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Abstract

In this paper, we discuss the adjacency graph of feedback shift registers (FSRs) whose charac-
teristic polynomial can be written as g = (x0 + x1) ∗ f for some linear function f . For f contains
an odd number of terms, we present a method to calculate the adjacency graph of FSR(x0+x1)∗f
from the adjacency graph of FSRf . The parity of the weight of cycles in FSR(x0+x1)∗f can also be
determined easily. For f contains an even number of terms, the theory is not so much complete.
We need more information than the adjacency graph of FSRf to determine the adjacency graph of
FSR(x0+x1)∗f . Besides, some properties about the cycle structure of linear feedback shift registers
(LFSR) are presented.

1 Introduction

Feedback shift registers (FSRs) have been used and studied for many years [5]. Especially in cryp-
tography, FSRs are the basic component in stream cipher [7]. But some basic theories of FSRs have
not been solved. The most important one may be construct FSRs that output sequences with large
period.

The adjacency graph of FSRs can be used to construct FSRs with large period output sequences.
When we change the successor of two states that in different cycles and are conjugate with each other,
we get a big cycle from two small cycles [5]. Do it repeatedly, we can get FSRs that output sequences
with efficient large period. So determine the adjacency graph of FSRs is important both from theory
and practice [2].

In this paper, the relation between the adjacency graph of FSRf and FSR(x0+x1)∗f is discussed,
where f is a linear boolean function. Since (x0+x1)∗f = f∗(x0+x1) for linear function f , FSR(x0+x1)∗f
is not only self-dual but also dividable according to [1] and [4]. Furthermore, FSR(x0+x1)∗f can be
constructed from FSRf by two different ways. So there is a relation between the adjacency graphs of
FSR(x0+x1)∗f and FSRf . For f contains an odd number of terms, the adjacency graph of FSR(x0+x1)∗f
can be determined easily from the adjacency graph of FSRf . For f contains an even number of terms,
the theory is not so much complete. We need more information than the adjacency graph of FSRf to
determine the adjacency graph of FSR(x0+x1)∗f .

This paper is organized as follows. In section 2, we present the basic knowledge about feedback
shift registers, self-dual FSRs and dividable FSRs, and explain some notation that we will use in
this paper. In section 3, the relation between the adjacency graph of FSR(x0+x1)∗f and FSRf are
discussed. Our discussion is divided into two cases according to the parity of the number of terms in
f . At the end, we conclude this paper.
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2 Preliminaries

The purpose of this section is to briefly review feedback shift registers, self-dual FSRs and dividable
FSRs, and explain some notations that we will use in this paper.

2.1 Feedback shift registers

Let F2 be the finite field of two-element, and Fn
2 be the vector space of dimension n over F2. A boolean

function (or boolean polynomial) f(x0, x1, . . . , xn−1) in n variables is a map from Fn
2 to F2.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a characteristic
polynomial f regulated by a single clock. We denote the FSR with characteristic polynomial f by
FSRf . Given a initial state X0 = (x0, x1, . . . , xn−1), FSRf will output a sequence x = x0x1 · · · . It
is well known that, FSRf always output the periodic sequences no matter what the initial state is, if
and only if f can be written as f = x0 +F (x1, . . . , xn−1) + xn for some F . In this case, we say FSRf

is nonsingular. Without specification, all the FSRs in this paper is nonsingular.
For n-stage FSRf , when start from a initial state X0, FSRf will generate a cycle C = (X0,X1, . . . ,Xl),

where Xi+1 is the next state of Xi for i = 1, 2, . . . , l− 1 and X0 is the next state of Xl, l is the length

of the cycle. Define the weight of cycle C as W (C) =
∑l

i=1 xi, where xi is the first component of
Xi. Cycle C can be seen as an ordered set with element in Fn

2 . Sometimes, we do not discriminate
between cycle C = (X0,X1, . . . ,Xl) and the set {X0,X1, . . . ,Xl}.

From the above discussion, the set Fn
2 is divided into cycles C1, C2, . . . , Ck by FSRf . Reversely,

it is easy to see, a division of Fn
2 into cycles determines a n-stage FSR. So we can treat FSRf as

a set of cycles, and use the notation FSRf = {C1, C2, . . . , Ck}. An FSR is called a linear feedback
shift register (LFSR) if its feedback function f is linear and nonlinear feedback shift register (NFSR)
otherwise.

For an n-stage state X = (x0, x1, . . . , xn−1), its conjugate X̂, companion X̃ and dual X are defined

as X̂ = (x0, x1, . . . , xn−1), X̃ = (x0, x1, . . . , xn−1) and X = (x0, x1, . . . , xn−1), where x denotes the

binary complement of x. We call (X, X̂) a conjugate pair, (X, X̃) a companion pair, and (X,X)
a dual pair. For a cycle C = (X1,X2, . . . ,Xl), C is defined as C = (X1,X2, . . . ,Xl). C is called a
primitive cycle if C = C or C ∩ C = ∅. Two cycles C1 and C2 are adjacent if they are disjoint
and there exists a state X on C1 whose conjugate X̂ (or companion X̃) is on C2. It is well-known

that two adjacent cycles C1 and C2 are joined into a single cycle when the successors of X and X̂ are
interchanged. This is the basic idea of the cycle joining method introduced in [5].

The problem of determining the number of conjugate pairs between cycles leads to the definition
of adjacency graph.

Definition 1. [9][8] For an FSR, its adjacency graph is an undirected graph where the vertexes
correspond to the cycles in it, and there exists an edge labeled with an integer m between two vertexes
if and only if the two vertexes share m conjugate pairs.

2.2 Self-dual FSRs and dividable FSRs

In [1], D-morphism was proposed to construct FSRs. The constructed FSRs are just the self-dual
FSRs (defined below).

D : Fn+1
2 → Fn

2

(x0, x1, . . . , xn) 7→ (x0 + x1, x1 + x2, . . . , xn−1 + xn).
(1)

D-morphism is a two-to-one map. For any n-stage state X = (x0, x1, . . . , xn−1), the two preimages
of X are D−10 (X) = (0, x0, x0+x1, . . . , x0+x1+· · ·+xn−1) and D−11 (X) = (1, 1+x0, 1+x0+x1, . . . , 1+
x0 + x1 + · · ·+ xn−1).
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Let C be a n-stage cycle. Let S = {X|D(X) ∈ C}. It can be verified, for any state X ∈ S there is
one and only one state Y in S can be the successor of X. Define X→ Y, the states in S form cycles.
Denote the set of these cycles by D−1(C). If W (C) is odd, then there is only one cycle in D−1(C).
Write D−1(C) = {E}, we have E = E. If W (C) is even, then there are two cycles in D−1(C). Write
D−1(C) = {E,E′}, we have E = E′.

Lemma 1. [1] Let FSRf = {C1, C2, . . . , Ck} be an n-stage FSR. Then

D−1(C1) ∪ D−1(C2) ∪ · · · ∪ D−1(Ck)

is an (n+ 1)-stage FSR, whose characteristic polynomial is f ∗ (x0 + x1).

Definition 2. [1] FSRg is called self-dual if FSRg contains only primitive cycles.

Lemma 2. [1] FSRg is self-dual if and only if g = f ∗ (x0 + x1) for some f .

Next, we consider another class of FSRs. Let C = (X0,X1, . . . ,Xl−1) be an n-stage cycle, where
l is the length of the cycle and Xi = (xi, xi+1, . . . , xi+n−1) is an n-stage state in the cycle for i =
0, . . . , l− 1. The subscribes are taken modulo l (similarly hereinafter). Now we can construct another
cycle C+ = (X+

0 ,X
+
1 , . . . ,X

+
l−1), where X+

i = (xi, xi+1, . . . , xi+n−1, xi+n), i = 0, 1, . . . , l − 1. It is
easy to verify that this definition makes sense. C+ is an (n + 1)-stage cycle of length l. We call C+

the extended cycle of C.

Lemma 3. [4] Let FSRf = {C1, C2, . . . , Ck} and FSRf+1 = {D1, D2, . . . , Dt} be two FSRs, then

{C+
1 , C

+
2 , . . . , C

+
k , D

+
1 , D

+
2 , . . . , D

+
t }

is an (n+ 1)-stage FSR whose characteristic polynomial is g = (x0 + x1) ∗ f .

Note: Define A = {C+
1 , C

+
2 , . . . , C

+
k } and B = {D1, D2, . . . , Dt}. Let C be a cycle in FSR(x0+x1)∗f .

Let X be a state in C. Then we have: C ∈ A if and only if f(X) = 0; C ∈ B if and only if f(X) = 1.

Definition 3. [4] An FSR is called dividable if we can divide the vertexes in the adjacency graph of
the FSR into two sets, such that the edges are all between the two sets.

Lemma 4. [4] FSRg is dividable if and only if g = (x0 + x1) ∗ f for some f .

Since the operation ∗ is not commutative, (x0 + x1) ∗ f 6= f ∗ (x0 + x1) generally. But when f is
a linear boolean function, we have (x0 + x1) ∗ f = f ∗ (x0 + x1). So in the linear case, combine the
conclusions in [1] and [4], we get

Lemma 5. [4] Let f be a linear boolean function. Then FSR(x0 + x1) ∗ f is not only self-dual but
also dividable. Write FSRf = {C1, C2, . . . , Ck} and FSRf+1 = {D1, D2, . . . , Dt}. We have

D−1(C1) ∪ D−1(C2) ∪ · · · ∪ D−1(Ck) = {C+
1 , C

+
2 , . . . , C

+
k , D

+
1 , D

+
2 , . . . , D

+
t }.

3 The adjacency graph of FSR(x0+x1)∗f

In this section, we consider the adjacency graph of FSR(x0+x1)∗f , where f is a linear boolean function.
Our discussion can be divided into two cases.

3.1 The case that f contains an odd number of terms

First, we present a proposition about the weight of cycles in FSRf , where f contains an odd number
of terms.
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Theorem 1. Let f be a linear boolean function that contains an odd number of terms. Then the
cycles in FSRf are all of even weight.

Proof. Suppose C is a cycle in FSRf of odd weight. Then there is only one cycle in D−1(C). Let
D−1(C) = {E}. We have E = E. Write FSRf = {C1, C2, . . . , Ck} and FSRf+1 = {D1, D2, . . . , Dt}.
Then, E = C+

i for some i or E = D+
j for some j.

Suppose E = C+
i for some i (the case that E = D+

j for some j is similar). Then f(X) = 0 for any

X ∈ E. Let X1 be a state in E. Since E = E, its dual X1 is also in E. Because there are an odd
number of terms in f , we have f(X1) 6= f(X1). So we get a contradiction.

Let C be a cycle in FSRf . From the theorem above, we know C is a cycle of even weight. So there
are two cycles in D−1(C), write as D−1(C) = {E,E}. It is obvious that, E and E are the extension of
some two cycles in FSRf or FSRf+1. Let X be a state in E. Then X is a state in E. Since f contains
an odd number of terms, we have f(X) 6= f(X). This means when E is the extension of some cycle
in FSRf (FSRf+1), E is the extension of some cycle in FSRf+1 (FSRf ).

Theorem 2. Let f be a linear boolean function that contains an odd number of terms.

1. Let C ∈ FSRf . Write D−1(C) = {E,E}. Suppose C contains r conjugate pairs. Then E and
E share 2r conjugate pairs.

2. Let C1, C2 ∈ FSRf . Write D−1(C1) = {E1, E1} and D−1(C2) = {E2, E2}, where E1, E2 are
the extension of some two cycles in FSRf , and E1, E2 are the extension of some two cycles in
FSRf+1. Suppose C1 and C2 share r conjugate pairs. Then E1 and E2, E1 and E2 all share r
conjugate pairs. And there are no conjugate pairs shared by E1 and E2, E1 and E2.

Proof. For 1. Let (X, X̂) be a conjugate pair shared by E and E. Without lose of generality, suppose

X ∈ E and X̂ ∈ E. Then D(X) and D(X̂) are both in C, and (D(X),D(X̂)) is a conjugate pair
in C. Define a map ϕ from the conjugate pairs shared by E and E to the conjugate pairs in C as:
ϕ((X, X̂)) = (D(X),D(X̂)). We show that ψ is a two-to-one map.

Since X ∈ E and X̂ ∈ E, we have X ∈ E and X̂ ∈ E. So (X, X̂) is a conjugate pair shared by E

and E. It is obvious that ϕ((X, X̂)) = ϕ((X, X̂)). Furthermore, suppose (X1, X̂1) is a conjugate pair

shared by E and E such that ϕ((X1, X̂1)) = ϕ((X, X̂)). Without lose of generality, suppose X1 ∈ E
and X̂1 ∈ E. Then (D(X1),D(X̂1)) = (D(X),D(X̂)) (this equation means they are the same

conjugate pair) implies X1 = X or X1 = X̂. So we get (X1, X̂1) = (X, X̂) or (X1, X̂1) = (X, X̂).

Let (Y, Ŷ) be a conjugate pair in C. Consider the four states: D−10 (Y), D−11 (Y), D−10 (Ŷ)

and D−11 (Ŷ). Without lose of generality, suppose D−10 (Y) ∈ E. Then D−11 (Y) ∈ E. Since

(D−10 (Y),D−11 (Ŷ)) is a conjugate pair, and E is a prime cycle. We get D−11 (Ŷ) ∈ E. As the dual of

D−11 (Ŷ), D−10 (Ŷ) belong to E. So (D−10 (Y),D−11 (Ŷ)) and (D−10 (Ŷ),D−11 (Y)) are two conjugate pairs

shared by E and E. Furthermore, we have ϕ((D−10 (Y),D−11 (Ŷ))) = ϕ((D−10 (Ŷ),D−11 (Y))) = (Y, Ŷ).
So ψ is a two-to-one map.

For 2. It is easy to see, there are no conjugate pairs shared by E1 and E2, E1 and E2.
Next, we consider the conjugate pairs shared by E1 and E2 (for conjugate pairs shard by E1 and

E2, the discussion is similar).

Let (X, X̂) be a conjugate pair shared by E1 and E2. Without lose of generality, suppose X ∈ E1

and X̂ ∈ E2. Then D(X) ∈ C1, D(X̂) ∈ C2 and (D(X),D(X̂)) is a conjugate pair shared by C1 and
C2. Define a map ϕ from the conjugate pairs shared by E1 and E2 to the conjugate pairs shared by
C1 and C2 as: ϕ((X, X̂)) = (D(X),D(X̂)). We show that ϕ is a bijection.

Suppose (X1, X̂1) is a conjugate pair shared by E1 and E2 such that ϕ((X1, X̂1)) = (X, X̂).

Without lose of generality, suppose X1 ∈ E1 and X̂1 ∈ E2. Then (D(X1),D(X̂1)) = (D(X),D(X̂))

implies X1 = X. So we get (X1, X̂1) = (X, X̂).

4



Let (Y, Ŷ) be a conjugate pair shared by C1 and C2. Consider the four states: D−10 (Y), D−11 (Y),

D−10 (Ŷ) and D−11 (Ŷ). It is easy to see, one of D−10 (Y) and D−11 (Y) belongs to E1, and one of

D−10 (Ŷ) and D−11 (Ŷ) belongs to E2. Without lose of generality, suppose D−10 (Y) ∈ E1. Since

(D−10 (Y),D−11 (Ŷ)) is a conjugate pair and there are no conjugate pairs shard by E1 and E2, we get

D−11 (Ŷ) belongs to E2. So (D−10 (Y),D−11 (Ŷ)) is a conjugate pair shared by E1 and E2. It is obvious

that ϕ((D−10 (Y),D−11 (Ŷ))) = (Y, Ŷ). So ϕ is a bijection.

The conclusion in theorem 2 can be shown by the graph below.

Combine the two cases, we get

With this tool, the adjacency graph of FSR(x0+x1)∗f can be determined from the adjacency graph
of FSRf , providing that f contains an odd number of terms. In order to express cycles briefly, we
introduce a notation for cycles. Let f be a boolean function. We denote a cycle C ∈ FSRf as
C = (−X−)f , where X is a state in C. Since there is only one cycle in FSRf that contains X, there
is no ambiguity for this notation. The function f in this notation can be omitted, providing there is
no confusion.

Example 1. Let f = x0 + x2 + x4. The four cycles in FSRf can be written as C1 = (−0000−)f ,
C2 = (−0001−)f , C3 = (−0011−)f and C4 = (−0110−)f . The adjacency graph of FSRf is shown
below.

Define g as g = (x0 + x1) ∗ f = x0 + x1 + x2 + x3 + x4 + x5. Since D−10 ((0000)) = (00000) and
D−11 ((0000)) = (11111), we get D−1((−0000−)f ) = {(−00000−)g, (−11111−)g}. By f(00000) = 0, we
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know (−00000−)g is the extension of some cycle in FSRf (see the note for lemma 3). By f(11111) = 1,
we know (−11111−)g is the extension of some cycle in FSRf+1. In this way, we get all the cycles in
FSRg, and divide them into two set:

A = {E1 = (−00000−)g, E2 = (−11110−)g, E3 = (−00010−)g, E4 = (−11011−)g}

B = {E1 = (−11111−)g, E2 = (−00001−)g, E3 = (−11101−)g, E4 = (−00100−)g}.
where A contains the cycles that are of extension of some cycles in FSRf , and B contains the cycles
that are of extension of some cycles in FSRf+1. Then, the adjacency of FSRg can be determined
according to theorem 2:

Next, we consider the weight of cycles in FSR(x0+x1)∗f , where f is a linear boolean function that
contains an odd number of terms. Let C be a cycle in FSR(x0+x1)∗f of length l. Write C = (−X−)f .
If f(X) = 0, then C is the extension of some cycle in FSRf . Because the cycles in FSRf are all of even
weight and W (D) = W (D+) for any cycle D, we get that C is a cycle of even weight. If f(X) = 1,
then f(X) = 0. So C = (−X−)f is a cycle of even weight. Since W (C) ≡ W (C) + l mod 2, C is a
cycle of even (odd) weight if and only if l is even (odd). In this way, the parity of the weight of cycles
in FSR(x0+x1)∗f can be determined easily.

Example 2. Continue the discussion in example 1. Since (−00000−)g, (−11110−)g, (−00010−)g
and (−11011−)g are the extension of some cycles in FSRf , they are all of even weight. Because

(−00001−)g is a cycle of length 6 and (−00001−)g = (−11110−)g is a cycle of even weight, (−00001−)g
is a cycle of even weight. Similarly, (−11101−)g is a cycle of even weight. (−11111−)g and (−00100−)g
are cycles of odd weight.

3.2 The case that f contains an even number of terms

For a linear boolean function f , FSRf is dividable if and only if f contains an even number of terms.
So, FSRf contains only prime cycles providing that f contains an even number of terms.

Theorem 3. Let f be a linear boolean function. FSRf and FSRf+1 contain the same number of
cycles if and only if f contains an odd number of terms.

Proof. Suppose f contains an odd number of terms. Then the cycles in FSRf are all of even weight.
It can be seen from lemma 5, the number of cycles in FSRf+1 is the same as the number of even
weight cycles in FSRf [4]. So FSRf and FSRf+1 contain the same number of cycles.

Suppose f contains an even number of terms. Then f(1, 1, . . . , 1) = 0. This means the 1-cycle
((1, 1, . . . , 1)) which contains only the 1-state (1, 1, . . . , 1), is a cycle in FSRf . Since the 1-cycle
((1, . . . , 1)) is a cycle of odd weight, there are at least one cycle of odd weight in FSRf . So FSRf

contains more cycles than FSRf+1.

Let C be a cycle in FSRf of even weight. Then there are two cycles in D−1(C), denote as
D−1(C) = {E,E}. Let X be a state in E. Then X is a state in E. Since f contains an even number
of terms, f(X) = f(X). It means that, when E is the extension of some cycle in FSRf (or FSRf+1),
then E is the extension of some cycle in FSRf (or FSRf+1) too. So there are no conjugate pairs
shared by E and E.
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Theorem 4. Let f be a linear boolean function that contains an even number of terms.

1. Let C1, C2 ∈ FSRf be two cycles of odd weight. Write D−1(C1) = {E1} and D−1(C2) = {E2}.
Suppose C1 and C2 share r conjugate pairs, then E1 and E2 share 2r conjugate pairs.

2. Let C1 ∈ FSRf be a cycle of odd weight and C2 ∈ FSRf be a cycle of even weight. Write
D−1(C1) = {E1} and D−1(C2) = {E2, E2}. Suppose C1 and C2 share r conjugate pairs. Then
E1 and E2, E1 and E2 all share r conjugate pairs. And there are no conjugate pairs shared by
E2 and E2.

3. Let C1, C2 ∈ FSRf be two cycles of even weight. Write D−1(C1) = {E1, E1} and D−1(C2) =
{E2, E2}. Suppose C1 and C2 share r conjugate pairs. Then we can find an integer u with
0 ≤ u ≤ r such that: E1 and E2, E1 and E2 all share u conjugate pairs; E1 and E2, E1 and
E2 all share r − u conjugate pairs. And there are no conjugate pairs shared by E1 and E1, E2

and E2.

Proof. For 1. Let (X, X̂) be a conjugate pair shared by E1 and E2, it is easy to see (D(X),D(X̂))
is a conjugate pair shared by C1 and C2. Define a map ϕ from the conjugate pairs shared by E1 and
E2 to the conjugate pairs shared by C1 and C2 as: ϕ((X, X̂)) = (D(X),D(X̂)). We show that ψ is a
two-to-one map.

Without lose of generality, suppose X ∈ E1 and X̂ ∈ E2. Then X ∈ E1 and X̂ ∈ E2. So (X, X̂) is a

conjugate pair shared by E1 and E2. It is obvious that ϕ((X, X̂)) = ϕ((X, X̂)). Furthermore, suppose

(X1, X̂1) is a conjugate pair shard by E1 and E2 such that ϕ((X1, X̂1)) = ϕ((X, X̂)). Without lose of

generality, suppose X1 ∈ E1 and X̂1 ∈ E2. Then (D(X1),D(X̂1)) = (D(X),D(X̂)) implies X1 = X

or X1 = X. So we get (X1, X̂1) = (X, X̂) or (X1, X̂1) = (X, X̂).

Let (Y, Ŷ) be a conjugate pair shared by C1 and C2. Consider the four states: D−10 (Y), D−11 (Y),

D−10 (Ŷ) and D−11 (Ŷ). Without lose of generality, suppose Y ∈ C1 and Ŷ ∈ C2. Then D−10 (Y)

and D−11 (Y) all belong to E1, D−10 (Ŷ) and D−11 (Ŷ) all belong to E1. So (D−10 (Y),D−11 (Ŷ)) and

(D−11 (Y),D−10 (Ŷ)) are two conjugate pairs shared by E1 and E2. Furthermore, ϕ((D−10 (Y),D−11 (Ŷ))) =

ϕ((D−11 (Y),D−10 (Ŷ))) = (Y, Ŷ). So ψ is a two-to-one map.
For 2. It is easy to see, there are no conjugate pairs shared by E2 and E2.
Next, we consider the conjugate pairs shared by E1 and E2 (for conjugate pairs shard by E1 and

E2, the discussion is similar).

Let (X, X̂) be a conjugate pair shared by E1 and E2. Without lose of generality, suppose X ∈ E1

and X̂ ∈ E2. Then D(X) ∈ C1, D(X̂) ∈ C2 and (D(X),D(X̂)) is a conjugate pair shared by C1 and
C2. Define a map ϕ from the conjugate pairs shared by E1 and E2 to the conjugate pairs shared by
C1 and C2 as: ϕ((X, X̂)) = (D(X),D(X̂)). We show that ϕ is a bijection.

Suppose (X1, X̂1) is a conjugate pair shard by E1 and E2 such that ϕ((X1, X̂1)) = ϕ((X, X̂)).

Without lose of generality, suppose X1 ∈ E1 and X̂1 ∈ E2. Then (D(X1),D(X̂1)) = (D(X),D(X̂))

implies X = X1. So we get (X1, X̂1) = (X, X̂).

Let (Y, Ŷ) be a conjugate pair shared by C1 and C2. Consider the four states: D−10 (Y), D−11 (Y),

D−10 (Ŷ) and D−11 (Ŷ). Without lose of generality, suppose Y ∈ C1 and Ŷ ∈ C2. Then D−10 (Y)

and D−11 (Y) all belong to E1, one of D−10 (Ŷ) and D−11 (Ŷ) belong to E1. So (D−10 (Y),D−11 (Ŷ)) or

(D−11 (Y),D−10 (Ŷ)) is a conjugate pair shared by E1 and E2. Furthermore, ϕ((D−10 (Y),D−11 (Ŷ))) =

ϕ((D−11 (Y),D−10 (Ŷ))) = (Y, Ŷ). This implies ψ is a surjection. So ψ is a bijection.
For 3. It is easy to see, there are no conjugate pairs shared by E1 and E1, E2 and E2.
Suppose there are u conjugate pairs shared by E1 and E2. Then it is obvious that E1 and E2

share u conjugate pairs. Next, we consider the conjugate pairs shared by E1 and E2. Let (X, X̂) be
a conjugate pair shared by E1 and E2 or E1 and E2. Without lose of generality, suppose X ∈ E1 and
X̂ ∈ E2 or E2. Then D(X) ∈ C1, D(X̂) ∈ C2 and (D(X),D(X̂)) is a conjugate pair shared by C1 and
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C2. Define a map ϕ from the conjugate pairs shared by E1 and E2 or E1 and E2 to the conjugate
pairs shared by C1 and C2 as: ϕ((X, X̂)) = (D(X),D(X̂)). We show that ϕ is a bijection.

Suppose (X1, X̂1) is a conjugate pair shard by E1 and E2 or E1 and E2 such that ϕ((X1, X̂1)) =

ϕ((X, X̂)). Without lose of generality, suppose X1 ∈ E1 and X̂1 ∈ E2 or E2. Then (D(X1),D(X̂1)) =

(D(X),D(X̂)) implies X = X1. So we get (X1, X̂1) = (X, X̂).

Let (Y, Ŷ) be a conjugate pair shared by C1 and C2. Consider the four states: D−10 (Y), D−11 (Y),

D−10 (Ŷ) and D−11 (Ŷ). Without lose of generality, suppose Y ∈ C1 and Ŷ ∈ C2. Then one of D−10 (Y)

and D−11 (Y) belongs to E1, both D−10 (Ŷ) and D−11 (Ŷ) belong to E2 ∪ E2. So (D−10 (Y),D−11 (Ŷ))

or (D−11 (Y),D−10 (Ŷ)) is a conjugate pair shared by E1 and E2 or E1 and E2. This implies ψ is a
surjection. So ψ is a bijection. Since there are u conjugate pairs shared by E1 and E2, we get that
there are r− u conjugate pairs shared by E1 and E2. At last, it obvious that, E1 and E2 share r− u
conjugate pairs.

Note: In case 3 of theorem 4, the integer u can not be determined by r (see example 3). We need
some other information to determine u. So when f is a linear function that contains an even number
of terms, the adjacency graph of FSR(x0+x1)∗f can not be determined just from the adjacency graph
of FSRf use the method above.

The conclusion in theorem 4 can be shown by the graph below.

Example 3. Continue with example 1 and example 2. Define h = (x0 + x1) ∗ g = x0 + x6. Consider
the adjacency graph of FSRh. Since the parity of weight of cycles in FSRg are known, we can get all
the cycles in FSRh easily. Divide them into two sets (see the note for lemma 3)

A = {(−000000−)h, (−111111−)h, (−010100−)h, (−101011−)h, (−000011−)h,

(−111100−)h, (−010010−)h, (−101101−)h}

B = {(−010101−)h, (−000001−)h, (−111110−)h, (−010110−)h, (−101001−)h, (−000111−)h}

where A contains the cycles that are of extension of some cycles in FSRf , and B contains the cycles
that are of extension of some cycles in FSRf+1. Since the u in theorem 4 in unknown, we have to find
the number of conjugate pairs shared by some cycles first (the cycles that surrounded by a rectangle).
Then the adjacency of FSRh can be determined according to theorem 4:
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4 Conclusion

The relation between the adjacency graph of FSRf and FSR(x0+x1)∗f is discussed, where f is a
linear boolean function. For f contains a odd number of terms, we can get the adjacency graph of
FSR(x0+x1)∗f easily from the adjacency graph of FSRf using our method. But for f contains an even
number of terms, the theory is not so much complete. That may be the next work we need to do.
Besides, some properties about LFSRs are proposed.
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