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Abstract. SIMON is a family of ten lightweight block ciphers published by Beaulieu et al.
from U.S. National Security Agency (NSA). In this paper we investigate the security of SI-
MON against different variants of linear cryptanalysis techniques, i.e. classical and multiple
linear cryptanalysis and linear hulls. We present a connection between linear- and differential
characteristics as well as differentials and linear hulls in SIMON. We employ it to adapt the
current known results on differential cryptanalysis of SIMON into the linear setting. In addi-
tion to finding a linear approximation with a single characteristic, we show the effect of the
linear hulls in SIMON by finding better approximations that enable us to improve the previous
results.
Our best linear cryptanalysis employs average squared correlation of the linear hull of SIMON
based on correlation matrices. The result covers 21 out of 32 rounds of SIMON32/64 with
time and data complexity 254.56 and 230.56 respectively. We have implemented our attacks
for small scale variants of SIMON and our experiments confirm the theoretical biases and
correlation presented in this work. So far, our results are the best known with respect to linear
cryptanalysis for any variant of SIMON.

Keywords: SIMON, linear cryptanalysis, multiple linear cryptanalysis, linear hull, correlation
matrix, branch and bound

1 Introduction

The rise of ubiquitous computing applications in the past decade has highlighted the critical-
ity of using low-computing devices that are usually incapable of fully performing standard
cryptographic algorithms in RFID and sensor networks environments. This trend has in-
creased the need for lightweight cryptographic schemes. Therefore, design of lightweight
cryptosystems has been regular practice over the last few years. For example, stream ciphers
such as Grain [26] and Trivium [17], block ciphers such as PRESENT [15], LED [24] and
PRINCE [16] to hash functions such as QUARK [7], PHOTON [23] and SPONGENT [14]
have all been designed meeting the processing and storage demands of resource constrained
devices.

In this direction, Beaulieu et al. of the U.S. National Security Agency (NSA) designed the
SIMON and SPECK families of lightweight block ciphers that are targeted towards optimal
hardware and software performance, respectively [8]. The SIMON family is constructed to
meet hardware implementation flexibility and support efficient implementations across a wide



variety of platforms. In particular, SIMON was designed to meet the hardware requirements
of low-power limited gate devices such as RFID devices. It is designed to provide block sizes
of 32, 48, 64, 96 and 128 bits, with up to three key sizes for each block size. SIMON N/K
denotes a variant of SIMON that has the plaintext block length of size N bits and the key
size of length K bits. There are ten variants of SIMON, forming a family of lightweight block
ciphers.

Previous Work. In [2,3], Abed et al. presented analysis of SIMON using various cryptan-
alytic techniques including linear-, differential-, impossible differential- and rectangular at-
tacks. In the direction of differential cryptanalysis, the authors presented differential attacks
on reduced-round versions of all SIMON variants. In the direction of impossible differential
analysis, attacks are presented on 13 out of 32 rounds for SIMON 32/64 with data and time
complexities 230 respectively 250.1, and up to 25 out of 72 rounds for SIMON 128/256 with
data and time complexities 2119 respectively 2195. With respect to linear cryptanalysis, [3]
presented key-recovery attacks on variants of SIMON reduced to 11, 14, 16, 20 and 23 rounds
for the respective block sizes of 32, 48, 64, 96 and 128 bits respectively.

Later, Alizadeh et al. [4] improved linear cryptanalysis of SIMON and presented attacks
on 13-round SIMON32, 16-round SIMON48, 19-round SIMON64, 29-round SIMON96 and
36 round SIMON128/128.

In [12], Biryukov et al. presented a method for searching for differentials in ARX ciphers.
The authors apply the method to SIMON and improve the previous differential character-
istics to present attacks on 18 out of 32 rounds for SIMON 32/64 and up to 26 out of 44
rounds for SIMON 64/128.

Most recently, Wang et al. [36] improved the known results on differential cryptanalysis of
SIMON and presented attacks on 21-round SIMON32/64, 22-round SIMON48/72, 22-round
SIMON48/96, 28-round SIMON64/96 and SIMON64/128. In [37], Wang et al. also improved
results for SIMON32/64 for impossible differential cryptanalysis to 18 rounds for data and
time complexities of 232 and 261 respectively. Other attack vectors are also presented; zero-
correlation attacks are applied to 20 rounds with data and time complexities 232 respectively
256.9 and integral cryptanalysis techniques to 21 rounds with data and time complexities of
231 respectively 263.

Contributions. In this paper we analyze the security of SIMON against variants of linear
cryptanalysis. In the direction of classic linear cryptanalysis, using Algorithm 2 of Matsui,
we extend attack of [4] to 17, 20, 23, 34 and 43 rounds for the respective block sizes of 32,
48, 64, 96 and 128 bits respectively. We also present a generalized algorithm based on the
connection given by Alizadeh et al. in [4] to convert any given differential characteristic to
a linear characteristic for SIMON.

For multiple linear attacks, we attack 18, 20, 22, 33 and 39 rounds of respective block
sizes of 32, 48, 64, 96 and 128 bits respectively. Furthermore, the connection between linear
and differential characteristics is generalized to a connection between capacity of a system
of approximations (in multiple linear cryptanalysis) and a differential (in differential crypt-
analysis) for SIMON.



We also establish a connection between capacity of a linear hull and differential for
SIMON and use the known results on differential cryptanalysis of SIMON to attack 21, 21,
29, 36, and 50 rounds of the respective block/key sizes of 32/64, 48/96, 64/128, 96/144,
and 128/256 bits. Our focus on improving the linear cryptanalysis results on SIMON by
estimating the average squared correlation of linear hulls. We show the linear hull effect by
finding better approximations that enable us to break more rounds. A brief summary of our
results are presented in Table 1.

Organization. The paper is structured as follows. In Section 2 a brief description of SIMON
is presented. In Section 3 the different concepts and notations around linear cryptanalysis
of SIMON are described. Also, in Section 4 it is shown that there are different links and
connections related to linear cryptanalysis and differential cryptanalysis, multiple linear
cryptanalysis and linear hulls of SIMON, which can be used to improve attack results.
In Section 5 we used squared correlation matrix to establish a linear hull of SIMON and
investigate the data and time complexity for the smallest variant of SIMON. Finally, the
paper is concluded in Section 7.

Table 1. Linear cryptanalysis of SIMON using Matsui’s Algorithm 1 and 2, multiple linear,
and linear hulls

SIMON # Rounds Data Time

Matsui’s Algorithm 1 [4] 32/64 13 232 232

Matsui’s Algorithm 2 32/64 17 232 259.5

48/72 19 246 270

48/96 20 246 286.5

64/96 22 258 291

64/128 23 258 2108

96/144 34 294 2136.5

128/192 40 2128 2176.5

128/256 42 2128 2235.5

Multiple Linear 32/64 18 232 232

48/K 20 247.42 247.42

64/K 22 259 259

96/K 33 294.42 294.42

128/K 39 2128 2128

Linear Hull 32/64 21 231.69 263.69

32/64 21 230.56 255.56

48/72 20 244.11 270.61

48/96 21 244.11 287.11

64/96 27 262.53 288.53

64/128 29 262.53 2123.53

96/144 36 294.2 2135.2

128/192 48 2126.6 2187.6

128/256 50 2126.6 2242.6



2 Description of SIMON

SIMON is a family of lightweight block ciphers, designed by the NSA and published in 2013,
to achieve an optimal hardware performance [8]. SIMON has a classical Feistel structure
with the round block size of N = 2n bits, where n is the word size representing the left or
the right branch of the Feistel scheme at each round. The number of rounds is denoted by
r and depends on the variant of SIMON. In this paper, we denote the right part and the
left part of the plaintext P by PR and PL respectively. Similarly, we denote the right part
and the left part of the ciphertext C by CR and CL respectively. The output of round r is
denoted by Xr = Xr

L‖Xr
R and the subkey used in round r is denoted by Kr. Given a string

X, (X)i denotes the ith bit of X. Bitwise circular left-rotation of string a by b positions to
the left is denoted by a ≪ b. Further, ⊕ and & denote bitwise XOR and AND operations
respectively.

Each round of SIMON applies a non-linear, non-bijective (and hence non-invertible)
function F : Fn2 → Fn2 to the left half of the state. The output of F is added using XOR to
the right half along with a round key, and the two halves are swapped. The function F is
defined as

F (x) = ((x≪ 8)&(x≪ 1))⊕ (x≪ 2)

The single round of SIMON is represented in Figure 1. The subkeys are derived from a

Xi
L Xi

R

F ki

Xi+1
L

Xi+1
R

Fig. 1. The SIMON round function

master key. Depending on the size K of the master key, the key schedule of SIMON operates
on two, three or four n-bit word registers. Detailed description of SIMON structure and key
scheduling can be found in [8].

3 Preliminaries

This section presents the main concepts used in the different cryptanalytic methods used
throughout the paper.

Linear Cryptanalysis. Linear cryptanalysis [30] is a well-known cryptanalytic technique
that has been employed on several block ciphers. Examples include the DES, FEAL-4, Ser-
pent, Shannon and SAFER [30,35,19,25,28]. The most important fact about the linear crypt-
analysis is that it is a known plaintext attack, which is a more practical and realistic attack



model that that of differential cryptanalysis which works under the chosen plaintext model.
Linear cryptanalysis tries to find a highly probable linear expressions involving plaintext
bits, ciphertext bits and the subkey bits as⊕

i∈P
Pi
⊕
j∈C

Cj =
⊕
w∈K

Kw.

for some sets P, C,K ⊂ {0, . . . , N −1}, and P , C, and K represents the plaintext, ciphertext
and key, respectively. In this scenario, the attacker has no way to select which plaintexts
(and corresponding ciphertexts) are available, which is a reasonable assumption in many
applications and scenarios.

Multiple Linear Cryptanalysis. For improving the linear cryptanalysis, Kaliski and
Robshaw proposed in 1994 an algorithm that used several linear approximations [27]. The
main constraint in the approach is that it uses only approximations in the same bits of
subkeys K, i.e.

⊕
w∈KKw. In 2004 Biryukov et al. proposed multiple linear cryptanalysis

technique that does not require the constraint [11]. They successfully applied their approach
to the DES. This approach has been also used in the cryptanalysis of reduced Serpent [20,21].

Linear Hulls. If there are several linear characteristics with the same input and output
mask, one can combine these characteristics as a linear hull, which has probability at least
as good compared to the classic linear characteristics. Linear hulls have been studied in [31]
and used in cryptanalysis of several block ciphers such as PRESENT [29,?]. Linear hulls can
be used in Matsui’s Algorithm 2 [30] to decrease the complexity of linear attacks.

Multiple Linear Hulls. This is a combination of multiple linear cryptanalysis and linear
hulls where if there are several linear hulls for a cipher, they can be used in the multiple
linear cryptanalysis framework of Biryukov et al. [11] to decrease the complexity of linear
attacks.

Correlation Matrix. Linear cryptanalysis finds a linear relation between some plaintexts
bits, ciphertexts bits and some secret key bits and then exploits the bias or the correlation
of this linear relation. In other words, the adversary finds an input mask α and an output
mask β that yield a higher absolute bias εF (α, β) ∈ [−1

2 ,
1
2 ]. In other words

Pr[〈α,X〉+ 〈β, FK(X)〉 = 〈γ,K〉] =
1

2
+ εF (α, β)

deviates from 1
2 , where 〈·, ·〉 denotes an inner product. The correlation of a linear approxi-

mation is defined as
CF (α, β) := 2εF (α, β)

Another definition of the correlation which we will use later is

CF (α, β) := F̂ (α, β)/2n



where n is the block size of F in bits and F̂ (α, β) is the Walsh transform of F defined as
follows

F̂ (α, β) :=
∑

x∈{0,1}n
(−1)β·F (x)⊕α·x

For a given output mask β, the Fast Walsh Transform algorithm computes the Walsh trans-
forms of an n-bit block size function F for all possible input masks α with output mask β
using n2n arithmetic operations.

In order to find good linear approximations, one can construct a correlation matrix (or a
squared correlation matrix). In the following, we state the definition the correlation matrix
and show how the average squared correlation over all the keys is estimated.

Given a composite function F : Fn2 → Fn2 such that

F = Fr ◦ · · · ◦ F2 ◦ F1,

We estimate the correlation of an r-round linear approximation (α0, αr) by considering the
correlation of each linear characteristic between α0 and αr. The correlation of ith linear
characteristic (α0 = α0i, α1i, · · · , α(r−1)i, αr = αri) is

Ci =

r∏
j=1

CFj (α(j−1)i, αji)

It is well known, see e.g. [22], that the correlation of a linear approximation is the sum of all
correlations of linear trails starting with the same input mask α and ending with the same
output mask β, i.e. CF (α0, αr) =

∑Nl
i=1Ci, where Nl is the number of all the possible linear

characteristics between (α0, αr).
When considering the round keys which affects the sign of the correlation of a linear

trail, the correlation of the linear hull (α, β) is

CF (α, β) =

Nl∑
i=1

(−1)diCi,

where di ∈ F2 refers to the sign of the addition of the subkey bits on the ith linear trail.
In order to estimate the data complexity of a linear attack, one uses the average squared
correlation over all the keys which is equivalent to the sum of the squares of the correlations
of all trails,

∑
iC

2
i , assuming independent round keys [22].

Let C denote the correlation matrix of an n-bit key-alternating cipher. C has size 2n×2n

and Ci,j corresponds to the correlation of an input mask, say αi, and output mask, say βj .
Now the correlation matrix for the keyed round function is obtained by changing the signs
of each row in C according to the round subkey bits or the round constant bits involved.
Squaring each entry of the correlation matrix gives us the squared correlation matrix M .
Computing M r gives us the squared correlations after r number of rounds. This can not be
used for real block ciphers that have block sizes of at least 32-bit as in the case of Simon32/64.
So in order to find linear approximations one can construct a submatrix of the correlation
(or the squared correlation) matrix [1,14]. In Section 5, we construct a squared correlation
submatrix for Simon in order to find good linear approximations.



4 Connections and Linear Cryptanalysis of SIMON

In this section we will investigate the possibility to use connections between differential and
linear cryptanalysis and its variants in order to provide better results on SIMON. In some
cases as in multiple linear cryptanalysis and linear hulls, this yields a better time and data
complexity for more rounds.

4.1 Connections between Linear- and Differential Characteristics for SIMON

In this section, we explain the connections described in [4] pertaining to the connection
between linear- and differential characteristics for SIMON, and its application to SIMON
variants other than SIMON32/64.

In the round function of SIMON, the only non-linear operation is the bitwise AND. Note
that, given single bits A and B, the output of (A&B) is 0 with probability 3

4 . Hence, we can
extract the following highly biased linear expressions for the F -function:

Approximation 1 : Pr[(F (X))i = (X)i−2] = 3
4

Approximation 2 : Pr[(F (X))i = (X)i−2 ⊕ (X)i−1] = 3
4

Approximation 3 : Pr[(F (X))i = (X)i−2 ⊕ (X)i−8] = 3
4

Approximation 4 : Pr[(F (X))i = (X)i−2 ⊕ ((X)i−1 ⊕ (X)i−8)] = 1
4

 (1)

Similarly, differential cryptanalysis [10] is a widely used chosen plaintext/ciphertext crypt-
analytic attack technique. In a differential attack we look for an input pair with difference
∆X that propagates to an output pair with difference ∆Y with a high probability p. This
differential characteristic is denoted by ∆X

p−→ ∆Y .
There are many works which discuss connection between differential and linear charac-

teristics [18,13]. We observe that there is an explicit connection between linear characteristic
and differential characteristic for SIMON. This observation is explained as follows. We can
also extract the following highly probable differential expressions for the F -function:

Differential Characteristic 1 : (∆X)i
1
4→ (∆F (X))i+2

Differential Characteristic 2 : (∆X)i
1
4→ (∆F (X))i+2,i+1

Differential Characteristic 3 : (∆X)i
1
4→ (∆F (X))i+2,i+8

Differential Characteristic 4 : (∆X)i
1
4→ (∆F (X))i+2,i+1,i+8


, (2)

where (∆F (X))i+1,i+8 denotes differences in (i+ 1)-th and (i+ 8)-th bits for ∆F (X) to be 1
and remaining bit positions of ∆F (X) are 0 (and similarly for the other expressions). Given
Equations 2 and comparing it with the related equation for a linear approximation of the
function F , i.e. Equations 1, and the fact that for linear characteristic we approximate bits
from output of F by bits from its input and for a differential characteristic we propagate
differences in bits of input to the bits of output of F , we see a unique connection between
Equations 1 and Equations 2. In other words, each approximation in Equation 1 can be
mapped to a differential characteristic in Equation 2. Based on this observation, Algorithm 1



Algorithm 1: A general algorithm to convert an r-round differential characteristic
(DC) for SIMON N/K to an equivalent r-round linear characteristic (LC) for SIMON
N/K.

Input:
– An r-round DC for SIMON N/K, where
• (∆X)iL; (∆X)iR for 0 ≤ i ≤ r
• N = 2n
• DC is given as a sequence of the location of active bits for each round in the

left/right side.

1 Xi
L ← (∆X)iR and Xi

R ← (∆X)iL, for 0 ≤ i ≤ r
// (∆X)iR is the sequence of active bits in the right side of round i of the given DC;

2 if (∆X)iR 6= φ then // (∆X)0R 6= φ means there is no active bit in (∆X)0R
3 select x ∈ (∆X)0R // x is a location of an active bit in (∆X)0R
4 else
5 select x ∈ (∆X)0L // x is a location of an active bit in (∆X)0L
6

7 select y ≤ N
2
// y is a position in LC which corresponds to the position x of the DC, note

that DC/LC are rotation invariant [2];

8 for 0 ≤ i ≤ r and for any z ∈ {Xi
L;Xi

R}: z ← y − (x− z) mod N
2

// any active bit in the DC has

an equivalent active bit in the generated LC;

9 return Xi
L;Xi

R for 0 ≤ i ≤ r ;

represents an approach to convert an r-round differential characteristic to an equivalent r-
round linear characteristic.

Now we investigate the strength of different variants of SIMON against linear attack,
given the above observation and the known results on differential cryptanalysis of variants
of SIMON from [2]. For SIMON32/64 reduced to 11 rounds, a linear characteristics based on
the Abed et. al. [2] approach will have bias of 2−17. However, we considered the propagation
of number of approximations for this variant of SIMON on more rounds and found the
following pattern

. . . , 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, . . .

Based on this pattern, it is possible to generate a pattern that has bias of 2−16 for 11-round,
as

2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1.

Based on a similar strategy, it is possible to present linear characteristics for other variants
of SIMON. We summarize the parameters of our linear attacks for the different variants
of SIMON in Table 2. On the other hand, to use an approximation with the bias of ε to
mount a linear attack the expected complexity is O(ε−2) [30]. Hence, we consider a case
where ε ≥ 2−n+2, where N = 2n and for the complexity of 8× ε−2 the success probability of
key recovery attack would be 0.997 [2,30]. Our results for different variants of SIMON when
ε ≥ 2−n+2 have been represented in Table 3.



Table 2. Summary of linear analysis for the different variants of SIMON [4]. In this table KR
denotes a linear characteristic that can be used trough a key recovery attack, Dis denotes
a linear characteristic that can be used trough a distinguishing attack and App. denotes
approximation.

Linear Expression

Start End

Active bits in Active bits in Active bits in Active bits in
SIMON the left side the right side the left side the right side # Rounds # App. Bias Attack

32/64 10, 6, 2, 6, 14 8, 0 2, 10, 6, 2 4 11 15 2−16 KR
32/64 4, 8, 4, 0 10, 6, 2 2, 14, 10 12 22 31 2−32 Dis
48/96 2, 18, 14, 10 12 20, 0, 20, 16 2, 22, 18 14 22 2−23 KR
48/96 2, 18, 14, 10 12 10, 22, 6, 6 8 23 46 2−47 Dis
64/128 2, 26, 22, 18 20 2, 26, 22, 18 20 17 28 2−29 KR
64/128 2, 26, 18, 28, 14, 30, 0, 26, 12 2, 26, 18, 28, 14, 30, 0, 26, 12 25 60 2−61 Dis

28, 62, 24, 10 28, 62, 24, 10
96/144 2, 46, 42, 46, 38 0, 40 2, 46, 42 44 27 46 2−47 KR
96/144 2, 42, 38, 34, 0, 40, 32 36, 0, 40, 36, 32 2, 42, 38, 34 36 70 2−71 Dis

46, 38, 30
128/256 52, 0, 56, 52, 48 2, 58, 54, 50 2, 58, 54, 50 52 34 63 2−64 KR
128/256 36, 0, 48, 40, 36, 32 2, 50, 42, 38, 34 2, 50, 42, 38, 34, 0, 48, 40, 32 52 127 2−128 Dis

62, 46, 38, 30

Table 3. Summary of linear analysis for the different variants of SIMON such that one can
mount a linear attack with the success probability of 0.997 [4]. In this table App. denotes
approximation.

Linear Expression

Start End

Active bits in Active bits in Active bits in Active bits in
SIMON the left side the right side the left side the right side # Rounds # App. Bias

32/64 10, 6, 2 4 0, 8, 0, 8, 4 2, 10, 6 10 13 2−14

48/96 2, 18, 14, 10 12 2, 22, 18 20 13 19 2−20

64/128 2, 26, 22, 18 20 2, 26, 22, 18 20 17 28 2−29

96/144 2, 46, 42, 46, 38 0, 40 0, 0, 4 2, 46 26 45 2−46

128/256 2, 58, 54, 50 52 2, 58, 54, 50 52 33 59 2−60

Letting (X)[i1, ..., im] = (X)i1⊕ . . .⊕ (X)im , it is possible to extract the linear expression
related to each variant of SIMON that include only input, output and key bits. For example,
the 11-round linear expression for SIMON32/64 is(

(PR)[0, 8]⊕ (PL)[2, 10, 14]
⊕(CR)[6, 10]⊕ (CL)4

)
=

 (K1)[0, 8]⊕ (K2)[2, 6, 10]⊕ (K3)4⊕
(K4)[6, 10]⊕ (K5)8 ⊕ (K6)10 ⊕ (K8)10

⊕(K9)8 ⊕ (K10)[6, 10]⊕ (K11)4

 . (3)

4.2 A Key Recovery Attack on SIMON Using the Matsui’s Algorithm 2

Given an 11-round linear characteristic such as Equation 3, we can add another one round
to the beginning and one round to the end of the characteristic to extend the attack up to



13-rounds free of any extra approximation [4]. To extend the 11-round linear characteristic
to more rounds we use Algorithm 2 of Matsui to recover the key, where we guess subkyes
of rounds at the beginning and the end of the cipher and determine the correlation of the
following linear relation to filter the wrong subkeys:

(Xi
R)[0, 8]⊕ (Xi

L)[2, 10, 14]⊕ (Xi+11
R )[6, 10]⊕ (Xi+11

L )4. (4)

With respect to Figure 2, we can append a further round to the beginning of the cipher to
find a new 12-round linear characteristic. Since SIMON injects the subkey at the end of its
round function, then this work does not have any computational complexity. More precisely,
for the current 11-round linear hull, we evaluate (Xi

R)[0, 8]⊕ (Xi
L)[2, 10, 14]⊕(Xi+11

R )[6, 10]⊕
(Xi+11

L )4. If we add a round in the backwards direction, i.e. round i − 1, we can determine
(Xi

L)[2, 10, 14] as a function of F (Xi−1
L )[2, 10, 14]⊕ (Ki)[2, 10, 14]⊕Xi

R)[2, 10, 14], where we
know Xi−1

R and Xi−1
L . Hence, it is possible to use the correlation of the following linear

relation to filter the wrong subkeys:

(Xi
R)[0, 8]⊕ (Xi

L)[2, 10, 14]⊕ (Xi+11
R )[6, 10]⊕ (Xi+11

L )4 ⊕ (Ki)[2, 10, 14].

We can continue our method to add more rounds to the beginning of linear hull in the cost
of guessing some bits of subkeys. To add more rounds in backward, for example we must
guess the bit (F (Xi−1

L ))2 = (Xi−1
L )0⊕ ((Xi−1

L )1&(Xi−1
L )10). On the other hand, to determine

(F (Xi−1
L ))2 one should guess (Xi−1

L )0 and (Xi−1
L )1 only if the guessed value for (Xi−1

L )10 is
1. So, in average we need one bit guess for (Xi−1

L )1 and (Xi−1
L )10 (in Figure 2 such bits are

indicated in blue).
Figure 2 shows the bits of subkeys that should be guessed when we add 3 rounds to

the beginning and 3 rounds to the end of the above 11-round characteristic (27.5 bits of
subkeys). Hence, we can attack 17 rounds of SIMON32/64 using Algorithm 2 of Matsui to
recover the key. The time complexity for this attack is 259.5 and the data complexity is 232.

Similarly, in Appendix B, we apply this technique to the variants SIMON48/K, SIMON64/K,
SIMON96/K and SIMON128/K, to extend the linear characteristics to more rounds. In par-
ticular, we use Algorithm 2 of Matsui to recover the key, where we guess subkeys of rounds
at the beginning and the end of each characteristic and determine the correlation of the
related linear relation between the input and the output of the characteristic to filter the
wrong subkeys. Figures 5, 6, 7 and 8 in Appendix B show the bits of subkeys that should
be guessed when we add extra rounds to each variants of SIMON. The results using Matsui’s
Algorithm 2 are summarized in Table 1.

4.3 Multiple Linear Cryptanalysis of SIMON

The technique of multiple linear cryptanalysis, an improved version of the linear cryptanaly-
sis, is proposed by Biryukov et al. in 2004 [11]. This attack is applicable to (reduced-round)
ciphers that have more than one approximation. Suppose that, there are m approximations
on r rounds of a cipher as follows:

P ipj ⊕ C
i
ck

= Ki
kl

(1 6 i 6 m). (5)
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Fig. 2. The keys (in black) that should be guessed to attack 17 rounds of SIMON32/64. The
red bits are not required to be guessed and the blue bits cost guessing a half bit on average.



The goal is to recover bits of key or finding some informations about the key bits that appear
in Equation 5. An explicit approach is that a counter ti is associated with each approximation
and increased when the corresponding linear approximation is verified for a particular pair
of known plaintext and ciphertext. As for algorithm 1 of Matsui [30], the values of Ki

kl
are

determined from the experimental bias (ti − N/2)/N and the theoretical bias εi (bias of
the approximation i) by means of a maximum likelihood rule [30,20]. In [11] the authors
show that the theoretical data complexity of the generalized multiple linear cryptanalysis is
decreased compared to the original attack. The data complexity of the attack is inversely
proportional to the capacity of the system of m approximations used, which is given by

c2 = 4×
m∑
i=1

ε2i . (6)

In other words, by increasing the quantity of Equation 6, one can decrease the data com-
plexity of the attack. Therefore, finding more approximations is the main task in multiple
linear cryptanalysis.

For each variant of reduced-round SIMON, one can find more than one linear characteris-
tic with desirable bias. Thus, we can use the multiple linear cryptanalysis technique to present
an improved linear attack on SIMON. To find a linear characteristic for SIMON32/64, if bit
“2” in the right half of state is considered, the round function is approximated for the bit,
and propagation of the approximation is followed in the forward and the backward direction
for SIMON32/64. The results are presented in Table 11. Now, if another bit, except bit “2”,
is considered at the beginning of the work, then another table, different from Table 11, and
another 11-round linear characteristic with bias 2−16 for SIMON32/64 is produced. Since
there are 16 bits in the right half of state of SIMON32/64, 16 tables like Table 11 and 16
linear characteristics of bias 2−16 for 11-round SIMON can be found.

On the other hand, it is possible to approximate active bits at the beginning and the
end of a linear characteristic using approximation 1, 2, 3 or 4 in Equation 1. These changes
have no impact on the bias of the linear characteristic. Therefore, corresponding to each
active bit at the beginning or the end of a linear characteristic of bias ε, there are four
linear characteristics of the same bias, ε. For example, for the 11-round linear characteristic
for SIMON32/64 in table 2, there are two active bits in the beginning (the bits “8” and
“0”) and one active bit in the end (bit “4”). The bits can be approximated by 43 different
approximations, but identical probability. The different approximations produce 64 linear
characteristics of bias 2−16 for 11-round SIMON32/64. With respect to the 16 bits of right
half of state in SIMON32/64, the number of 11-round linear characteristics of bias 2−16 is

43 × 16 = 210.

Given these approximations, one can present an improved linear attack on reduced-round
SIMON, explained for SIMON32/64 in Section 4.3.

Similarly, many approximations for reduced rounds of other variants of SIMON can be
found, see Tables 11, 12, 13, 14, and 15. Note that the patterns in Tables 11, 12, 13, 14,
and 15, are produced by considering only one bit in the state of cipher.



Connection between Capacity and Expected Differential Probability for SIMON.
A differential of SIMON with fixed input and output difference is composed of many dif-
ferential characteristics of the cipher, with the same input and output difference. Suppose
that there are m differential characteristics with input difference α and output difference β
of probability pi(α, β), 1 ≤ i ≤ m. Then Expected Differential Probability for the differential
with the same input and output difference is defined in the following way:

EDP (α, β) =
∑
i

pi(α, β). (7)

In this section, we extend the given connection between a linear characteristic and differential
characteristic in Section 4.1 to a connection between capacity of a system of approximations
(in multiple linear cryptanalysis) and expected differential probability for SIMON as Theo-
rem 1.

Theorem 1. Suppose that there are m differential characteristics for SIMON reduced to r
rounds that result a differential with probability p for the r rounds. Then there are m linear
characteristics for SIMON reduced to r rounds that produce a system of approximations of
capacity:

c2 = p.

Proof. Suppose that differential characteristic i has probability pi where 1 ≤ i ≤ m. Then
expected differential probability, p, for the m differential characteristics is:

p =

m∑
i=1

pi.

On the other hand in Section 4.1, it is shown that for a differential characteristic of probability
q, there is a linear characteristic of bias 2−1 · q1/2 for SIMON. Therefore, using the m
differential characteristics of probability pi, m linear characteristics of bias εi can be found

where εi = 2−1 · p1/2
i or equivalently ε2i = 2−2 · pi. Then

p =
n∑
i=1

pi =
n∑
i=1

4× ε2i = 4×
n∑
i=1

ε2i = c2. (8)

ut

Now, given Theorem 1, the connection between capacity and differentials for SIMON can be
exploited to find other multiple linear attacks on SIMON based on the differentials that are
presented for the cipher. For example, if the differentials for SIMON32/K, 48/K and 64/K
in [12] are considered, then it is possible to present a linear attack on 16, 17, and 23 rounds
of the variants, with data complexity 230.94, 242.11 , and 260.53, respectively. The results on
different variants are summarized in Table 4.



Table 4. The number of approximations and cumulative capacities of the extended approx-
imations for SIMON

SIMON # rounds log2 bias, # approx. log2 capacity # rounds
approx. attacked

32/64 11 −16 42 × 4× 16 −20 13
32/64 16 −22;−23;−24 28; 211; 212 −32 18
32/64 13 45083 −29.69 15
32/64 13 full search −28.11 15
32/64 14 full search −30.94 16
48/K 14 −23 4× 43 × 24 −31.42 16
48/K 18 −33;−34;−35 214.58; 217.58; 218.58 −47.42 20
48/K 15 112573 −42.11 17
64/K 17 −29 4× 4× 32 −47 19
64/K 20 −40 43 × 44 × 32 −59 22
64/K 20 210771 −58.68 22
64/K 21 337309 −60.53 23
96/K 27 −47 42 × 4× 48 −80.42 29
96/K 31 −58 43 × 44 × 48 −94.42 33
128/K 34 −64 44 × 4× 64 −110 36
128/K 37 −74 43 × 43 × 64 −128 39

A Key Recovery Attack on 18-round of SIMON32/64 based on Multiple Linear
Cryptanalysis. In this section, the multiple linear attack on SIMON32/64 is described.
One can use Table 11 to construct 4 × 4 × 16 approximations of bias 2−22 for 16-round
SIMON32/64. The capacity of the system based on those approximations is:

4× 4× 16× 4× 2−44 = 2−34.

Thus, the data complexity of a linear attack based on the system exceeds the full codebook.
However, another system of approximations with desirable properties can be constructed.
For this, consider Table 5 which is a partition of Table 11. The active bit (the bit that must
be approximated) in the right side of 15th round in Table 5 is bit “2”. This bit can be
approximated using one of the four approximations in Equation 1.

Suppose that approximation 1 is used. Then the active bit in the right side of 16th round
will be bit “0” which can be approximated using one of the four approximations in Equa-
tion 1. This results in 4×16×4 linear characteristics of bias 2−22 for 16-round SIMON. Now,
suppose that bit “2” in the right side of 15th round is approximated using approximation 2
in Equation 1. Then, the active bits in the right side of 16th round are bits “0” and “1” that
each of them can be approximated using one of the four approximations in Equation 1 and
4×16×42 linear characteristics of bias 2−23 can be found for 16-round SIMON. If bit “2” in
the right side of 15th round is approximated using approximation 3 in Equation 1, another
4×16×42 linear characteristics of bias 2−23 for 16-round SIMON can be produced. Finally, if
bit “2” in the right side of 15th round is approximated using approximation 4 in Equation 1,
then the active bits in the right side of 16th round are bits “0”, “1”, and “10” that each
of them can be approximated using one of the four approximations in Equation 1. In other
words, 4×16×43 linear characteristics of bias 2−24 for 16-round SIMON32/64 can be found.
The results are summarized in Table 6. Hence, the capacity of those approximations will be



Table 5. A system of linear equations for SIMON32/64 reduced to 16 rounds

r Active bits in the left side Active bits in the right side Used App. # App.

1 10 1 or 2 or 3 or 4 1
2 10 − − 0
3 8, 8 10 1 1
4 10, 6, 6 8 1 1
5 4, 8, 4 10, 6 1; 1 2
6 2, 10, 6, 2 4 1 1
7 0, 8, 0, 8, 4 2, 10, 6 1; 1; 1 3
8 2, 14, 10, 14, 6 0, 8 1; 1 2
9 12, 0, 12, 8 2, 14, 10 1; 1; 1 3
10 2, 14, 10 12 1 1
11 0, 0, 12 2, 14 1; 1 2
12 2, 14 0 1 1
13 0 2 1 1
14 2 − − 0
15 0 or 0, 1 or 0, 10 or 0, 1, 10 2 1 or 2 or 3 or 4 1
16 0 or 0, 1 or 0, 10 or 0, 1, 10 1 or 2 or 3 or 4 1 or 2 or 3

determined as

c2 = 4× 16× 4× (4× 2−44 + 2× 42 × 2−46 + 43 × 2−48) = 2−32.

Therefore, given this capacity for a 16-round multiple linear characteristics and the fact that
one round to the beginning and one round to the end of each characteristic can be added
without any extra approximation, the attack can be applied on 18 rounds of SIMON32/64.

Table 6. Different approximations of bit “2” in the 15th round

App. variant active bit(s) in the active bit(s) in the # app in the # equations for log2 bias of the
left of 15th round right of 16th round 16th round 16-round 16-round char.

1 0 0 1 4× 16× 4 −22
2 0, 1 0, 1 2 4× 16× 42 −23
3 0, 10 0, 10 2 4× 16× 42 −23
4 0, 1, 10 0, 1, 10 3 4× 16× 43 −24

4.4 Linear Hulls of SIMON

Similarly to the connection between EDP of a differential and capacity of a system of linear
equations (in the multiple linear cryptanalysis), one can show a relation between EDP of a
differential and capacity of a system of linear hull for SIMON as Theorem 2.

Theorem 2. Suppose that there are m differential characteristics for SIMON reduced to r
rounds, with fixed input and output difference, that result a differential with probability p for
the r rounds. Then there are m linear characteristics for SIMON reduced to r rounds, with
fixed input and output mask, that produce a linear hull of capacity

c2
LH = 2−2 · p.



Alkhzaimi and Lauridsen in [6] and Abed et al. in [3] found many differential character-
istics for some variants of SIMON which yield the desirable differentials for the cipher. In
addition, a maximum number of the differential characteristics for some variants of SIMON
was investigated by Biryukov et al. [12]. Based on the connection between linear hulls and
differentials of SIMON, one can use the differentials by Abed et al. in [3] or differentials by
Biryukov et al. in [12] to find the corresponding linear hulls for variants of reduced-round
SIMON. We find the linear characteristics for SIMON32/64, 48/K, and 64/K reduced to
13, 15, and 21 rounds, respectively, based on the differential trails by Biryukov et al. For
SIMON 96/K and 128/K reduced to 30 and 41 rounds, we use differential trails by Abed
et al. Using those linear characteristics, we can find suitable linear hulls for each variant of
SIMON. The summary of the results are presented in Table 7, and Tables 16, 17, 18, and 19
in Appendix C.

Table 7. Linear characteristics based on the differential trials by Biryukov et al. for
SIMON32/64

Differential Linear

r 4L 4R XL XR Used App.

0 − 6 6 − −
1 6 − − 6 1
2 8 6 6 4 1
3 6, 10 8 4 2, 6 1; 1
4 12 6, 10 2, 6 0 1
5 6, 10, 14 12 0 2, 6, 14 1; 1; 1
6 0, 8 6, 10, 14 2, 6, 14 4, 12 1; 1
7 2, 6, 14 0, 8 4, 12 6, 10, 14 1; 1; 1
8 4 2, 6, 14 6, 10, 14 8 1
9 2, 14 4 8 10, 14 1; 1
10 0 2, 14 10, 14 12 1
11 14 0 12 14 1
12 − 14 14 − −
13 14 − − 14 −∑

r log2 pr = −36 log2 ε
2 = −38

log2 pdiff = −29.69 log2 c
2
LH = −31.69

# trails = 45083 # characteristics = 45083

Extending Linear Hulls and Key Recovery Attack on SIMON32/64. Similar to
the approach we used to extend a linear characteristic when it is used in Algorithm 2 of
Matsui (see Section 4.2), it is possible to extend a given linear hull for more rounds. For
example, consider the linear hull based on the differential by Biryukov et al. for 13-round
SIMON32/64. The input and output mask of the linear hull is (Γ6,−) and (−, Γ14). We
extend it by adding some rounds to the beginning and the end of the cipher, as follows.

In the backwards direction. With respect to Figure 3, we can append a further round
to the beginning of the cipher to find a new 14-round linear hull by input mask (−, Γ6).



Since SIMON injects the subkey at the end of its round function, then this work does not
have any computational complexity. We can continue our method to add more rounds to the
beginning of linear hull in the cost of guessing some bits of subkeys similar to the approach
presented in section 4.2.

In the forward direction. We can use the same approach to add some rounds to the
end of linear hull in the cost of guessing some bits of subkeys. More details are depicted in
Figure 3.
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Fig. 3. The subkey bits (in black) that should be guessed to attack 21 rounds of
SIMON32/64. The red bits are not required to be guessed.

We can extend the 13-round linear hull of SIMON32/64 by eight rounds (by adding four
rounds at the beginning and four rounds to the end) in a key-recovery attack such that
the total computational effort for collecting plaintext-ciphertext pairs and testing all sub-
key candidates for the appended rounds remains significantly smaller than for exhaustively
searching the full key space.



Attack Complexity. We require 231.69 known plaintexts. We also need 231.69 encryptions
for producing the required known plaintexts and 231.69×232 encryptions to find the round-key
bits on average. Therefore, the time complexity of the attack is 231.69 + 231.69× 232 ≈ 263.69.

4.5 Key Recovery Attack on Other Variants of SIMON

In the above, we explain a key recovery attack which uses a linear hull on SIMON32/64.
The same procedure can be applied to other variants of SIMON, see Appendix D for more
details. A summary of our results on the linear hull cryptanalysis of SIMON48/K, 64/K,
96/K, and 128/K is presented in Table 1. It must be noted that we use the linear hulls in
Tables 16, 17, 18, and 19 throughout these attacks.

5 Linear Hull Effect in SIMON

In this section we will investigate the linear hull effect on SIMON using the correlation
matrix method to compute the average squared correlation.

5.1 Correlation of the SIMON F Function

This section is provides an analysis on some linear properties of the SIMON F function
regarding the squared correlation. This will assist in providing an intuition around the design
rationale when it comes to linear properties of SIMON round Function F . A general linear
analysis was applied on the F function of SIMON, with regards to limits around the squared
correlations for all possible Hamming weights on input masks α and output masks β, for
SIMON32/64. The following observations were made based on results in Table 9.

– The best linear characteristics for a single application of F is obtained for input and
output masks with Hamming weight as low as 1 and 2.

– The best squared correlation obtained is 2−2 and the lowest is 2−16 for all possible
Hamming weights on the input and output masks of F .

5.2 Constructing Correlation Submatrix for SIMON

To construct a correlation submatrix for SIMON, we make use of the following proposition.

Proposition 1 (Correlation of a one-round linear approximation [9]). Let α =
(αL, αR) and β = (βL, βR) be the input and output masks of a one-round linear approximation
of SIMON. Let αF and βF be the input and output masks of the SIMON F function. Then the
correlation of the linear approximation (α, β) is C(α, β) = CF (αF , βF ) where αF = αL⊕βR
and βF = βL = αR.

As our goal is to perform a linear attack on SIMON, we construct a squared correlation
matrix in order to compute the average squared correlation (the sum of the squares of the
correlations of all trails) in order to estimate the required data complexity. Algorithm 2
constructs a squared correlation submatrix whose input and output masks have Hamming



weight less than a certain Hamming weight m. Algorithm 2 uses the Fast Walsh Transform
algorithm to compute the correlations of a given input and output masks for the F function
of SIMON.

Algorithm 2: Construction of SIMON’s Correlation Submatrix

Require: Hamming weight m, bit size of SIMON’s F function n and a map function.
Ensure: Squared Correlation Submatrix M

1: for all output masks β with Hamming weight ≤ m do
2: Extract from β the left/right output masks βL and βR.
3: αR ← βL.
4: Compute F̂ (αF , βL) to SIMON’s F function for all possible αF .
5: for all input masks αF to SIMON’s F function do
6: c← F̂ (αF , βL)/2n.
7: αL ← αF ⊕ βR.
8: α = αL||αR.
9: if c 6= 0 and Hamming weight of α ≤ m then

10: i← map(α). {map α to a row index i in the matrix M}
11: j ← map(β). {map α to a column index j in the matrix M}
12: M(i, j) = c× c.
13: end if
14: end for
15: end for

The size of the submatrix is
∑m

i=0

(
2n
i

)
×
∑m

i=0

(
2n
i

)
where n is the block size of SIMON’s

F function. One can see that the time complexity is in the order of 2n
∑m

i=0

(
2n
i

)
arithmetic

operations. The submatrix size is large when m > 5, but most of its elements are zero and
therefore it can easily fit in memory using a sparse matrix storage format. The table below
shows the number of nonzero elements of the squared correlation submatrices of SIMON32/K
when 1 ≤ m ≤ 9. One can see that these matrices are very sparse (see Table 8). For instance,
when m ≤ 8, the density of the correlation matrix is very low, namely 133253381

15033173×15033173 ≈
2−20.7.

Table 8. SIMON32/K matrices using masks with Hamming weight ≤ m, nnz =

number of nonzero elements

m Size of M nnz

1 33× 33 17
2 529× 529 233
3 5489× 5489 2835
4 41449× 41449 31381
5 242825× 242825 308805
6 1149017× 1149017 2671829
7 4514873× 4514873 20206757
8 15033173× 15033173 133253381
9 43081973× 43081973 763347577



5.3 Improved Linear Approximations

One can see that Algorithm 2 is embarrassingly parallelizable. Thus, the memory complexity
rather than the time complexity is dominating. On a standard PC, we are able to construct
a sparse squared correlation matrix of SIMON32/K with input and output masks that have
Hamming weight ≤ 8. Using this matrix, we find new 14-round linear approximations with
an average squared correlation ≤ 2−32 for SIMON32/K. We also get better estimations for
the previously found linear approximations which were estimated before using only a single
linear characteristic rather than considering many linear characteristics with the same input
and output masks. For example, in [3], the squared correlation of the 9-round single linear
characteristic with input mask 0x01110004 and output mask 0x00040111 is 2−20. Using
our matrix, we find that this same approximation has a squared correlation ≈ 2−18.4 with
11455 ≈ 213.5 trails, which gives us an improvement by a factor of 21.5. Note that this
approximation can be found using a smaller correlation matrix of Hamming weight ≤ 4
and we get an estimated squared correlation equal to 2−18.83 and only 9 trails. So the large
number of other trails resulting covering Hamming weights ≥ 5 is insignificant as they only
cause a factor of 20.5 improvement.

Also, the 10-round linear characteristic in [5] with input mask 0x01014404 and output
mask 0x10004404 has squared correlation 2−26. Using our correlation matrix, we find that
this same approximation has an estimated squared correlation 2−23.2 and the number of
trails is 588173 ≈ 219.2. This gives an improvement by a factor of 23. Note also that this
approximation can be found using a smaller correlation matrix with Hamming weight ≤ 5
and we get an estimated squared correlation equal to 2−23.66 and only 83 trails. So the large
number of other trails resulting covering Hamming weights ≥ 5 is insignificant as they only
cause a factor of 20.4 improvement. Both of these approximations give us squared correlations
less than 2−32 when considering more than 12 rounds.

In the following, we describe the new 14-round linear hulls found using a squared corre-
lation matrix with Hamming weight ≤ 8.

New 14-round Linear Hulls. Consider a squared correlation matrix M whose input and
output masks have Hamming weight m. When m ≥ 6, raising the matrix to the rth power,
in order to estimate the average squared correlation, will not work as the resulting matrix
will not be sparse even when r is small. For example, we are able only to compute M6 where
M is a squared correlation matrix whose masks have Hamming weight ≤ 6. Therefore, we
use matrix-vector multiplication or row-vector matrix multiplications in order to estimate
the squared correlations for any number of rounds r.

It is obvious that input and output masks with low Hamming weight gives us better
estimations for the squared correlation. So we performed row-vector matrix multiplications
using row vectors corresponding to Hamming weight one. We found that when the left part of
the input mask has Hamming weight one and the right part of input mask is zero, we always
get a 14-round squared correlation ≈ 2−30.9 for four different output masks. So in total we
get 64 linear approximations with an estimated 14-round squared correlation ≈ 2−30.9.

We also constructed a correlation matrix with masks of Hamming weight ≤ 9 but we
have only got a slight improvement for these 14-round approximations by a factor of 20.3. We



have found no 15-round approximation with squared correlation more than 2−32. Table 10
shows the 14-round approximations with input and output masks written in hexadecimal
notation.

Table 9. General analysis to the best and lowest squared correlations in SIMON32/64 for
all possible Hamming weights entering the F function

Hamming Best Lowest
weight Sq. Corr Sq. Corr

1 2−2 2−2

2 2−2 2−4

3 2−4 2−6

4 2−4 2−8

5 2−6 2−10

6 2−6 2−12

7 2−8 2−14

8 2−8 2−16

9 2−10 2−16

10 2−10 2−16

11 2−12 2−16

12 2−12 2−16

13 2−14 2−16

14 2−14 2−16

15 2−16 2−16

16 2−14 2−14

Table 10. 14-round linear hulls for SIMON32/K found, using Hamming weight ≤ 9

α β log2 c
2 log2Nt

80000000 00800020, 00800060, 00808020, 00808060 −30.5815 28.11
40000000 00400010, 00400030, 00404010, 00404030 −30.5815 28.11
20000000 00200008, 00200018, 00202008, 00202018 −30.5815 28.11
10000000 00100004, 0010000C, 00101004, 0010100C −30.5815 28.11
08000000 00080002, 00080006, 00080802, 00080806 −30.5815 28.11
04000000 00040001, 00040003, 00040401, 00040403 −30.5816 28.11
02000000 00028000, 00028001, 00028200, 00028201 −30.5815 28.10
01000000 00014000, 00014100, 0001C000, 0001C100 −30.5815 28.10
00800000 80002000, 80002080, 80006000, 80006080 −30.5816 28.06
00400000 40001000, 40001040, 40003000, 40003040 −30.5815 28.11
00200000 20000800, 20000820, 20001800, 20001820 −30.5815 28.11
00100000 10000400, 10000410, 10000C00, 10000C10 −30.5815 28.11
00080000 08000200, 08000208, 08000600, 08000608 −30.5815 28.11
00040000 04000100, 04000104, 04000300, 04000304 −30.5816 28.10
00020000 02000080, 02000082, 02000180, 02000182 −30.5815 28.11
00010000 01000040, 01000041, 010000C0, 010000C1 −30.5814 28.11



6 Key Recovery Attack using Linear Hulls

Similar to the approach we used in previous sections to add extra rounds to the given linear
trail, we extend the given linear hull for 14 rounds of SIMON32/64 by adding some rounds
to the beginning and the end of the cipher, as follows.

In the backward direction. We start with the input mask of the 14-round linear hull (e.g.
(Γ0,−)) and go backwards to add some rounds to the beginning. With respect to Figure 4,
we can append a further round to the beginning of the cipher to find a new 15-round linear
hull by input mask (−, Γ0). Since SIMON injects the subkey at the end of its round function,
then this work does not have any computational complexity. More precisely, for the current
14-round linear hull, we evaluate ((Xi

L)0 ⊕ (Xi+14
R )8 ⊕ (Xi+14

L )6). If we add a round in the
backwards direction, i.e. round i− 1, we know Xi−1

R and Xi−1
L , so

(Xi−1
L )14 ⊕ ((Xi−1

L )15&(Xi−1
L )8) = (Xi−1

R )0 ⊕ (Ki)0 ⊕ (Xi
L)0.

Hence, we can consider ((Xi
L)0 ⊕ (Xi+14

R )8 ⊕ (Xi+14
L )6) ⊕ (Ki)0 as the new linear hull. We

can continue our method to add more rounds to the beginning of linear hull at the cost of
guessing some bits of subkeys.

To add more rounds in the backwards direction, we must guess the bit

(F (Xi−1
L ))0 = (Xi−1

L )14 ⊕ ((Xi−1
L )15&(Xi−1

L )8).

On the other hand, to determine (F (Xi−1
L ))0 one should guess (Xi−1

L )14 and (Xi−1
L )15 only

if the guessed value for (Xi−1
L )8 is 1. So, in average we need one bit guess for (Xi−1

L )15 and
(Xi−1

L )8 (in Figure 4 such bits are indicated in blue).

In the forward direction. We can use the same approach to add some rounds to the
end of linear hull in the cost of guessing some bits of subkeys. More details are depicted in
Figure 4.

Attack Complexity. We require 230.5593 known plaintexts. We also need 230.5593 encryp-
tions for producing the required known plaintexts and 230.5593 × 225 encryptions to find the
related key bits of the extended rounds. Therefore, the time complexity of the attack is

230.5593 + 230.5593 × 225 ≈ 255.56.

7 Conclusion

In this paper we have analyzed the security of SIMON against different variants of linear
cryptanalysis, i.e. classical- and multiple linear cryptanalysis as well as linear hull attacks.
We mainly used a connection between linear- and differential characteristics and extended it
to a connection between linear hulls and differentials. Given these connections, we used the
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known results on differential cryptanalysis on SIMON variants to present the best known
results on SIMON using linear cryptanalysis.

Furthermore, we have investigated the linear hull effect on SIMON32/64 using the cor-
relation matrix of the average squared correlations. Utilizing this technique, we achieve a
lower time and data complexity than other attack variants by having a key recovery attack
on 21-round SIMON32/64 with data complexity 230.56 and time complexity 255.6.
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A Sequences of Approximation used through Driving the Linear
Characteristic of each Variant of SIMON

Tables 11 represent the propagation of our linear characteristics for SIMON32/64, entries
under used App. column denotes approximation used for corresponding active bit of column
2 of the table.

Table 11. Sequences of approximation for SIMON32/64

Active bits in the left side Active bits in the right side Used App. # App.

10, 6, 2, 6, 14 8, 0 1; 1 2
4, 8, 4, 0 10, 6, 2 1; 1; 1 3
10, 6, 2 4 1 1
8, 8, 4 10, 6 1; 1 2
10, 6 8 1 1
8 10 1 1
10 − − 0
8, 8 10 1 1
10, 6, 6 8 1 1
4, 8, 4 10, 6 1; 1 2
2, 10, 6, 2 4 1 1
0, 8, 0, 8, 4 2, 10, 6 1; 1; 1 3
2, 14, 10, 14, 6 0, 8 1; 1 2
12, 0, 12, 8 2, 14, 10 1; 1; 1 3
2, 14, 10 12 1 1
0, 0, 12 2, 14 1; 1 2
2, 14 0 1 1
0 2 1 1
2 − − 0
0 2 1 1
2, 14 0 1 1
0, 0, 12 2, 14 1; 1 2
2, 14, 10 12 1 1
12, 0, 12, 8 2, 14, 10 1; 1; 1 3



Table 12. Sequences of approximation for SIMON48/96

Active bits in the left side Active bits in the right side Used App. # App.

12, 0, 16, 12, 8 2, 18, 14, 10 1; 1; 1; 1 4
2, 18, 14, 10 12 1 1
0, 16, 0, 16, 12 2, 18, 14 1; 1; 1 3
2, 22, 18, 22, 14 0, 16 1; 1 2
20, 0, 20, 16 2, 22, 18 1; 1; 1 3
2, 22, 18 20 1 1
0, 0, 20 2, 22 1; 1 2
2, 22 0 1 1
0 2 1 1
2 − − 0
0 2 1 1
2, 22 0 1 1
0, 0, 20 2, 22 1; 1 2
2, 22, 18 20 1 1
20, 0, 20, 16 2, 22, 18 1; 1; 1 3
2, 22, 18, 22, 14 0, 16 1; 1 2
0, 16, 0, 16, 12 2, 18, 14 1; 1; 1 3
2, 18, 14, 10 12 1 1
12, 0, 16, 12, 8 2, 18, 14, 10 1; 1; 1; 1 4

Table 13. Sequences of approximation for SIMON64/128

Active bits in the left side Active bits in the right side Used App. # App.

20, 30, 24, 20, 16 2, 26, 22, 18 1; 1; 1; 1 4
2, 26, 22, 18 20 1 1
0, 24, 0, 24, 20 2, 26, 22 1; 1; 1 3
2, 30, 26, 30, 22 0, 24 1; 1 2
28, 0, 28, 24 2, 30, 26 1; 1; 1 3
2, 30, 26 28 1 1
0, 0, 28 2, 30 1; 1 2
2, 30 0 1 1
0 2 1 1
2 − − 0
0 2 1 1
2, 30 0 1 1
0, 0, 28 2, 30 1; 1 2
2, 30, 26 28 1 1
28, 0, 28, 24 2, 30, 26 1; 1; 1 3
2, 30, 26, 30, 22 0, 24 1; 1 2
0, 24, 0, 24, 20 2, 26, 22 1; 1; 1 3
2, 26, 22, 18 20 1 1
20, 30, 24, 20, 16 2, 26, 22, 18 1; 1; 1; 1 4



Table 14. Sequences of approximation for SIMON96/144

Active bits in the left side Active bits in the right side Used App. # App.

36, 0, 40, 36, 32 2, 42, 38, 34 1; 1; 1; 1 4
2, 42, 38, 34 36 1 1
0, 40, 0, 40, 36 2, 42, 38 1; 1; 1 3
2, 46, 42, 46, 38 0, 40 1; 1 2
44, 0, 44, 40 2, 46, 42 1; 1; 1 3
2, 46, 42 44 1 1
0, 0, 44 2, 46 1; 1 2
2, 46 0 1 1
0 2 1 1
2 − − 0
0, 0 2 1 1
2, 46, 46 0 1; 1
44, 0, 44 2, 46 1; 1 2
2, 46, 42, 42 44 1 1
0, 41, 40, 0, 44, 41, 40, 2, 46, 42 1; 1; 2 3
2, 42, 38, 46, 39, 39, 38 0, 41, 40 1; 1; 2 3
42, 41, 36, 0, 42, 40, 36 2, 42, 38 3; 1; 1; 3
2, 42, 39, 38, 40, 34, 40, 39, 34 42, 41, 36 3; 2; 1 3
0, 40, 0, 42, 41, 40, 37, 37, 36 2, 42, 39, 38 3; 2; 1; 2 4
2, 46, 42, 46, 39, 38 0, 40 1; 2 2
44, 0, 44, 40 2, 46, 42 1; 1; 1; 3
2, 46, 42 44 1 1
0, 0, 44 2, 46 1; 1 2
2, 46 0 1 1
0 2 1 1
2 − − 0
0 2 1 1
2, 46 0 1 1
0, 0, 44 2, 46 1; 1 2
2, 46, 42 44 1 1
44, 0, 44, 40 2, 46, 42 1; 1; 1 3
2, 46, 42, 46, 38 0, 40 1; 1 2
0, 40, 0, 40, 36 2, 42, 38 1; 1; 1 3
2, 42, 38, 34 36 1 1



Table 15. Sequences of approximation for SIMON128/256

Active bits in the left side Active bits in the right side Used App. # App.

52, 0, 56, 52, 48 2, 58, 54, 50 1; 1; 1; 1 4
2, 58, 54, 50 52 1 1
0, 56, 0, 56, 52 2, 58, 54 1; 1; 1 3
2, 62, 58, 62, 54 0, 56 1; 1 2
60, 0, 60, 56 2, 62, 58 1; 1; 1 3
2, 62, 58 60 1 1
0, 0, 60 2, 62 1; 1 2
2, 62 0 1 1
0 2 1 1
2 − − 0
0, 0 2 1 1
2, 62, 62 0 1; 1
60, 0, 60 2, 62 1; 1 2
2, 62, 58, 58 60 1 1
0, 57, 56, 0, 60, 57, 56, 2, 62, 58 1; 1; 2 3
2, 58, 54, 62, 55, 55, 54 0, 57, 56 1; 1; 2 3
58, 57, 52, 0, 58, 56, 52 2, 58, 54 3; 1; 1; 3
2, 58, 55, 54, 56, 50, 56, 55, 50 58, 57, 52 3; 2; 1 3
0, 56, 0, 58, 57, 56, 53, 53, 52 2, 58, 55, 54 3; 2; 1; 2 4
2, 62, 58, 62, 55, 54 0, 56 1; 2 2
60, 0, 60, 56 2, 62, 58 1; 1; 1; 3
2, 62, 58 60 1 1
0, 0, 60 2, 62 1; 1 2
2, 62 0 1 1
0 2 1 1
2 − − 0
0 2 1 1
2, 62 0 1 1
0, 0, 60 2, 62 1; 1 2
2, 62, 58 60 1 1
60, 0, 60, 56 2, 62, 58 1; 1; 1 3
2, 62, 58, 62, 54 0, 56 1; 1 2
0, 56, 0, 56, 52 2, 58, 54 1; 1; 1 3
2, 58, 54, 50 52 1 1



B Adding Extra Rounds to Each Variants of SIMON When Algorithm 2
of Matsui is Used
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Fig. 5. The keys (in black) that should be guessed to attack 19 rounds of SIMON48/72
(exclude round i − 2). The red bits are not required to be guessed. For SIMON48/96 we
include round i− 2 that needs guessing 16 bits of its subkey in average.

C Linear Hulls for SIMON

D Linear Hulls Extensions and Based on Correlation Matrix of SIMON
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Fig. 6. The keys (in black) that should be guessed to attack 22 rounds of SIMON64/96
(exclude round i − 2). The red bits are not required to be guessed. For SIMON64/128 we
include round i− 2 that needs guessing 17 bits of its subkey in average.
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Fig. 7. The keys (in black) that should be guessed to attack 34 rounds of SIMON96/144.The
red bits are not required to be guessed.
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Fig. 8. The keys (in black) that should be guessed to attack 40 rounds of SIMON128/192.The
red bits are not required to be guessed. For SIMON128/256 we add one round to the end
and one round to the beginning of the current characteristic that needs guessing 61.5 bits of
their subkey in average.



Table 16. Linear characteristics based on the differential trials by Biryukov et al. for
SIMON48/K

Differential Linear

r 4L 4R XL XR Used App.

0 5, 21 3, 7, 19 7, 11, 19 9, 17 1; 1
1 3, 19, 23 5, 21 9, 17 11, 15, 19 1; 1; 1
2 1 3, 19, 23 11, 15, 19 13 1
3 19, 23 1 13 15, 19 1; 1
4 21 19, 23 15, 19 17 1
5 19 21 17 19 1
6 − 19 19 − −
7 19 − − 19 1
8 21 19 19 17 1
9 19, 23 21 17 15, 19 1; 1
10 1 19, 23 15, 19 13 1
11 3, 19, 23 1 13 11, 15, 19 1; 1; 1
12 5, 21 3, 19, 23 11, 15, 19 9, 17 1; 1
13 3, 7, 19 5, 21 9.17 7, 11, 19 1; 1; 1
14 9 3, 7, 19 7, 11, 19 5 1
15 3, 7, 11, 19 9 5 3, 7, 11, 19 −∑

r log2 pr = −48 log2 ε
2 = −50

log2 pdiff = −42.11 log2 c
2
LH = −44.11

# trails = 112573 # characteristics = 112573

Table 17. Linear characteristics based on the differential trials by Biryukov et al. for
SIMON64/K

Differential Linear

r 4L 4R XL XR Used App.

0 26 24, 28 20, 24 22 1
1 24 26 22 24 1
2 − 24 24 − −
3 24 − − 24 1
4 26 24 24 22 1
5 24, 28 26 22 20, 24 1; 2
6 29, 30 24, 28 20, 24 18, 19 2; 2
7 0, 24, 28, 30 29, 30 18, 19 16, 18, 20, 24 1; 3; 2; 1
8 2, 26 0, 24, 28, 30 16, 18, 20, 24 14, 22 1; 1
9 0, 4, 24, 30 2, 26 14, 22 12, 16, 18, 24 1; 1; 3; 3
10 − 0, 4, 24, 30 12, 16, 18, 24 − −
11 0, 4, 24, 30 − − 12, 16, 18, 24 1; 1; 3; 3
12 2, 26 0, 4, 24, 30 12, 16, 18, 24 14, 22 1; 1
13 0, 24, 28, 30 2, 26 14, 22 16, 18, 20, 24 1; 3; 2; 1
14 29, 30 0, 24, 28, 30 16, 18, 20, 24 18, 19 2; 2
15 24, 28 29, 30 18, 19 20, 24 1; 2
16 26 24, 28 20, 24 22 1
17 24 26 22 24 1
18 − 24 24 − −
19 24 − − 24 1
20 26 24 24 22 1
21 24, 28 26 22 20, 24 −∑

r log2 pr = −72 log2 ε
2 = −74

log2 pdiff = −60.53 log2 c
2
LH = −62.53

# trails = 337309 # characteristics = 337309



Table 18. Linear characteristics based on the differential trials by Abed et al. for
SIMON96/K

Differential Linear

r 4L 4R XL XR Used App.

0 20 6, 14, 18, 22 2, 42, 38, 34 36 1
1 6, 14, 18 20 0, 40, 0, 40, 36 2, 42, 38 1; 1; 1
2 8, 16 6, 14, 18 2, 46, 42, 46, 38 0, 40 1; 1
3 6, 10, 14 8, 16 44, 0, 44, 40 2, 46, 42 1; 1; 1
4 12 6, 10, 14 2, 46, 42 44 1
5 6, 10 12 0, 0, 44 2, 46 1; 1
6 8 6, 10 2, 46 0 1
7 6 8 0 2 1
8 − 6 2 − −
9 6 − 0, 0 2 1
10 8 6 2, 46, 46 0 1
11 6, 10 8 44, 0, 44 2, 46 1; 1
12 12 6, 10 2, 46, 42, 42 44 1
13 6, 10, 14 12 0, 41, 40, 0, 44, 41, 40, 2, 46, 42 1; 1; 2
14 8, 15, 16 6, 10, 14 2, 42, 38, 46, 39, 39, 38 0, 41, 40 1; 1; 2
15 6, 14, 18 8, 15, 16 42, 41, 36, 0, 42, 40, 36 2, 42, 38 3; 1; 1
16 14, 15, 20 6, 14, 18 2, 42, 39, 38, 40, 34, 40, 39, 34 42, 41, 36 3; 2; 1
17 6, 14, 17, 18 14, 15, 20 0, 40, 0, 42, 41, 40, 37, 37, 36 2, 42, 39, 38 3; 2; 1; 2
18 8, 16 6, 14, 17, 18 2, 46, 42, 46, 39, 38 0, 40 1; 2
19 6, 10, 14 8, 16 44, 0, 44, 40 2, 46, 42 1; 1; 1
20 12 6, 10, 14 2, 46, 42 44 1
21 6, 10 12 0, 0, 44 2, 46 1; 1
22 8 6, 10 2, 46 0 1
23 6 8 0 2 1
24 − 6 2 − −
25 6 − 0 2 1
26 8 6 2, 46 0 1
27 6, 10 8 0, 0, 44 2, 46 1; 1
28 12 6, 10 2, 46, 42 44 1
29 6, 10, 14 12 44, 0, 44, 40 2, 46, 42 1; 1; 1
30 8, 16 6, 10, 14 2, 46, 42 0, 40 −∑

r log2 pr = −106 log2 ε
2 = −108

log2 pdiff = −92.20 log2 c
2
LH = −94.20



Table 19. Linear characteristics based on the differential trials by Abed et al. for
SIMON128/K

Differential Linear

r 4L 4R XL XR Used App.

0 12 6, 10, 14 2, 62, 58 60 1
1 6, 10 12 0, 0, 60 2, 62 1; 1
2 8 6, 10 2, 62 0 1
3 6 8 0 2 1
4 − 6 2 − −
5 6 − 0, 0 2 1
6 8 6 2, 62, 62 0 1
7 6, 10 8 60, 0, 60 2, 62 1; 1
8 12 6, 10 2, 62, 58, 58 60 1
9 6, 10, 14 12 0, 57, 56, 0, 60, 57, 56, 2, 62, 58 1; 1; 2
10 8, 15, 16 6, 10, 14 2, 58, 54, 62, 55, 55, 54 0, 57, 56 1; 1; 2
11 6, 14, 18 8, 15, 16 58, 57, 52, 0, 58, 56, 52 2, 58, 54 3; 1; 1
12 14, 15, 20 6, 14, 18 2, 58, 55, 54, 56, 50, 56, 55, 50 58, 57, 52 3; 2; 1
13 6, 14, 17, 18 14, 15, 20 0, 56, 0, 58, 57, 56, 53, 53, 52 2, 58, 55, 54 3; 2; 1; 2
14 8, 16 6, 14, 17, 18 2, 62, 58, 62, 55, 54 0, 56 1; 2
15 6, 10, 14 8, 16 60, 0, 60, 56 2, 62, 58 1; 1; 1
16 12 6, 10, 14 2, 62, 58 60 1
17 6, 10 12 0, 0, 60 2, 62 1; 1
18 8 6, 10 2, 62 0 1
19 6 8 0 2 1
20 − 6 2 − −
21 6 − 0 2 1
22 8 6 2, 62 0 1
23 6, 10 8 0, 0, 60 2, 62 1; 1
24 12 6, 10 2, 62, 58 60 1
25 6, 10, 14 12 60, 0, 60, 56, 57 2, 62, 58 1; 1; 2
26 8, 15, 16 6, 10, 14 2, 62, 58, 62, 55, 54, 55 0, 57, 56 1; 1; 2
27 6, 14, 18 8, 15, 16 0, 57, 56, 0, 58, 56, 52 2, 58, 54 3; 1; 1
28 14, 15, 20 6, 14, 18 2, 58, 54, 56, 50, 55, 56, 50 58, 57, 52 3; 2; 1
29 6, 14, 17, 18 14, 15, 20 58, 57, 52, 0, 58, 56, 57, 53, 52, 53 2, 58, 55, 54 3; 2; 1; 2
30 8, 16 6, 14, 17, 18 2, 58, 55, 54, 62, 54, 55 0, 56 1; 2
31 6, 10, 14 8, 16 0, 56, 0, 60, 56 2, 62, 58 1; 1; 1
32 12 6, 10, 14 2, 62, 58, 58 60 1
33 6, 10 12 60, 0, 60 2, 62 1; 1
34 8 6, 10 2, 62, 62 0 1
35 6 8 0, 0 2 1
36 − 6 2 − −
37 6 − 0 2 1
38 8 6 2, 62 0 1
39 6, 10 8 0, 0, 60 2, 62 1; 1
40 12 6, 10 2, 62, 58 60 1
41 6, 10, 14 12 60 2, 62, 58 −∑

r log2 pr = −144 log2 ε
2 = −146

log2 pdiff = −124.60 log2 c
2
LH = −126.60
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Fig. 10. Adding some rounds to the beginning and the end of the 21-round linear hull for
SIMON64/K



F

F

F

F

F

( )
( )

i 2
R

i 2

X [0, 32, , ]

K [0,

1, 26,30, 33,34 37 , 41, 42

1, 26,30, 33,

36, , 40

334 376, ,4 ,3 42, , 0 2]1, 4

−

−

( )
( )

i 1
R

i 1

]X [2,34,38,42

K [2,34 ],38,42

−

−

( )i
LX [2,34,38, 42] ( )i

R 36
X

( )i 32
R 32 39,402, ,38, , 42, 46X [ ], 47 +

( )i 31 [ ]K 0,40+

( )i 1
L 1, 26,30, 33 36,,34 3 ,X 4[0, 32, 7 , 40, ]1, 42−

( )i 2
LX [ , , , 24, ,28, ,30,31,

32 ,34,35

0 18,22 25, 26 29

,33 36, 4, 1

2

,38 42,39, 40, ,46, 47]

−

( )i 31
L 32 39,42, ,38, , 42, 46X [ 0 ], 47+

( )i 31
RX [ ]0, 40+

( )i 32
LX [0, , 30 36,1 24, ,31,32,34,

39, 41 4237,38, 40, , 44,45 ], , 46

+

( )i 33
RX [0, , 30 36,1 24, ,31,32,34,

39, 41 4237,38, 40, , 44, 45 ], , 46

+

( )i 33
LX [0,2,16, 22,23, 24,26, 28,

29,30,31,32,33,34,35,36,37,38,
38,39,40, 41, 42, 43, 44, 45, 46, 47]

+

30-Round Linear Hull

F

( )i 3K [ , , , 24, ,28, ,30,31,

32 ,34,35, 3

0 18, 2

8,39,

2 25, 26 29

,33 36, 41,40, , 462 ]

2

4 , 47

−

( )i 3
LX [0,1,10,14,16,17, 20, 21, 22, 23,

24,25, 26,27, 28, 29,30,31,32,33,34,
35,36,37,38,39,40,41,42, 44, 45, 46, 47]

−

( )i 3
RX [ , 2, , 24, ,28, ,30,31,

32 ,34,35, 38

0 18

,39

, 22 25, 26 29

,33 36, 41, 40, 42, 46 ], , 47

−

( )i 32 32 39,4, ,38, ,2 42,K [ 460 , ]47+

( )i 33K [0, , 30 36,1 24, ,31,32,34,

39, 41 4237,38, 40, , 44,45 ], , 46

+

i 34
LX + i 34

RX +

nn

i 3
LX − i 3

RX −

( )i 31
L 2, 42X [ ],46+

Fig. 11. Adding some rounds to the beginning and the end of the 30-round linear hull for
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Fig. 12. Adding some rounds to the beginning and the end of the 30-round linear hull for
SIMON128/K
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