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Abstract

In this paper we introduce a new transformation method and a multiplication algorithm for
multiplying the elements of the field GF(2k) expressed in a normal basis. The number of XOR
gates for the proposed multiplication algorithm is fewer than that of the optimal normal basis
multiplication, not taking into account the cost of forward and backward transformations. The
algorithm is more suitable for applications in which tens or hundreds of field multiplications are
performed before needing to transform the results back.

1 Introduction

Arithmetic operations in finite fields GF(q) have several applications in cryptography, coding, and
computer algebra. Particularly of interest are fields of characteristic 2, where q = 2k, which have
various uses in elliptic curve cryptography for large values of k, usually in the range from 160 to 521.
Furthermore, smaller fields, for example, k = 8 (AES/Rijndael) and k = 2, . . . , 32 (Reed-Solomon
and BCH codes) are also commonly used. Elliptic curve cryptographic protocols generally require
fast hardware and software implementations of the multiplication and inversion operations. On the
other hand circuits for these operations for small fields may be implemented completely in hardware
and/or using a table lookup approach.

The subject of this paper is multiplication algorithms in the binary extension fields GF(2k).
There are essentially two categories of algorithms, based on the representation of field elements
using polynomial basis or normal basis. In this paper, a new transformation method and a new
multiplication algorithm for normal basis is introduced. First we will review the existing algorithms
for both polynomial and normal bases, and then introduce the transformation method, which maps
the elements of the field uniquely to the same set. This also slightly changes the definition of
multiplication, as the product is computed in the transformed domain. The resulting algorithm is
useful for applications where several normal basis multiplications are performed, as is the case for
elliptic curve cryptography.

2 Polynomial Basis Multiplication

In the polynomial basis a field element a ∈ GF(2k) is represented as a polynomial of degree less
than or equal to k − 1, written as a(x) =

∑k−1
i=0 aix

i with coefficients ai ∈ {0, 1}. The addition of
two field elements a and b is accomplished by adding the coefficients ai and bi in GF(2), which is
the XOR of two binary values. On the other hand, the multiplication c = a · b is accomplished by
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first computing the degree 2k−2 product polynomial c′(x) = a(x)b(x) and then reducing it modulo
the irreducible polynomial p(x) of degree k, in order to obtain the product c(x) of degree at most
k − 1:

c(x) = a(x)b(x) mod p(x) .

The multiplication of the individual coefficients ai and bi require 2-input AND gates, while the
steps of the multiplication is accomplished by shift and XOR operations in software, or rewiring
and XOR gates in hardware.

There are various polynomial basis multiplication algorithms; the work of Mastrovito is quite
remarkable [14, 15]. This was followed up in [19, 25, 8, 28].

The properties of the irreducible polynomial p(x) are also important, and not to be overlooked.
In general, low Hamming weight irreducible polynomials [23], for example, trinomials and pen-
tanomials are preferred. These yield many efficient algorithms [11, 9, 27]. A comprehensive list of
polynomial basis multiplication algorithms can be found in [5].

A polynomial basis multiplication algorithm of interest is the Montgomery multiplication algo-
rithm, proposed by Koç and Acar in [12]. This algorithm has three important properties that do
not exist in the common algorithms found in the literature. The first property is that it works for
general irreducible polynomials, not just special ones (such as trinomials, pentanomials, or all-one
polynomials), making it more suitable for software implementations of cryptographic algorithms.
The second property is that, it actually computes

c̄(x) = MonPro(ā(x), b̄(x)) = ā(x)b̄(x)x−k mod p(x) , (1)

instead of the usual c(x) = a(x)b(x) mod p(x). This algorithm is actually the polynomial analogue
of the Montgomery multiplication algorithm for integers [16, 13]. In order to compute a field
multiplication, the elements a and b are first forward transformed into the polynomial Montgomery
domain

a → ā : ā(x) = a(x)xk mod p(x)

b → b̄ : b̄(x) = b(x)xk mod p(x)

and then, the Montgomery product is computed

c̄(x) = ā(x)b̄(x)x−k mod p(x)

= a(x)xkb(x)xkx−k mod p(x)

= a(x)b(x)xk mod p(x) ,

which is equal to c(x)xk. When the result c̄ needs to be transformed back to c, we use

c̄ → c : c(x) = c̄(x)x−k mod p(x) .

Of course, in order to be useful, one should not be needing too many forward c → c̄ and backward
c̄ → c transformations. This is never a problem for applications we are considering, such as elliptic
curve cryptography, where tens of field multiplications are performed for each elliptic curve point
addition and doubling operations, and hundreds of field multiplications are performed for elliptic
curve point multiplication operations.

Finally, the third property of the Montgomery multiplication algorithm is that it is more suitable
for software implementations for general irreducible polynomials, because the reduction proceeds
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word-by-word, due to the properties of the Montgomery multiplication for integers [16, 13]. How-
ever, it can be argued [4] that this is a moot point, since in most cases, we have low Hamming
weight irreducible polynomials (trinomials and pentanomials) and there is no particular need for
general irreducible polynomials.

Before closing this section we should also add that the Montgomery multiplication in GF(2k)
is not the only transformative multiplication algorithm; there are also spectral methods [21, 22],
embedding techniques [24], and transformation of the field elements into polynomials [26].

3 Normal Basis Multiplication

An element β of the field GF(2k) is called a normal element, if all 2k elements of the field can be
uniquely written as a linear sum of the powers of two powers of β as

a =
k−1
∑

i=0

aiβ
2i = a0β + a1β

2 + a2β
4 + · · · + ak−1β

2k−1

,

such that ai ∈ {0, 1}. Since the work of Kurt Wilhelm Sebastian Hensel in 1888, we know that
there always exists a normal element for any prime p and integer k for the field GF(pk).

The normal representation of a = (ak−1ak−2 · · · a1a0) ∈ GF(2k) is particularly useful for squar-

ing the element a. Since β2k = β, we obtain a2 as

a2 = (a0β + a1β
2 + a2β

4 + · · ·+ ak−1β
2k−1

)2

= a0β
2 + a1β

4 + a2β
8 + · · · + ak−1β

2k

= ak−1β + a0β
2 + a1β

4 + a2β
8 + · · · + ak−2β

2k−1

= (ak−2ak−3 · · · a1a0ak−1) .

Therefore, the normal expression of a2 is obtained by left-rotating the digits of the normal expression
of a. The ease of squaring in normal basis is remarkable, but the multiplication is more complicated.

In the following we explain the steps of the normal basis multiplication, which will be used to
develop a new transformation method and normal basis multiplication algorithm.

In order to describe the computational requirements of the normal basis multiplication, we
follow the steps of the Massey-Omura algorithm [18, 20], which gives the general outline for normal
basis multiplication. Given the input operands a and b, the Massey-Omura multiplier first generates
all partial products aibj for 0 ≤ i, j ≤ k− 1 using AND gates, and then sums these partial product
terms using multi-operand adders (whose unit element is an XOR gate).

There are k2 partial product terms aibj , a computation that can be performed using k2 2-input
AND gates in a single AND gate delay. Decidedly this computation is optimal; k2 is both upper
and lower bound on the number of partial product terms, because all of them need to be computed.

However, in the computation of each of the product terms cr for 0 ≤ r ≤ k − 1, we need only
a subset of the k2 partial product terms aibj. According to the optimality argument [17] of the
normal basis multiplication, the number of aibj terms needed to compute any of cr is at least 2k−1
for GF(2k). If there exists a normal basis for which the number of aibj terms for computing any of
cr is exactly 2k − 1 for GF(2k), then this normal basis is called optimal. It should be noted that
optimal normal bases do not exist for every value of k in GF(2k), which is easily verified for small
values of k using exhaustive search. All values of k ≤ 2000 for which there is an optimal normal
basis of GF(2k) are listed in [6].
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Several constructions of optimal normal bases are given in [17], together with a conjecture that
describes all finite binary field extensions which have an optimal normal basis. It was proven by
Gao and Lenstra in [7, 6] that the optimal normal basis constructions given in [17] are indeed all
there is. These constructions are summarized in the theorem below:

Theorem 1. An optimal normal basis for GF(2k) exist only in either of the following cases:

1. If k + 1 is prime and 2 is a primitive element in Zk+1, then each of the k nonunit (k + 1)th
root of unity forms an optimal normal basis in GF(2k).

2. If 2k + 1 is prime and

2a: Either, 2 is primitive in Z2k+1;

2b: Or, 2k + 1 = 3 (mod 4) and 2 generates quadratic residues in Z2k+1;

then, β = γ + γ−1 generates an optimal normal basis in GF(2k), where γ is a primitive
(2k + 1)th root of unity.

For historical reasons, the optimal normal bases that satisfy the first part of the above theorem
are named Type 1, while the ones that follow from the second part are named Type 2 bases.

3.1 Optimal Normal Multiplication in GF(22)

The elements of GF(22) expressed in polynomial basis are {0, 1, x, x + 1}. There is only one
irreducible polynomial of degree 2 over GF(2), which is p(x) = x2 + x + 1. Since k + 1 = 3 is
prime, and 2 is a primitive element in Z3 (because 21 = 2 and 22 = 1), the field GF(22) has Type 1
optimal normal basis. The 2 nonunit 3rd roots of the unity in GF(22) are the two optimal normal
basis elements of GF(22), and they are x and x+ 1, because x3 = (x+ 1)3 = 1 mod p(x).

We illustrate the normal basis multiplication in GF(22) using the optimal normal element β = x.
Let the normal representations of two operands given as a = a0β + a1β

2 and b = b0β + b1β
2. The

product c is equal to
c = a0b0β

2 + a0b1β
3 + a1b0β

3 + a1b1β
4 .

This expansion contains the terms β2, β3 and β4. First we need to obtain the normal representation
of β3. Since β = x, we have β2 = x2 = x + 1 mod p(x), and thus, β3 = x(x + 1) = x2 + x =
1 mod p(x). Furthermore, β + β2 = x+ x+ 1 = 1, and thus, we have

β0 = β + β2 = 1 ,

β1 = β = x ,

β2 = β2 = x+ 1 ,

β3 = β + β2 = 1 .

Substituting β3 and β4 with β + β2 and β in the expansion of the product c, we obtain

c = a0b0β
2 + a0b1(β + β2) + a1b0(β + β2) + a1b1β

= (a0b1 + a1b0 + a1b1)β + (a0b0 + a0b1 + a1b0)β
2 (2)

which gives the individual terms of the product c as

c0 = a0b1 + a1b0 + a1b1

c1 = a0b0 + a0b1 + a1b0 (3)

4



We now define the k × k matrix λ such that λij = β2i+2j for 0 ≤ i, j ≤ k − 1, which for k = 2 is
given as

λ =

[

β2 β3

β3 β4

]

=

[

β2 β + β2

β + β2 β

]

=

[

0 1
1 1

]

β +

[

1 1
1 0

]

β2 = λ
(0)β + λ

(1)β2 (4)

We will explain some properties of λ in the following subsection, however, it suffices to say that
the matrix λ has k(2k − 1) = 6 entries (3 in each column or 3 in each row). Furthermore, when
it is expanded into the powers of β, we obtain the 0-1 matrices λ

(0) and λ
(1), each of which has

2k − 1 = 3 nonzero entries.

3.2 Optimal Normal Multiplication in GF(23)

We now illustrate the normal basis multiplication in GF(23), which has Type 2 optimal normal
basis. We use the optimal normal element β = x+1, and irreducible polynomial p(x) = x3+x+1.
In this section we will also describe certain properties of the λ matrices that are relevant to our
proposed multiplication algorithm. Let a and b given as

a = a0β + a1β
2 + a2β

4 ,

b = b0β + b1β
2 + b2β

4 .

The product c would be

c = a0b0β
2 + a0b1β

3 + a0b2β
5 + a1b0β

3 + a1b1β
4 + a1b2β

6 +

a2b0β
5 + a2b1β

6 + a2b2β
8 . (5)

This expansion contains terms β2, β4, and β8. Since β8 = β, these are the powers of 2 powers of
β, required for normal representation in GF(23). However, the above expansion of c also contains
other powers: β3, β5, and β6. All powers of β can be expressed in polynomial basis, reduced
modulo the irreducible polynomial p(x), generating a conversion table between the powers of β
and the elements of the field represented in polynomial basis. Furthermore, once the polynomial
representations of β, β2 and β4 are obtained, we can also obtain the normal representations of all
elements. Table 1 contains the polynomial, the normal, and the powers of β representations of the
field elements.

Table 1: The normal and the powers of β = x+ 1 representations
of elements in GF(23) with irreducible polynomial p(x) = x3 + x+ 1.

β4 + β2 + β β0

β β1

β2 β2

β4 + β β3

β4 β4

β4 + β2 β5

β2 + β β6

β4 + β2 + β β7
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Substituting the powers of β in the expansion of the product c in Eqn. (5), we obtain

c = a0b0β
2 + a0b1(β + β4) + a0b2(β

2 + β4) + a1b0(β + β4) + a1b1β
4 + a1b2(β + β2) +

a2b0(β
2 + β4) + a2b1(β + β2) + a2b2β

= (a0b1 + a1b0 + a2b2 + a1b2 + a2b1)β + (a0b0 + a0b2 + a2b0 + a1b2 + a2b1)β
2 +

(a0b1 + a1b0 + a0b2 + a2b0 + a1b1)β
4 .

which gives the individual terms of the product c as

c0 = a0b1 + a1b0 + a2b2 + a1b2 + a2b1 ,

c1 = a0b0 + a0b2 + a2b0 + a1b2 + a2b1 , (6)

c1 = a0b1 + a1b0 + a0b2 + a2b0 + a1b1 .

The k × k matrix λ with entries λij = β2i+2j for 0 ≤ i, j ≤ k − 1 is given as

λ =





β2 β3 β5

β3 β4 β6

β5 β6 β8



 =





β2 β + β4 β2 + β4

β + β4 β4 β + β2

β2 + β4 β + β2 β



 . (7)

The λ matrix contains all powers of β needed in the computation of c, as given in Eqn. (5). It can
also be expressed by separating the powers of β as

λ =





0 1 0
1 0 1
0 1 1



β +





1 0 1
0 0 1
1 1 0



β2 +





0 1 1
1 1 0
1 0 0



 β4 = λ
(0)β + λ

(1)β2 + λ
(2)β4 , (8)

where, the 3× 3 matrices λ(r) for r = 0, 1, 2 have entries in {0, 1}. Since the product c in Eqn. (5)
can be written as

c =

2
∑

i=0

2
∑

j=0

aibjβ
2i+2j =

2
∑

i=0

2
∑

j=0

aibjλij

=
2

∑

i=0

2
∑

j=0

aibjλ
(0)
ij β +

2
∑

i=0

2
∑

j=0

aibjλ
(1)
ij β2 +

2
∑

i=0

2
∑

j=0

aibjλ
(2)
ij β4

By expressing c as c = c0β + c1β
2 + c2β

4, we can write the individual terms of the product cr as

cr =
2

∑

i=0

2
∑

j=0

aibjλ
(r)
ij .

The complexity of computing the terms cr depends on the number of 1s in the matrices λ
(r) for

r = 0, 1, 2. Furthermore, the matrices λ
(r)
ij have the following properties:

λ
(r)
ij = λ

(r)
ji (9)

λ
(r+1)
i+1,j+1 = λ

(r)
i,j (10)

The first property is due to the fact that 2i + 2j = 2j + 2i, and thus,

λij = β2i+2j = β2j+2i = λji .
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The second property follows from the fact that 2i+1 + 2j+1 = 2(2i + 2j), and thus

β2i+1+2j+1

= (β2)2
i+2j ,

which implies
λi+1,j+1(β) = λi,j(β

2) .

Considering also the fact that β2k = β, we obtain Eqn. (10). Note that all index arithmetic, i.e.,
increments such as i+ 1 and j + 1 are considered mod 3 in GF(23) or mod k in GF(2k).

The optimal basis theorem [17, 7] teaches that if the normal element β is optimal, then each

one of the matrices λ
(r)
ij for 0 ≤ r ≤ k − 1 has 2k − 1 nonzero entries, as was the case for both

GF(22) in Eqn. (4) and GF(23) in Eqn. (8), where we have 2 · 2− 1 = 3 and 2 · 3− 1 = 5 nonzero
elements in each matrix. Equivalently, the matrix λ has k(2k − 1) individual terms such that each
term is a power of 2 power of β, as was shown in Eqn. (4) for GF(22) and Eqn. (7) for GF(23),
which has 15 terms.

3.3 Complexity and Implementation

While there are several different ways of putting things together, the basic outline of a normal basis
multiplier has 2 steps:

• Step 1: Compute aibj terms using k2 2-input AND gates.

• Step 2: Sum the subset of the terms as implied by the nonzero entries of the λ
(r)
ij matrix

using 2k − 2 2-input XOR gates for each cr term.

Step 1 and Step 2 can be performed sequentially, partially parallel, or fully parallel. Since Step 1
is pretty obvious, that is, it computes k2 different things, there is no need to dwell on it. Step 2,
on the other hand, provides several different implementations and optimizations. For example, we
can implement a single circuit consisting of 2k− 2 XOR gates (arranged either as a linear array or
a binary tree) to compute c0, and reuse the same circuit for computing cr for r = 1, 2, . . . , k− 1, by
only shifting the input operands ai and bj for 0 ≤ i, j ≤ k−1. Figure 1 illustrates the construction.
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Figure 1: Optimal normal basis multiplier construction for GF(23).

7



We are intentionally ignoring some of the details of the circuit in Figure 1, since there are
various ways to arrange the circuit elements, for example, sequential, parallel, systolic, and pipelined
circuits have been designed [2, 3, 1]. Our focus in this paper is not on how the individual steps
of the optimal normal basis multiplications are performed or how individual circuit elements are
arranged. Rather, we are interested in discovering whether there is another way to multiply two
elements expressed in a normal basis defined by β in GF(2k).

4 The Proposed Method

Let a and b be expressed in an optimal normal basis, using the normal element β in GF(2k). The
multiplication of a and b produces c, expressed as

c =

k−1
∑

i=0

k−1
∑

j=0

aibjβ
2i+2j =

k−1
∑

i=0

k−1
∑

j=0

aibjλij , (11)

such that the k × k matrix λ has k(2k − 1) terms of type β2i for i = 1, 2, . . . , k − 1. Let α be a
fixed element of GF(2k),such that α 6= 0, 1. We will also need α−1 which can be precomputed using
the extended Euclidean algorithm or the Fermat’s method, or the Itoh-Tsujii method [10], which
is actually based on the Fermat’s method.

We define a new multiplication function, which we denote as NewPro, that takes two elements
ā and b̄ of the field GF(2k), which are the forward transformations of a and b, as

a → ā : ā = a · α−1 , (12)

b → b̄ : b̄ = b · α−1 . (13)

The transformation requires the precomputed α−1 value. The operands a and b are now expressed
in “bar” domain. The NewPro algorithm takes ā and b̄ as input and computes c̄ as

c̄ = NewPro(ā, b̄) = ā · b̄ · α . (14)

After the multiplication, the resulting c̄ can be backward transformed to “nobar” domain using

c̄ → c : c = c̄ · α . (15)

since
c̄ · α = (ā · b̄ · α) · α = (a · α−1) · (b · α−1) · α2 = a · b .

We call the fixed element α as the NewPro transformation constant. We apply forward transfor-
mation by multiplying with α−1 and backward transformation by multiplying with α.

This new transformation method reminds us of the Montgomery transformation, however, no
polynomial analogue of the Montgomery multiplication algorithm is implied here. Instead, we will
propose a direct method to obtain c̄ from ā and b̄, that will require fewer XOR gates than the
optimal normal basis multiplication. However, this does not mean that the optimal normal basis
multiplication is not optimal. The optimal normal basis multiplication computes c = a · b, while
our algorithm computes c̄ = ā · b̄ · α for a judiciously selected (and fixed) element α ∈ GF(2k).

Furthermore, in order for our algorithm to be useful, one should not be needing too many
forward c → c̄ and backward c̄ → c transformations. Again, this is not a problem for applications
we are considering.

8



Before proceeding, we should also add that both forward and backward transformations are
trivially performed using the NewPro algorithm:

a → ā : NewPro(a, α−2) = a · α−2 · α = ā ,

ā → a : NewPro(ā, 1) = (a · α−1) · 1 · α = a .
(16)

For these computations, we need α−2, which is easily obtained from the normal representation of
α−1 by a left rotation of the digits. We also need the normal representation of the unity element,
which is given as (11 · · · 1) =

∑k−1
i=0 β2i for any normal element β.

Also, if two elements are expressed in the bar domain, then their additions produce the output
in the bar domain, that is

ā+ b̄ = a · α−1 + b · α−1 = (a+ b) · α−1 = c · α−1 = c̄ .

Finally we should remark that, similar to (11), the NewPro function for computing c̄ = ā · b̄ ·α can
be expanded as

c̄ =





k−1
∑

i=0

k−1
∑

j=0

āib̄jλij



 · α =
k−1
∑

i=0

k−1
∑

j=0

āib̄j(αλij) .

This is the usual normal basis multiplication, however, the matrix involved is αλ, instead of just
λ, for a fixed element α of the field GF(2k). The matrix λ has k(2k − 1) terms of type β2i , which
determines the number of 2-input XOR gates as 2k − 2 for computing each component of cr for
0 ≤ r ≤ k − 1.

In order to have a reduced complexity (in terms of the XOR gates) normal basis multiplication,
we need to show that there exists a special element α of GF(2k) for which αλ has fewer than
k(2k − 1) terms of type β2i . We will show the construction of α and the analyses for the fields
GF(22), GF(23), and GF(24) below, and then describe the general cases.

4.1 Complexity of NewPro Multiplication in GF(22)

The proposed NewPro algorithm requires the existence of a special element α of GF(2k) such that
the matrix αλ has fewer than k(2k − 1) terms of type β2i . Since GF(22) has only two suitable
elements β and β2, we can easily try each one to see if the number of terms in the matrix αλ is
less than 6. First we consider α = β:

αλ = βλ = β

[

β2 β + β2

β + β2 β

]

=

[

β3 β2 + β3

β2 + β3 β2

]

=

[

β + β2 β

β β2

]

Indeed the resulting αλ has 5 terms, instead of 6. This gives the αλ(r) matrices as

αλ = βλ =

[

1 1
1 0

]

β +

[

1 0
0 1

]

β2

We obtain the individual components of the product c̄ as

c̄0 = ā0b̄0 + ā0b̄1 + ā1b̄0 ,

c̄0 = ā0b̄0 + ā1b̄0 .

9



Therefore we showed that the NewPro multiplication c̄ = NewPro(ā, b̄) = āb̄α requires only 3 2-
input XOR gates using the above formulae with the selection of α = β, instead of 4 2-input XOR
gates required by the normal product computation c = ab, as given by the formulae in Eqn. (3).

It turns out that α = β2 also reduces the complexity:

αλ = β2
λ = β2

[

β2 β + β2

β + β2 β

]

=

[

β4 β3 + β4

β3 + β4 β3

]

=

[

β β2

β2 β + β2

]

This gives the αλ(r) matrices as

αλ =

[

1 0
0 1

]

β +

[

0 1
1 1

]

β2

We obtain the individual components of the product c̄ as

c̄0 = ā0b̄0 + ā1b̄1 ,

c̄0 = ā0b̄1 + ā1b̄0 + ā1b̄1 .

The NewPro multiplication c̄ = NewPro(ā, b̄) = āb̄α requires only 3 2-input XOR gates using the
above formulae with the selection of α = β2, instead of 4 2-input XOR gates required by the regular
normal basis multiplication c = ab, as given by the formulae in Eqn. (3).

4.2 Complexity of NewPro Multiplication in GF(23)

The proposed NewPro algorithm requires the existence of a special element α of GF(2k) such that
the matrix αλ has fewer than k(2k− 1) terms of type β2i . For a small field such as GF(23), we can
try all possible candidates for α. Since our construction excludes α as 0 or 1, we need to try only
6 different α values in GF(23). We have performed this search using a simple Mathematica code,
and obtained the number of elements in the αλ matrix for each value of α, as shown in Table 2.
Note that without the transformation, the matrix λ has k(2k − 1) = 15 terms.

Table 2: The number of terms in the matrix αλ for GF(23).

α Terms

β 17
β2 17
β4 17

β + β2 14
β + β4 14
β2 + β4 14

The search shows that for α = β + β2, α = β + β4, and α = β2 + β4 values the matrix αλ has
only 14 terms, which is 1 fewer than 15, the optimal value for the matrix λ.

We show how to obtain the αλ matrix for α = β + β2. We first multiply (β + β2) with every
term of the matrix λ, and then substitute the powers of β which are not powers of 2, using the
normal representations of all elements given in Section 3.1.

αλ = (β + β2)





β2 β + β4 β2 + β4

β + β4 β4 β + β2

β2 + β4 β + β2 β



 =





β β2 β4

β2 β + β4 β2 + β4

β4 β2 + β4 β + β2 + β4



 .
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As is observed, this matrix has 14 terms. We can expand this matrix in terms of λ(r) matrices and
powers of β, to obtain

αλ =





1 0 0
0 1 0
0 0 1



β +





0 1 0
1 0 1
0 1 1



β2 +





0 0 1
0 1 1
1 1 1



 β4 .

Since we destroyed the shift property (Eqn. 10) of λ(r) matrices by multiplying α with λ, these
matrices no longer have the same number of 1s, however, the total number of 1s is 3 + 5 + 6 = 14,
instead of 5 + 5 + 5 = 15. Finally, we obtain the individual components of the c̄ vector as

c̄0 = ā0b̄0 + ā1b̄1 + ā2b̄2 ,

c̄1 = ā0b̄1 + ā1b̄0 + ā1b̄2 + ā2b̄1 + ā2b̄2 ,

c̄2 = ā0b̄2 + ā1b̄1 + ā1b̄2 + ā2b̄0 + ā2b̄1 + ā2b̄2 .

which requires 11 2-input XOR gates, instead of 12. The other two α values also produce the
λ matrices with exactly 14 terms, and the associated formulae for the components c̄r are easily
obtained.

4.3 Complexity of NewPro Multiplication in GF(24)

Given the irreducible polynomial p(x) = x4+x+1 generating the field GF(24), we obtain an optimal
normal element β = x3 using the construction in Theorem 1. This field has Type 1 optimal normal
basis since k + 1 = 5 is prime, and 2 is primitive in Z5.

Table 3: The normal and the powers of β = x3 representations
of elements in GF(24) with irreducible polynomial p(x) = x4 + x+ 1.

β8 + β4 + β2 + β β0 β8 β8

β β1 β9 β4

β2 β2 β10 β8 + β4 + β2 + β

β8 β3 β11 β

β4 β4 β12 β2

β8 + β4 + β2 + β β5 β13 β8

β β6 β14 β4

β2 β7 β15 β8 + β4 + β2 + β

The 4× 4 λ matrix is obtained as








β2 β3 β5 β9

β3 β4 β6 β10

β5 β6 β8 β12

β9 β10 β12 β16









=









β2 β8 β8 + β4 + β2 + β β4

β8 β4 β β8 + β4 + β2 + β

β8 + β4 + β2 + β β β8 β2

β4 β8 + β4 + β2 + β β2 β









The number of terms in the λ matrix for an optimal basis β ∈ GF(24) is equal to k(2k − 1) = 28.
The matrix λ can be expanded as in terms of λ(r) matrices and powers of 2 powers of β as

λ =









0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 1









β +









1 0 1 0
0 0 0 1
1 0 0 1
0 1 1 0









β2 +









0 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0









β4 +









0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 0









β8 .
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The total number of 1s in these matrices is also 28, each of which has 7 1s. Therefore, we need 6
2-input XOR gates to computes each one of the cr terms for r = 0, 1, 2, 3, which totals to 24 XOR
gates. Similar to the case GF(23), we performed an exhaustive search over the set GF(24) and
obtained the list of α values, and the minimum number of terms in the matrix αλ, as summarized
in Table 4.

Table 4: The minimum number of terms in the matrix αλ for GF(24).

α Terms

β 25
β2 25
β4 25
β8 25

It turns out that there are only 4 α values, which minimize the number of terms in the matrix
αλ; the minimum value is found as 25. We obtain the matrix αλ for α = β, by multiplying every
element of the matrix by α. The elements of the matrix which contains the powers of β which are
not powers of 2 are then replaced with their normal expansions.

αλ =









β8 β4 β β + β2 + β4 + β8

β4 β + β2 + β4 + β8 β2 β

β β2 β4 β8

β + β2 + β4 + β8 β β8 β2









.

The matrix αλ has exactly 25 terms. It can be expanded in terms of λ(r) matrices and powers of
2 powers of β as

αλ =









0 0 1 1
0 1 0 1
1 0 0 0
1 1 0 0









β +









0 0 0 1
0 1 1 0
0 1 0 0
1 0 0 1









β2 +









0 1 0 1
1 1 0 0
0 0 1 0
1 0 0 0









β4 +









1 0 0 1
0 1 0 0
0 0 0 1
1 0 1 0









β8 .

The total number of 1s in these matrices is also equal to 25. The number of 2-input XOR gates to
compute c̄r terms for r = 0, 1, 2, 3 is found as 6 + 5 + 5 + 5 = 21.

5 The General Case for GF(2k)

The NewPro transformation and the multiplication algorithms require the existence of an element
α of GF(2k), that minimizes the number of terms in the αλ matrix. We gave detailed analyses
of the NewPro multiplication for the fields GF(22), GF(23) and GF(24) together with all special
α values. It turns out that the number of terms in the αλ matrix are equal to 5, 14 and 25 for
GF(22), GF(23) and GF(24) respectively, while the original λ matrices have 6, 15 and 28 terms.

However, we need a more detailed analysis of the proposed NewPro algorithm, specifically, we
identify the following types of problems to study:

1. Due to the optimal normal basis theorem, we know that λ has k(2k − 1) terms for GF(2k).
What is the exact number of terms in the αλ matrix for GF(2k) for different values of k and
different (Type 1 and 2) bases?

12



2. Does there exist an α for any k such that number of terms in αλ is less than k(2k − 1)?

3. Is there a constructive or non-exhaustive method for finding α that reduces the number of
terms to fewer than k(2k − 1)?

The answers to these questions for Type 2 optimal normal bases seem to be negative for k > 3.
For such normal bases, no α can bring down the number of terms in αλ to a quantity below
k(2k−1). However, we settle the above questions for Type 1 optimal normal bases in the following
fashion.

6 Optimality for the Type 1 Case

Let us assume that GF(2k) has a Type 1 optimal normal basis; this implies that k+1 is prime and
2 is primitive in Zk+1. Moreover, the optimal normal element β is a primitive (k + 1)st root of 1
in GF (2k). For the brevity of the notation, we write k + 1 = 2m + 1, βi = β2i , and 1 stands for
the unity element in normal basis:

1 = β + β2 + β4 + · · · + β2k−1

= β0 + β1 + β2 + · · ·+ βk−1 .

We also use B to represent the basis set B = {β0, β1, . . . , βk−1}. As before, the k × k matrix λ is
defined as

λij = β2i+2j = βiβj

for 0 ≤ i, j ≤ k − 1. For example, for k = 4, we have

λ =









β1 β3 1 β2
β3 β2 β0 1

1 β0 β3 β1
β2 1 β1 β0









.

Lemma 1. The elements in the entries (0,m), (1,m + 1), . . . , (k − 1,m + k − 1) of λ, where the
indices are computed mod k, are all 1s.

Proof. What we need to show is βiβm+i = 1 for 0 ≤ i ≤ k − 1, where the indices are computed
mod k. Let θi = βiβm+i, and put θ = θ0 = β0βm. Then

θi = β2i+2m+i

=
(

β2m+1
)2i

= θ2
i

.

Therefore it suffices to show that θ = 1. Calculating,

θ2
m

= β2mβ22m = βmβ0 = θ ,

so that θ2
m
−1 = 1. On the other hand, θ is a power of β and β2m+1 = 1, so θ2m+1 = 1. Therefore

the order of θ divides d = gcd(2m − 1, 2m + 1). Since p = 2m+ 1 is prime, d is either 1 or p. But

2m − 1 = 2
p−1

2 − 1 and this cannot be divisible by p for otherwise 2 is a quadratic residue modulo
p and so cannot be primitive. Therefore, d = 1 and θ = 1.

The entry βiβm+i = β0+β1+ · · ·+βk−1 contributes k to the sum of the number of basis vectors
appearing in row i. Since the basis is optimal, the total number of these is 2k − 1. Each of the
remaining k − 1 entries is a single βj . By optimality, the elements in row i excluding the unit in
column m+ i is a permutation of β0, . . . , βi−1, βi+1, . . . , βk−1. We record the fact that the elements
in row r of λ is a permutation of the elements B − {βr}.
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Lemma 2. For an optimal normal basis of Type 1 with k + 1 = 2m+ 1, generated by β = β0, the
row r for 0 ≤ r ≤ k − 1 of λ is a permutation of B − {βr} with 1 appearing in the column index
m+ r modulo k. Therefore βr · {β0, β1, . . . , βk−1} = B − {βr} .

Next, we consider the matrix βrλ.

Lemma 3. Row m+ r of βrλ is a permutation of B. Each of the other rows is a permutation of
B minus some basis element.

Proof. We will give the proof for r = 0. Note that every row in λ has a 1 (the entries in positions
(0,m), (1,m + 1), . . . , (k − 1,m + k − 1) are 1s), so in βλ, β0 appears in each row. By Lemma 2,
the rth row of λ is a permutation of B − {βr}. Therefore the rth row of βλ is

1. a permutation of B − {1} for r = m,

2. a permutation of B − {β0βr} for r 6= m (note: β0βr = βj for some j in this case).

Therefore, we conclude that the total number of basis vectors appearing in the matrix is

k + (k − 1)(2k − 1) = k(2k − 1)− (k − 1) ,

which is k − 1 fewer than that of the multiplication matrix λ. We state the following theorem for
the Type 1 case, but omit its proof.

Theorem 2. Suppose α has t nonzero coefficients in its normal basis expansion. Then the number
of terms in the matrix αλ is k(2k − 1) + (k − t) (t(2k − 2)− (2k − 1)). In particular α = βi for
0 ≤ i ≤ k − 1 are the only αs with the property that αλ matrix has smaller than k(2k − 1), i.e.,
k(2k − 1)− (k − 1) basis vectors.

7 Further Work

By slightly changing the definition of the multiplication operation, we introduced a new normal
basis multiplication algorithm which requires fewer XORs than the optimal normal multiplication
algorithm. We proved for the Type 1 case that the number of terms in the αλ is k − 1 fewer than
that of λ matrix for α = βi for some 0 ≤ i ≤ k − 1. Appendix A gives the λ and αλ matrices for
GF(2k) for k = 2, 4, 10, 12, which are the first 4 fields that has Type 1 optimal normal bases.

Moreover, experimentation shows that the field GF(23) and Type 2 optimal normal basis matrix
αλ has 14 terms for α = β + β2, α = β + β4, and α = β2 + β4 instead of 15 terms, which is clearly
unlike the Type 1 case, i.e., it is not k − 1 = 2 fewer than k(2k − 1) = 15. However the case of
GF(23) seems to be an anomaly, and it appears that for a Type 2 optimal normal basis GF(2k) for
k > 3, there is no α value which gives smaller than k(2k − 1) terms in αλ.

It is also possible to view αλ as matrix multiplication by αI, so one can study the suitability
of transformations defined by premultiplying λ by other kinds of matrices.
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Appendix A: The Type 1 λ and αλ Matrices

The λ and αλ Matrices for GF(22)

The irreducible polynomial is x2 + x+ 1. The optimal normal element is β = x. The total count of 1s in λ

and αλ matrices are 6 and 5, respectively.

λ =

[

β1 β0

β0 β1

]

, β0λ =

[

1 β0

β0 β1

]

, β1λ =

[

β0 β1

β1 1

]

The λ and αλ Matrices for GF(24)

The irreducible polynomial is x4 + x3 + 1. The optimal normal element is β = x+ 1. The total count of 1s
in λ and αλ matrices are 28 and 25, respectively.

λ =











β1 β3 1 β2

β3 β2 β0 1

1 β0 β3 β1

β2 1 β1 β0











, β0λ =











β3 β2 β0 1

β2 1 β1 β0

β0 β1 β2 β3

1 β0 β3 β1











, β1λ =











β2 1 β1 β0

1 β0 β3 β1

β1 β3 1 β2

β0 β1 β2 β3











β2λ =











β0 β1 β2 β3

β1 β3 1 β2

β2 1 β1 β0

β3 β2 β0 1











, β3λ =











1 β0 β3 β1

β0 β1 β2 β3

β3 β2 β0 1

β1 β3 1 β2











The λ and αλ Matrices for GF(210)

The irreducible polynomial is x10 + x7 + 1. The optimal normal element is β = x6 + x3 + x2 + x. The total
count of 1s in λ and αλ matrices are 190 and 181, respectively.

λ =









































β1 β8 β4 β6 β9 1 β5 β3 β2 β7

β8 β2 β9 β5 β7 β0 1 β6 β4 β3

β4 β9 β3 β0 β6 β8 β1 1 β7 β5

β6 β5 β0 β4 β1 β7 β9 β2 1 β8

β9 β7 β6 β1 β5 β2 β8 β0 β3 1

1 β0 β8 β7 β2 β6 β3 β9 β1 β4

β5 1 β1 β9 β8 β3 β7 β4 β0 β2

β3 β6 1 β2 β0 β9 β4 β8 β5 β1

β2 β4 β7 1 β3 β1 β0 β5 β9 β6

β7 β3 β5 β8 1 β4 β2 β1 β6 β0









































, βλ =









































β8 β2 β9 β5 β7 β0 1 β6 β4 β3

β2 β4 β7 1 β3 β1 β0 β5 β9 β6

β9 β7 β6 β1 β5 β2 β8 β0 β3 1

β5 1 β1 β9 β8 β3 β7 β4 β0 β2

β7 β3 β5 β8 1 β4 β2 β1 β6 β0

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1 β0 β8 β7 β2 β6 β3 β9 β1 β4

β6 β5 β0 β4 β1 β7 β9 β2 1 β8

β4 β9 β3 β0 β6 β8 β1 1 β7 β5

β3 β6 1 β2 β0 β9 β4 β8 β5 β1








































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The λ and αλ Matrices for GF(212)

The irreducible polynomial is x12+x10+x2+x+1. The optimal normal element is β = x11+x7+x3+x2+x.
The total count of 1s in λ and αλ matrices are 276 and 265, respectively.

λ =

















































β1 β4 β9 β8 β2 β11 1 β6 β10 β5 β7 β3

β4 β2 β5 β10 β9 β3 β0 1 β7 β11 β6 β8

β9 β5 β3 β6 β11 β10 β4 β1 1 β8 β0 β7

β8 β10 β6 β4 β7 β0 β11 β5 β2 1 β9 β1

β2 β9 β11 β7 β5 β8 β1 β0 β6 β3 1 β10

β11 β3 β10 β0 β8 β6 β9 β2 β1 β7 β4 1

1 β0 β4 β11 β1 β9 β7 β10 β3 β2 β8 β5

β6 1 β1 β5 β0 β2 β10 β8 β11 β4 β3 β9

β10 β7 1 β2 β6 β1 β3 β11 β9 β0 β5 β4

β5 β11 β8 1 β3 β7 β2 β4 β0 β10 β1 β6

β7 β6 β0 β9 1 β4 β8 β3 β5 β1 β11 β2

β3 β8 β7 β1 β10 1 β5 β9 β4 β6 β2 β0

















































βλ =

















































β4 β2 β5 β10 β9 β3 β0 1 β7 β11 β6 β8

β2 β9 β11 β7 β5 β8 β1 β0 β6 β3 1 β10

β5 β11 β8 1 β3 β7 β2 β4 β0 β10 β1 β6

β10 β7 1 β2 β6 β1 β3 β11 β9 β0 β5 β4

β9 β5 β3 β6 β11 β10 β4 β1 1 β8 β0 β7

β3 β8 β7 β1 β10 1 β5 β9 β4 β6 β2 β0

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11

1 β0 β4 β11 β1 β9 β7 β10 β3 β2 β8 β5

β7 β6 β0 β9 1 β4 β8 β3 β5 β1 β11 β2

β11 β3 β10 β0 β8 β6 β9 β2 β1 β7 β4 1

β6 1 β1 β5 β0 β2 β10 β8 β11 β4 β3 β9

β8 β10 β6 β4 β7 β0 β11 β5 β2 1 β9 β1
















































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