrices defined over RT×T . We shall further assume that
the leakage Lj can be viewed as a deterministic function of Sj with an additive Gaussian noise:

Lj = fj(Sj) +Nj . (7)
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This assumption, referred here as Gaussian noise assumption, is equivalent to the Gaussian leakage
assumption with the additional requirement that the covariance matrices Σj,s are all equal to some
matrix Σj . We then have fj : s 7→mj,s and Nj ∼ N (0,Σj), where 0 denotes the null vector.

As a final assumption, we consider that for any fixed values of the shares, the leakage components
are independent. That is, for every (s0, s1, . . . , sd) ∈ Sd+1, the random variables (Lj | Sj = sj) are
mutually independent. Under the Gaussian noise assumption, this simply means that the noises
Nj are mutually independent, and that is why we shall refer this assumption as the independent
noises assumption.

Remark 1. For the sake of simplicity, we consider that all the leakages Lj have the same dimension
T . Note that our analysis could be easily extended to the general case where each leakage Lj has
its own dimension Tj .

3.2 Higher-Order Side-Channel Attacks

In a higher-order side-channel attack (HO-SCA), the adversary aims to extract information about
k∗ by monitoring the leakage of the shares. Specifically, the adversary observes several samples
`i ∈ L of the leakage Lxi,k∗ , corresponding to some public input xi that he may either choose or
just know. According to the above leakage model, the leakage space L is defined as L = RT×(d+1)

and each leakage sample can be written as

`i = (`i,0, `i,1, · · · , `i,d) , (8)

with `i,j ∈ RT for every j. Moreover, the Gaussian noise assumption implies that each leakage
sample coordinate can be further written as

`i,j = fj(si,j) + ni,j , (9)

where si,1, si,2, . . . , si,d are d random mask values, where si,0 = ϕ(xi, k
∗) ⊕

⊕d
j=1 si,j , and where

ni,0, ni,1, . . . , ni,d are samples of the Gaussian noises N0, N1, . . . , Nd.

Once several, say q, leakage samples have been collected, the adversary makes use of a distin-
guisher, that is a function mapping the input-leakage samples (x1, `1), (x2, `2), . . . , (xq, `q) to some
score vector d = (dk)k∈K ∈ R|K|. If the distinguisher is sound and if the leakage brings enough
information on the shares, then the equality

k∗ = argmax
k∈K

dk

should hold with a probability substantially greater than 1
|K| .

In what follows, we shall consider a natural equivalence relation between distinguishers. We say
that two score vectors are rank-equivalent if for every n ∈ {1, 2, . . . , |K|}, the n coordinates with
highest scores are the same for the two vectors. Two distinguishers d and d′ are then said equivalent,
denoted d ≡ d′ if for every (xi, `i)i ∈ (X × L)q, the score vectors d

(
(xi, `i)i

)
and d′

(
(xi, `i)i

)
are

rank-equivalent.

In this paper, we focus on additive distinguishers which we formally define hereafter.
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Definition 1. A distinguisher d is additive if for every (x1, x2, . . . , xq) ∈ X q, there exists a family
of functions {gx,k : L→ R ; (x, k) ∈ X ×K} such that for every (`1, `2, . . . , `q) ∈ Lq we have

d
(
(xi, `i)i

)
= (dk)k∈K with dk =

1

q

q∑
i=1

gxi,k(`i) for every k ∈ K.

A distinguisher equivalent to an additive distinguisher as defined above is also said to be additive.

It was shown in [12] that the widely used first-order correlation and likelihood distinguishers
are both additive distinguishers in the sense of the above definition. We will show in Sections 5 and
6 that their higher-order counterparts are also additive.

4 Estimating the Success Rate

In this section, we generalize the methodology introduced in [12] to HO-SCA as modelled in the pre-
vious section. Namely, we show how to get a sound estimation of the attack success rate by studying
the multivariate probability distribution of the score vector for the case of additive distinguishers.

The success rate of a HODPA, denoted Succdx,k∗ , is defined with respect to some input vector
x = (x1, x2, . . . , xq), some secret k∗, and some distinguisher d, as the probability:

P
[
k∗ = argmax

k∈K
dk

∣∣∣ `1 $←− Lx1,k∗ ; . . . ; `q
$←− Lxq ,k∗ ; (dk)k∈K = d

(
(xi, `i)i

)]
,

where `i
$←− Lxi,k∗ means randomly sampling `i according to the distribution of Lxi,k∗ .

Remark 2. For the sake of generality, we chose to fix the input vector x as a parameter of the
attack so that we do not need to assume any specific strategy for the choice of the public inputs.
However, we will investigate the particular setting where the xi are uniformly distributed.

According to Definition 1, the score vector (dk)k∈K resulting from an additive distinguisher
satisfies

dk =
1

q

q∑
i=1

gxi,k(`i) , (10)

for some gx,k : L → R. Then a simple application of the central limit theorem yields the fol-
lowing result, where we define the occurrence ratio τx of an element x ∈ X in the input vector
(x1, x2, . . . , xq) as

τx =
|{i; xi = x}|

q
. (11)

Proposition 1. The distribution of the score vector (dk)k∈K tends toward a multivariate Gaussian
distribution as q grows, with expectation vector (E [dk])k∈K satisfying

E [dk] =
∑
x∈X

τx E [gx,k(Lx,k∗)] (12)

for every k ∈ K, and with covariance matrix (Cov [dk1 , dk2 ])(k1,k2)∈K2 satisfying

Cov [dk1 , dk2 ] =
1

q

∑
x∈X

τx Cov [gx,k1(Lx,k∗), gx,k2(Lx,k∗)] (13)

for every (k1, k2) ∈ K2.
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Proof. The first statement results by definition of additive distinguishers and the central limit
theorem. Equations (12) and (13) directly holds by mutual independence between the leakage
samples. �

The above proposition shows that for a sufficient number of leakage observations, the distri-
bution of the score vector d = (dk)k∈K can be soundly estimated by a multivariate Gaussian. As
in [12], we now define the comparison vector as the (|K| − 1)-size vector c = (ck)k∈K/{k∗} whose
coordinates satisfy

ck = dk∗ − dk , (14)

for every k ∈ K/{k∗}. The comparison vector is a linear transformation of the score vector by a
((|K| − 1)× |K|)-matrix P whose expression straightforwardly follows from (14). This implies that
the distribution of the comparison vector can also be soundly estimated by a multivariate Gaussian
distribution N (mc,Σc) where mc = P ·md and Σc = P · Σd · P ′. Moreover, by definition of
the comparison vector, an attack is successful (i.e. the correct secret k∗ is ranked first in the score
vector) if and only if all the coordinates of the comparison vector are positive. We deduce that the
success rate Succdx,k∗ of a distinguisher d satisfies

Succdx,k∗ = P[c > 0] ≈ Φmc,Σc

(
0,∞

)
(15)

where Φm,Σ denotes the Gaussian cdf as defined in (2), 0 denotes the null vector, and ∞ denotes
the vector (∞,∞, . . . ,∞).

Remark 3. In [14], the authors propose to extend the notion of success rate to different orders. The
o-th order success rate of a side-channel attack is defined as the probability that the target secret
k∗ is ranked among the o first key guesses by the score vector. The authors of [14] also suggest to
consider the so-called guessing entropy, which is defined as the expected rank of the good key guess
in the score vector [10,3]. As shown in [12], both the success rate of any order and the guessing
entropy can be estimated using a similar approach as above.

Methodology. According to the above analysis, we propose the following methodology for an
evaluator of some cryptographic algorithm to estimate the success rate of a HO-SCA against his
masked implementation. We consider that the evaluator has access to the random masks generated
during the computation, and is therefore able to predict the value of each share involved in the
successive execution of the protected algorithm. The methodology is composed of three main steps:

1. Profile the leakage of every share using standard estimation techniques. Under the Gaussian
leakage assumption, this estimation amounts to compute the sample means and the sample
covariance matrices of the leakage (Li | Si = s) for every share Si and every possible value
s ∈ S based on a set of collected leakage samples.

2. Use Proposition 1 to compute the expectation vector and covariance matrix of the score vector
with respect to the leakage parameters.

3. Deduce the parameters of the comparison vector distribution and evaluate the success rate
according to (15).

The precision of the obtained estimation is impacted by two main factors:

– the accuracy of the leakage parameter estimations, and
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– the tightness of the Gaussian approximation arising in Proposition 1.

The accurate estimation of leakage parameters has been a widely investigated issue and efficient
techniques are known to deal with it (see for instance [4,13,1,7]). Basically, the more noisy the
leakage, the more samples must be used to get an accurate estimation. Note that in our approach,
the evaluator only has to estimate first-order leakage parameters with respect to the share values.
Practical aspects of leakage parameter estimation are further discussed in Section 8.

On the other hand, the Gaussian approximation is the main issue in our approach. One can
fairly expect that if the considered implementation is not too weak, the convergence toward the
Gaussian distribution should be rather fast compared to the number of leakage observations required
to succeed the HO-SCA. In order to validate this intuition, we provide in Section 7 an empirical
validation of the Gaussian approximation.

5 Application to the Correlation Distinguisher

In this section, we apply the general methodology described in Section 4 when the linear cor-
relation coefficient is used as distinguisher [2]. For two samples x = (x1, x2, . . . , xq) ∈ Rq and
y = (y1, y2, . . . , yq) ∈ Rq, the linear coefficient is defined by

ρ(x,y) =

1
q

∑q
i=1(xi − x) · (yi − y)√

1
q

∑
i(xi − x)2 ·

√
1
q

∑
i(yi − y)2

, (16)

where x (resp. y) denotes the sample mean q−1
∑

i xi (resp. q−1
∑

i yi).
In the context of HO-SCA, the correlation coefficient is used together with a model function

m : X × K 7→ R and a combining function C : L 7→ R (see for instance [11]). The combining
function is involved to map a leakage sample into a univariate sample combining the leakages of
the different shares. On the other hand, the model function computes some expected value for
the combined leakage with respect to some input x and some guess k on the target secret. The
correlation distinguisher dcor is then defined as

dcor
(
(xi, `i)i

)
= ρ
(
(m(xi, k))i, (C(`i))i

)
. (17)

The following proposition extends the analysis conducted in [12] and states that the (higher-
order) correlation distinguisher dcor is additive (see proof in appendix). This particularly implies
that the methodology described in Section 4 can be applied to this distinguisher.

Proposition 2. For any model function m : X × K 7→ R and any combining function C : L 7→ R,
the correlation distinguisher dcor is additive. Moreover, dcor is equivalent to the distinguisher d′cor
defined for every (xi, `i)i ∈ (X ×L)q by

d′cor
(
(xi, `i)i

)
=
(1

q

q∑
i=1

gxi,k(`i)
)
k∈K

,

where the function gx,k : L→ R satisfies

gx,k(`) =
1

sk
(m(x, k)− mk) · C(`) , (18)

for every (x, k) ∈ X ×K, with mk = 1
q

∑
i m(xi, k) and sk =

√
1
q

∑
i(m(xi, k)− mk)2.
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Remark 4. If we focus on the uniform setting where the input vector x = (x1, x2, . . . , xq) is balanced
(meaning that each value x ∈ X have an occurrence ratio of τx = 1

|X |), then mk and sk are constant
with respect to k and dcor is equivalent to another simpler distinguisher:

d′′cor :
(
(xi, `i)i

)
7→
(1

q

∑
i
m(xi, k) · C(`i)

)
k∈K

. (19)

Application to the Normalized Product Combining. Let us now study the particular case
of the higher-order correlation distinguisher based on the centered product combining function [11].
This combining function is defined for univariate share leakages (i.e. for T = 1 in the model of
Section 3), namely its domain is L = Rd+1. For every (`0, `1, . . . , `d) ∈ L, it is defined as

C(`0, `1, . . . , `d) =

d∏
j=0

(`j − µj) , (20)

where µj denotes the leakage expectation E [Lj ].
Note that in practice, the adversary does not know the exact expectation µj but he can estimate

it based on leakage samples. As argued in [11], the number of leakage samples required to succeed
a HO-SCA is substantially greater than the number of leakage samples required to get precise
estimations of the expectations µj . Therefore, we can soundly assume that the µj in (20) are the
exact expectations E [Lj ].

We recall that, according to the leakage model presented in Section 3.1, the jth leakage com-
ponent Lj satisfies Lj = fj(Sj) + Nj where fj : s 7→ mj,s and Nj ∼ N (0, σ2j ). Since the noise Nj

is centered in 0, we have E [fj(Sj)] = E [Lj ] = µj . Moreover, we shall denote νj = Var [fj(Sj)]. By
uniformity of Sj over S, we have:

µj =
1

|S|
∑
s∈S

mj,s and νj =
1

|S|
∑
s∈S

(mj,s − µj)2 . (21)

In the following we shall further denote, for every s ∈ S,

αs :=
1

|S|d
∑
s1∈S

∑
s2∈S
· · ·
∑
sd∈S

d∏
j=0

(mj,sj − µj) (22)

and

βs :=
1

|S|d
∑
s1∈S

∑
s2∈S
· · ·
∑
sd∈S

d∏
j=0

(mj,sj − µj)2 (23)

where s0 = s⊕
⊕d

j=1 sj .

Note that both (22) and (23) can be expressed as a higher-order convolution product of the
form

H(s) =
∑
s1

∑
s2

· · ·
∑
sd

h0(s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sd) · h1(s1) · h2(s2) · · ·hd(sd) . (24)

We show in appendix how such a convolution can be efficiently computed for all values over S in
O(d · |S| · log |S|) operations.

We then have the following corollary of Proposition 1 for the distinguisher d′cor with centered
product combining function (see proof in appendix).
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Corollary 1. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let `i
$←− Lxi,k∗ for every i ∈ {1, 2, . . . , q}.

Then the distribution of the score vector (d′k)k∈K = d′cor
(
(xi, `i)i

)
with centered product combin-

ing function tends toward a multivariate Gaussian distribution with expectation vector (E [d′k])k∈K
satisfying

E
[
d′k
]

=
∑
x∈X

τx M(x, k) αϕ(x,k∗) , (25)

for every k ∈ K, and with covariance matrix (Cov
[
d′k1 , d

′
k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′k1 , d

′
k2

]
=

1

q

∑
x∈X

τx M(x, k1) M(x, k2)×
(
βϕ(x,k∗) − α2

ϕ(x,k∗) +
d∏

j=0

(νj + σ2j )−
d∏

j=0

νj

)
, (26)

for every (k1, k2) ∈ K2, where

M : (x, k) 7→ m(x, k)− mk

sk
. (27)

Remark 5. For the distinguisher d′′cor defined in (19) and which is equivalent to the correlation
distinguisher in the uniform setting (see Remark 4), we have the same result as in Corollary 1 but
the function M is simply defined as the model function m.

According to Corollary 1, the methodology presented in Section 4 can be applied to estimate the
success rate of a HO-SCA based on the correlation distinguisher with centered product combining.
The first step of the methodology shall provide estimations of the leakage functions fj : s 7→ mj,s

(and hence of the corresponding µj and νj), while the second step shall simply consist in the
evaluations of Formulae (25) and (26).

6 Application to the Likelihood Distinguisher

In this section, we apply the general methodology described in Section 4 when the likelihood is used
as distinguisher [4]. The likelihood distinguisher, denoted dlik, is usually applied after a profiling
step whose goal is to provide an estimation p̂s of the pdf of the random variable Ls for every s ∈ S.
Then, for every sample (xi, `i)i ∈ (X ×L)q, the likelihood distinguisher is defined as

dlik
(
(xi, `i)i

)
=

q∏
i=1

p̂ϕ(xi,k)(`i) . (28)

In practice, one often makes use of the equivalent (averaged) log-likelihood distinguisher d′lik defined
as

d′lik
(
(xi, `i)i

)
=

1

q
log dlik

(
(xi, `i)i

)
=

1

q

q∑
i=1

log(p̂ϕ(xi,k)(`i)) . (29)

The log-likelihood distinguisher is usually preferred as it less susceptible to approximation errors
than the likelihood. We straightforwardly get the following proposition.

Proposition 3. The likelihood distinguisher dlik is additive and equivalent to the log-likelihood
distinguisher d′lik. Moreover, for every (xi, `i)i ∈ (X ×L)q, d′lik satisfies

d′lik
(
(xi, `i)i

)
=
(1

q

q∑
i=1

gxi,k(`i)
)
k∈K

, (30)
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where the function gx,k : L→ R satisfies

gx,k(`) = log(p̂ϕ(x,k)(`)) , (31)

for every (x, k) ∈ X ×K.

Under the Gaussian leakage assumption, it can be checked that the variable Ls has a Gaussian
mixture distribution, with pdf ps satisfying

ps : (`0, `1, . . . , `d) 7→ 1

|S|d
∑
s1∈S

∑
s2∈S
· · ·
∑
sd∈S

d∏
j=0

φmj,sj
,Σj (`j) , (32)

where s0 = s⊕
⊕d

j=1 sj . Note that for every s ∈ S, the estimated pdf p̂s obtained from the profiling

phase has a similar expression as ps but with estimations m̂j,sj and Σ̂j for the leakage means and
covariance matrices.

Here again, it can be seen from (32) that for a given ` ∈ L the probability ps(`) is a higher-order
convolution product as in (24). The set of probability values {ps(`) ; s ∈ S} can then be computed
in O(d · |S| · log |S|) operations (see details in appendix).

Let us now consider the two functions:

λ(s1, s2) :=

∫
`∈L

log(p̂s1(`)) ps2(`) d` , (33)

and

ψ(s1, s2, s3) :=

∫
`∈L

log(p̂s1(`)) log(p̂s2(`)) ps3(`) d` . (34)

Then, by definition, we have

Λ(x, k, k∗) := λ(ϕ(x, k), ϕ(x, k∗)) = E [gx,k(Lx,k∗)]

and
Ψ(x, k1, k2, k

∗) := ψ(ϕ(x, k1), ϕ(x, k2), ϕ(x, k∗)) = E [gx,k1(Lx,k∗) · gx,k2(Lx,k∗)] .

A direct application of Proposition 1 then yields the following corollary for the log-likelihood
distinguisher.

Corollary 2. Let k∗ ∈ K, let (x1, x2, . . . , xq) ∈ X q and let `i
$←− Lxi,k∗ for every i ∈ {1, 2, . . . , q}.

Then the distribution of the score vector (d′k)k∈K = d′lik
(
(xi, `i)i

)
tends toward a multivariate Gaus-

sian distribution with expectation vector (E [d′k])k∈K satisfying

E
[
d′k
]

=
∑
x∈X

τx Λ(x, k, k∗) , (35)

for every k ∈ K, and with covariance matrix (Cov
[
d′k1 , d

′
k2

]
)(k1,k2)∈K2 satisfying

Cov
[
d′k1 , d

′
k2

]
=

1

q

∑
x∈X

τx
(
Ψ(x, k1, k2, k

∗)− Λ(x, k1, k
∗) · Λ(x, k2, k

∗)
)
. (36)

According to Corollary 2, the methodology presented in Section 4 can be applied to estimate
the success rate of a HO-SCA based on the likelihood distinguisher.
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7 Empirical Validation of the Gaussian Approximation

In Section 4, we have presented a methodology to estimate the success rate of higher-order side-
channel attacks involving additive distinguishers. The principle of this methodology is to approxi-
mate the distribution of the score vector by a multivariate Gaussian distribution whose parameters
are derived from the leakage parameters. This Gaussian approximation is asymptotically sound by
the central limit theorem. However, in non-asymptotic contexts (i.e. for a HO-SCA with a lim-
ited number of leakage samples), it is fair to question the soundness of this approximation. This
is the purpose of this section where we conduct an empirical study of the Gaussian approxima-
tion. Namely, we compare the success rates obtained from attack simulations to the success rates
obtained by applying the methodology of Section 4.

Since our purpose here is the sole validation of the Gaussian approximation, we do not focus on
the leakage estimation issue, and we assume that the exact leakage parameters {(mj,s, Σj) ; 0 6
j 6 d, s ∈ S} are known. From these leakage parameters, and for an HO-SCA with a distinguisher
d ∈ {dcor, dlik}, we evaluate the success rate thanks to the following approaches:

• Simulation success rate. To estimate the success rate, we perform several attack simulations
and count the number of successes. For each attack simulation, we randomly generate input-
leakage samples (x1, `1), (x2, `2), . . . , (xq, `q). Specifically, for every i, the input xi is uniformly
picked up and `i is randomly sampled from the variable Lxi,k∗ according to the leakage parame-
ters. Then we apply the distinguisher d to these samples, and we count a success if k∗ is ranked
first.

• Gaussion cdf evaluation. We apply Corollaries 1 and 2 to compute the expectation vector
and covariance matrix of the score vector with respect to the leakage parameters and taking
τx = 1/|X | as occurrence ratio for every x ∈ X (in accordance to the uniform distribution of
the xi).

4 Then we compute the Gaussian cdf of the comparison vector to evaluate the success
rate thanks to (15).

We plot hereafter the results obtained with these two approaches for different HO-SCA targeting
an AES Sbox output SB(x⊕ k∗) (namely, ϕ(x, k∗) = SB(x⊕ k∗) in the formalism of Section 3.1).
For the leakage parameters, we used sample means and sample variances obtained by monitoring
the leakage of two different devices running masked AES implementations (Device A and Device
B, see Section 8 for details).

Figure 1 (resp. Figure 3) shows the results obtained for a second-order correlation attack with
centered product combining function and Hamming weight model function (i.e. m = HW), for leakage
parameters from Device A (resp. Device B). Figure 2 (resp. Figure 4) plots the results of a second-
order likelihood attack with the same leakage parameters, assuming a perfect profiling (i.e. for every
s, p̂s = ps). We observe that for both distinguishers, the experimental and theoretical SR curves
clearly match in the case of Device A. For Device B, however, the curves match in the CPA case but
mismatch in the maximum likelihood case. A natural explanation of this behavior could be that the
number of samples used to attack Device B with a maximum likelihood approach is too small to
actually achieve a convergence towards the Gaussian distribution. To validate this explanation, we
artificially increased the noise of Device B, in order to increase the number of observations needed
to succeed an attack.

4 Note that when q is small, the occurence ratio τx might in fact differ from 1/|X |. This approximation is however
sound for large values of q.
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Fig. 1. Simulation SR (plain curve) vs. theoretical SR
(dashed curve) for 2nd-order correlation attack on De-
vice A.
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Fig. 2. Simulation SR (plain curves) vs. theoretical
SR (dashed curves) for 2nd-order likelihood attacks
on Device A.
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Fig. 3. Simulation SR (plain curve) vs. theoretical SR
(dashed curve) for 2nd-order correlation attacks on
Device B.
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Fig. 4. Simulation SR (plain curves) vs. theoretical
SR (dashed curves) for 2nd-order likelihood attacks
on Device B.

Figure 5 (resp. Figure 6) shows the results obtained for a second-order likelihood attack on
Device B, where the standard deviation of the noise have been multiplied by 4 (resp. by 6). As
expected, the difference between the two curves clearly shrinks in Figure 5 compared to Figure
4. The curves furthermore match perfectly in Figure 6, which confirms our explanation of the
mismatching in Figure 4 and validate the soundness of the Gaussian approximation when the
number of traces q is high enough.

In order to check the soundness of the Gaussian approximation to higher orders, we also per-
formed third-order attacks (centered product combining function and Hamming weight model func-
tion), and third-order likelihood attacks with leakage parameters from Device A (see Figures 7 and
8). We see that the curves still match quite well, which further validates the Gaussian approximation
in these higher-order contexts.
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Fig. 5. Simulation SR (plain curve) vs. theoretical SR
(dashed curve) for 2nd-order likelihood attacks on De-
vice B with a standard deviation of noise multiplied
by 4.
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Fig. 6. Simulation SR (plain curves) vs. theoretical
SR (dashed curves) for 2nd-order likelihood attacks on
Device B with a standard deviation of noise multiplied
by 6.
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Fig. 7. Simulation SR (plain curve) vs. theoretical SR
(dashed curve) for 3rd-order correlation attack.
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Fig. 8. Simulation SR (plain curve) vs. theoretical SR
(dashed curve) for 3rd-order likelihood attack.

8 Practical Experiments

In this section, we confront our methodology to practical attack experiments. We report the re-
sults of several higher-order correlation attacks against two different devices running masked AES
implementations. We also apply our methodology to estimate the expected success rate of these
attacks with respect to the inferred leakage parameters.

Experimental setup. Practical experiments were performed on two microcontrollers made in
different CMOS technologies (130 and 350 nanometer processes, respectively called devices A and
Device B in the sequel). The side-channel traces were obtained by measuring the electromagnetic
(EM) radiations emitted by the device during a masked AES-128 encryption handling one byte

13



at a time. To this aim, an EM sensor was used (made of several coils of copper with diameter of
500µm), and was plugged into a low-noise amplifier. To sample the leakage measurements, a digital
oscilloscope was used with a sampling rate of 10G samples per second for the Device A and 2G
samples per second for the Device B, whereas microcontrollers were running at few dozen of MHz.
As the microcontrollers clocks were not stable, we had to resynchronize the EM traces. This process
is out of the scope of this work, but we would like to emphasize that resynchronization is always
required in a practical context and it has a non negligible impact on the measurements noise.

In our attack context, the random values involved in the masking/sharing could be known by
the evaluator and we used this ability to identify the time samples corresponding to the different
manipulation of the different shares. This step allowed us to associate each share to a unique time
sample (the one with maximal SNR) and to profile the leakage parameters.5

Estimation of the leakage parameters. To estimate the leakage functions fj : s 7→ mj,s, we
applied linear regression techniques on 200000 leakage samples. When applied on leakage samples
`1,j , `2,j , . . . , `q,j , corresponding to successive share values s1,j , s2,j , . . . , sq,j , a linear regression of
degree t returns an approximation of fj(s) as a degree-t polynomial in the bits of s (see [13,5] for
more detail on linear regression in the context of side-channel attacks). We applied linear regression
of degree 1 and 2 on Device A and B respectively. Once the fj function estimated, we could easily get
an estimation for the variance σ2j of the noise Nj by computing the sample variance of (`i,j−fj(si,j))i
for every j.

Methodology versus practice. In order to validate our methodology in practice, we performed
higher-order correlation attacks with centered product combining function (see Section 5) and Ham-
ming weight model function (i.e. m = HW). On the other hand, the success rate was estimated using
the methodology described in Sections 4 and 5 by computing the parameters of the multivariate
Gaussian distribution arising for the correlation distinguisher with respect to the inferred leakage
parameters.
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Fig. 9. Experimental SR (plain curve) vs. theoretical
SR (dashed curve) for 2nd-order correlation attack on
Device A.
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Fig. 10. Experimental SR (plain curve) vs. theoretical
SR (dashed curve) for 2nd-order correlation attack on
Device B.

5 The knowledge of the masks was however not used in the attack phase itself.
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Figures 9 and 10 plot the experimental success rates versus the theoretical success rates for the
second-order correlation attacks against Device A and Device B. In order to validate our approach
with respect to higher-order attacks in practice, we also compare the results obtained with our
methodology to third-order and fourth-order attack results on Device B (see Figures 11 and 12).
We observe a clear match between the experimental and theoretical success rate curves. These
results demonstrate the soundness of the methodology in practice.
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Fig. 11. Experimental SR (plain curve) vs. theoretical
SR (dashed curve) for 3rd-order correlation attack on
Device B.
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Fig. 12. Experimental SR (plain curve) vs. theoretical
SR (dashed curve) for 4th-order correlation attack on
Device B.

Impact of the leakage profiling. In order to observe the impact of the leakage profiling phase
on our methodology, we applied it using a lower profiling rate. We first observed the convergence of
the linear regression to determine the minimal number of samples for a sound estimation. Figure
13 plots the 8 coefficients of degree one (the dominant coefficients) of the function f0 obtained from
the linear regression with respect to the number of used samples. We observe that the coefficients
converge after around 1200 samples. Then we applied our methodology to estimate the success
rate of the second-order correlation attack on Device B based on a profiling using either 400
or 1500 samples (instead of 200000 samples). The results are presented in Figure 14. The plain
curve represents theoretical success rate with full profiling (200000 samples), while the dotted and
dashed curves represent the theoretical success rates with profiling based on 400 and 1500 samples
respectively. We see that our methodology still matches quite well for a profiling based on 1500
samples but clearly fails for a profiling based on 400 samples. This shows that it is sound to study
the convergence of the linear regression to determine the number of samples required for a sound
estimation of the success rate.

9 Conclusion

In this work we have presented a methodology to evaluate the success rate of higher-order side-
channel attacks. We have shown how to apply this methodology in the particular cases of at-
tacks based on the correlation and likelihood distinguishers. The soundness of our approach has
been validated by simulations and experiments performed on different microcontrollers. Using this
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Fig. 13. Convergence of linear regression coefficients.
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Fig. 14. 2nd-order correlation attack on De-
vice B: theoretical SR for different amounts of
profiling samples.

methodology, an evaluator can estimate the side-channel resistance of his masked cryptographic
implementation at the cost of inferring a few linear regression coefficients.
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11. E. Prouff, M. Rivain, and R. Bévan. Statistical Analysis of Second Order Differential Power Analysis. IEEE

Transactions on Computers, 58(6):799–811, 2009.
12. M. Rivain. On the Exact Success Rate of Side Channel Analysis in the Gaussian Model. In R. M. Avanzi,

L. Keliher, and F. Sica, editors, Selected Areas in Cryptography – SAC 2008, volume 5381 of Lecture Notes in
Computer Science, pages 165–183. Springer, 2008.

13. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side Channel Cryptanalysis. In J. Rao
and B. Sunar, editors, Cryptographic Hardware and Embedded Systems – CHES 2005, volume 3659 of Lecture
Notes in Computer Science. Springer, 2005.

16



14. F.-X. Standaert, T. G. Malkin, and M. Yung. A Formal Practice-Oriented Model For The Analysis of Side-
Channel Attacks. Cryptology ePrint Archive, Report 2006/139, 2006.

15. F.-X. Standaert, E. Peeters, G. Rouvroy, and J.-J. Quisquater. An Overview of Power Analysis Attacks Against
Field Programmable Gate Arrays. IEEE, 94(2):383–394, 2006.

16. A. Thillard, E. Prouff, and T. Roche. Success through Confidence: Evaluating the Effectiveness of a Side-Channel
Attack. In G. Bertoni and J.-S. Coron, editors, CHES, volume 8086 of Lecture Notes in Computer Science, pages
21–36. Springer, 2013.

A Proof of Proposition 2

Proof. Let (dk)k∈K = dcor
(
(xi, `i)i

)
and (d′k)k∈K = d′cor

(
(xi, `i)i

)
for some input-leakage samples

(xi, `i)i6q ∈ (X × L)q. We have:

dk =
1

sC

∑q
i=1(m(xi, k)− mk)C(`i)

sk
=

1

sC
d′k ,

where sC =
√

1
q

∑
i(C(`i)− C)2 with C = 1

q

∑
i C(`i).

Since sC is strictly positive and constant with respect to the guess k, the score vectors (dk)k∈K
and (d′k)k∈K are clearly rank-equivalent, implying that the distinguishers dcor and d′cor are equiv-
alent. Moreover, after denoting by gx,k the function `i 7→ s−1k (m(x, k) − mk)C(`i), we get d′k =
1
q

∑q
i=1 gxi,k(`i), which implies that d′cor is additive. �

B Fast Evaluation of Higher-Order Convolution

Proposition 4. Let d be a positive integer, and let (S,⊕) be a group of size |S| = 2m. Let (hj)0≤j≤d
be a family of functions from S into R, such that hj(s) can be efficiently evaluated for every s ∈ S
in o(1) operations (one typically has a look-up table for every hj). Consider the function H : S → R
defined as

H : s 7→
∑
s1∈S

∑
s2∈S
· · ·
∑
sd∈S

h0(s⊕ s1 ⊕ s2 ⊕ · · · ⊕ sd) · h1(s1) · h2(s2) · · ·hd(sd) .

Then, the whole set of outputs {H(s) ; s ∈ S} can be computed in O(d · 2m ·m) operations.

Proof. For every s ∈ S, the function H satisfies

H(s) =
∑
sd∈S

hd(sd) · · ·
∑
s2∈S

h2(s2)
∑
s1∈S

h1(s1) · h0(s⊕ s1 ⊕ s2 ⊕ · · · sd) .

Consider the convolution product of the form

h1 ⊗ h0 : s 7→
∑
t∈S

h1(t) · h0(s⊕ t) .

We have
WH(h1 ⊗ h0) = 2

m
2 WH(h1) · WH(h0) ,

where WH is the (normalized) Walsh-Hadamard transform (WHT). This convolution product can
hence be efficiently computed from three evaluations of fast WHT that each takes O(2m · m)
operations.6

6 The WHT is involutive, hence we have h1 ⊗ h0 = 2
m
2 WH

(
WH(h1) · WH(h0)

)
.
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One can check that the sequence of functions (Hi)0≤i≤d defined as{
H0 = h0
Hi = hi ⊗Hi−1 for every i > 1

is such that Hd = H. One can then sequentially compute the set of outputs of H1, H2, . . . , Hd = H
by evaluating d convolution products, which gives a total cost of O(d · 2m ·m) operations. �

C Proof of Corollary 1

To prove the corollary, we first introduce the following lemma.

Lemma 1. The expectation and variance of the random variable C(Lx,k∗) respectively satisfy

E [C(Lx,k∗)] = αϕ(x,k∗) (37)

and

Var [C(Lx,k∗)] = βϕ(x,k∗) − α2
ϕ(x,k∗) +

d∏
j=0

(νj + σ2j )−
d∏

j=0

νj . (38)

Proof. Since the Nj are independent and centered in 0, we have

E [C(Lx,k∗)] = E
[
C
(
f0(S0), f1(S1), . . . , fd(Sd)

)2]
= αϕ(x,k∗) ,

On the other hand, by definition of the variance, we have

Var [C(Lx,k∗)] = E
[
C(Lx,k∗)2

]
− E [C(Lx,k∗)]2 = E

[
C(Lx,k∗)2

]
− α2

ϕ(x,k∗) .

Then, we have

E
[
C(Lx,k∗)2

]
= E

 d∏
j=0

(
fj(Sj) +Nj − µj

)2 = E

 d∏
j=0

(
(fj(Sj)− µj)2 +N2

j

)
where the second holds since the Nj have zero means and are mutually independent and indepen-
dent of the Sj . By developing the product, we get a sum of monomials, such that each monomial
involves random variables that are mutually independent, except for one single monomial which is∏d

j=0(fj(Sj)− µj)2. We can then develop the above equation as

E
[
C(Lx,k∗)2

]
=

d∏
j=0

(
E
[
(fj(Sj)− µj)2

]
+ E

[
N2

j

] )

−
d∏

j=0

E
[
(fj(Sj)− µj)2

]
+ E

 d∏
j=0

(fj(Sj)− µj)2
 ,

which gives

E
[
C(Lx,k∗)2

]
=

d∏
j=0

(νj + σ2j )−
d∏

j=0

νj + βϕ(x,k∗).

�
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Proof of Corollary 1. Applying (12) and (13) to the functions gx,k : ` 7→ 1
sk

(m(x, k)− mk) · C(`) as
defined in (18), we get

E
[
d′k
]

=
1

sk

∑
x∈X

τx (m(x, k)− mk) E [C(Lx,k∗)] ,

and

Cov
[
d′k1 , d

′
k2

]
=

1

q

1

sk1sk2

∑
x∈X

τx (m(x, k1)− mk1) (m(x, k2)− mk2)Var [C(Lx,k∗)] ,

Then Lemma 1 directly yields the corollary statement. �
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