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Abstract

In this paper, a general way to determine the adjacency graph of linear feedback shift registers
(LFSRs) with characteristic polynomial (1 + x)c(x) from the adjacency graph of LFSR with
characteristic polynomial c(x) is discussed, where c(x) can be any polynomial. As an application,
the adjacency graph of LFSRs with characteristic polynomial (1+ x)4p(x) are determined, where
p(x) is a primitive polynomial. Besides, some properties about the cycles in LFSRs are presented.
The adjacency graph of LFSRs with characteristic polynomial (1 + x)mp(x) are also discussed.

1 Introduction

Feedback shift registers (FSRs) have been used and studied for many years [6]. Especially in cryp-
tography, FSRs are the basic component in stream cipher [8]. But some basic theories of FSRs have
not been solved. The most important one may be construct FSRs that output sequences with large
period. The adjacency graph of FSRs can be used to construct FSRs that output sequences with
large period. When we change the successor of two states that in different cycles and are conjugate
with each other, we get a big cycle from two small cycles [6]. Do it repeatedly, we can get FSRs that
output sequences with efficient large period. So determine the adjacency graph of FSRs is important
both from theory and practice [2].

The adjacency graph of LFSR with characteristic polynomial 1 + xn were determined by [13] and
[14]. The adjacency graph of LFSR with characteristic polynomial (1 + x)n were determined by [15].
The adjacency graph of complementary circulating register were determined by [16]. The adjacency
graph of LFSR with characteristic polynomial (1 + x)mp(x) for m = 1, 2, 3 were determined by [4],
[11] and [2]. But there are no results for m ≥ 4. The adjacency graph of LFSR with characteristic
polynomial (1 + x3)p(x) were determined by [3].

In this paper, a recursive relation between the adjacency graph of FSRf and FSR(x0+x1)∗f is
discussed, where f is a linear boolean function. In [1], the FSRs whose characteristic polynomial g
can be written as g = f ∗ (x0 + x1) for some f were studied. In [5], the FSRs whose characteristic
polynomial g can be written as g = (x0 + x1) ∗ f for some f were studied. Since the operation ∗ is
not commutative, f ∗ (x0 + x1) 6= (x0 + x1) ∗ f generally. But when f is a linear boolean function,
we have f ∗ (x0 + x1) = (x0 + x1) ∗ f . So in the linear case, we can combine the conclusion in [1]
and [5], and get more results. First, we show some properties about the cycles in LFSR. Then we pay
attention to the relation between the adjacency graph of FSRf and FSR(x0+x1)∗f , where f is a linear
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boolean function. As an application, the adjacency graph of FSR(1+x)4p(x) is determined, where p(x)
is a primitive polynomial. Some result about FSR(1+x)mp(x) for m > 4 is also discussed.

This paper is organized as follows. In section 2, we present some basic knowledge about FSRs, and
explain some notation that we will use. Some properties about the cycles in LFSRs are presented In
section 3. In section 4, a recursive relation between the adjacency graph of FSRf and FSR(x0+x1)∗f
is presented. As an application, in section 5 the adjacency graph of FSR(1+x)4p(x) is determined. In
section 6, we discuss the general case FSR(1+x)mp(x) for m > 4. At the end, we conclude this paper.

2 Preliminaries

The purpose of this section is to briefly review the basic knowledge about feedback shift registers, and
explain some notations that will be used in this paper.

2.1 Feedback shift registers

Let F2 be the finite field of two-element. Let Fn2 be the vector space of dimension n over F2. A boolean
function f(x0, x1, . . . , xn−1) in n variables is a map from Fn2 to F2. It is well known that an Boolean
function can be uniquely represented by its algebraic normal form (ANF), which is a multivariate
polynomial. For two boolean functions f(x0, x1, . . . , xn) and g(x0, x1, . . . , xm), we denote

f ∗ g = f(g(x0, x1, . . . , xm), g(x1, x2 . . . , xm+1), . . . , g(xn, xn+1, . . . , xn+m)),

which is an (n + m − 1)-variable Boolean function. Note that the operation ∗ is not commutative,
that is, f ∗ g and g ∗ f are not the same in general.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a characteristic
polynomial f regulated by a single clock. A sketch diagram is shown below. The feedback function,
denoted by f0, correspond to the characteristic polynomial f = f0 + xn. We denote the FSR with
characteristic polynomial f by FSRf .

A state of an FSR is a vector (x0, x1, . . . , xn−1), where xi indicates the content of stage i. At every
clock pulse, the state (x0, x1, . . . , xn−1) is updated by (x1, x2, . . . , f0(x0, . . . , xn−1)). Therefore, f
induces a next-state operation from Fn2 to itself

θf : (x0, x1, . . . , xn−1) 7→ (x1, x2, . . . , f0(x0, . . . , xn−1)).

It is well known that, θf is a bijection if and only f can be written as f = x0 + F (x1, . . . , xn−1) + xn
for some F . In this case, we say FSRf is nonsingular. Without specification, all the FSRs in this
paper are nonsingular.

From an initial state X0 = (x0, x1, . . . , xn−1), after consecutive clock pulses, FSRf generate a cycle
C = (X0,X1, . . . ,Xl−1), where Xi+1 is the next state of Xi for i = 1, 2, . . . , l − 2, X0 is the next
state of Xl−1, and l is the length of the cycle. Cycle C can be seen as an ordered set with element
in Fn2 . So we can say a state is or not belong to a cycle. For simplicity, cycle C can be written as
C = (x0, x1, . . . , xl−1), where xi is the first component of Xi. We call this notation sequence-notation.

Define the weight of cycle C as W (C) =
∑l
i=1 xi. It is obvious that, the set Fn2 is divided into cycles

C1, C2, . . . , Ck by FSRf . Reversely, a division of Fn2 into cycles determines an n-stage FSR. So we can
treat FSRf as a set of cycles, and use the notation FSRf = {C1, C2, . . . , Ck}.
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Next, we consider the output sequences of FSRf . From an initial state X0 = (x0, x1, . . . , xn−1),
after consecutive clock pulses, FSRf output a sequence x = x0x1 · · · satisfying f(xt, xt+1, . . . , xt+n) =
0 for any t ≥ 0. Let G(f) be the set of sequences that FSRf can output. Then |G(f)| = 2n. Since
FSRf is nonsingular, G(f) contains only periodic sequences. We use (a0a1 · · · ap−1) to denote the
periodic sequence a0a1 · · · ap−1 · · · with period p. For a periodic sequence a, we use p(a) to denote
the period of a. Let L be a map on periodic sequences: L((a0a1 · · · ap−1)) = (a1a2 · · · ap−1a0). Two
periodic sequences a and b are called shift equivalent, denoted by a ' b, if there exists an integer r
such that a = Lr(b). It can be verified, ' is an equivalence relation on G(f). So G(f) is divided into
equivalent classes. We use the notation [a] to denote the equivalent class that contains a. Then we
have: G(f) = ∪ki=1[xi], where k is the number of equivalent classes in G(f) and xi,xj ∈ G(f) belongs
to different equivalent classes provided i 6= j.

Define a map from the equivalent classes in G(f) to the cycles in FSRf

Θ : [(x0x1 · · ·xl−1)] 7→ (x0, x1, . . . , xl−1).

It can be verified, Θ is a bijection. For this reason, sometimes we use an equivalent class to denote a
cycle. For example, if (x0, x1, . . . , xl−1) ∈ G(f), then we can treat [(x0x1 · · ·xl−1)] as a cycle in FSRf ,
and use the notation [(x0x1 · · ·xl−1)] ∈ FSRf . In section 5, we always use this notation.

For a state X = (x0, x1, . . . , xn−1), its conjugate X̂, companion X̃ and dual X are defined as

X̂ = (x0, x1, . . . , xn−1), X̃ = (x0, x1, . . . , xn−1) and X = (x0, x1, . . . , xn−1), where x denotes the

binary complement of x. We call (X, X̂) a conjugate pair, (X, X̃) a companion pair, and (X,X) a
dual pair. For a cycle C = (X0,X1, . . . ,Xl−1), its dual cycle C is defined as C = (X0,X1, . . . ,Xl−1).
Two cycles C1 and C2 are adjacent if they are disjoint and there exists a state X in C1 whose conjugate
X̂ (or companion X̃) is in C2. It is well-known that two adjacent cycles C1 and C2 are joined into

a single cycle when the successors of X and X̂ are interchanged. This is the basic idea of the cycle
joining method introduced in [6]. The problem of determining the number of conjugate pairs between
cycles leads to the definition of adjacency graph.

Definition 1. [10][9] For an FSR, its adjacency graph is an undirected graph where the vertexes
correspond to the cycles in it, and there exists an edge labeled with an integer m between two vertexes
if and only if the two vertexes share m conjugate pairs.

2.2 LFSRs and m-sequences

An FSR is called a linear feedback shift register (LFSR) if its characteristic polynomial f is linear and
nonlinear feedback shift register (NFSR) otherwise. For a linear boolean function f(x0, x1, . . . , xn) =
a0x0+a1x1+· · ·+anxn, we can associate it with a univariate polynomial c(x) = a0+a1x+· · ·+anxn ∈
F2[x], and denote c(x) = φ(f), f = φ−1(c(x)). The function φ maps a linear Boolean function
to a univariate polynomial over F2[x], which is a one-to-one correspondence. It can be verified,
φ(f ∗g) = φ(f)φ(g). So the operation ∗ is commutative in the linear case. Sometimes, it is convenient
to use the univariate polynomial φ(f) instead of the linear function f in the linear case.

Let a = a0a1 · · · and b = b0b1 · · · be two sequences. Let c ∈ F2. Then the sum a + b is defined
to be a + b = c0c1 · · · with ci = ai + bi for i ≥ 0. The scalar multipication ca is defined to be
ca = d0d1 · · · with di = c · ai for i ≥ 0. Then G(c(x)) is a vector space over F2 endowed with the two
operations defined above for any c(x) ∈ F2[x].

Lemma 1. [17] Let c1(x), c2(x) ∈ F2[x]. Let a ∈ G(c1(x)) and b ∈ G(c2(x)). Then a + b ∈
lcm(c1(x), c2(x)). In particular, if gcd(c1(x), c2(x)) = 1, then p(a + b) = lcm(p(a), p(b)).

For an n-stage LFSR, the period of its output sequence is no more than 2n − 1. If this value is
attained, we call the sequence m-sequence, and the LFSR maximum LFSR. It is well known that,
an LFSR generates m-sequences if and only if its characteristic polynomial is primitive [17]. For
m-sequences, we have the famous shift-and-add property [17].
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Lemma 2. [17][3] Let s be a m-sequence with period 2n − 1. Then for any 1 ≤ j ≤ 2n − 2, there
exist an integer 1 ≤ k ≤ 2n − 2 such that s + Lj(s) = Lk(s). Further more, define a map from
{1, 2, . . . , 2n − 2} to itself, Z : j 7→ k. Then Z is a bijection.

Proof. We only prove the second assertion. It suffices to prove Z is an injection. Suppose Z(j1) =
Z(j2). Then s + Lj1(s) = s + Lj2(s). So Lj1(s) = Lj2(s). This implies j1 = j2.

We note that: for different choice of s, the bijection Z is different generally. Some properties about
the bijection Z can be found in [3].

2.3 Self-dual FSRs and dividable FSRs

In [1], D-morphism was proposed.

D : Fn+1
2 → Fn2

(x0, x1, . . . , xn) 7→ (x0 + x1, x1 + x2, . . . , xn−1 + xn).

D-morphism is a two-to-one map. For any n-stage state X = (x0, x1, . . . , xn−1), the two preimages
of X are D−10 (X) = (0, x0, x0+x1, . . . , x0+x1+· · ·+xn−1) and D−11 (X) = (1, 1+x0, 1+x0+x1, . . . , 1+
x0 + x1 + · · ·+ xn−1). Let C be an n-stage cycle. Let S = {X|D(X) ∈ C}. For any state X ∈ S we
can find a state Y ∈ S such that: D(X)→ D(Y) in C and Y can be a successor of X. Define X→ Y
in S. Then the states in S form cycles. Denote the set of these cycles by D−1(C). Then we have
the following fact [1]. In the case W (C) is odd, D−1(C) contains only one cycle. Let D−1(C) = {E}.
Then we have E = E. In the case W (C) is even, D−1(C) contains two cycles. Let D−1(C) = {E,E′}.
Then we have E = E′.

Lemma 3. [1] Let FSRf = {C1, C2, . . . , Ck} be an n-stage FSR. Then

D−1(C1) ∪ D−1(C2) ∪ · · · ∪ D−1(Ck)

is an (n+ 1)-stage FSR with characteristic polynomial f ∗ (x0 + x1).

Definition 2. [1] FSRg is called self-dual if C ∈ FSRg implies C ∈ FSRg.

Lemma 4. [1] FSRg is self-dual if and only if g = f ∗ (x0 + x1) for some f .

Next, we consider another class of FSRs. Let C = (X0,X1, . . . ,Xl−1) be an n-stage cycle, where
l is the length of the cycle and Xi = (xi, xi+1, . . . , xi+n−1) is an n-stage state in the cycle for i =
0, . . . , l− 1. The subscribes are taken modulo l (similarly hereinafter). Now we can construct another
cycle C+ = (X+

0 ,X
+
1 , . . . ,X

+
l−1), where X+

i = (xi, xi+1, . . . , xi+n−1, xi+n), i = 0, 1, . . . , l − 1. It is
easy to verify that this definition makes sense. C+ is an (n + 1)-stage cycle of length l. We call C+

the extended cycle of C. We call a cycle C prime cycle, if there is no conjugate pair (companion
pair) in C. For a prime cycle C = (X0,X1, . . . ,Xl−1), we can construct an (n − 1)-stage cycle:
C− = (X−0 ,X

−
1 , . . . ,X

−
l−1), where X−i = (xi, xi+1, . . . , xi+n−2), i = 0, 1, . . . , l − 1. The definition

makes sense, because the states in C− are all different from each other, and X→ Y implies X− → Y−.
We warn that, C− is meaningful if and only if C is a prime cycle. We call C− the reduced cycle of C.

Lemma 5. [5] Let FSRf = {C1, C2, . . . , Ck} and FSRf+1 = {D1, D2, . . . , Dt} be two n-stage FSRs,
then

{C+
1 , C

+
2 , . . . , C

+
k , D

+
1 , D

+
2 , . . . , D

+
t }

is an (n+ 1)-stage FSR with characteristic polynomial (x0 + x1) ∗ f .

Note: Define A = {C+
1 , C

+
2 , . . . , C

+
k } and B = {D+

1 , D
+
2 , . . . , D

+
t }. Let C be a cycle in FSR(x0+x1)∗f .

Let X be a state in C. Then we have: C ∈ A if and only if f(X) = 0; C ∈ B if and only if f(X) = 1.

Definition 3. [5] FSRg is called dividable if we can divide the vertexes in the adjacency graph of
FSRg into two sets, such that the edges are all between the two sets.

Lemma 6. [5] FSRg is dividable if and only if g = (x0 + x1) ∗ f for some f .
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3 Some Properties About The Cycles in LFSRs

When f is a linear boolean function, we have (x0 + x1) ∗ f = f ∗ (x0 + x1). The following conclusion
is direct from lemma 3-6.

Theorem 1. Let f be a linear boolean function. Then FSR(x0+x1)∗f is self-dual and dividable. Write
FSRf = {C1, C2, . . . , Ck} and FSRf+1 = {D1, D2, . . . , Dt}. We have

D−1(C1) ∪ D−1(C2) ∪ · · · ∪ D−1(Ck) = {C+
1 , C

+
2 , . . . , C

+
k , D

+
1 , D

+
2 , . . . , D

+
t }. (1)

For a linear boolean function g, it is easy to see, FSRg is dividable (or self-dual) if and only if g
contains an even number of terms. Considering φ(g), FSRφ(g) is dividable (or self-dual) if and only if
φ(g)(1) = 0.

Theorem 2. Let f be a linear boolean function. Suppose there are t cycles of even weight in FSRf .
Then there are t cycles in FSRf+1.

Proof. Suppose there are s cycles of odd weight in FSRf , and there are u cycles in FSRf+1. Consider
the equation in theorem 1. On the left side of the equation (1), there are s+ 2t cycles. On the right
side of the equation (1), there are s+ t+u cycles. So we get s+ 2t = s+ t+u. This implies u = t.

Theorem 3. Let f be a linear boolean function that contains an odd number of terms. Then the
cycles in FSRf are all of even weight.

Proof. Suppose C is a cycle in FSRf of odd weight. Then there is only one cycle in D−1(C). Let
D−1(C) = {E}. We have E = E. Write FSRf = {C1, C2, . . . , Ck} and FSRf+1 = {D1, D2, . . . , Dt}.
Then, E = C+

i for some i or E = D+
j for some j. Suppose E = C+

i for some i (the case that E = D+
j

for some j is similar). Then f(X) = 0 for any X ∈ E. Let X1 be a state in E. Since E = E, its dual
X1 is also in E. Because there are an odd number of terms in f , we have f(X1) 6= f(X1). So we get
a contradiction.

Theorem 4. Let f be a linear boolean function. FSRf and FSRf+1 contain the same number of
cycles if and only if f contains an odd number of terms.

Proof. Suppose f contains an odd number of terms. Then the cycles in FSRf are all of even weight.
According to theorem 2, the number of cycles in FSRf+1 is the same as the number of even weight
cycles in FSRf . So FSRf and FSRf+1 contain the same number of cycles. Suppose f contains an
even number of terms. Then f(1, 1, . . . , 1) = 0. This means the 1-cycle ((1, 1, . . . , 1)) which contains
only the 1-state (1, 1, . . . , 1), is a cycle in FSRf . Since the 1-cycle ((1, . . . , 1)) is a cycle of odd weight,
there are at least one cycle of odd weight in FSRf . So FSRf contains more cycles than FSRf+1.

4 Determine the Adjacency Graph of LFSR(x0+x1)∗f From The
Adjacency Graph of LFSRf

In this section, we try to determine the adjacency graph of LFSR with characteristic polynomial
(x0 + x1) ∗ f from the adjacency graph of LFSR with characteristic polynomial f , where f is a linear
boolean function. Our discussion can be divided into two cases.

4.1 The case that f contains an odd number of terms

Let f be a linear boolean function that contains an odd number of terms. According to theorem 3,
the cycles in FSRf are all of even weight. Let C be a cycle in FSRf . Then there are two cycles in
D−1(C), denoted as D−1(C) = {E,E}. According to theorem 1, E and E are the extension of some
two cycles in FSRf or FSRf+1. Let X be a state in E. Then X is a state in E. Since f contains
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an odd number of terms, we have f(X) 6= f(X). According to Note 1, this implies when E is the
extension of some cycle in FSRf (FSRf+1), then E is the extension of some cycle in FSRf+1 (FSRf ).

Theorem 5. Let f be a linear boolean function that contains an odd number of terms.

1. Let C ∈ FSRf . Let D−1(C) = {E,E}. Suppose C contains r conjugate pairs. Then E and E
share 2r conjugate pairs.

2. Let C1, C2 ∈ FSRf . Let D−1(C1) = {E1, E1} and D−1(C2) = {E2, E2}, where E−1 , E
−
2 ∈ FSRf ,

and E
−
1 , E

−
2 ∈ FSRf+1. Suppose C1 and C2 share r conjugate pairs. Then E1 and E2, E1 and

E2 both share r conjugate pairs.

Proof. 1. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs in C. Then (D−10 (Xi), D−11 (X̂i)),

(D−11 (Xi),D−10 (X̂i)), i = 1, 2, . . . , r, are the 2r conjugate pairs shared by E and E.

2. It is obvious that, there are no conjugate pairs shared by E1 and E2, E1 and E2. Let (Xi, X̂i), i =

1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1 and X̂i ∈ C2. Let
D−1bi (Xi) ∈ E1, where bi ∈ F2 for i = 1, 2, . . . , r. Then D−11−bi(Xi) ∈ E1 for i = 1, 2, . . . , r. Since

there are no conjugate pairs shard by E1 and E2, we know D−11−bi(X̂i) ∈ E2, for i = 1, 2, . . . , r.

Consequently, D−1bi (X̂i) ∈ E2, for i = 1, 2, . . . , r. So (D−1bi (Xi),D−11−bi(X̂i)), i = 1, 2, . . . , r are

the r conjugate pairs shared by E1 and E2. (D−11−bi(Xi),D−1bi (X̂i)), i = 1, 2, . . . , r are the r

conjugate pairs shared by E1 and E2.

The conclusion in theorem 2 can be shown by the graph below.

4.2 The case that f contains an even number of terms

For a linear boolean function f , FSRf is dividable if and only if f contains an even number of terms.
So, FSRf contains only prime cycles providing that f contains an even number of terms.

Let C be a cycle in FSRf of even weight. Then there are two cycles in D−1(C), denoted as
D−1(C) = {E,E}. Let X be a state in E. Then X is a state in E. Since f contains an even number
of terms, we have f(X) = f(X). It means that, when E is the extension of some cycle in FSRf (or
FSRf+1), then E is the extension of some cycle in FSRf (or FSRf+1) too. So there are no conjugate
pairs shared by E and E.

Theorem 6. Let f be a linear boolean function that contains an even number of terms.

1. Let C1, C2 ∈ FSRf be two cycles of odd weight. Let D−1(C1) = {E1} and D−1(C2) = {E2}.
Suppose C1 and C2 share r conjugate pairs, then E1 and E2 share 2r conjugate pairs.

2. Let C1 ∈ FSRf be a cycle of odd weight and C2 ∈ FSRf be a cycle of even weight. Let D−1(C1) =
{E1} and D−1(C2) = {E2, E2}. Suppose C1 and C2 share r conjugate pairs. Then E1 and E2,
E1 and E2 both share r conjugate pairs.

6



3. Let C1, C2 ∈ FSRf be two cycles of even weight. Let D−1(C1) = {E1, E1} and D−1(C2) =
{E2, E2}. Suppose C1 and C2 share r conjugate pairs. Then there exist an integer u with
0 ≤ u ≤ r such that: E1 and E2, E1 and E2 both share u conjugate pairs; E1 and E2, E1 and
E2 both share r − u conjugate pairs.

Proof. 1. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1

and X̂i ∈ C2. Then (D−10 (Xi), D−11 (X̂i)), (D−11 (Xi),D−10 (X̂i)), i = 1, 2, . . . , r, are the 2r
conjugate pairs shared by C1 and C2.

2. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1 and

X̂i ∈ C2. Let D−1bi (X̂i) ∈ E2, where bi ∈ F2 for i = 1, 2, . . . , r. Then D−11−bi(X̂i) ∈ E2 for

i = 1, 2, . . . , r. So (D−11−bi(Xi),D−1bi (X̂i)), i = 1, 2, . . . , r are the r conjugate pairs shared by E1

and E2. (D−1bi (Xi),D−11−bi(X̂i)), i = 1, 2, . . . , r are the r conjugate pairs shared by E1 and E2.

3. Let (Xi, X̂i), i = 1, 2, . . . , r be the r conjugate pairs shared by C1 and C2 with Xi ∈ C1 and

X̂i ∈ C2. Let D−1bi (Xi) ∈ E1, where bi ∈ F2 for i = 1, 2, . . . , r. Then D−11−bi(Xi) ∈ E1 for

i = 1, 2, . . . , r. Let D−1ci (X̂i) ∈ E2, where ci ∈ F2 for i = 1, 2, . . . , r. Then D−11−ci(X̂i) ∈
E2 for i = 1, 2, . . . , r. Define u be the number of elements in set {i|bi + ci = 1}. Then

{D−1bi (Xi),D−1ci (X̂i)|bi + ci = 1, i = 1, 2, . . . , r} are the u conjugate pairs shared by E1 and E2.

{D−11−bi(Xi),D−11−ci(X̂i)|bi + ci = 1, i = 1, 2, . . . , r} are the u conjugate pairs shared by E1 and

E2. {D−1bi (Xi),D−11−ci(X̂i)|bi + ci = 0, i = 1, 2, . . . , r} are the r− u conjugate pairs shared by E1

and E2. {D−11−bi(Xi),D−1ci (X̂i)|bi + ci = 0, i = 1, 2, . . . , r} are the r − u conjugate pairs shared

by E1 and E2.

Note 1. In case 3 of theorem 4, the integer u can not be determined by r generally (see section 5).
We need some other information to determine u. So when f is a linear function that contains an even
number of terms, the adjacency graph of FSR(x0+x1)∗f can not be determined just from the adjacency
graph of FSRf using the method above.

The conclusion in theorem 4 can be shown by the graph below.

5 The Adjacency Graph of LFSRs with Characteristic Poly-
nomial (1 + x)4p(x)

Since φ(x0 + x1) = 1 + x and φ(f ∗ g) = φ(f)φ(g), the conclusion in section 4 is meant to deter-
mine the adjacency graph of FSR(1+x)c(x) from the adjacency graph of FSRc(x), where c(x) ∈ F2[x].
As an application, we use the result in section 4 to determine the adjacency graph of LFSRs with
characteristic polynomial (1 + x)4p(x), where p(x) is a primitive polynomial over F2(x).

As discussed in section 2.1, we can use an equivalent class in G(f) to denote a cycle in FSRf .
Let x = (x0x1 . . . xl−1) ∈ G(f) be a sequence with period l. Then [x] can be used to denote the
cycle C = (X0,X1, . . . ,Xl−1) ∈ FSRf , where Xi = (xi, xi+1, . . . , xi+n−1), for i = 0, 1, . . . , l− 1. The
subscribes are taken modulo l. In this section, we always use an equivalent class to denote a cycle.
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Lemma 7. Let [a] and [b] be two cycles in FSRc1(x) and FSRc2(x) respectively. If gcd(c1(x), c2(x)) = 1
and gcd(p(a), p(b)) = 1, then [a + b] is a cycle in FSRc1(x)c2(x) and W ([a + b]) ≡ p(a)W ([b]) +
p(b)W ([a])mod2.

Proof. According to lemma 1, a + b ∈ G(c1(x)c2(x)). So [a + b] ∈ FSRc1(x)c2(x).
Since gcd(c1(x), c2(x)) = 1, we have p(a+b) = lcm(p(a), p(b)). Considering that gcd(p(a), p(b)) =

1, we get p(a + b) = p(a)p(b). Let a = (a0a1 · · · ap−1) and b = (b0b1 · · · bq−1). Then W ([a +

b]) ≡
(∑p−1

i=0 ai + p · b0
)

+ · · · +
(∑p−1

i=0 ai + p · bq−1
)
≡ q ·

∑p−1
i=0 ai + p ·

∑q−1
j=0 bj ≡ p(a)W ([b]) +

p(b)W ([a])mod2.

Lemma 8. Let [a] be a cycle in FSR(1+x)m , where m is a positive integer. Let [s] be a cycle in FSRp(x),
where p(x) is a primitive polynomial and s is a m-sequence. Then D−1([a + s]) ⊂ FSR(1+x)m+1p(x)

and

1. If W ([a]) is odd, D−1([a + s]) = {[b + s]}, where [b] is the cycle in D−1([a]).

2. If W ([a]) is even, D−1([a+s]) = {[c+s], [c̄+s]}, where [c] and [c̄] are the two cycles in D−1([a]).

Proof. Since a ∈ G((1 + x)m) and s ∈ G(p(x)), we get a + s ∈ G((1 + x)mp(x)). So [a + s] ∈
FSR(1+x)mp(x) and D−1([a + s]) ⊂ FSR(1+x)m+1p(x).

Let t be the integer such that 2t−1 < m ≤ 2t. Then the period of (1 + x)m is 2t. From the theory
of LFSRs we know, p(a)|2t. Let n be the degree of p(x). Then p(s) = 2n − 1. By gcd(2t, 2n − 1) = 1
we know gcd(p(a), p(s)) = 1. According to lemma 7, W ([a + s]) ≡ p(a)W ([s]) + p(s)W ([a])mod2. It
is easy to see, the parity of W ([a + s]) is the same as that of W ([a]).

If W ([a]) is odd, then W ([a+s]) is odd. There is only one cycle in D−1([a+s]). So we just need to
check that D([b + s]) = [a + s]. From D([b]) = [b +L(b)] = [a] we know, b +L(b) = Lu(a) for some
integer u. According to lemma 2, s + L(s) = Lv(s) for some integer v. From p(a + s) = p(a)p(s) we
know, [Lu(a)+Lv(s)] = [a+s]. Then the proof can be done as follows: D([b+s]) = [b+s+L(b+s)) =
[b + L(b) + s + L(s)] = [Lu(a) + Lv(s)] = [a + s].

For the case W ([a]) is even, the proof is similar.

The adjacency graph of FSR(1+x)mp(x), m = 1, 2, 3 were determined by [4], [11] and [2]. But there
are no results for m ≥ 4. Next, we use our method to determine the adjacency graph of FSR(1+x)mp(x)

for m = 1, 2, 3, 4 step by step. Some results for m > 4 are derived in section 6.
The cycles in FSR(1+x)mp(x) can be determined from the cycles in FSR(1+x)m−1p(x) according to

lemma 8. The parity of the weight of cycles in FSR(1+x)mp(x) can be determined from the parity of
the weight of cycles in FSR(1+x)m−1p(x) according to lemma 7. The adjacency graph of FSR(1+x)mp(x)

can be determined from the adjacency graph of FSR(1+x)m−1p(x) according to theorem 5 and theorem
6. If the case 3 in theorem 6 is encountered, we need some other skills to determine the parameter u,
otherwise, the adjacency graph can be determined directly.

Let p(x) be a primitive polynomial of degree n. Let s ∈ G(p(x)) be a m-sequence. Then FSRp(x) =
{[(0)], [s]}. The adjacency graph of FSRp(x) can be determined easily.

It is obvious that, [(0)] and [s] are both cycles of even weight. By calculation, D−1([(0)]) = {[(0)], [(1)]}.
According to lemma 8, D−1([s]) = D−1([(0) + s]) = {[s], [(1) + s]}. So FSR(1+x)p(x) = D−1([(0)]) ∪
D−1([s]) = {[(0)], [(1)], [s], [(1) + s]}. According to theorem 5, the adjacency graph of FSR(1+x)p(x)

can be determined.
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Similarly, we get FSR(1+x)2p(x) = {[(0)], [(01)], [(1)], [s], [(01) + s], [(1) + s]}. According to theorem 6,
the adjacency graph of FSR(1+x)2p(x) can be determined.

FSR(1+x)3p(x) = {[(0)], [(0011)], [(01)], [(1)], [s], [(0011) + s], [(01) + s], [(1) + s]}. According to theorem
6, the adjacency graph of FSR(1+x)3p(x) can be determined.

For FSR(1+x)4p(x), the cycles and the parity of the weight of cycles in FSR(1+x)4p(x) can be deter-
mined similarly. FSR(1+x)4p(x) = {[(0)], [(0001)], [(0011)], [(01)], [(0111)], [(1)], [s], [(0001)+s], [(0011)+
s], [(01) + s], [(0111) + s], [(1) + s]}. There are four cycles [(0)], [s], [(0011)] and [(0011) + s] in
FSR(1+x)3p(x) that are of weight. We have to deal with the parameter u in the case 3 of theorem 6.
Since D−1([(0)]) = {[(0)], [(1)]}, D−1([s]) = {[s], [(1) + s]}, D−1([(0011)]) = {[(0001)], [(0111)]}, and
D−1([(0011) + s]) = {[(0001) + s], [(0111) + s]}, to determine the adjacency graph of FSR(1+x)4p(x), it
suffices to determine the number of conjugate pairs shared by [(0)] and [(0001) + s], [s] and [(0001)],
[s] and [(0001) + s]. The method we use can be found in [3].

Theorem 7. In the case [(0)] is adjacent with [(0001) + s], the adjacency graph of FSR(1+x)4p(x) is
shown below

In the case [(0)] is adjacent with [(0111) + s], the adjacency graph of FSR(1+x)4p(x) is shown below
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where a and b denote the number 2n − 2 and 2n+1 − 4 respectively, and the number 1 is omitted.

Proof. In the case [(0)] is adjacent with [(0001) + s], since there is only one state in [(0)], [(0)] share
1 conjugate pair with [(0001) + s]. Next, we consider the number of conjugate pairs shared by [s]
and [(0001)], [s] and [(0001) + s]. Since [(0)] is adjacent with [(0001) + s], the (n + 4)-stage state
E = (1, 0, · · · , 0) belongs to [(0001) + s]. Treat [(0001)] and [s] as (n+ 4)-stage cycles. There are two
states U0 and S0 in [(0001)] and [s] respectively such that:

U0 + S0 = E. (2)

This implies S0 = Û0. So the conjugate of S0 belongs to [(0001)]. Denote [(0001)] = (U0,U1,U2,U3)
and [s] = (S0,S1, . . . ,S2n−2). Without lose of generality, let s = (s0s1 · · · s2n−2), where si is the first
component of Si for i = 0, 1, · · · , 2n − 2. According to lemma 2, s + Lj(s) = LZ(j)(s). So

S0 + Sj = SZ(j). (3)

Combine (2) and (3), we get

U0 + Sj = ŜZ(j). (4)

Considering that Z is a bijection on {1, 2, . . . , 2n − 2}, equation 4 means the conjugate of Sj with
j 6= 0 belongs to [(0001) + s]. So [s] share 1 conjugate pair with [(0001)] and share 2n − 2 conjugate
pairs with [(0001) + s].

For the case [(0)] is adjacent with [(0111) + s], the proof is similar.

The following example shows the two cases in theorem 7 is both possible.

Example 1. Let p1(x) = x5+x4+x2+x+1 be a primitive polynomial and s1 = (0000111001101111101
000100101011) ∈ G(p2(x)) be a m-sequence. Then, [(0001) + s1] = [(1000000001110100001111101111
1101011001101000111000011011100111001010101101111010010100010101111100110000100100101100
01001101)]. Let p2(x) = x5+x3+x2+x+1 be a primitive polynomial and s2 = (00001011010100011101
11110010011) ∈ G(p1(x)) be a m-sequence. Then, [(0111)+s2] = [(1000000001011111011110010110111
1110011000111001000111110000100110101010000101000101100001110101001100100100111011010110
10001)].

6 Some Properties About LFSRs with Characteristic Polyno-
mial (1 + x)mp(x)

Theorem 8. Let km be the number of cycles in FSR(1+x)mp(x), where p(x) is a primitive polynomial.
Let t be the integer such that 2t−1 < m ≤ 2t. Then for m ≥ 2 we have

km = 4 +

t−1∑
i=1

(
22

i−i+1 − 22
i−1−i+1

)
+ 2m−t+1 − 22

t−1−t+1
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Proof. The period of (1+x)m is 2t. Let C1 be a cycles in FSR(1+x)m , and C2 be a cycles in FSRp(x).
Denote the length of cycle C by len(C). Then len(C1)|2t and len(C2)|2n− 1, where n is the degree of
p(x). By gcd(2t, 2n−1) = 1, we know gcd(len(C1), len(C2)) = 1. Since p(x) is a primitive polynomial,
gcd((1 + x)m, p(x)) = 1 for any m. Let lm be the number of cycles in FSR(1+x)m . Since there are
two cycles in FSRp(x), we have km = 2lm.

Consider the cycles in FSR(1+x)m\FSR(1+x)m−1 . They are all of length 2t. So we get lm− lm−1 =
2m−2m−1

2t = 2m−t−1. This implies km − km−1 = 2m−t. Use this equation and the fact k1 = 4, we get

kn = k1 + (k2 − k1) + (k3 − k2) + · · ·+ (km − km−1)

= 4 +
22

2
+

23 + 24

22
+ · · ·+ 22

t−2+1 + · · ·+ 22
t−1

2t−1
+

22
t−1+1 + · · ·+ 2m

2t

= 4 +

t−1∑
i=1

(
22

i−1+1 + · · ·+ 22
i

2i

)
+

22
t−1+1 + · · ·+ 2m

2t

= 4 +

t−1∑
i=1

(
22

i−i+1 − 22
i−1−i+1

)
+ 2m−t+1 − 22

t−1−t+1

It can be seen, the cycles in FSRφ−1(p(x))+1, FSRφ−1((1+x)p(x))+1 and FSRφ−1((1+x3)p(x))+1 are
all of odd weight. Generally, we have the following theorem.

Theorem 9. The cycles in FSRφ−1((1+x)m−1p(x))+1 are all of odd weight if and only if m = 2t for
some integer t.

Proof. Let km be the number of cycles in FSR(1+x)mp(x). Let t and t′ be integers such that 2t−1 <

m ≤ 2t and 2t
′−1 < m+1 ≤ 2t

′
. From the proof of theorem 8 we know, km−km−1 = 2m−t and km+1−

km = 2m+1−t′ . This implies there are 2m−t and 2m+1−t′ cycles of even weight in FSR(1+x)m−1p(x)

and FSR(1+x)mp(x) respectively. Since FSR(1+x)mp(x) consists of cycles in FSR(1+x)m−1p(x) and
FSRφ−1((1+x)m−1p(x))+1, the cycles in FSRφ−1((1+x)m−1p(x))+1 are all of odd weight if and only if
FSR(1+x)mp(x) and FSR(1+x)m−1p(x) have the same number of even weight cycles. That is t′ = t+ 1.
It is easy to see, t = t′ if and only if m = 2t.

By this theorem, the adjacency graph of FSR(1+x)2t+1p(x) can be determined directly from the
adjacency graph of FSR(1+x)2tp(x) without bothered by the parameter u in theorem 6. Especial-
ly, the adjacency graph of FSR(1+x)5p(x) can be determined directly from the adjacency graph of
FSR(1+x)4p(x). Due to the complexity, we do not present it here.

7 Conclusion

A recursive relation between the adjacency graph of FSRf and FSR(x0+x1)∗f is discussed, where f
is a linear boolean function. As an application, the adjacency graph of LFSRs with characteristic
polynomial (1 + x)4p(x) are determined, where p(x) is a primitive polynomial.
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