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Abstract. Recent work on proof-based verifiable computation has resulted in built systems that employ
tools from complexity theory and cryptography to address a basic problem in systems security: allowing
a local computer to outsource the execution of a program while providing the local computer with a
guarantee of integrity and the remote computer with a guarantee of privacy. However, support for programs
that use RAM and control flow has been problematic. State of the art systems either restrict the use of these
constructs (e.g., requiring static loop bounds), incur sizeable overhead on every step, or pay tremendous
costs when the constructs are invoked.

This paper describes Buffet, a built system that solves these problems by providing inexpensive “a la
carte” RAM and dynamic control flow. Buffet composes an elegant prior approach to RAM with a novel
adaptation of techniques from the compilers literature. Buffet allows the programmer to express programs
in an expansive subset of C (disallowing only “goto” and function pointers), can handle essentially any
example in the verifiable computation literature, and achieves the best performance in the area by multiple
orders of magnitude.

1 Introduction
How can a client outsource a computation to a server and then check that the server executed correctly?1

And can this be done in a way that allows the server to supply private inputs and keep them confidential?
Variants of this problem have been around for decades [11]; today, cloud computing is a particularly
pertinent use case. Indeed, because cloud providers are large-scale, we cannot assume that execution
is always correct; because they are opaque, we cannot assume that the causes of incorrect execution
(corruption of data, hardware faults, malice, and more) are readily detectable. And many common cloud
applications involve private server input that must remain confidential (e.g., database interactions).

Classical solutions to this problem depend on potentially undesirable assumptions or restrictions. For
example, replication [30, 31, 57] assumes that replica failures are not correlated (which does not hold in
homogeneous cloud platforms). Auditing [48, 61] assumes that failures follow a most-or-none distribution.
Trusted hardware and attestation [65, 69, 70] assumes that the hardware is not faulty (and sometimes
requires a global root of trust). Tailored solutions exist (see [64, 73, 78] for surveys) but only for restricted
classes of computations.

Over the last few years, a new solution has emerged, called proof-based verifiable computation [80],
that gives comprehensive guarantees, makes few or no assumptions about the server, and applies gen-
erally [17, 20, 29, 34, 38, 41, 53, 64, 71–76, 78]. Although the details differ, all of these works are
based on sophisticated cryptographic and complexity-theoretic machinery: probabilistically checkable
proofs (PCPs) [8, 9], efficient arguments [22, 23, 27, 41, 42, 47, 50] (including zero-knowledge variants),
interactive proofs [10, 45, 46, 55], etc. To be clear, it had long been known that this machinery was
relevant to verifying outsourced computations [11]; the work of proof-based verifiable computation has
been refining the theory and building systems around it.

1Checking that a given program is expressed correctly is program verification, which is a different but complementary problem.



Indeed, publications in this area have showcased dramatic performance and usability improvements
relative to naive implementations of the theory: factors-of-a-trillion speedups; compilers; and sophisticated
implementations on smart phones, on GPUs, and across distributed servers. As a notable example, recent
work [38], building on [41, 64], compiles zero-knowledge applications (that preserve the confidentiality
of the server’s private inputs) into a form that is practical for real use.

All of this work has taken place in the context of built systems that have two major components: a front-
end translates programs into the formalism required by a cryptographic and complexity-theoretic back-end.
In more detail, the front-end translates a computation that is expressed in a high-level language into a
system of equations, or set of constraints; a solution to these constraints corresponds to a valid execution
of the computation. The back-end is a probabilistic proof protocol [44] (particularly an interactive
argument [47, 50] or a non-interactive argument [22, 24, 41, 64]) by which the server (or prover)
convinces the client (or verifier) that it holds a solution to the constraints.

The guiding intuition for the area is that the theoretical advantages of the back-end proof protocol
should result in powerful systems: the prover can keep its solution private (when using zero-knowledge
variants), and the verifier handles only a short certificate, the checks of which are in principle very
efficient. However, there is overhead from the front-end, the back-end, and their interaction. This overhead
manifests most prominently in setup costs incurred by the verifier and the costs paid by both verifier and
prover for each input-output instance that the verifier wishes to check.

After a great deal of work, there is now a single approach to the back-end: in all of the recent
systems [17, 20, 29, 38, 53, 64, 72], the core probabilistically checkable encoding is the remarkable
construction of GGPR [41] (or is based on it [53]). This encoding has slashed prover costs and verifier
setup costs—though neither cost is low by usual systems standards. Furthermore, there has been a
real victory: the verifier’s per-instance costs are genuinely inexpensive. In fact, under certain usage
models [15, 29, 35], the verifier’s total costs (amortized setup plus incremental) can be considered
practical.

The front-end has also been a locus of activity, but the situation there is far less clear. Currently, there
is a tradeoff between programmability and costs [20, §5.4; 80, Fig. 2], specifically the verifier’s setup and
the prover’s costs. These costs are driven by the number of constraints required to represent a computation.
The tradeoff is clear from the two major front-end approaches.

One approach is BCTV [20], which is currently the state of the art in an elegant line of work [16, 17].
Here, the constraints represent the unrolled execution of a general-purpose MIPS-like CPU, called
TinyRAM [18]; one of the inputs to the constraints is a program expressed in this CPU’s assembly language.
In BCTV, the representation of RAM operations uses a clever technique [16] based on permutation
networks (§2.3).

A principal advantage of BCTV is that the programmer can use standard C (to produce the assembly
program); this is the best programmability in the verifiable computation literature. Furthermore, BCTV
allows the verifier’s setup work to be reused across different computations. The principal disadvantage is
cost. For a computation that takes t program steps, the constraints include t copies of the simulated CPU’s
fetch-decode-execute loop; that is, every program step incurs the cost (in number of constraints) of the
CPU’s fetch-decode-execute logic. On top of that, each of those t steps brings additional constraints to
verify RAM operations.

The other front-end approach is to require the programmer to write in a subset of C that is carefully
restricted to allow a line-by-line translation from the program to constraints; for each line of code, the
resulting constraints contain designated logic to verify that line. The state of the art here is embodied
in Pantry [29], which builds on, and includes the functionality of, its predecessors: Pinocchio [64] and
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Zaatar [72].2 Often, the representation that arises is very concise; for example, adding two variables costs
only one constraint. An important exception is RAM: each load or store results in multiple invocations of
a cryptographic hash function, each of which is translated into constraints. Although this technique is far
less expensive than prior RAM representations [64, 72, 74] (for all but the smallest memories [53]), the
technique is still costly in absolute terms.

Pantry’s advantages are roughly the inverse of BCTV’s. Depending on the computation, Pantry can
handle executions of comparatively long lengths. Also, it pays for RAM operations only when they are
used. On the other hand, the price of those RAM operations, in number of constraints, is very high—far
higher than BCTV’s per-operation cost [20, §5; 29, §8.1]. Furthermore, the subset of C that is exposed to
the programmer lacks key constructs, most notably data dependent control flow.

This analogy is inexact, but if a Pantry constraint representation is like an ASIC, then BCTV is like a
CPU that is controlled with software. Unfortunately, in the context of verifiable computation, both the
cost of BCTV’s generality and the restriction on Pantry’s programmability present severe obstacles to
practicality. This state of affairs raises a natural question: Can we achieve excellent programmability (that
is, present the programmer with a language that is very close to standard C) together with an efficient
translation into constraints? To that end, this paper makes the following contributions:
1. We design and build a new system, called Buffet, that answers the above question in the affirmative.

Buffet incorporates the following technical innovations:

• Buffet composes BCTV’s RAM abstraction with the line-by-line compilation approach of Pantry,
resulting in a Pantry-BCTV hybrid approach to RAM (§3).

• Buffet achieves nearly the expressiveness of BCTV without an underlying CPU abstraction, by
adapting loop flattening techniques from the compilers literature (§4). Buffet supports all of C except
goto and function pointers.

2. We develop a conceptual framework for understanding Pantry and BCTV as points on the same
design spectrum, thereby providing a unified description of the state of the art verifiable computation
approaches (§3.3, §4.3). The resulting perspective directly enabled the design of Buffet.

3. We carry out a three-way performance comparison, based on implementations of Buffet, BCTV, and
Pantry (§5). Besides experimentally evaluating Buffet, this study carefully compares Pantry and BCTV,
which is the first detailed comparison of these approaches.
The result is the best of both worlds: Buffet has the best performance in the literature (orders of

magnitude better than BCTV and Pantry) and supports almost all of standard C.
There are some disadvantages to Buffet, compared to BCTV. Buffet has worse amortization behavior

in terms of what computations the setup cost can be reused over. Moreover, Buffet does not provide a
machine abstraction, which could hinder higher-level programmability. However, as discussed in Section 7,
we believe that both issues are more pronounced in principle than they will be in practice.

The most significant limitation of Buffet is one that is endemic to this research area: in every system
released so far, the prover overhead and setup costs are still too high to be considered truly practical.
Nevertheless, we regard Buffet as substantial progress: we believe that it is close to optimal, at least until
the next breakthrough on the back-end occurs.

2 Background
This section presents the general framework in which Pantry [29] and BCTV [17, 20] operate, and then
gives details on each of them. Parts of this description are influenced by prior work [20, 64, 72, 78, 80];

2There is recent work at the forefront of performance that handles set operations efficiently [53], using the same line-by-line
compilation approach. There is also a cousin of this approach represented by a different line of work [34, 75, 76, 78]. But these
works are targeted to particular classes of computations so fall outside of our focus. (See Section 6.)
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most notably, there are textual debts to Pantry [29]. Our description is tailored to the problem of verifying
outsourced deterministic computations [40, 45]. However, Buffet itself and many of the prior systems
(including BCTV, Pantry, and Pinocchio [64]) handle a more general problem—a zero-knowledge proof of
knowledge [22, 41]—in which the prover can supply inputs to the computation and keep them private (for
example, a private database for which the verifier knows a digest [20, 29, 64]).

2.1 Overview and framework
Existing systems (BCTV, Pantry, etc.) enable the following. A client, or verifier V , sends a program Ψ,
expressed in a high-level language, to a server, or prover P . V sends input x to P and receives output y,
which is supposed to be Ψ(x). V also receives a short certificate that it can efficiently and probabilistically
check to determine whether y is in fact Ψ(x). There are no assumptions about whether and how P
malfunctions, though there is an assumed computational bound on P . The guarantees are probabilistic,
over V’s random choices. They are as follows. End-to-end Completeness: If y = Ψ(x), then a correct P
makes V accept y with probability 1. End-to-end Soundness: If y ̸= Ψ(x), then V’s checks pass with less
than ϵ probability, where ϵ is very small. The existing systems work in three steps:
1. Compile, produce constraints. V and P compile the program into a system of equations over a set of

variables, including x and y. The equations have a solution if and only if y = Ψ(x).
2. Solve. P identifies a solution.
3. Argue. P convinces V that it has indeed identified a solution, which establishes for V that y = Ψ(x).

This paper’s focus is the front-end (steps 1 and 2); the Pantry and BCTV instantiations of this
component are described in Sections 2.2 and 2.3, respectively.

As a consequence of this focus, we fix a common back-end (step 3) for all systems under investigation.
We can standardize this way because Buffet, Pantry, and BCTV (and many prior systems for verifiable
computation) are modular: their front-ends can work with each other’s back-ends. Our common back-end
is the Pinocchio protocol [64] (as implemented and optimized by libsnark [4]).3 Pinocchio is a descendant
of GGPR [41],which we summarize below; details and formal definitions appear elsewhere [20, 24, 41,
64, 72].

For our purposes, GGPR is a zero-knowledge SNARK (Succinct Non-interactive Argument of Knowl-
edge) with preprocessing [22, 41], which is to say that it is a protocol with the following structure and
properties. There are two parties, a verifier and prover; the input to the protocol is a set of equations (or
constraints)4 C, to which the prover purportedly holds a solution (or satisfying assignment), z. In the
verifiable computation context, the constraints and solution are generated by steps 1 and 2 above. In a
separate setup phase, the verifier, or some entity that the verifier trusts, follows a randomized algorithm to
generate, and encode, a query. Online, for each new (x, y) pair, the prover responds to the encoded query
with a certificate; the verifier checks the certificate, and accepts or rejects it. GGPR has the following
properties:

• Completeness: If there is a satisfying assignment to C, a correct prover causes the verifier’s checks to
accept.

• Proof of knowledge: If the prover does not have access to a satisfying assignment z, then—except with
very small probability—the prover’s purported certificate causes the verifier to reject. One can use this
property and the prior one, Completeness, to show that the full system (front-end plus back-end) meets
the End-to-end Completeness and Soundness properties stated earlier [29, Apdx. A].

3An alternative is Zaatar’s back-end [72], which we have tested and run with our Pantry, BCTV, and Buffet front-end implemen-
tations. This back-end [47, 73, 74] includes a linear PCP constructed from GGPR’s QAP formalism [41].

4Throughout this paper, we refer to the back-end as working with “constraints”. Another name for the same formalism is
“arithmetic circuits with non-deterministic inputs” [20, 64].
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• Zero-knowledge: The protocol provides no information to the verifier—beyond what the verifier can
deduce itself—about the values in z. In particular, the protocol reveals no information to the verifier
about any input supplied by the prover, provided that input cannot be easily guessed. (As with prior
work [17, 20, 64], our evaluated examples (§5) do not have private prover input. However, Buffet
supports the property, and example applications of it are evaluated elsewhere [15, 29, 38].)

• Efficiency: We detail costs in Section 2.4. For now, we note that the verifier’s check is fast and the
prover’s response is short. The principal costs are the setup work and the prover’s work to generate the
certificate.

2.2 Pantry
Step 1: Compile, produce constraints. The programmer expresses a computation Ψ in a subset of C.
This subset [29, 64, 72] contains loops (with static bounds), functions, structs, typedefs, preprocessor
definitions, if-else statements, explicit type conversion, and standard integer and bitwise operations. In
addition, Pantry includes a RAM abstraction.

Using a compiler [28, 56, 64, 72, 74], V and P transform Ψ into a set of constraints C over (X, Y , Z),
where X and Y are vectors of variables that represent the inputs and outputs; we call the variables in Z
intermediate variables. Let C(X=x, Y=y) mean C with X bound to x (V’s requested input) and Y bound to
y (the purported output). Note that C(X=x, Y=y) is a set of constraints over Z. C is constructed so that for
any x and y, we have: y = Ψ(x) if and only if C(X=x, Y=y) is satisfiable (by some Z=z). Step 3 (§2.1)
then works over C(X=x, Y=y).

A basic example [28, 29] is the computation add-1, whose corresponding constraints are C = {Z−X =
0, Z + 1 − Y = 0}: for all pairs (x, y), there is a Z=z that satisfies C(X=x, Y=y) if and only if y = x + 1.

Some technical points: The domain of all variables is a large finite field, Fp (the integers mod a prime
p); p typically has at least 128 bits. Also, each constraint has degree 2 and is of a particular form, described
elsewhere [64, 72]. Constraint variables are represented by upper-case letters (X, Y , Z, . . .); concrete values
taken by those variables are represented by lower-case letters (x, y, z, . . .).

Compilation process. Given a program, the compiler unrolls loops (each iteration gets its own
variables) and converts the code to static single assignment (details are described in [28]). The compiler
then transforms each line into one or more constraints. Arithmetic operations compile concisely. For
example, the line of code z3=z1+z2; compiles to Z3 = Z1 + Z2.5

As in all of the works that use large finite fields to represent computations [17, 28, 64, 72, 74],
inequality comparisons and bitwise operations cost ≈w constraints, where w is the bit width of the
variables in question.

Conditional branches include constraints for both branches. As an example, Figure 1 illustrates a
simple if-else statement and the corresponding constraints.

RAM. Pantry includes primitives for verifiable remote state, called GetBlock and PutBlock. Each of
these primitives compiles into constraints that represent the operation of a collision-resistant hash function,
H(·). One way to use GetBlock is for V to supply as part of the input to Ψ a hash (or digest) d of a remote
input b that Ψ is supposed to work over (though V does not know b). Then, satisfying the constraints that
represent GetBlock requires P to set the variables B so that H(B) = d. 6

5One might wonder whether, because the constraint Z3 = Z1 + Z2 is over Fp, its semantics with respect to overflow are
different from the programmer’s expectations. First, we note that the constraint is a semantically valid translation of the original
statement—integer overflow is undefined behavior, according to the C standard [3, §6.5]. Second, Pantry’s compiler gives the
programmer the option to globally enforce the more familiar two’s complement wrapping behavior for integer types, at the cost
of additional constraints; alternatively, the programmer might choose to manually emulate two’s complement wrapping only
where necessary.

6With GetBlock, y = Ψ(x) is no longer logically equivalent to the satisfiability of C(X=x, Y=y). However, collision-resistance
together with a suitable application of proof of knowledge (§2.1) implies End-to-end Soundness, i.e., the verifier rejects wrong
outputs with high probability [29, Apdx. A].
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if (Z1 == 1) {
Z2 = 10;

} else if (Z1 == 2) {
Z2 = 20;

} else {
Z2 = 100;

}

(a) Source.

{ 0 = M0(Z1 − 1),

0 = M0(Z2 − 10),

0 = (1 − M0)(M2(Z1 − 1)− 1),

0 = (1 − M0)(M1(Z1 − 2)),

0 = (1 − M0)(M1(Z2 − 20)),

0 = (1 − M0)((1 − M1)(M3(Z1 − 2)− 1)),

0 = (1 − M0)((1 − M1)(Z2 − 100)) }

(b) Constraints.

FIGURE 1—A conditional statement and corresponding constraints, under Pantry. For clarity, constraints with
degree greater than two are not expanded.

Applying well-known techniques [25, 39, 54, 58], Pantry uses GetBlock and PutBlock to create
a RAM abstraction. Concretely, each Load and Store compiles into multiple GetBlock and PutBlock
calls—and thus multiple invocations of H(·).
Step 2: Solve. To produce a satisfying assignment, P proceeds constraint-by-constraint. In cases when
the solution is not immediate, a constraint has a compiler-produced annotation that tells P how to solve it.
As an example, if Z1 and Z2 are already determined, then the solution to Z3 = Z2 + Z1 is immediate. But
in the constraints that correspond to the if-else statement of Figure 1, the annotations tell P how to set
M0, . . . , M3. Similarly, to satisfy the constraints that represent GetBlock (and in response to a PutBlock),
the annotations instruct P to interact with a backing store. We refer to such annotations and actions as
being exogenous to the constraint formalism (the theoretical term is “non-deterministic input”).

2.3 BCTV
As in Pantry, BCTV’s constraints are over the finite field Fp, and the constraints have input variables X,
output variables Y , and intermediate variables Z.

Step 1: Compile, produce constraints. The programmer expresses a computation Ψ in standard C,
and then runs a compiler to transform Ψ to an assembly program for a simulated MIPS-like CPU called
TinyRAM [17, 18, 20]; we notate this program text xΨ. The programmer must statically bound t, the
number of machine steps required to execute xΨ on the simulated CPU. The constraints themselves are
produced by V and P in a separate, offline step that is parameterized by t. The constraints decompose into
three subsets, described below.

CPU execution. The first set of constraints, Ccpu, represents the simulated CPU’s execution, for t steps,
purportedly starting with memory that contains xΨ and x and producing output y (this will be enforced
below). The constraints have t repeated blocks; each has variables for the CPU’s state (registers, flag,
program counter, and instruction) and represents one fetch-decode-execute cycle, the logic for which is
shown in Figure 2.

Any assignment (satisfying or otherwise) to Ccpu corresponds to a purported execution-ordered
transcript of the CPU: a list of its state at each step in the execution. In any satisfying assignment to Ccpu,
the variable settings correspond to the correct operation of the CPU, under the assumption that the results
of LOAD operations are correct; that is, Ccpu leaves LOAD target variables unconstrained. These variables
are restricted by the next two sets of constraints.

Memory operations. Define an address-ordered transcript as a sort of the execution-ordered transcript
by memory address, with ties broken by execution order. Observe that in an address-ordered transcript,
each LOAD is preceded either by its corresponding STORE or by another LOAD at the same address. Thus,
one can establish the correctness of an address-ordered transcript by checking that sequential entries are
coherent, meaning that a load from a memory cell returns the most recently stored value to that cell.
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ProcessorState states[t]

state[0].pc = state[0].flag = 0
state[0].regs[0] = ... = state[0].regs[NUM_REGS-1] = 0

for S in [0, t-1):

state[S].instruction = LOAD(state[S].pc)

decode(state[S].instruction,
&opcode, &target, &arg1, &arg2)

next_flag = state[S].flag

for i in [0, NUM_REGS):
if (i != target):
state[S+1].regs[i] = state[S].regs[i]

switch (opcode):
case OP_ADD:
state[S+1].regs[target] = arg1 + arg2
next_flag = (arg1 + arg2) > REGISTER_MAX
break

case OP_CJMP:
if (state[S].flag)
state[S+1].pc = arg1

break

case OP_LOAD:
state[S+1].regs[target] = LOAD(arg1)
break

...

state[S+1].flag = next_flag

if (opcode != OP_CJMP && opcode != OP_CNJMP
&& opcode != OP_JMP):

state[S+1].pc = state[S].pc + 1

state[t-1].instruction = LOAD(state[t-1].pc)

decode(state[t-1].instruction,
&opcode, &target, &arg1, &arg2)

assert opcode == OP_ANSWER

return arg1 // expands to Y = arg1

FIGURE 2—Pseudocode for Ccpu, the constraints that represent TinyRAM’s execution [18]. In the constraints, the
for loop is unrolled: the constraints contain t repeated blocks, one for each iteration.

Leveraging these observations, the remaining constraints include variables that represent an address-
ordered transcript, T ; these constraints are satisfiable if and only if T is a sort of the execution-ordered
transcript that is pairwise coherent. Specifically, the constraints are divided into two groups, Cperm and
Cck-sort. Cperm is satisfiable if and only if T is at least a permutation (but not necessarily a sort) of the
execution-ordered transcript. Cck-sort is satisfiable if and only if this permutation is indeed sorted and
pairwise coherent.

In more detail, Cperm represents the logic of a permutation network [14, 21]. The inputs to this network
are variables from the execution-ordered transcript, specifically two tuples (timestamp, op code, address,
data) per machine cycle. One tuple represents the instruction fetch; the other, whatever the instruction
requested (LOAD, STORE, or no RAM operation). Cperm also has variables that represent switch settings of
the permutation network. By construction, Cperm is satisfiable if and only if its outputs are assigned to a
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certificate length 288 bytes
V setup |C| · 180µs
V per-instance 6 ms + (|x|+ |y|) · 3 µs
P per-instance |C| · 60 µs + |C| log |C| · 0.9 µs

x, y ∈ Fp: inputs and outputs of C
FIGURE 3—End-to-end costs of any system (including BCTV [20], Pantry [29], and Buffet) built on the optimized
libsnark implementation [4, 20] of the Pinocchio back-end [64] with 128-bit security, applied to constraints C.
The cost of steps 1–2 is captured in the number of constraints, |C|. We extracted parameters for this model from
microbenchmarks and experimental data (§5.4). The model assumes that |C| equals the number of intermediate
variables (|Z|) and that the average constraint acts on only a few intermediate variables; these assumptions hold in
our benchmark applications (§5.2) and elsewhere [29]. BCTV’s setup costs amortize better than Pantry’s (§2.4).

permutation of its inputs. Note that although we have referred to “inputs” and “outputs,” all variables are
intermediate; the prover must obtain values (in its assignment z) for all of them.

Cck-sort works over the output variables in Cperm, and is satisfiable if and only if the assigned values
respect the pairwise relation establishing ordering and coherence.

Putting the pieces together. Where do the inputs and outputs (xΨ, x, y) appear? A BCTV execution
begins with a “boot” phase that stores xΨ into the beginning of memory and x into a well-known memory
location that Ψ expects. Concretely, the memory transcript that feeds into Cperm includes tuples for xΨ and
x; for example, (j, STORE, j, xΨ[j]), j ∈ {0, . . . , |xΨ| − 1}, where |xΨ| is the length of the program text.
Notice that the relevant values are assigned by the verifier (that is, they are not part of the assignment z)
and thus tether the execution to the verifier’s request. For the output y, our description assumes that the
output of Ψ is a single machine word that is returned at the end of the execution.7 Concretely, the final
constraint in Ccpu is y − Z∗ = 0, where Z∗ here is the constraint variable that represents the final setting of
the register arg1 (Fig. 2).

To recap, any satisfying assignment to Ccpu corresponds to an execution-ordered transcript that
(1) correctly represents non-RAM operations (ALU, control flow, etc.), and (2) ends with the purported
output, y. For Cperm and Cck-sort to be satisfiable, the values LOADed in the execution-ordered transcript
must be correct and, in particular, consistent with program text xΨ and program input x. Thus, the three
sets of constraints as a whole are satisfiable if and only if y is the correct output of the simulated CPU,
given program Ψ and input x.

Step 2: Solve. To produce the satisfying assignment z to the constraint variables, the prover, given xΨ
and x, runs a routine on its native CPU that simulates the execution of xΨ. This routine produces an
execution-ordered transcript, yielding a satisfying assignment to the variables of Ccpu.8 This routine further
selects the switch settings and determines the assignment to the address-ordered transcript variables, in
Cperm.

2.4 Costs, amortization, and accounting
The end-to-end costs of BCTV and Pantry (and Buffet) are summarized in Figure 3. There are several
things to note here. Most importantly, the principal costs—setup costs and P’s work for each protocol
run—scale with the number of constraints (|C|). Thus, there will be an impetus, in the sections ahead, to
translate program structures into economical constraint representations.

7A more general way to handle outputs is to supply y as auxiliary input [16, 20], and to write Ψ so that, after computing its
output, it accepts iff that output equals y. This alternative is supported by our BCTV implementation and matches the original
description of BCTV.

8Thus, Ccpu can be equivalently understood as validating the state transitions in a transcript that is non-deterministically supplied
by P; this view is the one presented in [17, 20].
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Second, we are charging setup costs to V , even though our evaluation uses the public verifier vari-
ant [41] of the back-end (§5.3); we explain this choice at the end of the section. Third, setup costs are
incurred for each new set of constraints, yielding different amortization. Under Pantry, these costs are
incurred for each computation Ψ and amortize over all instances (input-output pairs) that the verifier
invokes. In BCTV, all computations of a given length use the same set of constraints, so the amortization
behavior is potentially better. (BCTV’s constraints are sometimes said to be universal. However, as
discussed in Section 7, in practice BCTV would have thousands of constraints sets, and, potentially, the
same qualitative amortization regime as Pantry.)

To be relevant, Pantry and BCTV need to operate in one of two regimes. The first is when a given
V runs the protocol multiple times on the same set of constraints (for Pantry, this means the same Ψ;
for BCTV, it means different Ψ that have approximately the same t); the number of times must be high
enough that amortized overhead drops below the naive solution, namely running the computation at V .
The second regime is when the computation is not otherwise feasible (because the inputs are remote or
private or both); in this case, we are less concerned with the amortized overhead of the system, but the
setup costs must still be tolerable. Example computations and analysis are given in [29].

As noted above, we have charged V for setup costs, even though the cost could instead be incurred
by a query generator (§2.1) G that is separate from V . To explain this choice, we note that V must trust
G (if G colludes with P , End-to-end Soundness (§2.1) is lost). Meanwhile, our high-level problem (§1)
is partially motivated by a reluctance to rely on a globally trusted G (if we had a centralized root of
trust, we could base verifiable outsourcing on trusted hardware, etc., as noted in the Introduction). If we
instead posit various decentralized roots of trust, we could provide naive verifiable outsourcing by simply
executing Ψ at a G that V trusts. And we could again analyze the applicability of Pantry or BCTV; the
analysis focuses on G’s costs and is similar to the previous paragraph, replacing “a given V” with “all
V that trust a given G”, and “at V” with “at that G”. For simplicity, the rest of this paper assumes that V
trusts no one besides itself.

3 Representing RAM operations efficiently
As noted in the Introduction and elaborated in Section 2.4, end-to-end protocol costs are largely driven by
|C|, the size of the constraint representation. Under this metric, both BCTV and Pantry pay a steep price
to expose a RAM abstraction to programmers. While Pantry pays only when memory is used, the cost
per operation is exorbitant. In BCTV, by contrast, it is much cheaper to check memory, but the cost is
incurred on every operation—even if the operation is not a load or store. Concretely, a load or store in
Pantry compiles to tens or hundreds of thousands of constraints [29, §8.1]; in BCTV, every program step
compiles to one to two thousand constraints, of which several hundred are for memory checking (§3.1).

In light of the above, we ask, Can Buffet pay for RAM only when the operations are used (as in Pantry),
and furthermore can Buffet pay less per operation than either system?

We find that the answer is yes: Buffet’s approach is to graft BCTV’s permutation networks into Pantry’s
constraints for non-RAM operations. Described that way, Buffet’s approach might sound straightforward;
instantiating it was not. The fundamental issue is that BCTV’s techniques are tied to its execution
model; indeed, lifting these techniques from their context had been regarded as an “intriguing open
question” [20, §5.4]. Nevertheless, we have been able to make the hybrid approach work. The result is
orders-of-magnitude savings versus BCTV and Pantry, for computations that interact with RAM.

3.1 Hybridizing Pantry and BCTV
Under Buffet, the programmer of Ψ interacts with RAM using standard C pointers and arrays; the compiler
transforms each pointer dereference or array interaction to val=load(addr) or store(data,addr) in
the intermediate unrolled program.
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C
program logic

source code (Ψ) unrolled

· · ·

Zn = 0

Za0 = Zd + Zn

Za1 = Zd + Zn0

Za2 = Zd + Zn1

Za3 = Zd + Zn2

0 = Zc0 · (Zn2 − 10)

1 = Zc0 + (Zn2 − 10) · Zm

Zop = Zc0 · STORE+ (1 − Zc0) · LOAD

Ztarg = Zc0 · 10 + (1 − Zc0) · Zdummy

· · ·

...
next = 0;

addr0 = data + next;
next0 = load(addr0);
addr1 = data + next0;
next1 = load(addr1);
addr2 = data + next1;
next2 = load(addr2);
addr3 = data + next2;

cond0 = next2 == 10;
if (cond0)
store(10, addr3);

...

...

next = 0;
for (i=0; i<3; i++)
next = data[next];

if (next == 10)
data[next] = 10;

...

(0, LOAD, Za0, Zn0)

(1, LOAD, Za1, Zn1)

(2, LOAD, Za2, Zn2)

(3, Zop, Za3, Ztarg)

⇒ ⇒

ordering,
coherence

checks

switch
settings

permutation
network

execution-ordered trace
address-

ordered trace

FIGURE 4—Buffet’s instantiation of step 1 in the framework of §2.1. Buffet’s compiler translates from an expansive
subset of C to an intermediate representation, and then to three sets of constraints. The first set captures program logic,
and results from applying Pantry’s line-by-line compilation approach [29]. The other sets adapt the permutation
network and memory coherence checks of BCTV [17, 20].

The compiler produces three sets of constraints, depicted in Figure 4. The first set is the same as
Pantry’s constraints, except that they do not restrict the return values of load (the parameters to a load or
store are restricted by usual program logic, as expressed by constraints “upstream” of the operation). As
in BCTV, the second set of constraints represents a permutation network; the inputs to this network are the
return values and parameters of all of the loads and stores. And as in BCTV, the third set of constraints
is satisfiable if and only if the permutation network’s output is sorted and pairwise coherent—which
ensures that a satisfying assignment to all of the constraints respects both program logic and memory
correctness.

Refinements and savings. The preceding picture is based on BCTV’s technique for RAM (§2.3) but
with some important refinements. The cost savings from these refinements are summarized in Figure 5.

First, Buffet sheds the t repeated copies of the simulated CPU’s fetch-decode-execute logic, saving ccpu
constraints on every operation. Of course, Buffet must still pay for each operation; Figure 5 summarizes
this cost using cavg, which captures the average cost in constraints of a non-RAM operation in the Pantry
model (shared by its base systems, Pinocchio [64] and Zaatar [72]). cavg is computation-dependent, but
we can impose reasonable bounds, since the cost of non-RAM operations ranges from 1 (for arithmetic
operations) to 34 (for operations on 32-bit values that require separating numbers into their bits, such as
inequality comparisons and bitwise operations). We obtained cavg = 22 in the figure by conservatively
assuming that non-RAM operations occur with uniform frequency.

Second, Buffet’s permutation network works over what we call a trace: a set of tuples, one for each
of the k′ operations that specifically interacts with memory. By contrast, recall that in BCTV (§2.3),
the input to the permutation network is a transcript: two tuples for each of the t execution steps. These
distinctions—trace versus transcript, one versus two tuples—are reflected in Figure 5, specifically the
c′mem · k′ contribution in the Buffet row and 2 · cmem · t in the BCTV row.

A critique of the preceding analysis is that t and t′ are different kinds of quantities. For one thing,
t counts steps of the simulated CPU’s execution, whereas t′ counts operations in Buffet’s intermediate
unrolled representation. However, this objection is not fundamental, as the operations in the latter roughly
correspond to those in the former. A more serious issue is that t counts the program steps actually taken
whereas t′ includes operations in branches not taken. However, this distinction does not affect the analysis
much either: even if we take t′ = 10 · t (which is highly pessimistic: it means that conditional statements
entail 10 branches on average), Buffet’s costs are nearly an order of magnitude less than BCTV’s.

Details. Below, we describe how Buffet handles loads and stores, in terms of steps 1 and 2 in the
framework of Section 2.1. As a backdrop, we note that in step 1, the Buffet compiler maintains a
monotonically increasing counter, mem-ts, that tracks memory operations. In step 2, the Buffet prover
maintains a simulated RAM inside its own address space.
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per-op contribution to |C|

system one RAM op. one non-RAM op. total # of constraints (|C|)

Pinocchio [64], Zaatar [72] 3 · 2r cavg (3 · 2r) · k′ + cavg · (t′ − k′)
Pantry [29] 4700 · r cavg (4700 · r) · k′ + cavg · (t′ − k′)
BCTV [20] 2 · cmem + ccpu 2 · cmem + ccpu (2 · cmem + ccpu) · t
Buffet c′mem cavg c′mem · k′ + cavg · (t′ − k′)

t: number of steps to execute Ψ on the simulated CPU (§2.3) t′ (≈ t): number of program steps to execute Ψ in P/Z/P
r: log of memory size (for example, r = 32) k′ (≤ t′): number of memory operations in Ψ in P/Z/P
ccpu = 1114: number of constraints for one BCTV CPU cycle cavg ≈ 22: avg. non-RAM constraints per step for Ψ in P/Z/P
cmem = 67 + 4 · log 2t + 9r : per-tuple constraint cost in BCTV c′mem = 21 + 10 · log k′ + 2r : per-tuple constraint cost in Buffet

FIGURE 5—Per-operation and total constraint costs, for a given computation Ψ. Buffet improves on the others both
qualitatively and quantitatively: its RAM verification costs scale with the number of memory operations (k′) rather
than the number of program steps (t, t′), and the scaling factor (c′mem) is much lower than in BCTV (2 · cmem + ccpu)
and Pantry (4700 · r for a load; a store costs twice as much [29, Fig. 9]). “P/Z/P” stands for “Pinocchio/Zaatar/Pantry
execution model”. In Zaatar and Pinocchio (Pantry’s baselines), dynamically-addressed loads and stores translate
to costly switch/case statements [20, 29]. cmem is taken from [20, §5.1] for a CPU with 16 registers of 32 bits.
Section 3.1 explains cavg, t, and t′.

Loads. For step 1, when the compiler encounters Zval=load(Zaddr), it creates constraints that
“wire” the tuple (mem-ts, LOAD, Zaddr, Zval) into the permutation network. The compiler also inserts an
annotation for step 2, which tells P to set Zval by loading address Zaddr from its simulated RAM.

Stores. When executed unconditionally (meaning outside of an if-then or if-then-else block), stores
are similar to loads. However, inside of a conditional block, a store operation creates complexity in both
steps 1 and 2.

Concerning step 1, the problem is as follows. If a branch that contains a store operation is taken during
execution, then the variables of that store must enter the permutation network. But if the branch is not
taken, then the store must not be part of the execution-ordered trace. Meanwhile, Buffet’s compiler must
decide statically what enters the permutation network (without knowing which branches will be taken).
Buffet resolves this issue by “dynamically casting” the store to a dummy load at run time, if the branch is
not taken. Specifically, when the compiler encounters store(Zdata, Zaddr) inside a conditional block,
it wires the following tuple (§2.3) into the permutation network:

( mem-ts,

Zcond · STORE+ (1 − Zcond) · LOAD,
Zaddr,

Zcond · Zdata + (1 − Zcond) · Zdummy ),

where Zcond captures the conditions that surround the store operation. If Zcond=0 at run time, then observe
that P is obliged to treat this tuple (more precisely, the constraints to which this tuple expands) as a
dummy load rather than a store.

Concerning step 2, recall that during Pantry’s solving phase, there is no longer an explicit notion of
control flow, conditionality, etc. Pantry’s prover simply walks a list of constraints, solving each one, as
instructed by annotations (§2.2). The difficulty in our present context is that, if a store operation is in an
untaken branch, P should not actually apply the update to its simulated RAM—if P did so, future loads
would return incorrect values, and the coherence-checking constraints would not be satisfied. To address
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this issue, the Buffet compiler creates an annotation that instructs P to apply the store operation to its
simulated RAM only if P also sets Zcond=1.9

3.2 Optimizations
Consistent with Buffet’s goal of paying for RAM operations only when necessary, its compiler eliminates
loads and stores where possible; the result is fewer constraints and hence better performance. Of course,
the compilers of BCTV and Pantry could apply similar analysis, but the overall effect on their performance
would be muted, as we explain in Section 3.3.

Buffet applies two classes of optimizations. First, the compiler can defer, and sometimes eliminate,
RAM operations if the address is available at compile time. To do so, the compiler maintains a table that
maps addresses to intermediate variables. When the compiler encounters store(Zdata,Zaddr) where
Zaddr is statically determined, it produces no corresponding constraints; it simply adds a new entry in the
table, to map the value of Zaddr to Zdata. When the compiler encounters Zval=load(Zaddr) where Zaddr
is statically determined, it consults the table. If there is a mapping between Zaddr and an intermediate
variable Zupstream, the compiler produces a constraint that assigns Zval = Zupstream (rather than wiring a
new tuple into the permutation network).

When the compiler encounters a load or store whose address A cannot be fully resolved at compile
time, it must apply the delayed writes for any memory that could be referenced by A. Specifically, for
each entry (ai, Zi) in the delayed writes table, the compiler uses pointer aliasing analysis [62] to determine
whether A and ai could possibly reference the same memory. If so, the compiler produces constraints that
store the value Zi to address ai, and removes (ai, Zi) from the table.

The second type of optimization is classical load and store elimination [62]. In cases when Buffet’s
compiler determines that two operations share the same address (even if the compiler does not know
the address itself), it applies three reductions: (R1) For two load operations from the same address with
no intervening store, replace the return value of the second load with the return value of the first, and
eliminate the second load. (R2) For two store operations to the same address with no intervening load,
let the second store obviate the first. (R3) For a store immediately followed by a load targeting the same
address, eliminate the load, and refer to the data directly.

As an example, consider the following pseudocode:

out[offset] = 0
for i in [0, 10):
out[offset] += input[i]

This code seems to access input[i] 10 times and out[offset] 21 times. But the optimizations
above would reduce it to only a single store operation. Specifically, the compiler can statically determine
the address input + i; it then avoids the corresponding loads, using the table described earlier. At this
point, the remaining RAM operations are an alternating sequence of stores and loads, at address out +
offset; reduction R3 then eliminates the loads. Finally, reduction R2 eliminates all but the final store.

3.3 Discussion
What is the fundamental reason that Buffet can pay for memory only when it is used, whereas BCTV
has to incur the cost on every operation (§3.1)? And why is load-store elimination of far more benefit to
Buffet than BCTV (§3.2)?
9Why doesn’t Pantry face the issues just described? Recall that Pantry’s RAM is implemented on a content-addressable block
store (§2.2), which maps digests d to blocks B, where H(B) = d. When RAM is built this way [25, 39, 54], each configuration
of memory has its own digest. Furthermore, each load and store takes a digest as an argument, and each store returns a new
digest [29, §5.1]. Thus, if Pantry applied a store to its simulated RAM, but the store happened in an untaken branch, the
(digest, block) entries added to the block store would be harmless: they would not overwrite other entries (because digests are
functionally unique), and they would be unreferenced by the downstream program logic (because the branch is not taken).
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These questions have the same answer: the different abstraction barriers in the two systems. In Buffet,
the C compiler produces constraints tailored to the computation, which is why it can wire selected
operations into the permutation network (§3.1) and optimize out unneeded constraints (§3.2).

In BCTV, the C compiler produces assembly for the simulated CPU (the Ψ → xΨ step in Section 2.3).
Meanwhile, this assembly program has no influence on the constraints themselves [20]. Beyond this, recall
that each step of the unrolled CPU execution contains the logic needed to execute any possible assembly
instruction (§2.3, Fig. 2); since any step might be a load or store, every step in the execution must be
wired into the permutation network. Therefore, while the BCTV compiler could apply the optimizations
in Section 3.2, the result would only be to reduce program text length |xΨ| (and potentially t). There is no
sense in which the compiler could eliminate expensive operations: each program step induces the same
cost.

Pantry, in contrast, could apply the optimizations of Section 3.2 to reduce the number of expensive
operations. However, the ultimate efficacy would be limited by the extremely high cost of its RAM
abstraction: in practice, Pantry is limited to at most several tens of RAM operations (§5.4).

4 Efficient data dependent control flow
Using the work of the preceding section, Buffet produces concise constraints for straight line computations
(because it inherits Pantry’s line-by-line compilation), but the subset of C supported so far does not include
a key programming construct: data dependent control flow. BCTV lets the programmer use all of C (due
to the underlying abstraction of a general-purpose CPU); however, as discussed in the previous sections,
BCTV’s abstraction brings significant overhead.

The challenge is again for Buffet to provide the best of both worlds. Buffet’s high-level solution is
a source-to-source translation that adapts techniques from the compilers literature and exploits aspects
of the constraint idiom. Specifically, the Buffet compiler accepts programs written in a nearly complete
subset of C and applies a flattening transformation to produce a C program that is less concise but has
no data dependent control structures; the compiler then translates the modified source efficiently into
constraints. This approach works because there is no cost to making the intermediate source verbose—the
constraint formalism unrolls computations anyway.

4.1 The programmer’s interface
Buffet supports all C control flow constructs except for goto and function pointers. The programmer
annotates any looping construct that should be flattened, using a C++11-style attribute, buffet::fsm.
This attribute takes one argument, a bound on the number of iterations in the flattened loop. This is similar
to how the BCTV programmer must choose t (§2.3), as we discuss in Section 4.3.

4.2 The transformation
As an example, consider the code of Figure 6a. (Consistent with the language supported by the Buffet
compiler, our examples in this section refer to C code; they are depicted in a Python-like pseudocode for
visual clarity.) Pantry cannot compile this program (§2.2), since the number of iterations in the inner loop
is determined at runtime. The programmer might naively try to make the program suitable for Pantry by
upper-bounding both loops separately, but this would come at a quadratic cost, specifically MAX1 · LIMIT
unrolled iterations (where LIMIT is the maximum possible value that get_limit can return).

An alternative transformation is shown in Figure 6b. The compiler creates one outer loop that
implements a state machine; the state is which loop or block the program is in. In more detail,when state
transitions from 0 to 1 in the flattened code, this corresponds in the original code to onset of the inner
loop; similarly, the transition from 1 to 2 corresponds to the inner loop’s exit. If j reaches the original
outer loop’s bound before dummy reaches MAXITERS (for example, because of data dependent logic in
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while j < MAX1:
<BODY 1>
// data dependent bound
limit = get_limit(j)
for i in [0, limit):

<BODY 2>
<BODY 3>

(a) Original.

state = dummy = 0
while dummy < MAXITERS:
if state == 0:
if j < MAX1:
<BODY 1>
limit = get_limit(j)
i = 0
state = 1

else:
state = 3

if state == 1:
if i < limit:
<BODY 2>
i++

else:
state = 2

if state == 2:
<BODY 3>
state = 0

dummy++

(b) Flattened.

FIGURE 6—Loop flattening example. The original and flattened pseudocode have equivalent control flow.

<BODY 2>), state becomes 3, which causes implicit self-transitions for the remainder of execution,
corresponding to termination of the original outer loop.

Note that the MAXITERS bound on dummy cannot be automatically determined for general data
dependent code. The programmer supplies this bound when annotating the loop (§4.1).

Transformations for while and do are similar to the example just given. All of these are inspired by
similar, but not identical, transformations in the context of parallelizing compilers [43, 49, 51, 67, 81]
(see Section 6).

break and continue. Figure 7 depicts Buffet’s handling of break. The flattened code achieves the
desired control flow as follows: (1) the break statement is replaced by an assignment updating state;
and (2) <BODY 2> is if guarded such that it is not executed after a break.

Similarly, for a continue before <BODY 2>: (1) the continue statement is replaced by an assignment
incrementing the inner loop counter; and (2) <BODY 2> is if guarded.

Generalizing the transformation. The flattening transformation for a single nested loop generalizes
directly to deeper nesting and sequential inner loops. In fact, the Buffet compiler flattens arbitrary loop
nests, with break and continue.

The key observation is that each loop comprises one or more states, with state transitions determined
by the loop conditionals. When the compiler reaches a loop to be flattened, it constructs a control flow
graph in which the vertices correspond to segments of code inside which control flow is unconditional.
The edges of this graph correspond to control flow decisions connecting these code segments; the compiler
determines these decisions by analyzing the loop body and conditionals. For example, when the compiler
encounters a break statement, it (1) splits the enclosing vertex into two vertices, corresponding to code
before and after the break statement, and (2) adds two new edges to the graph, one that connects from the
pre-break vertex to the post-break vertex (no break executed), and the other connecting the pre-break
vertex to the vertex containing the next statement after loop execution ends (break executed).

After the compiler has assembled this control flow graph, it emits corresponding C code. This code
comprises a statically bounded while loop containing a sequence of states and transitions as in the
examples above. The states are code sequences corresponding to the vertices of the control flow graph,
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while j < MAX1:
<BODY 1>
// data dependent bound
limit = get_limit(j)
for i in [0, limit):
// data dependent break
if condition(i, j):
break

<BODY 2>
<BODY 3>

(a) Original.

state = dummy = 0
while dummy < MAXITERS:
if state == 0:
if j < MAX1:
<BODY 1>
limit = get_limit(j)
i = 0
state = 1

else:
state = 3

if state == 1:
if i < limit:
if condition(i, j):
state = 2

else:
<BODY 2>
i++

else:
state = 2

if state == 2:
<BODY 3>
state = 0

dummy++

(b) Flattened.

FIGURE 7—Flattening a loop containing break statements. The flattened pseudocode emulates the control flow of
break.

with if guards that test the value of a state variable. Transitions, which correspond to the graph edges,
are expressed as assignments that update the state variable.

4.3 Discussion
With regard to control flow, the three systems (Pantry, BCTV, and Buffet) can be seen as points on the
same design spectrum, with different tradeoffs. We first cover their similarities and then their differences.

All three systems require static bounds on execution length. Pantry requires the programmer to impose
bounds on all loops, nested or otherwise (§2.2, Step 1); BCTV requires the programmer to set t to
bound the processor’s loop (§2.3); and for each flattened loop in Buffet, the programmer must provide a
bound (§4.1).

In addition, the three systems handle conditionality in similar ways. For each if statement in the
original computation, Pantry includes constraints to represent both branches (§2.2, Fig. 1). In BCTV,
the constraint set for each processor step includes separate constraints for every instruction type (§2.3,
Fig. 2). Buffet has aspects of BCTV and Pantry: the constraint set for each iteration of a flattened loop
includes separate constraints for every case within the switch. Note that Buffet and BCTV support data
dependent control flow using essentially the same mechanism: each iteration of a flattened loop and each
fetch-decode-execute step is a state machine transition, where the choice of the next state is dynamically
determined.

The source of these correspondences is the underlying constraint formalism, specifically that con-
straints project time and conditionality onto space. Indeed, constraints are equivalent to (Boolean or
arithmetic) acyclic circuits, where the flow through the circuit is analogous to the passage of time.

One distinction between Buffet and BCTV is that the former transforms sections of the program into a
state machine, while the latter simulates the (finite state) execution of a general-purpose CPU on which the
program runs. Buffet’s approach is consistent with paying only for what is needed, first, because Buffet’s
compiler tailors the transition function to the loop, and second, because the Buffet compiler applies the
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transformation only as directed by the programmer. Buffet thus pays lower overhead than BCTV in almost
all cases.10

Another apparent distinction between the systems concerns programmability. BCTV elegantly supports
not only all of C (as noted throughout) but also in principle any high-level programming language. Indeed,
this programmability was the motivation for BCTV’s simulated CPU abstraction [16, §1.1]. Buffet, by
contrast, does not expose a machine interface; hence, it has no concept of a software-controlled program
counter, and thus does not easily support language features that involve choosing arbitrary control flow at
run time. In the context of C, this means that Buffet does not support function pointers. (Buffet also lacks
goto support, as noted earlier, but this lacuna is not fundamental.) We discuss programmability further in
Section 7.

5 Implementation and empirical evaluation
This section answers the following questions:
1. How do Pantry and BCTV compare on (a) straight line computations and (b) random memory access?
2. What is the gain of Buffet’s RAM abstraction (§3)?
3. What is the gain of Buffet’s flattening transformation (§4)?
We base this evaluation on implementations of Buffet, Pantry, and BCTV, running on several benchmarks.

Our principal focus is on the various front-ends. As noted earlier (§2.4, Fig. 3), the costs imposed by
the front-end appear in the number of constraints that the back-end works over. To provide context, we
will also report end-to-end costs, although these depend upon both front-end and back-end performance.

The summary of the comparison is as follows. For straight line computations, Buffet matches Pantry’s
performance; both outperform BCTV by 2–4 orders of magnitude. For RAM operations, Buffet improves
on BCTV’s performance by 1–2 orders of magnitude, and on Pantry’s by 2–3 orders of magnitude. For
data dependent looping, Buffet again exceeds BCTV’s performance by 1–2 orders of magnitude.

5.1 Implementation
Our Buffet implementation is built on the Pantry codebase [1]. We extended the compiler to provide
support for RAM operations using C syntax. (Pantry’s compiler requires arrays and pointers to be statically
determined, and RAM operations require explicit annotation [29, §3].)

The Pantry and Buffet compilers operate in two stages. The first stage transforms programs into an
intermediate set of constraints and pseudoconstraints, which abstract operations that require multiple
constraints (for example, inequalities). In the second stage, the compiler expands pseudoconstraints and
adds annotations (§2.2).

Buffet enhances the first stage by adding new pseudoconstraints corresponding to RAM opera-
tions (§3.1), and by optimizing the generation of these pseudocontraints (§3.2). In the second stage, Buffet
adds new annotations for RAM operations.

To support the flattening transformation (§4), Buffet uses a separate C source-to-source compiler
based on Clang [5]; we modify Clang to support the buffet::fsm attribute (§4.1). The output of this
compiler is the input to the compiler described just above.

The modifications to the Pantry compiler comprise 1700 lines of Java, 400 lines of Python, and 340
lines of C++. The source-to-source compiler comprises 1000 lines of C++.

10In principle, Buffet’s tailored transition function could incur greater overhead than BCTV’s simulated CPU. However, we
believe that this is not a problem in practice, as such behavior occurs only in degenerate cases (extremely deep nesting and
complex conditionals). Further, all programs can be compiled with overhead at most equal to BCTV’s: the compiler could
determine which approach is less costly and produce constraints accordingly [78].
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computation (Ψ) size type

Matrix multiplication m×m straight line

PAM clustering [77]
m points, d dimensions,
k medoids, ℓ iterations

straight line

Fannkuch benchmark [7] m elements, ℓ iterations straight line

Pointer chasing m dereferences RAM
Merge sort m elements RAM
Boyer-Moore delta1 table

generation [26]
m length pattern,
k length alphabet

RAM

Knuth-Morris-Pratt
string search [52]

m length pattern,
k length string

data dependent

RLE decoding output length m data dependent
CSR sparse matrix–vector

multiplication [43]
m×m matrix,
k nonzero elements data dependent

FIGURE 8—Benchmark applications.

5.2 Baselines and benchmarks
Pantry. Our Pantry evaluation uses the released codebase [1].

BCTV. No source code was available for BCTV’s front-end or its simulated CPU architecture, TinyRAM [18],
so we built an independent implementation. Our implementation differs from the original in several ways,
described below. However, as discussed later (§5.3), the two have comparable performance.

First, our instruction set is slightly different from the published description [18], with the aim of
optimizing the cost of Ccpu (§2.3) while retaining equivalent functionality. In brief, we borrow the zero
register concept from MIPS [60], obviating several of the TinyRAM architecture’s conditional instructions.
We also shorten immediate operands such that instructions fit in one rather than two memory words, and
update the immediate semantics of several operations (e.g., SUB) to compensate.

Second, we use a different method to generate the simulated CPU’s constraint set (Ccpu, Cperm, and
Cck-sort). Whereas the original implementation uses a hand-optimized “circuit gadget” approach [17,
§2.3.3], we implement the CPU logic, permutation network, and coherence checks (§2.3) in the Pantry
subset of C, and compile this code with the Pantry compiler. To accommodate this, we added support
for a new pseudoconstraint, exo_compute, to the Pantry prover. This primitive instructs P to execute a
program on a simulated CPU and to retain an execution-ordered transcript, which P then uses (together
with switch settings that it computes) as the satisfying assignment.

Third, to permute memory operation tuples (§2.3, §3.1), our implementation uses a Beneš network [21],
whereas BCTV uses a Waksman network [14]. The former requires a power-of-2 sized input; the latter
does not.

Finally, during compilation (§2.1, step 1), our software analyzes the simulated CPU’s assembly code
and removes from Ccpu the logic corresponding to unused instructions. For many programs, this results in
substantially fewer constraints.11

Our BCTV implementation comprises 280 lines of Pantry-C for the simulated CPU and memory
constraints, and 7200 lines of Java for the CPU’s assembler, disassembler, and simulator.

BCGTV [17] report on a compiler from standard C to the simulated CPU’s assembly (Ψ → xΨ,
§2.3). We did not reimplement this; instead, we programmed the benchmarks, described below, directly in
assembly.

11This optimization interferes with self-modifying code if the program generates instructions that do not otherwise appear in the
program text.
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Benchmarks. Figure 8 lists our benchmarks. We implemented each for native execution, Pantry, BCTV,
and Buffet.

Native benchmarks are written in C or C++, compiled with Intel’s C++ compiler v14 with maximum
optimizations (-O3).

The Pantry benchmarks are written in Pantry-C. The straight line code is identical to the native
benchmarks. For memory benchmarks, the size of verifiable RAM is the minimum required for each
computation, based on the input size.

The BCTV benchmark implementations are written for a simulated CPU comprising 32 registers of 32
bits. Each benchmark is written in heavily optimized, hand coded assembly. In producing the constraint
set for each benchmark, we parameterize based on the exact values required for t, |x|, and |xΨ| (§2.3); our
hand optimizations mean that t and |xΨ| are small.

The Buffet benchmark implementations are written in the Buffet subset of C. For the straight line
benchmarks we use the native benchmark code, as in Pantry. For the RAM and data dependent benchmarks,
Buffet uses the code from the native implementations, except that in the data dependent benchmarks, we
inserted the buffet::fsm attribute (§4.1, §5.1).

5.3 Setup
Configuration. We standardize the back-end protocol to be Pinocchio [64], as described earlier (§2.1).
We use the libsnark implementation [4], which is optimized for speed, and includes a minor protocol mod-
ification that improves V’s costs [20]. We run in public verifier mode at 128-bit equivalent security [20].

Our testbed is a cluster of machines, each of which runs Linux on a 16-core Intel Xeon E5-2680 with
32 GB RAM; the nodes are connected by a 56 Gb/s InfiniBand network.

(The experiments in this report have been updated to use a patched version of libsnark. The patch
corrects a minor error identified by Parno [63]; as expected [20, §2.3], the change has had no detectable
impact.)

Measurement procedure. For each system and benchmark, we execute the computation ten times,
averaging the result (for all reported execution times, the standard deviation is less than 5%). The Pantry
and Buffet compilers report |C|, the number of constraints. The Pantry compiler also reports |C| for
the simulated CPU’s constraint set in each BCTV benchmark. V and P each track resource costs with
getrusage and PAPI [2].

Calibrating baselines. Our BCTV implementation (§5.2) results in slightly larger values of |C| than
are reported in [20, §5.1] for the same execution lengths. We have carefully analyzed this discrepancy. It
results, first, from the fact that our implementation and the original apply different optimizations (§5.2).
Second, we experiment with a simulated CPU that has 32 registers of 32 bits each; by contrast, the relevant
results in [20] are for a CPU with 16 such registers. We use the “more powerful” CPU because it tends
to reduce t and hence BCTV’s costs. These choices can increase ccpu by 15% in the worst case (note
from Figure 5 that reducing t and increasing ccpu are opposing effects). At the very worst, then, we are
overstating BCTV’s costs by 15%—but this difference is swamped by the multiple orders of magnitude
that separate BCTV and Buffet.

For the data dependent benchmarks (Fig. 8), we measure Buffet not against Pantry but against a related
system, BuffetStatic; BuffetStatic requires static loop bounds, like Pantry, but uses Buffet’s memory
abstraction. The purpose of BuffetStatic is to isolate the effects of Section 4, versus Pantry.

5.4 Method and results
We wish to do an apples-to-apples comparison of the three systems: an examination of their running times
on the same computations, on the same input sizes. However, the maximum input size for which each
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benchmark system size |C| (millions) V setup P exec

Matrix mult. BCTV m=7 6.67 20.7 min 8.7 min
Pantry m=215 9.94 29.0 min 16.8 min

native: 4610 µs Buffet m=215 9.94 29.0 min 16.8 min
PAM BCTV † 10.2 30.5 min 12.5 min

Pantry ‡ 10 28.8 min 14.5 min
native: 2140 µs Buffet ‡ 10 28.8 min 14.5 min
Fannkuch BCTV m=7, l=20 9.9 30.2 min 12.7 min

Pantry m=13, l=850 10 30.3 min 13.6 min
native: 96.1 µs Buffet m=13, l=850 10 30.3 min 13.6 min
Pointer chase Pantry m=32 2.41 10.7 min 3.4 min

BCTV m=1664 9.98 30.7 min 12.3 min
native: 40.2 µs Buffet m=16384 7.54 21.5 min 9.4 min
Merge sort Pantry m=8 2.44 10.8 min 3.5 min

BCTV m=32 5.37 16.8 min 6.8 min
native: 25.3 µs Buffet m=512 7.9 22.2 min 9.3 min
Boyer-Moore Pantry m=16, k=32 3.13 13.8 min 4.3 min

BCTV m=32, k=448 10.1 30.7 min 12.4 min
native: 7.64 µs Buffet m=512, k=16128 7.55 21.3 min 9.3 min
K-M-P search BCTV m=16, k=160 9.71 29.7 min 11.9 min

BuffetStatic m=36, k=432 7.77 22.2 min 9.2 min
native: 7.7 µs Buffet m=256, k=2900 8.56 24.2 min 10.3 min
RLE decode BuffetStatic m=128 8.75 24.3 min 10.4 min

BCTV m=432 10 30.7 min 12.6 min
native: 2.35 µs Buffet m=5450 8.37 23.5 min 9.6 min
Sparse mat–vec BuffetStatic m=125, k=250 10.1 28.0 min 12.3 min

BCTV m=150, k=300 10.5 32.7 min 14.7 min
native: 4.19 µs Buffet m=1150, k=2300 8.03 22.5 min 9.5 min

†: m=4, d=4, k=2, l=5 ‡: m=20, d=128, k=2, l=30

FIGURE 9—Scaling limits of BCTV, Pantry, and Buffet: the problem sizes (in terms of input size and resulting
number of constraints, |C|) for each benchmark that each system is able to handle. V’s setup time and P’s execution
time (depicted) depend largely on C (§2.4). V’s verification time is not depicted because it is nearly the same for
all systems, independent of |C| (Figure 3), and not the principal protocol cost (§1, §2). Native execution times
correspond to the largest input size. The first three benchmarks are straight line computations; the middle three are
RAM benchmarks; the final three use data dependent control flow. Computations are limited (by available testbed
RAM) to about ten million constraints or less. This corresponds to different computation sizes per system because
of the different efficiency with which each system represents the execution of Ψ in constraints.

system is able to execute a given benchmark differs. Thus, our method is as follows. First, we obtain
measurements of each system by running it on the maximum input size that it can handle, in our testbed.
These measurements both give us ground truth and indicate the qualitative performance of the systems.
Second, we use these measurements to extrapolate the performance of the baseline systems to the input
size at which Buffet executes the benchmark. Third, we perform a three-way comparison of the systems,
using this extrapolated performance.

Ground truth and extrapolation

Figure 9 details our measurements. The results demonstrate, first, that all computations are limited
to about ten million constraints or less in all of the systems (using our experimental configuration).
The limiting factor is testbed memory. Specifically, V’s setup and P’s “argue” step (§2.1, step 3) use
multiexponentiation, and P also does polynomial arithmetic based on the fast Fourier transform; these
operations require memory proportional to |C| [20, 33, 41, 64, 72]. Second, for each system, this constraint
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FIGURE 10—Comparative performance evaluation: P’s execution time, normalized to Buffet. V’s setup time is
roughly proportional, and both track |C| (§2.4, Fig. 3). For each benchmark, we extrapolate the performance of
BCTV, Pantry, and/or BuffetStatic on the input size for which Buffet completed the computation (§5.4). All systems
run on the same back-end (§2.1, §5.3); thus, the ratio of end-to-end P cost is a measure of the relative front-end
performance of each system.

budget corresponds to very different computation sizes. The reason is that the systems vary widely in their
efficiency at representing computations in constraints.12

To extrapolate to larger input sizes, we do the following for BCTV: (1) compute the per-cycle cost,
|Cmeasured|/tmeasured; (2) determine the number of cycles needed to execute the larger computation; and
(3) account for the logarithmic increase in the per-cycle cost due to the growth of the permutation network.
This yields the per-cycle constraint cost at the larger computation size and thus |Cextrapolated|. We also
check the measured and computed per-cycle constraint costs against the published BCTV figures [20,
§5.1] to ensure that our model and implementation accurately represent BCTV’s performance. We apply
analogous procedures for the other baseline systems. Furthermore, we verify our extrapolation model for
each baseline with a series of measurements at different computation sizes.

Three-way comparison

We report P’s execution time normalized to Buffet, as this quantity captures the front-end efficiency of
each system; the reason is that V’s setup costs are roughly proportional to P’s execution time (≈ 3×, per
Figs. 3 and 9), and both end-to-end figures are driven by |C|. Figure 10 summarizes the results.

Pantry and BCTV. In comparing Pantry and BCTV, we consider the straight line and RAM benchmarks
of Figure 8. Because Pantry turns arithmetic operations into at most tens of constraints (§2.2), we expect
excellent performance on straight line computations; conversely, we expect these computations to be
inefficient under BCTV because every operation pays ccpu (§3.1, Fig. 5) to represent the logic of a
CPU cycle (§2.3, Fig. 2). For computations involving random memory access, however, BCTV should
outperform Pantry because of the latter’s expensive hashing (§2.2).

The predicted performance is evident in Figure 10: on straight line computations, Pantry outperforms
BCTV by 2–4 orders of magnitude, while BCTV is consistently 1–2 orders of magnitude more efficient
for random memory access.

RAM performance in Buffet. As summarized in Figure 5, we expect Buffet to retain Pantry’s per-
formance on straight line benchmarks, and substantially outperform both systems for RAM operations.
Figure 10 confirms this hypothesis: Buffet and Pantry show identical performance on straight line pro-
grams. Meanwhile, Buffet’s performance on RAM operations is 1–2 orders of magnitude better than
12Another important factor in determining V’s and P’s memory consumption is the number of intermediate variables each

constraint in C acts on [20, §5.2, Rmk. 5.1]. As previously noted (§2.4, Fig. 3), on average constraints act on just a few
intermediate variables. However, the constraints in the Pantry RAM benchmarks are an outlier in this respect. Because of
the structure of the Pantry RAM primitive’s collision-resistant hash (§2.2), in these benchmarks the average constraint acts
on about 10× more intermediate variables than in other benchmarks. This explains why |C| for these benchmarks is only
≈3 million, rather than ≈10 million as in the other benchmarks (Fig. 9).
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BCTV’s, which is itself 1–2 orders of magnitude better than Pantry’s.

Data dependent control flow in Buffet. The final set of benchmarks evaluates the performance of BCTV,
BuffetStatic (§5.3), and Buffet on data dependent computations. We expect that Buffet will perform better
than BCTV, owing to its lower overhead for individual arithmetic, logical, and RAM operations. Similarly,
we expect that while Buffet and BuffetStatic have identical per-operation performance, BuffetStatic will
execute many more operations (§4.2).

In Figure 10, it is evident that Buffet exceeds the performance of the other systems by 1–3 orders of
magnitude, consistent with expectations. Importantly, the large performance gap between BuffetStatic
and Buffet on all benchmarks demonstrates the impact of Buffet’s flattening transformation in enabling
efficient data dependent control flow in the Pantry model.

5.5 Results in context
The foregoing discussion compares front-end performance; we now turn briefly to the more general
question of applicability. As discussed in Section 2.4, there are two scenarios in which any of these
systems can be considered applicable: (1) when V can save work by verifiable outsourcing, relative to
executing locally; and (2) when the system is used for computations that V cannot perform itself.

An important concept for the first scenario is V’s cross-over point: the number of instances that V
must outsource before the amortized setup cost drops below the cost of local execution [29, §8.2; 72, §4].
For example, if V can save 60 ms per instance, it can amortize a 20 minute setup after outsourcing 20,000
instances. Note that V can only break even when local execution takes more than 6 ms, since this is the
minimum cost to check P (§2.4, Fig. 3). (None of our benchmarks meets this criterion, though matrix
multiplication comes close (Fig. 9).)

We briefly discuss the second scenario in Section 2.4.

6 Related work
As described in the Introduction, there has been an explosion of work in the last few years on implemented
systems for general-purpose verifiable computation based on probabilistic proof systems (PCPs, etc.) and
sophisticated cryptography. The literature has grown to the point that we cannot do a complete summary
here. However, there is a survey that covers the area [80], including works [12, 45, 75, 76, 78] that are not
specifically relevant here, given Buffet’s focus on general-purpose computation with potentially private
server inputs.

Buffet builds on Pantry [29] and BCTV [20]. The technical details of these systems were described in
Section 2; here, we cover their significance and debts.

Pantry builds on Zaatar [72] (an improvement on [73, 74]; this line of work refines the PCP-based
interactive argument protocol of IKO [47]) and on Pinocchio [64] (an implementation of GGPR [41],
which itself is described in Section 2.1). Pantry’s central contribution is extending verifiable computation
to allow the programmer to work with state. Its core abstraction is a verifiable block store, which enables
applications under certain usage regimes (MapReduce, remote databases, and private server state). Using
this block store for RAM, however, is prohibitively expensive (as experiments reveal).

Our other foundation, BCTV [20], is the most recent in a line of work [16, 17] that supports a general
programming interface, including RAM and control flow constructs. The central contributions here are
the decision to represent a general-purpose CPU in constraints, and the permutation network approach
to verifying RAM. BCTV comprises a front-end, described in Section 2.3, and a highly optimized
implementation of Pinocchio’s protocol, described in Section 5.3.

Several systems have applied and built on these foundations. For example, Trueset handles set
operations efficiently, by refining GGPR and Pinocchio [53]. Like Buffet, Trueset uses the front-end
strategy of line-by-line compilation; it could be profitably integrated with Buffet. In a similar vein, Backes

21



et al. [13] extend Pinocchio to efficiently support operations where the prover receives the input from
a trusted third party and the verifier learns only the output. As another example, ZØ [38] extends C#;
ZØ uses Pinocchio or ZQL [37], with the selection controlled by sophisticated cost models, to compile
code regions that invoke zero-knowledge features. As a final example, some works [15, 35] use the same
back-end that Buffet does and, in lieu of a front-end, manually write constraints that work in the execution
model of Pantry, Zaatar, and Pinocchio; the goal is to extend the Bitcoin protocol to provide anonymity.

Recent work [19] has combined BCTV with theoretical foundations for the back-end [23] that make
the verifier’s setup work (and the prover’s memory requirement) independent of the computation length.
Although this is an exciting development, so far the gains are mostly theoretical. For instance, the verifier
must still do expensive setup work (proportional to the cost of representing the verifier’s checking step
in constraints), and the prover’s computational costs are many orders of magnitude more than in Pantry,
BCTV, and Buffet.

Section 4 adapts the idea of loop flattening, which has been described in other contexts [43, 49, 51, 67].
Unlike Buffet, none of these systems handle control statements (break and continue); also, Buffet
supports irregular loop nests whereas some of the prior techniques handle only regular loop nests.
Macah [81] uses loop flattening in the context of a programming language and compiler for FPGAs. Like
Buffet, Macah appears to be able to handle break and continue; however, few details are given, so the
precise relationship is unclear.

7 Summary, discussion, and future work
The experimental results (§5.4) demonstrate that Buffet achieves its goals. RAM operations are dramati-
cally less expensive than in BCTV and Pantry, and they incur no overhead unless used. Data dependent
control flow is supported and is again substantially less expensive than in BCTV.

Nevertheless, Buffet has some limitations as compared to BCTV. First, Buffet’s circuits are not
universal, in the sense that BCTV uses the term (recall that BCTV’s constraints work for all computations
that satisfy a bound on execution time). In practice, however, BCTV would need thousands of constraint
sets. This is because BCTV’s constraints have three parameters (t, |xΨ|, |x|) [20]. Supposing that we
construct constraints for exponentially increasing values of each, we would require roughly n=(log2 M)3

constraint sets, where M upper-bounds the parameters; for M = 32000 [20], n ≈ 3000.
Moreover, we have assumed throughout that Buffet and BCTV have similar per-instance verification

costs (§1, §2.1, §2.4, §5). In reality, BCTV’s are strictly higher: xΨ is an input to C, and thus contributes
to V’s per-instance cost (§2.4, Fig. 3). The verifier can amortize this additional cost over multiple runs of
Ψ—but this induces the same amortization regime as Buffet, Pantry, and Pinocchio (albeit with less to
amortize for each Ψ).

A second comparative limitation is expressiveness. In principle, TinyRAM supports any programming
language that compiles to machine instructions (§4.3). However, Buffet’s disadvantage here is not clear
cut: although Buffet’s approach has implications for the programming languages that it can support, it
does not necessarily sacrifice support for particular program constructs. In more detail, the absence of
a machine abstraction means that Buffet cannot support function pointers in C (§4.3). More generally,
Buffet cannot efficiently compile code that controls an abstract machine’s program counter at runtime,
such as object-oriented constructs in C++ or Java, which involve indirection through a dispatch table. On
the other hand, there are programming languages in which polymorphism and other language features do
not require direct manipulation of the program counter. For example, polymorphism in Haskell [66] and
Rust [6] works statically [79]; and some Standard ML [59] compilers transform higher-order function
calls (a powerful construct) into a form with no indirect dispatching [32, 36, 68].

Based on this discussion, we conjecture that Buffet’s compiler can map a rich set of higher-level
programming language features to economical representations in Buffet’s execution model. This conjecture
implies that higher-level programmability does not require a machine abstraction, given a suitable choice
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of programming language. In fact, there is a broader research question here: if a computation is to be
compiled to constraints (or non-deterministic circuits), what is the right combination of programming
language and execution model? We leave these questions to the future.

For the present, there are two vantages from which one can summarize Buffet. One view is that Buffet
has the same limitation of all systems in this research area (§6): overhead for the prover is simply too
high to be useful for general applications. Thus, applicability is restricted to situations when the costs of
the protocol are acceptable for one reason or another, as discussed briefly in Section 5.5 and explored at
length elsewhere [29] (other examples include [15, 35, 38]). The other view is that verifiable computation
as an area has tremendous potential and that—within the context of this area—Buffet strikes a sensible
balance between cost and programmability.
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