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Abstract

Attribute-based encryption (ABE) which allows users to encrypt and decrypt messages based

on user attributes is a type of one-to-many encryption. Unlike the conventional one-to-one en-

cryption which has no intention to exclude any partners of the intended receiver from obtaining

the plaintext, an ABE system tries to exclude some unintended recipients from obtaining the

plaintext whether they are partners of some intended recipients. We remark that this require-

ment for ABE is very hard to meet. An ABE system cannot truly exclude some unintended

recipients from decryption because some users can exchange their decryption keys in order to

maximize their own interests. The flaw discounts the importance of the cryptographic primitive.
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1 Introduction

The cryptographic primitive of attribute-based encryption was introduced by Sahai and Waters

[30]. In the scenario, a user presents an authority with a set of credentials that prove their right to

fulfill an attribute. The authority issues a certification for the user to establish that the user fulfills

the semantic of the attribute. This process is repeated for all attributes appropriate to each user.

As a result, a user’s identity is composed of a set, S, of strings which serve as descriptive attributes

of the user. Like traditional Identity-based encryption, a party in an ABE system only needs to

know the receivers’ description in order to determine their public key. For example, a user’s identity

could consist of attributes describing their university, department, and job function. A party can

then specify another set of attributes S′ such that a receiver can only decrypt a message if his

identity S has at least k attributes in common with the set S′, where k is a parameter set by the

system.

Attribute-based encryption has attracted much attention. Lewko, Waters, Pirretti, Goyal, and

Yamada, et al [1, 10, 18, 20, 21, 22, 26, 33] studied the construction of ABE systems. Ostrovsky,

Sahai, and Waters [25] investigated some non-monotonic access structures of ABE. Bethencourt,
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Sahai, Waters, and Goyal, et al proposed some ciphertext-policy attribute-based encryption schemes

[2, 9, 31]. Chase and Chow [4, 5] introduced the setting of multi-authority in ABE. Hohenberger

and Waters [15] discussed oline/offline attribute-based encryption. Most of these constructions use

bilinear groups and some linear secret-sharing schemes as building blocks.

Unlike a conventional one-to-one encryption, an attribute-based encryption is a type of one-to-

many encryption; that is, there could be several intended recipients that are able to decrypt a same

ciphertext. Since there are many intended recipients, each recipient undertakes partial obligations

to keep the privacy of the plaintext. An intended recipient possibly forwards the plaintext to others

or shares his decryption key with others. That is to say, the confidentiality level in an ABE system

is much lower than that in a conventional one-to-one encryption.

We here stress that the conventional one-to-one encryption has no intention to exclude any

partner of the intended recipient from decryption. But on the contrary, an ABE scheme tries to

exclude some unintended recipients from decryption whether they are partners of some intended

recipients. In this note, we remark that some users in an ABE system can exchange their decryption

keys in order to maximize their own interests, which means that an ABE system cannot truly

exclude some unintended recipients from decryption. The flaw renders the cryptographic primitive

unrealistic.

2 Different confidentiality levels

Confidentiality is a fundamental information security objective which is a service used to keep

the content of information from all but those authorized to have it. From the sender’s point of

view, in a conventional one-to-one encryption the intended recipient undertakes the full obligations

to keep the privacy of the plaintext. However, each intended recipient in a one-to-many encryp-

tion undertakes partial obligations. Based on this observation, we classify confidentiality into two

kinds, strong confidentiality and weak confidentiality, corresponding to full obligations and partial

obligations, separately. This classification will be helpful to analyze the behaviors of one intended

recipient and revisit the security of different encryption models.

3 The security requirement for one-to-one encryption revisited

It is well known that the conventional one-to-one encryption requires that the adversary without

the valid decryption key cannot recover the plaintext. Note that the adversary here is an unchar-

acteristic role. The requirement does not imply that some unintended recipients cannot recover or

obtain the plaintext. In real life, some partners of the intended recipient can obtain or recover the

plaintext by the following two methods.

(1) The intended recipient, Bob, forwards the plaintext to his partner, Cindy. We refer to the

Graph 1 for this case.
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Graph 1: Bob forwards the plaintext  to Cindym

(2) The intended recipient, Bob, shares the decryption key with his partner, Cindy. We refer

to the Graph 2 for this case.
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Graph 2: Bob shares his secret key with Cindy

In a word, the conventional one-to-one encryption has no intention to exclude some partners

of the intended recipient from obtaining the plaintext. This property is so obvious that it is often

neglected. However, the partnership of recipients must be taken into account when we design a

one-to-many encryption system.

4 Attribute-based encryption

Attribute-based encryption is claimed to be a vision of public key encryption that allows users

to encrypt and decrypt messages based on user attributes. In the scenario, users are represented

by the summation of their attributes. An encryptor will associate encrypted data with a set of

attributes. An authority will issue users different decryption keys, where a user’s decryption key

is associated with an access structure over attributes and reflects the access policy ascribed to the

user. Notice that attribute-based encryption is a type of one-to-many encryption.

There are two type of attribute-based encryptions, ciphertext-policy attribute-based encryption

(CP-ABE) and key-policy attribute-based encryption (KP-ABE). In a CP-ABE system, keys are

associated with sets of attributes and ciphertexts are associated with access policies. In a KP-

ABE system, the situation is reversed: keys are associated with access policies and ciphertexts are

associated with sets of attributes. For convenience, we only describe the definition of CP-ABE as

follows. We refer to the Graph 3 for the primitive of ABE.

A ciphertext-policy attribute-based encryption scheme consists of the following four PPT algo-

rithms [27]:

Setup(1λ) → (pp,msk): The algorithm takes the security parameter λ ∈ N and outputs the
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public parameters pp and the master secret key msk. Assume that the public parameters

contain a description of the attribute universe U .

KeyGen(1λ, pp,msk,S) → sk: The algorithm takes the public parameters pp, the master

secret key msk and a set of attributes S ⊆ U . It generates a secret key corresponding to S.

Encrypt(1λ, pp,m,A)→ ct: The algorithm takes the public parameters pp, a plaintext message

m, and an access structure A on U . It outputs the ciphertext ct.

Decrypt(1λ, pp, sk, ct) → m: The algorithm takes the public parameters pp, a secret key sk,

and a ciphertext ct. It outputs the plaintext m.

A CP-ABE scheme is correct if the decryption algorithm correctly decrypts a ciphertext of an

access structure A with a decryption key on S, when S is an authorized set of A.

Enc( , , )c pp m A
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Graph 3: The attribute-based encryption
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It is easy to find that the attribute-based encryption tries to exclude some unintended recipients

from obtaining the plaintext whether they are partners of some intended recipients. We shall argue

that this purpose cannot be achieved.

5 Decryption-key-sharing attack against ABE

Most of the existing ABE schemes use bilinear groups and some linear secret-sharing schemes

as building blocks. In such an ABE system, there is an authority who is responsible for generating

secret keys for all members. These secret keys are not for one-time use. They can be repeatedly

invoked. Concretely, most ABE schemes have the following features:

• The secret key for each member is only used for decryption, not for signing, because it is

generated and issued by the authority. Strictly speaking, this key has no the function of

non-repudiation from a legal standpoint. Thus, it is better to call it decryption key.
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• One intended recipient in a communication undertakes only partial obligations to keep the

privacy of the plaintext. He is more prone to reveal the plaintext to others.

• Each member may become one unintended recipient in future communications. In this situ-

ation, a member is more prone to reveal his secret key to his partners if these partners are

also in the same system.

• In order to maximize their interests (the capability to correctly decrypt future communica-

tions), some members can exchange their decryption keys and create alliances with as many

different people in the same system as they can. For convenience, we call it decryption-key-

sharing attack. We refer to the Graph 4 for this attack.

In short, the attribute-based encryption can not truly exclude some unintended recipients from

decryption.

Enc( , , )c pp m A

1Dec( , )m sk c

Sender

c

c

Graph 4: Attacks against the attribute-based encryption
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6 On some hypothetical applications of ABE

It claims that attribute-based encryption has enormous potential for providing data security in

distributed environments. We shall have a close look at the proposed examples.

Example 1 (see [26]). A user Bob looking for employment in the field of secure systems

engineering could place a copy of his resume in publicly accessible web space encrypted with the

attributes “secure systems engineering” and “human resources manager”. Only potential employers

satisfying these attributes would be able to decrypt this information and contact Bob.

Remark 1. We think it is better for Bob to distribute his resume through mass emails as usual.

The traditional job-hunting method could be more effective than placing the encrypted resume in

publicly accessible web space.
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Example 2 (see [2]). Suppose that the FBI public corruption offices in Knoxville and San

Francisco are investigating an allegation of bribery involving a San Francisco lobbyist and a Ten-

nessee congressman. The head FBI agent may want to encrypt a sensitive memo so that only

personnel that have certain credentials or attributes can access it. For instance, the head agent

may specify the following access structure for accessing this information: ((“Public Corruption

Office” AND (“Knoxville” OR “San Francisco”)) OR (management-level > 5) OR “Name: Charlie

Eppes”). By this, the head agent could mean that the memo should only be seen by agents who

work at the public corruption offices at Knoxville or San Francisco, FBI officials very high up in

the management chain, and a consultant named Charlie Eppes.

Remark 2. The bribery allegation concerning a congressman requires strong confidentiality. We

do not think the primitive of ABE is appropriate to this situation because of its weak confidentiality.

Example 3 (see [30]). In a computer science department, the chairperson might want to

encrypt a document to all of its systems faculty on a hiring committee. In this case it would

encrypt to the identity {“hiring-committee”,“faculty”, “systems”}. Any user who has an identity

that contains all of these attributes could decrypt the document.

Example 4 (see [20]). Suppose an administrator needs to encrypt a junior faculty member’s

performance review for all senior members of the computer science department or anyone in the

dean’s office. The administrator will want to encrypt the review with the access policy (“Com-

puter Science” AND “Tenured”) OR “Dean’s Office”. In this system, only users with attributes

(credentials) that match this policy should be able to decrypt the document. The key challenge

in building such systems is to realize security against colluding users. For instance, the encrypted

records should not be accessible to a pair of unauthorized users, where one has the two credentials of

“Tenured” and “Chemistry” and the other one has the credential of “Computer Science”. Neither

user is actually a tenured faculty member of the Computer Science Department.

Example 5 (see [25]). A university is conducting a peer-review evaluation, where each depart-

ment will be critiqued by a panel of professors from other departments. Bob, who is a member of

the panel this year from the Biology department, will need to read (possibly sensitive) comments

about other departments and assimilate them for his written review. In an Attribute-Based En-

cryption system the comments will be labeled with descriptive attributes; for example, a comment

on the History department might be encrypted with the attributes: “History”, “year=2007”, “dept-

review”. In the Goyal et al scheme [26], Bob might receive a private key for the policy “year=2007”

AND “dept-review”, which would allow him to see all comments from this current year. However,

in this setting it is important that Bob should not be able to view comments written about his own

department. Therefore, the policy we would actually like to ascribe to Bob’s key is “year=2007”

AND “dept-review” AND (NOT “Biology”).

Example 6 (see [15]). In a key-policy ABE (KP-ABE) system, an encrypted message can

be tagged with a set of attributes, such as tagging an email with the metadata “from: Alice”,

“to: IACR board”, “subject: voting”, “date: October 1, 2012”, etc. The master authority for the
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system can issue private decryption keys to users including an access policy, such as giving to Bob a

decryption key that enables him to decrypt any ciphertexts that satisfy “to: Bob” OR (“to: IACR

board” AND (January 1, 2011 ≤ “date” ≤ December 31, 2012)).

Remark 3. All the above four examples are contrived. They do not consider the partnership of

users. For example, a user with the attributes of “Tenured” and “Chemistry” is very likely to be

a close friend of one user with the attributes of “Tenured” and “Computer Science”. It is a better

choice for them to exchange their decryption keys in order to enhance their capabilities to decrypt

future communications correctly, if they feel it is necessary. That is, the security of these examples

depends on the will of users rather than some intractable assumptions.

7 On broadcast encryption and revocation system

Broadcast encryption is another primitive of one-to-may encryption which was formalized by

Fiat and Naor [8]. It requires that the broadcaster encrypts a message such that a particular set of

users can decrypt the message sent over a broadcast channel. The Fiat-Naor broadcast encryption

and the works [13, 12, 17, 28, 29] use a combinatorial approach. This approach has to right the

balance between the efficiency and the number of colluders that the system is resistant to. Most of

these schemes require that each user’s decryption key is for one-time use. They have no intention

to exclude some particular recipients from obtaining the plaintext. Therefore, they are immune to

decryption-key-sharing attack.

In a revocation system, a broadcaster encrypts a message such that a particular set of revoked

users cannot decrypt the message sent over a broadcast channel. In 1998, Kurosawa and Desmedt

[16] introduced a method based on polynomial interpolation for constructing revocation systems.

The subsequent revocation systems [24, 32] adopt this technique. In 1999, Canetti et al [3, 6]

developed a different method for multicast encryption. In 2001, Naor, Naor and Lopspeich [23]

proposed a stateless tree-based revocation scheme. Their method was subsequently improved by

Halevy and Shamir [14], by Goodrich, Sun, and Tamassia [11], and by Dodis and Fazio [7].

At IEEE Symposium on Security and Privacy 2010, Lewko, Sahai and Waters [19] proposed a

simple revocation system with very small decryption keys. In the scheme, the authority generates all

users’ decryption keys which should be repeatedly used. Like most ABE schemes, the Lewko-Sahai-

Waters revocation can not truly revoke some users because it can not resist decryption-key-sharing

attack. Note that the Goodrich-Sun-Tamassia tree-based revocation system [11] is immune to this

attack. They have stressed that keys should be updated after each insertion or deletion (revocation)

of a device. They have also specified the strategy for key update and tree rebalance.
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8 Conclusion

The partnership of recipients in an ABE system plays a key role in analyzing the security of

the system which has been neglected in the past decade. We find an ABE system can not resist

decryption-key-sharing attack. The flaw renders the primitive impractical.
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