
Analytic Toolbox for White-Box Implementations:
Limitation and Perspectives

Chung Hun Baek, Jung Hee Cheon, and Hyunsook Hong

CHRI & Department of Mathematical Sciences, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul 151-747, Korea
{love0116,jhcheon,hongsuk07}@snu.ac.kr

Abstract. White-box cryptography is an obfuscation technique to protect the secret key in the software
implementations even if an adversary has full access to the implementation of the encryption algorithm
and full control over its execution platforms. This concept was presented in 2002 by Chow et al., and
since then there have been many proposals to give solutions for the white-box cryptography. However, the
progress does not seem to be substantial in spite of its practical importance. In fact, it is repeated that
as a proposal on white-box implementation is announced, an attack of this implementation with lower
complexity followed soon. It is mainly because most cryptanalytic methods were just targeted to some
specific implementations and there is no general attack tool for the white-box cryptography.
In this paper, we present a general analytic toolbox for white-box implementations which extracts the
secret information obfuscated in the implementation. For a general SLT cipher on n bits with S-boxes on m
bits, one can remove the nonlinear encodings with complexity O(n

mQ
23mQ) using our attack tool, if mQ-bit

nonlinear encodings are used to obfuscate input/output values in the implementation. Also, one can recover
the affine encoding A in time O(n

m
·mA

323m) using our extended affine equivalence algorithm (EAEA), if
the inverse of the encoded round function F on n bits is given, where mA is the smallest integer p such
that A or its similar matrix obtained by permuting rows and columns is a block diagonal matrix with a
p× p matrix as a block.
To avoid our attack, we need to consider a special encoding of large mA, up to n. This results in storage
blowing up in general. We suggest one approach with special affine encodings of mA = n that saves storage.

In that case, the EAEA has the complexity O
(

min
{
n
m
· nm+3 · 22m, n · logn ·

√
2
n
})

, which can be large

up to 274 and 2109 for n = 128 and 256, respectively, when m = 8. This gives an approach to design
secure white-box implementation with practical storage. We expect that our analytic toolbox initiates the
research on white-box implementation design.

Keywords: white-box cryptography, white-box implementation, extended affine equivalence algorithm,
AES, block cipher.

1 Introduction

Traditionally, most of cryptographic algorithms are designed under the assumption that they are used
in a trusted environment – trusted users, platforms, communication environments, etc. Under this
assumption, cryptographic algorithms are designed to prevent attackers from getting the secret infor-
mation using only input/output values of algorithms. In the real world, however, many untrusted hosts
may try to access unapproved contents illegally, malicious softwares in the device of user can access
memory used in execution of cryptographic algorithm, or much internal information can be leaked
in communicating process. Hence, cryptographic algorithms should be designed with consideration
for various and more powerful attacks. The concept of white-box cryptography has been proposed to
satisfy these requirements.

The concept of white-box cryptography was presented in 2002 by Chow et al. The white-box
cryptography is defined as an obfuscation technique which gives a secure software implementation,
that even attackers who have full access to the implementation can not extract secret key information.
In the past, the hardwares such as smart card, trusted platform module (TPM) were used to protect
the internal information. Such hardware is costly and difficult to be replaced by a new one when a
flaw is discovered. The white-box cryptography is a means to protect the internal information in the
software implementation. The white-box cryptography can be used in many commercial products. One
of the main applications is the digital right management (DRM). Suppose that some contents are in

2

encrypted form and it should be decrypted only in permitted devices. If an adversary obtains the
decryption key of the contents, she can use them in other devices and distribute illegal copies of the
contents. The white-box cryptography aims to prevent attackers obtaining the decryption key.

The first proposals to implement cryptographic primitives in white-box cryptography were done by
Chow et al., who presented a white-box AES implementation [6] and a white-box DES implementation
[7] in 2002. Both of them are broken in the sense that some attacks with lower complexity than their
claimed security are announced: the attacks with complexity lower than 214 for DES [19] and 222

for AES [13]. After that, there have been many other approaches [5, 20, 12] to improve the white-
box implementations using the concept of perturbations, wide linear encoding, and properties of dual
cipher, respectively. However all of them have been also broken in lower complexity than their claimed
security: with complexity 217, 232, and 222, respectively [16, 15, 13].

As we can see in the previous implementations, it is very difficult to design a white-box implemen-
tation of security level similar to the black-box model. Hence, the practical objective of the white-box
implementations is to increase the complexity of cryptanalysis for the white-box implementation. How-
ever, all of the above implementations suffered strong attacks after their designs were announced. It
is mainly because there is no standard attack tools such as differential cryptanalysis and linear crypt-
analysis for block ciphers. Actually, all of the previous cryptanalysis for white-box implementations
depends on ciphers or encodings. This can be a reason that there is no implementation with stable
security, even though many approaches are attempted.

Our Contributions: In this paper, we develop general attack tools for the white-box implementations
of SLT ciphers using table lookups. Let E = M ◦ S be the round function of a SLT cipher on n bits
where M is an invertible linear map and S is a concatenation of S-boxes on m bits with a fixed key. We
define the input encoding as f = A ◦ P where A is an invertible linear map and P is a concatenation
of small nonlinear permutations. If we let g be the input encoding of the next round, then the encoded
round function F of E is of the form F = g−1 ◦E ◦ f = QBSAP where B is an invertible linear map
and Q is a concatenation of small nonlinear permutations.

Our toolbox consists of several algorithms to recover nonlinear and affine encodings used in this
general model. First, by adopting the Biryukov-Shamir technique [4], we show that the nonlinear part

Q can be removed up to affine transformation in O
(

n
mQ

23mQ
)

, when Q = (Q1, · · · , Qn/mQ) and each

Qi is a permutation on mQ bits. For example, the nonlinear encoding of Chow et al.’s can be removed
in 218 bit operations while it takes 229 bit operations using Billet et al.’s attack [2]. While Billet et al.’s
method is available only when the input size of the S-boxes is same to the input size of the encodings,
ours can be efficiently applicable for the case where m 6= mQ.

Second, when F = B ◦S ◦A for affine mappings A,B, it is affine equivalent to S and hence we can
apply the affine equivalence algorithm in [3], which result in O(n322n) complexity. We improve this
algorithm for the case where S consists of small S-boxes of size m. According to our extended affine
equivalence algorithm (EAEA), we can find A and B in O

(
n
m ·mA

323m
)
, where mA is the input size

of A. Using this attack, we can show that whatever output encoding is used the first round key can
be found in O(nm ·m3 · 2m) in this framework if the input encoding is not used.

Our attacks are universal in the sense that all known implementations are susceptible by our
attacks. It gives negative perspective about secure white-box implementation of SLT ciphers with
table lookups: The attack complexity is at most 254 for n ≤ 256 if the F−1 oracle is given. However,
if we use an affine encoding A with mA = n, it is hard to compute inverse of F , where mA is the
smallest integer p such that A or its similar matrix obtained by permuting rows and columns is a
block diagonal matrix with a p× p matrix as a block. In this case, recovering the affine encodings by

our EAEA takes O
(

min
{
n
m · nm+3 · 22m, n · log n ·

√
2
n
})

which can be large enough up to 274 and

2109 for n = 128 and 256, respectively. One shortcoming of this approach is large storage requirement.

3

However, it can be compensated by a use of special sparse encodings. We give an instance with the
storage about 16 MB and 64 MB for one round when n = 128, 256, respectively, in the Section 4.

Outline of the Paper: In Section 2 we define a generalized white-box implementation model which
would be a target of our general attack tools. We propose attack tools which can be applied to a
white-box implementation in Section 3. An approach to the design of white-box implementation based
on the result of our toolbox is given in Section 4. We conclude in Section 5.

2 White-Box Implementation Model

Throughout this paper, we focus on SLT ciphers on which most of previous works on white-box
implementation are based. In this section, we first define SLT cipher and then present a generalized
model of its white-box implementation using table lookups. Several instances of this generalized model
will be found in Appendix A.

2.1 SLT Cipher

A substitution-linear transformation (SLT) cipher defined in [14] is a type of iterated cipher with a
couple of substitution layers and linear transformation layers. SLT cipher can be considered ciphers
using substitution-permutation network (SPN)1, because permuting bits is a linear transformation.
More precise definition of SLT cipher is as follows.

Definition 1. A SLT cipher E is defined as follows. It consists r rounds for some r ≥ 1. For each
i = 1, · · · , r, the i-th round function E(i)(x1, · · · , xk) is a bijective function on n bits, where n = m · k
and xj is an m-bit value for each j and consists of following three operations.

1. Xoring round key Xor the i-th round key K(i) = (K
(i)
1 , · · · ,K(i)

k) of n bits to the input (x1, · · · , xk).
This outputs yj = xj ⊕K(i)

j for all j = 1, · · · , k.

2. Substitution Compute zj = S
(i)
j (yj) for all j = 1, · · · , k, where each S

(i)
j is an invertible S-box on

m bits in the i-th round.

3. Linear transformation For z = (z1, · · · , zk), compute M (i)z where M (i) is an n × n invertible
matrix over GF(2). This n-bit value is the output of the i-th round function.

Note that operation 1,2 realize confusion and operation 3 realizes diffusion.

2.2 A Generalized White-Box Implementation Model

In the black-box model, it is assumed that the encryption algorithm is executed in trusted platforms.
Hence, adversary can observe no internal behaviors of the encryption process but only external values,
plaintext/ciphertext of encryption algorithm. However, these models are theoretical and the leakage of
security information can occur in implementation process in practice. In the gray-box models, adversary
can access more information about internal details of the encryption algorithm besides input/output
values of the encryption. This information includes side channel information related to running time,
power consumption, and fault analysis, which can be leaked by partial access.

On the other hand, in the white-box model, it is assumed that the adversary has full access
to the implementation of the encryption algorithm and full control over its execution platforms. In
this context, the main objective of the adversary is to extract the secret key. That is, the purpose of
secure white-box implementations is to prevent the encryption key from being revealed even if internal

1 A SPN is a type of iterated cipher with a couple of substitutions and permutation on bits.

4

algorithm details are completely visible in the untrusted platform and the adversary has full access to
the execution of the encryption algorithm.

The naive approach to secure white-box implementation of an encryption is to give a table of all
input/output values of the encryption. In this case, the security of the implementation of algorithm is
equivalent to the security of the encryption in the black-box model and hence depends on the security
of the encryption scheme itself, regardless of implementations. Unfortunately, such implementation is
not practical because the storage of the table is quite large to implement. For example, the size of
input/output table of AES-128 is 2128 × 128 = 2102GB. A natural way to reduce the size of table
is to decompose the table into “small” tables so that their composition is equivalent to the original
input/output table.

Let E = E(r) ◦ · · · ◦E(1) be a SLT cipher defined in Definition 1. The most important factor of the
table size is the number of input bits, and so the number of input bits which affect each S-box, since a
linear function can be easily expressed in the summation of several linear functions with small inputs.
Even if the S-box used in the block cipher has small input size and the number of input bits which
affect each S-box is small in a single round,

each input bit affects all S-boxes by diffusion effect after several rounds. For example, AES-128
consists of 10 rounds and each round is made up of diffusion layer (MixColumn and ShiftRow) and
confusion layer (SubBytes and AddRoundKey). In a single round, one S-box is influenced by only 8
input bits, but in more than two rounds, each S-box is influenced by all input bits. Therefore, a natural
way of providing white-box implementation with tables of small size is to give input/output tables by
round and decompose each input/output table of a round into small tables by input related to S-boxes
so that their composition is equivalent to the input/output table of the round. Since the round key
can be exposed if the input/output values of a single round are observed, we provide input/output
tables of each round only after obfuscation by input/output encoding functions.

Mout ◦ f (r+1)︸ ︷︷ ︸
table

◦ (f (r+1))−1 ◦ E(r) ◦ f (r)︸ ︷︷ ︸
table

◦ · · · ◦ (f (2))−1 ◦ E(1) ◦ f (1)︸ ︷︷ ︸
table

◦ (f (1))−1 ◦Min︸ ︷︷ ︸
table

= Mout ◦ E(r) ◦ · · · ◦ E(2) ◦ E(1) ◦Min

Fig. 1: The general strategy of white-box implementation

Let us consider a white-box implementation of E along the above strategy. Each round function
E(i) is obfuscated by an input/output encoding function f (i) which is a bijection on n bits. The input
encoding f (i) of i-th round is offset by the output encoding (f (i))−1 of the previous round. Then the
i-th encoded round function is defined as F (i) = (f (i+1))−1 ◦ E(i) ◦ f (i) for i = 1, · · · , r. Additionally,
external input/output encodings Min and Mout are supplement for security. As a result, such white-
box implementation is the same as the original encryption E except the effect of Min and Mout on the
input and output of E .

Now, consider the input/output table for a round. We define ⊕c as the map ⊕c(x) = x ⊕ c, then
we can write a round function E(i) = M (i) ◦ S(i) ◦ ⊕K(i) , where S(i) is a concatenation of S-boxes

S
(i)
1 , · · · , S(i)

k on m bits. We also define f
(i)
j = πj ◦ f (i) where πj is a projection onto the j-th block

corresponding to S
(i)
j . In addition, we let M (i) =

[
M

(i)
1 · · · M (i)

k

]
where M

(i)
j is the j-th vertical strip

of size n×m. As mentioned earlier, we decompose the encoded input/output table of Fi into several
tables with small inputs. For each 1 ≤ j ≤ k, the j-th table is the input/output table of

F
(i)
j = (f (i+1))−1 ◦M (i)

j ◦ S
(i)
j ◦ ⊕K(i)

j

◦ f (i)
j

5

P1

P2

PkP

S1

S2

QkQ

Q2

Q1

...
...

...

mPmQ

n

B AM

Sk

m

Fig. 2: The general form of the encoded function in white-box implementations

and hence, the input size of this table is determined by that of f
(i)
j . Furthermore, we can obtain the

output of F (i) by the following calculation

F (i)(x) =
(
f (i+1)

)−1
◦

 k∑
j=1

f (i+1) ◦ F (i)
j (x)

 .

The last calculation is performed directly only when f (i+1) is linear. If f (i+1) has nonlinear factor, we
need additional tables, called XOR tables, to perform the last calculation as in [6].

Therefore, the form of white-box implementation is determined by encoding f (i). For example, in
Chow et al.’s white-box AES implementation [6], f (i) is a block diagonal mapping with block size 8
and the encoding on each block is composed of linear mixing bijection and nonlinear permutation.

So, the f
(i)
j is considered as an 8-bit encoding with net input size 8. Furthermore, since the encodings

have nonlinear factors, XOR tables are required.2

Now we set a generalized white-box implementation model, which would be a target of our attack
tool, using more general encoding function f (i). After here, we omit the index for round i, if there is
no confusion, and let f = f (i) and g = (f (i+1))−1. Our candidate of the general encoding is f = A ◦P
where A is an invertible linear map on n bits and P is a nonlinear permutation. However, if A and
P are arbitrary bijective linear and nonlinear mappings, resp., the table size would be huge. So, we
consider a special form of mappings that gives a white-box implementation with small table size.

Let A =

A1
...
Ak

 where Aj is the j-th horizontal strip of size m × n. Then fj = Aj ◦ P and hence

the input size of fj is related to the input size of Aj . Since the input size of Aj is the number of
nonzero columns in Aj , to get a small table the number of nonzero columns in Aj should be small.
Furthermore, since these net input bits are affected by corresponding Pjt ’s, the number of such Pjt
have to be few and each of Pjt ’s must have small number of input bits. Therefore, P should be a
concatenation of small nonlinear permutations and A should be an invertible linear map, where each
Aj has small number of nonzero columns.

Since the output encoding is the inverse of the input encoding of the next round, output encoding
g is of the form g = Q ◦ B where Q is a concatenation of small nonlinear permutations and B is an
invertible linear map. Thus the encoded round function is of the form F = QBMSAP .3 Here, we
omit M because B,M are all invertible linear maps and M is known. Putting all the above discussion
together, we define a generalized model of white-box implementation for the SLT cipher using table
lookups as follow.

2 This XOR tables can be decomposed into 4-bit blocks because the nonlinear encodings are block diagonal mappings
with block size 4.

3 For a fixed key, the adding key operation can be merged to the nonlinear permutation.

6

Definition 2. Let E = M ◦ S be a round function of SLT cipher with block size n, where M is a
linear mapping on n bits and S is a layer of S-boxes on m bits. Then a generalized form of the encoded
round function F of E in the white-box implementation is defined by F = QBSAP , where P,Q are
layers of small nonlinear permutations, A,B are layers of linear mapping on n bits, and each Aj has
small number of nonzero columns (Aj is the j-th m× n horizontal strip of A).

We may consider the case of f = P ◦ A, where the encoded round function is of the form F =
BQMSPA. In this case, since the n × n linear map B follows the Q layer, we cannot add up the
outputs of each table using XOR tables. Therefore we have to decompose F into two parts after Q
layer. That is, we let F = G ◦ H and make input/output tables of G and H, where G = B ◦ Q1

and H = Q2MSPA with Q = Q1 ◦Q2. However, if we combine H with G of the previous round, the
function is of the form Q′MSP ′ because the linear mappings A and B (of previous round) will be
canceled out. Since this case is included in the case of f = A ◦ P , we do not treat it any more. It is
similar in the case that a composition of more than 2 encodings is used. Therefore we just consider
the case of f = A ◦ P as a generalized form of encoding.

3 General Attack Toolbox for White-Box Implementation

In white-box cryptography, the attacker’s objective is to extract the secret key information. Most block
ciphers have key schedules, and so the cryptanalysis focuses on recovering one round key. In order to
extract the secret key, we find the encodings of consecutive two round functions. Using the relation
between the output encodings and the input encodings of the consecutive two rounds, the secret key
can be extracted efficiently. Therefore, the goal of this section is the extraction of the secret encodings
obfuscated in implementation.

On the other hand, in previous white-box implementations, cryptanalysis is specialized for the
target implementation. We introduce general tools to recover encodings in F = QBSAP , general
model of white-box implementations we defined in the previous section. We first recover nonlinear
parts of encodings up to affine transforms and then we can let F = B ◦S ◦A, where A, B are invertible
affine maps. Next, we propose attack tools to find A and B in various cases.

3.1 Recovering Nonlinear Encodings

Throughout this subsection, we let F = QBSAP be a round function of white-box implementations
with input size n, where S is a layer of k S-boxes on m bits, A,B are layers of invertible affine mapping
on n bits, and P,Q are layers of kP nonlinear bijective encodings on mP bits and kQ nonlinear bijective
encodings on mQ bits, respectively. Furthermore, if A is a block diagonal map consisting in mixing
bijections on each block, we also let mA be the size of blocks and kA the number of blocks (i.e.,
n = k ·m = kP ·mP = kQ ·mQ = kA ·mA).

Usually, recovering nonlinear parts of encoding is very difficult, but in white-box implementations
it is easier because only small nonlinear encodings are used. Billet et al. [2] presented a method to
recover nonlinear parts of encodings in Chow et al.’s implementation [6] in 23m steps. Billet et al.
applied this method to only the case that the size of encoding blocks is the same as the size of S-
boxes, more precisely, lcm(mP ,mA,mQ) = m where lcm means the least common divisor. Actually, in
Chow et al.’s implementation [6] the size of the S-boxes and the mixing bijections is 8 and the size of
the nonlinear encodings is 4. This method easily can be extended to the case that lcm(mP ,mA,mQ)
divides m with same complexity by regarding m

mP
encodings in layer P , m

mA
mixing blocks in layer A

and m
mQ

encodings in layer Q as a single encoding in the P , A, Q layers, respectively.

How about the case that lcm(mP ,mA,mQ) does not divide m? In this case, the method also can
be applied to the implementation if lcm(mP ,mA,mQ,m) < n, by considering lcm(mP ,mA,mQ,m)
as the size of encodings in the P , A, Q and S layers. However, the complexity of this attack is

7

23lcm(mP ,mA,mQ,m), and no longer depend only m. For example, consider the case that n = 192,mP =
mQ = 6 and mA = m = 8, the method has complexity 274. This gives the following theorem which is
extended version of Billet et al.’s attack.

Theorem 1. (Let F = QBSAP be a round function of white-box implementations defined above. If
l = lcm(mP ,mA,mQ,m) < n, then one can recover a nonlinear part Q (up to affine transformation)
in time n

l · 23l.

In this subsection, we introduce a more efficient tool to recover nonlinear parts of encodings for
the latter case, which is based on the multiset attack of Biryukov and Shamir [4]. Using this tool, we
can recover nonlinear parts of encodings efficiently even if the size of linear mixing bijections is larger
than the size of the S-boxes or the size of nonlinear encodings is different from the size of the S-boxes.

In order to explain this tool, we will use the multiset properties as in [4]. For more general attack,
we added a subscript to each property symbol to denote the size of input. For a multiset M of m-bit
values (m > 1), the multiset properties are defined as follows:

– M has property Cm (constant) if it contains only numbers of a single m-bit value.
– M has property Pm (permutation) if it contains all numbers of the 2m possible values exactly once.
– M has property Em (even) if each value occurs an even number of times or does not occur.
– M has property Bm (balanced) if the XOR of all the values is 0m.

We extend this notation to denote combined properties. First, we define a projection map πI :
{0, 1}n → {0, 1}τ by πI(x1, · · · , xn) = (xi1 , · · · , xiτ), for index set I = {i1, · · · , iτ} ⊆ {1, · · · , n}. We
say a multiset M of n-bit values has property Pk2mCn−2km, if π{2im+1,··· ,2im+2m}(M) has property P2m

for each i = 0, · · · , k − 1 and π{2km+1,··· ,n}(M) has property Cn−2km.
Now let us consider how the multiset properties are transformed by an affine mapping, in the

following two lemmas. See Appendix B for the proofs.

Lemma 1. Let A : Zn2 → Zm2 be an affine mapping and I = {i1, · · · , iτ} ⊆ {1, · · · , n} with τ ≥ m > 1.
For a multiset M of n-bit values, a multiset A(M) has property Pm or Em if πI(M) has property Pτ ,
π{1,··· ,n}\I(M) has property Cn−τ .

Lemma 2. Let A : Zn2 → Zm2 be an affine mapping. For a multiset M of n-bit values, the multiset
A(M) of m-bit values has property Bm if M has property Bn and the size of M is even.

Using these lemmas, we obtain the following theorem, a generalized version of the result in [4].
This attack tool which can remove the nonlinearity of encodings is more efficient than Billet et al.’s
attack.

For description of the theorem, we provide some definitions. We say a function f : Zu2 → Zv2 with
u ≥ v is balanced if every output occurs 2u−v times. We define F i,α : Zi·mP2 → Zn2 as F i,α(x) :=

F (α1, x, α2) where α = (α1, α2) and α1 ∈ Zt·mP2 , α2 ∈ Zn−(i+t)·mP
2 for some 0 ≤ t ≤ kP − i and

F i,αj := πj ◦ F i,α, where πj is a projection onto the j-th block of layer Q. Lastly, we define a set of

functions Λi,j = {F i,αj | α ∈ Zt·mP2 × Zn−(i+t)·mP
2 for some 0 ≤ t ≤ kP − i}.

Theorem 2. Let F = QBSAP be a round function of white-box implementations and Λi,j a set of
functions defined above where i = d mmP e. Assume the probability that a function in Λi,j is not balanced
is at least p > 0 for each j. If lcm(mP ,mA,mQ) does not divide m, then one can recover nonlinear
part Q (up to affine transformation) using 2i·mP+mQ ·O(1/p) chosen plaintexts in about O(kQ · 23mQ)
bit operations.

Proof. Let α be an (n−i·mP)-bit value. For some t, takeMα to be a set with property CtmPP(i·mP)C
kP−(i+t)
mP

such that π{1,··· ,t·mP ,(i+t)mP+1,··· ,n}(x) = α for each x ∈Mα.

8

P1

P2

PkP

S1

S2

QkQ

Q2

Q1

...
...

...

mPmQ

n

AB

Cj
mP

Pi·mP
CkP �(i+j)

mP
BkQ

mQ

Sk

Bk
m

m

(Pm or Em)
k

Fig. 3: The relations between multiset properties on QBSAP

The property CtmPP(i·mP)C
kP−(i+t)
mP is preserved by the layer P , and thus output multiset has also

property CtmPP(i·mP)C
kP−(i+t)
mP . Since A can be divided into k affine mappings from n-bit to m-bit and

i ·mP ≥ m, this property is transformed by the layer A into the multiset with property (Pm or Em)k

by Lemma 1. Since the Property (Pm or Em)k is preserved after layer S, the multiset after layer S
has the property Bkm and this property is equivalent to property Bn. By Lemma 2, the property Bn is

transformed by the layer B into the multiset with property B
kQ
mQ by dividing B into kQ affine mappings

from n-bit to mQ-bit.

Now, consider the j-th nonlinear bijective encoding Qj in the layer Q and define Fj = πj ◦F , where
πj is a projection onto the j-th block. Then we get a homogeneous equation∑

x∈Mα

Q−1
j (Fj(x)) = 0mQ

and since we know the values of Fj(x) for all x ∈Mα, this equation is a homogeneous equation of the
unknowns Q−1

j (i)’s for all i through mQ-bit values, i.e.∑
i

cα,iQ
−1
j (i) = 0mQ

where cα,i is the number of x ∈Mα satisfying Fj(x) = i.

Since the number of unknowns is 2mQ , we need more than 2mQ equations. If we use different

constant α at the part correspond to property C from CtmPP(i·mP)C
kP−(i+t)
mP , we are likely to get a

different homogeneous equation of Q−1
j (i)’s. By the assumption, we can obtain 2mQ equations from

2mQ · O(1/p) multisets, then we can solve the system of equations by Gaussian elimination. We can
do this process for all j’s and hence we need O(kQ23mQ) bit operations with 2i·mP+mQ ·O(1/p) chosen
plaintexts to recover the layer Q up to affine transformation. �

To remove the nonlinearity of encodings, Billet et al.’s attack take 23lcm(mP ,mA,mQ,m) bit operations,
but our attack tool only takes 23mQ bit operations. Reconsider example for n = 192,mP = mQ = 6
and mA = m = 8. In this case, our attack tool reduces the complexity from 274 to 222 to remove the
layer Q up to affine transformation.

Remark 1. To apply the method in Theorem 2, we require sufficiently many homogeneous equations of
the form

∑
x∈Mα

Q−1
j (Fj(x)) = 0mQ . It is related to the probability p because if F i,αj is balanced, the

equation is a trivial equation. By the nonlinearity of S-boxes, if F i,αj is related to more than 2 S-boxes,

F i,αj is likely to be not balanced. So, we have to take care of choosing multiset of plaintexts, so that

F i,αj is related to more than 2 S-boxes and we note that if lcm(mP ,mA,mQ) does not divide m, F i,αj

9

AA BB S

S1

S2

Sk

...

mm

nnnn

Fig. 4: Affine Equivalence problem and Extended Affine Equivalence problem

is related to more than 2 S-boxes. However, in the case that mA, mP and mQ are equal to m, we can
acquire only trivial equation, and hence we cannot use this method. Nevertheless, we can also recover
the nonlinear parts of the encodings because Billet et al.’s method can be applied to this case (Billet
et al.’s method has same complexity as the method in Theorem 2). Therefore, the toolbox to recover
the nonlinearity of the encodings should include both methods with same complexities, considering all
the cases.

Actually, we cannot recover Q exactly because we cannot get a system of equation with full rank
of 2mQ , but we can recover Q up to affine transform. Furthermore, we can recover P by attack for the
previous round. Therefore, if we assume kP = kQ, we can recover all nonlinear part of encoding of a
round function in 2kQ · 23mQ steps.

Applications In Chow et al.’s implementation [6], the input bit size of the linear encodings and
the S-boxes is 8 and the size of input/output nonlinear encodings is 4: In our notations, m = mA = 8
and mP = mQ = 4. Thus, applying the result of Theorem 2, we can recover the nonlinear encodings
in 2kQ · 23mQ = 2 · 32 · 23·4 = 218 and the complexity is much less than Billet et al.’s [2], 229.

3.2 Extended Affine Equivalence Algorithm with Multiple S-boxes

We say that F and S are linear/affine equivalent if there exist linear/affine mappings A,B such that
F = B ◦S ◦A. The linear/affine equivalence problem is to find invertible linear/affine mappings A and
B for given nonlinear bijections S and F = B ◦ S ◦A.

Biryukov et al. [3] proposed algorithm for solving the linear equivalence problem for arbitrary
permutations over Zn2 with complexity O(n32n). For the affine equivalence algorithm, they proposed
the concept of the representatives for the linear equivalence classes of permutations. Using the repre-
sentatives, the affine equivalence problem can be solved in time O(n322n).

In this subsection, we consider the case that the nonlinear mapping S consists of k invertible S-
boxes Si which maps from Zm2 to Zm2 , where n = km as Fig. 4. The problem may be considered to
be an extension of [3] and so called the Extended Affine Equivalence Problem. The following theorem
says the problem can be solved more efficiently when compared with the affine equivalence problem.

Theorem 3. Let F and S be two permutations over Zn2 and S = (S1, · · · , Sk) with nonlinear permu-
tations Si over Zm2 for i = 1, · · · , k. Assume that we can easily access the inversion of F . Then, we
can find all affine mappings A and B such that F = B ◦ S ◦A in time O(kn323m) if they exist.

Proof. First, we assume that F and S are linear equivalent. Suppose that A and B are invetible linear
mappings over Zn2 with F = B ◦ S ◦A. Let us consider A and B−1 to be partitioned into k horizontal
strips of size m× n. Denote the i-th strip of A and B−1 by Ai and Bi respectively. That is,

A =

A1
...
Ak

 and B−1 =

B1
...
Bk

 . (1)

10

If one can obtain two sets {x1, x2, · · · , xn} and {Bi ◦ F (x1), Bi ◦ F (x2), · · · , Bi ◦ F (xn)} such that
{F (x1), F (x2), · · · , F (xn)} is linearly independent, then one can find Bi from

Bi =

[
Bi ◦ F (x1) Bi ◦ F (x2) · · · Bi ◦ F (xn)

][
F (x1) F (x2) · · · F (xn)

]−1

, (2)

where we consider Bi◦F (xj) and F (xj) as column vectors for 1 ≤ j ≤ n. Hence, the main strategy is to
find two sets {x1, · · · , xn} and {Bi ◦ F (x1), · · · , Bi ◦ F (xn)} such that {F (x1), · · · , F (xn)} is linearly
independent in order to recover Bi.

Suppose that we have two sets {x1, · · · , x`} and {y1 = Bi ◦ F (x1), · · · , y` = Bi ◦ F (x`)} such that
{x1, · · · , x`} is linearly independent. For any x =

∑`
j=1 bjxj (bj ∈ {0, 1}), we can compute y = Bi◦F (x)

from y1, · · · , y` by

y = Si ◦Ai(x) = Si

∑̀
j=1

bjAi(xj)

 = Si

∑̀
j=1

bjS
−1
i (yj)

 . (3)

Since F is a nonlinear bijection, we can obtain another vector x such that F (x) /∈ Z2F (x1) + · · · +
Z`F (x`) with high probability. (Assuming F is random bijection, at least one of {F (x) | x ∈ Z2x1 +

· · · + Z2x`} does not belong to Z2F (x1) + · · · + Z2F (x`) with probability 1 −
(

2d`
2n

)2`−`
where d` =

dim〈{F (x1), · · · , F (x`)}〉.)
On the other hand, suppose that we have two sets {F (x1), · · · , F (x`)} and {y1 = Bi◦F (x1), · · · , y` =

Bi ◦ F (x`)} such that {F (x1), · · · , F (x`)} is linearly independent. For any x′ = F−1(
∑`

j=1 b
′
jF (xj)),

we can compute y′ = Bi ◦ F (x′) from y1, · · · , y` by

y′ = Bi ◦ F

F−1

∑̀
j=1

b′jF (xj)

 =
∑̀
j=1

b′jBi ◦ F (xj) =
∑̀
j=1

b′jyj . (4)

Since F−1 is a nonlinear bijection then we can obtain a new vector x′ such that x′ /∈ Z2x1 + · · ·+Z2x`
with high probability by assuming F−1 is random bijection.

Set x0 = 0, y0 = Bi ◦ F (x0), x1 = F−1(0) with F (x1) = 0. Then we have y0 = Si ◦ A(x0) =
Si(0), y1 := Bi ◦ F (x1) = 0. We need to make an initial guess y2 := Bi ◦ F (x2) for some x2 ∈
{0, 1}n\{x0, x1} to generate another vectors. Note that x1, x2 are linearly independent. If we set
x3 = x2 + x1, then F (x3) does not belong to Z2F (0) + Z2F (x2) because F is nonlinear and x3 /∈
{x0, x1, x2}. By repeating above process several times, we can successfully obtain n vectors whose F
value are linearly independent. For each successful guessing, we get an m× n linear mapping Bi. If a
mapping S−1

i ◦ Bi ◦ F is non-linear, we reject incorrect guesses. This process requires n3 operations
for each guessing, and thus the complexity becomes kn32m to find full matrix B.

Now, let us consider the affine equivalence problem. An affine case is very similar to the linear
case. Since an affine mapping is the composition of a linear map and a translation, we can write

Bi ◦ F (x) + bi = Si (Ai(x) + ai) ,

for m× n linear mappings Ai, Bi and the m-bit constant vectors ai, bi for i = 1, · · · , k.
For each pair (ai, bi) ∈ Zm2 ×Zm2 , we follow the above process with inputs F (x) and Si(x+ ai) + bi

and then we can solve the affine equivalence problem. Therefore, the total complexity is O(kn323m)
by additionally choosing two m-bit constant vectors. �

We call the algorithm in the Theorem 3 the extended affine equivalence algorithm (EAEA). While
the affine equivalence algorithm has the complexity O(n322n) to find the affine mappings A,B, the
EAEA has only complexity O(kn323m). This algorithm gives that the dominant parts of the complex-
ities depend on m, not on n even though A and B are random affine mapping over Zn2 . Therefore, the
EAEA is more efficient whenever S is a concatenation of several S-boxes.

11

Remark 2. The EAEA requires several evaluation of F−1 in equation (4) and so does not work when
one can not access the inversion of F . Therefore, we have to consider the complexity for computing
the inversion of F in order to use the EAEA.

When A is split We may consider A ∈ (Z2)n×n as a Ã ∈ (Zm×m2)k×k with n = km. If Ã is of form ∗ 0 ∗
0 A∗ 0

∗ 0 ∗

 for A∗ ∈ (Zm×m2)k0×k0 and k0 ≥ 1, we say that A is split, and unsplit otherwise. If A

is split, we can recover the encoding that corresponds to A∗ with complexity k0(k0m)323m. For more
detail, refer to the appendix C.

Without the external encodings Suppose a white-box implementation of SLT cipher in our gen-
eral model has no external encoding. Then we can recover the first round key in O

(
n
m ·m32m

)
: Because

the encoded first round function F can be written as

Bi ◦ F (0, · · · , 0, x, 0, · · · , 0) +Bi ◦ F (0, · · · , 0) = Si(x+Ki) + Si(Ki)

for all m-bit x, where K = (K1, · · · ,Kk) is the first round key on n bits with n = km, we need to
guess only one m-bit Ki by taking A to the identity matrix. In this sense, the external encodings are
essential and the encryption function EK with a fixed key K should be replaced by the composition
Mout ◦ EK ◦Min, where Min and Mout are external input/output encodings.

Applications In Xiao and Lai’s implementation [20], they use only the linear mappings for in-
put/output encoding. The input bit size of the input encodings is twice of the input bit size of the
S-boxes. By fixing input value on all but 2 bytes as a constant, one can obtain the bijection map F
on Z16

2 of the following form:
F = B ◦ (S, S) ◦ (⊕K′ ,⊕K′′) ◦A

where A, B are linear invertible maps on 16 bits. Then F is affine equivalent to (S, S) with linear map
B and affine map (⊕k′ ,⊕k′′) ◦A.

By applying the extended affine equivalence algorithm, we can recover one part of the secret
encoding in n

mn
322m = 229 steps for m = 8 and n = 16. This result is coincident with the result of

Mulder et al. [15], 2n32n = 229 steps. However, our attack tool has some potential advantages over
Mulder et al.’s: (1) First, as n is larger than twice of m, i.e. n = km with k > 2, our attack has
less complexity than Mulder et al.’s. For the case of m = 8 and n = 4m = 32, the complexity to
recover one part of the secret encoding is n

mn
322m = 233 using our attack tool, while 2n32n = 248

using Mulder et al.’s method. (2) One additional advantage of our attack is that if we set A and B to
be affine mappings instead of linear mappings to increase security, our tool can be applicable to the
scheme while Mulder et al.’s method cannot. For the affine case with same n and m, one can recover
a secret encoding in n

mn
323m = 237 using our tool.

4 Designing of White-Box Implementation

There have been many proposals for a new white-box implementation, but none of them appears
to have more than 232 complexity to recover the whole secret key. The urgent subject of white-
box cryptography is to design the white-box implementation of higher security with the reasonable
storage. In this section, we explore why the previous white-box implementations can be attacked with
low complexity and how to design a white-box implementation to overcome this barrier. Note that we
consider a SLT-type block cipher of n-bit inputs with m-bit S-boxes.

Recall that mA is the size of minimized blocks of block diagonal affine encodings. More precisely,
consider the affine encoding of the form ⊕a ◦A for A is an invertible matrix in Rk×k and a is a n-bit

12

value, where R = Zm×m2 . Let k0 be the smallest integer such that there exists two permutation matrices

P1 and P2 ∈ Zkm×km2 satisfying P1AP2 =

[
A1 0

0 A2

]
for some A1 ∈ Rk0×k0 . We define mA = k0m.

4.1 Limitation of White-Box Implementation: mA ≤ 32

Putting the above theorems together, we obtain the following theorem.

Theorem 4. (main theorem) For i = 1, 2, 3, let Fi = QiBiSiAiPi, bijections on n bits and Si, a
concatenation of n

m nonlinear bijection on m bits are given where Pi and Qi are concatenations of n
mQ

nonlinear bijection on mQ bits, Bi is an invertible linear mapping on n bits and Ai is an invertible
affine mapping on n bits with constant part Ki, satisfying Q−1

i = Pi+1 and Ai+1 ◦Bi = ⊕Ki+1 ◦ In.
Then one can find K2 in time

O

(
3

n

max(mQ,m)
· 23max(mQ,m) + 2

n

m
· lcm(mA,mQ)323m

)
with O

(
2n log(lcm(mA,mQ))

lcm(mA,mQ)

)
calls of F−1

i oracle, or in time

O

(
3

n

max(mQ,m)
· 23max(mQ,m) + 2 n

m · lcm(mA,mQ)m+322m

)
without using F−1

i oracle.

Proof. Note that m|mA by definition of mA. Since lcm(mA,mQ)|m implies l = lcm(mA,mQ,m) = m,
one can recover Qi (up to affine transformation) in time O(n

max(mQ,m) · 23max(mQ,m)) by Theorem 1

and Theorem 2 and also can recover P1 and P2 from P1 = Q−1
0 and P2 = Q−1

1 .
Now, for i = 1, 2, the nonlinear effects of Pi and Qi can be removed in Fi and hence Fi can be

considered Fi = B̃i ◦ Si ◦ Ãi where Ãi can be considered block diagonal affine mappings with block
size l = lcm(mA,mQ). Therefore, one can apply EAEA to each block of size l. When EAEA is applied
to block of size l, it needs log l calls of F−1

i oracle or to guess about logmA vectors, instead of one
vector, without using F−1

i oracle. It follows that one can recover Ãi and B̃i in time O(nm · l323m) with
n
l log l calls of F−1

i oracle or O(nm · l32m(log l+2)) = O
(
n
m · lm+322m

)
without using F−1

i oracle.

From the relation between P2 and Q1, one can find Ã2 ◦ B̃1(0) = A2 ◦B1(0) = K2. �

All of the previous white-box implementations have common features: For n = 128,m = 8, (1)
they use affine/linear encodings with mA ≤ 16 and (2) they don’t use the nonlinear encodings or use
the nonlinear encodings with only mQ = 4, 8. In these case, lcm(mA,mQ) ≤ 16 and so one can easily
compute the inverse. By the result of Theorem 4, all of the previous can be broken in time less than 241

without using the specific attacks. Actually, white-box implementations with n = 128,m = 8,mA ≤ 32
and mQ = 4 or 8 can be broken in time at most 244.

To increase the complexity, we need to increase lcm(mA,mQ). Increasing mQ results in large
storage due to XOR table, for example, the required storage of “one” XOR table is 8GB for mQ = 16.
Another approach is to increase mA. It also increases the storage size in general, but it can be bounded
for some special affine transformations. We explore its possibility in the next subsection.

4.2 Perspective of White-Box Implementation

We may try to increase mA to get a higher attack complexity. Unfortunately, the complexity upper
bounded by 254 even for the largest mA = n when n ≤ 256 when m = 8 if the F−1 oracle is given,
where F is an encoded round function.

13

Input EncodingOutput Encoding
Sk

S2

S1

M ...
...

. . .

m

n n

�K1

�K2

�Kk

Fig. 5: The hard-to-invert encoded round function with mA = n and ω = 2

However, when we have large mA, it is not trivial to compute the inverse of F . Without using
F−1 information, we have to guess about logmA vectors, instead of one vector, to obtain mA linearly
independent vectors, which results in complexity

O
(
n
m ·mA

32m(logmA+2)
)

= O
(
n
m ·mA

m+322m
)

(5)

for finding the affine encodings, which is a polynomial of mA with degree m+ 3 (much larger than 3
when the F−1 oracle is given).

Consider the following encoded round function F which has special “sparse unsplit” encodings as
input encoding like in Fig 5: Let us consider an input encoding of the form ⊕a ◦A for A ∈ Zn×n2 and
a ∈ Zn×1

2 , where A is composed of k horizontal strips Ai of sizem×n with k = n/m. We take Ai has zero
columns at the j-th columns for j ∈ {1, 2, · · · , n}\{(i−1)m+1, · · · , (i+ω−1)m} for some ω > 1, i.e. the
ωm columns of Ai are nonzero and the others are zero vectors. For j ∈ {(i−1)m+1, · · · , (i+ω−1)m},
it is considered as a number in {1, 2, · · · , n}, which is congruent to j modulo n.

Then the encoded round function F can be expressed as a sum of Fi’s such that

F (x1, · · · , xk) =
∑k−ω+1

i=1 Fi(xi, · · · , xi+ω−1) +
∑k

i=k−ω+2 Fi(xi, · · · , xk, x1, · · · , xi+ω−k−1)

for some Fi : {0, 1}ωm → {0, 1}n since the input size related to a S-box Si is ωm bits. Therefore, we
can implement the encoded round function F composed of k lookup tables of 2ωm-by-n, instead of
constructing a huge table of 2n-by-n.

However, Fi(x, 0, · · · , 0) can be considered as the bijection on m bits, which is affine equivalent
to Si. Then, if Fi is public, then the EAEA can be applied to each Fi and it has only O(m3 · 22m)
complexity for each i. To prevent the individual attack, we use random functions fi from ωm bits to
n bits to modify the function Fi. If ω is an even integer, we can replace Fi(xi, · · · , xi+ω−1) by

Fi(xi, · · · , xi+ω−1) + fi(xi) + · · ·+ fi+ω−1(xi+ω−1).

For the index j lager than k, we define xj and fj by xj−k and fj−k, respectively. This modification
can express the encoded round function F as a sum of 2ωm-by-n tables without revealing Fi’s (For the
case where ω is odd, see Appendix D.1). It needs the storage of n

m · n · 2ωm bits in order to implement
the F , which is 16 MB and 64 MB for n = 128 and 256, respectively, when m = 8 and ω = 2. The
detailed description of an instance for the case ω = 2 can be found in Appendix D.2.

We could use the EAEA, by computing the inverse of F : Using meet-in-the-middle attack (MITM),
one inverse evaluation of F takes O(mA2mA/2) time complexity and O(mA2mA/2) memory, which can
be reduced to O(mA2mA/4) using a technique similar to the dissection [10] (See the Appendix E).
Since the EAEA requires about logmA number of evaluation of F−1, its complexity is

O
(
n
m ·m3

A23m + n
mA
· logmA ·mA · 2mA/2

)

14

which is dominated by the inverting complexity when mA > 6m. This complexity is exponential in
mA, but less than (5) when mA ≤ 128.

The hardness of inverting F which has sparse unsplit encodings can be considered as a special
version of sparse subset sum problem (SSSP). The following form of the SSSP is introduced in [11]
and used in [11, 8, 18] designing fully homomorphic encryptions: Let v, k be integers with k << v.
Given a positive integer u, a list (y1, · · · , yv) ∈ Zu, and another element y ∈ Zu such that

y ≡
v∑
i=1

δi · yi (mod u)

where

δi ∈ {0, 1},
bv/kc∑
i=1

δi =

2bv/kc∑
bv/kc+1

δi · · · =
v∑

i=(k−1)bv/kc+1

δi = 1,

the problem is to find the coefficients δi.
If ω = 1, the inverting F can be regarded as this problem by embedding {0, 1}n to Z2n . In that

case, this SSSP can be solved in time complexity Õ(2n/2) with Õ(2n/4) memory according to a variant
of Schroeppel-Shamir algorithm [17]. It has the same complexity as the proposed MITM. For the case
ω > 1, since the m-bit value xi is used the input value of several Fj ’s, the computing F−1 is is slightly
different from this SSSP. Currently, we don’t have any method to exploit this feature. To sum up the
complexity for recovering affine encoding is

O
(

min
{
n
m · nm+3 · 22m, n · log n · 2n/2

})
for mA = n ≥ 128.

Table 1 shows that the security and storage of the proposed implementation for the case mA =
n,m = 8 and ω = 2 according to the block size n of block cipher. As seen in the Table 1, the attack
complexity can be large up to 2104 and 2109 when n = 192 and 256, respectively. To design for the secure
white-box implementation, a block cipher with larger input size is preferred. For example, Rijndael-
128-192 [9], a 128-bit key, a 192-bit block cipher can be candidate of a based cipher of white-box
implementation.

n
Security Storage

min
{
n
m
· nm+3 · 22m, n · logn · 2n/2

}
n
m
· n · 22m bits

128 O(n · logn · 2
n
2) = 274 16 MB × (# of rounds)

192 O(n
m
· nm+3 · 22m) = 2104 36 MB × (# of rounds)

256 O(n
m
· nm+3 · 22m) = 2109 64 MB × (# of rounds)

Table 1: The security and storage of the proposed WB implementation for m = 8 and ω = 2

5 Conclusion

In this paper, we proposed a general analytic toolbox of white-box implementation, which can effi-
ciently extract the secret encodings obfuscated in implementation when its design follows our general
model. With our toolbox, it is very easy to evaluate the asymptotic complexity for any white-box
implementation in our general model and all previous designs belong to this model. Hence our toolbox
could be used to give a security measure about white-box implementations.

Another advantage of our toolbox is that we can remove insecure design in early stage and con-
centrate on more plausible approaches. We showed that when the encoded round function is hard
to invert, the complexity of the EAEA becomes significantly larger. We expect that this leads to an
approach to design a practically secure white-box implementation.

15

References

1. E. Barkan and E. Biham. In How Many Ways Can You Write Rijndael? In Y. Zheng, editor, Advances in Cryptology
- ASIACRYPT 2002, volume 2501 of LNCS, pages 160–175. Springer, 2002.

2. O. Billet, H. Gilbert, and C. Ech-Chatbi. Cryptanalysis of a White Box AES Implementation. In H. Handschuh and
M. A. Hasan, editors, Selected Areas in Cryptography - SAC 2004, volume 3357 of LNCS, pages 227–240. Springer,
2005.

3. A. Biryukov, C. D. Canniére, A. Braeken, and B. Preneel. A Toolbox for Cryptanalysis: Linear and Affine Equivalence
Algorithms. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of LNCS, pages 33–50.
Springer, 2003.

4. A. Biryukov and A. Shamir. Structural Cryptanalysis of SASAS. In B. Pfitzmann, editor, Advances in Cryptology -
EUROCRYPT 2001, volume 2045 of LNCS, pages 395–405. Springer, 2001.

5. J. Bringer, H. Chabanne, , and E. Dottax. White Box Cryptography: Another Attempt. http://eprint.iacr.org,
2006.

6. S. Chow, P. Eisen, H. Johnson, and P. C. V. Oorschot. White-Box Cryptography and an AES Implementation. In
K. Nyberg and H. Heys, editors, Selected Areas in Cryptography - SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, 2003.

7. S. Chow, P. Eisen, H. Johnson, and P. C. van Oorschot. A White-Box DES Implementation for DRM Applications.
In J. Feigenbaum, editor, Digital Rights Management - DRM 2002, volume 2696 of LNCS, pages 1–15. Springer,
2003.

8. J.-S. Coron, D. Naccache, and M. Tibouchi. Public Key Compression and Modulus Switching for Fully Homomorphic
Encryption over the Integers. In Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 446–464. Springer Berlin Heidelberg, 2012.

9. J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998.

10. I. Dinur, O. Dunkelman, N. Keller, and A. Shamir. Efficient Dissection of Composite Problems, with Applications to
Cryptanalysis, Knapsacks, and Combinatorial search Problems. In R. Safavi-Naini and R. Canetti, editors, Advances
in Cryptology - CRYPTO 2012, volume 7417 of LNCS, pages 719–740. Springer, 2012.

11. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In Advances in Cryptology
- EUROCRYPT 2011, volume 6632 of LNCS, pages 129–148. Springer-Verlag, 2011.

12. M. Karroumi. Protecting White-Box AES with Dual Ciphers. In K.-H. Rhee and D. Nyang, editors, Information
Security and Cryptology - ICISC 2010, volume 6829 of LNCS, pages 278–291. Springer, 2011.

13. T. Lepoint, M. Rivain, Y. D. Mulder, P. Roelse, and B. Preneel. Two Attacks on a White-Box AES Implementation.
In T. Lange, K. Lauter, and P. Lisoněk, editors, Selected Areas in Cryptography - SAC 2013, LNCS, pages 265–285.
Springer, 2014.

14. W. Michiels, P. Gorissen, and H. D. L. Hollmann. Cryptanalysis of a Generic Class of White-Box Implementations.
In R. M. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas in Cryptography - SAC 2008, volume 5381 of LNCS,
pages 414–428. Springer, 2009.

15. Y. D. Mulder, P. Roelse, and B. Preneel. Cryptanalysis of the Xiao - Lai White-Box AES Implementation. In
L. R. Knudsen and H. Wu, editors, Selected Areas in Cryptography - SAC 2012, volume 7707 of LNCS, pages 34–49.
Springer, 2013.

16. Y. D. Mulder, B. Wyseur, and B. Preneel. Cryptanalysis of a Perturbated White-Box Aes Implementation. In
G. Gong and K. C. Gupta, editors, Progress in Cryptology - INDOCRYPT 2010, volume 6498 of LNCS, pages
292–310. Springer, 2010.

17. R. Schroeppel and A. Shamir. A TcS2 = 0 (2n) time/space tradeoff for certain NP-complete problems. In Foundations
of Computer Science, 1979., 20th Annual Symposium on, pages 328–336, Oct 1979.

18. N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and Cryptography, 71(1):57–81,
2014.

19. B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. Cryptanalysis of White-Box DES Implementations with
Arbitrary External Encodings. In C. Adams, A. Miri, and M. Wiener, editors, Selected Areas in Cryptography -
SAC 2007, volume 4876 of LNCS, pages 264–277. Springer, 2007.

20. Y. Xiao and X. Lai. A Secure Implementation of White-box AES. In Computer Science and its Applications -
CSA 2009, pages 1–6. IEEE, 2009.

A Examples of White-Box Implementations and cryptanalysis

In this section, we introduce examples of white-box implementations and explain them in sense of
our generalized model defined in Section 2. Also, we provide brief illustration about how to apply our
attack tools to the white-box implementations.

16

Chow et al.’s implementation Chow et al. presented a white-box AES implementation in [6].
They used encodings composed of nonlinear mappings and linear mappings. The subround function F
over F4

28 of Chow et al.’s implementation is the form F = QBMSAP , where P,Q are concatenation
of 4-bit nonlinear permutations, A,B are block diagonal linear mapping with block size 8, S is the
bytewise operation of S-boxes, and M is the Mixcolumn operation of size 32. Note that AddRoundKey
operation can be merged to the nonlinear encoding P . Since the block size of encodings is 8 which is
the same as the input size of S-boxes, then ShiftRow operation can be omitted in round function. So,
we consider the round function as block diagonal mapping with block size 32.

Note that they use input encodings of 8-bit, same input size of S-boxes, to maintain the number
of input bits which affect S-boxes. Then the number of input bits of lookup tables is also 8 and
so 8 is suitable size of the input encodings in a practical aspect. However, for the security of the
implementation, it is not appropriate because the implementation used 8-bit input encodings are
vulnerable to Billet et al.’s attack [2]. Billet et al. presented how to extract the AES secret key from
Chow et al.’s white-box AES implementation when the input size of the encodings is same to the input
size of the S-boxes. The complexity of recovering nonlinear parts is 224 and the total complexity of
recovering 128-bit AES key is less than 230. Furthermore, Michiels et al. [14] presented a cryptanalysis
for white-box implementation of generic class of SLT ciphers when input encodings whose the input
size is same to the input size of S-box are used in the implementation.

On the other hand, in our notations we can let m = mA = 8 and mP = mQ = 4. Thus, applying
the result in Section 3.1, we can recover the nonlinear encodings in 2kQ · 23mQ = 2 · 32 · 23·4 = 218 and
this result is better than Billet et al.’s result 2 · 16 · 23·8 = 229. The only thing to be careful about is
to take multiset of plaintexts. We have to take multiset of plaintexts, so that the function is related
to two S-boxes, for example, the multiset of plaintexts of size 128-bit values that has the property
C4P8C

29
4 .

After removing the nonlinear parts of input/output encodings, one can obtain the bijection map
F on F28 which is affine equivalence to the S-box by fixing input value on all bits but a byte. Then by
the affine equivalence algorithm described in Section 3.2, input/output encodings can be recovered in
km322m = 229 step where k = 16,m = 8. The total complexity is less than 230 and comparable to the
Billet et al.’s result, 230.

Xiao and Lai’s implementation In 2009, Xiao and Lai proposed a white-box AES implemen-
tation [20] which is secure against Billet et al.’s attack. They use only the linear mappings for in-
put/output encoding. The input bit size of the input encodings is twice of the input bit size of the
S-boxes. Since AddRoundkey operation is implemented before SubByte operation, we may assume that
an input encodings are invertible affine mappings over Z16

2 . Let an input encoding A be invertible
affine mapping over Z16

2 and an output encoding B be 32 × 16 linear mapping with rank 16. Then,
the subround function F from Z16

2 to Z32
2 in [20] is defined by F = B ◦ S ◦ A, where S is bytewise

operation of S-boxes. Note that MixColumn operation is considered a part of output encoding B.

They used 16-bit input encodings in order to avoid Billet et al.’s attack. Hence the number of
input bits which affect S-box increased and the storage of tables also increased. They expected the
security of implementation also would increase, but it was not true because (1) they only used linear
maps, not affine nor nonlinear parts and (2) they used block diagonal linear maps with small size,
which are vulnerable to linear equivalence algorithm. Mulder et al. [15] presented a cryptanalysis of
Xiao and Lai’s implementation which extracts the secret key in complexity 232 using linear equivalence
algorithm of [3].

Now let’s apply our attack tools to this implementation. By fixing input value on all bits but 2
bytes as a constant, one can obtain the bijection map F on Z16

2 as following form:

F = B ◦ (S, S) ◦ (⊕′k,⊕′′k) ◦A

17

where A, B are linear invertible maps on 16 bits. Then F is affine equivalent to (S, S). i.e. m = 8 and
n = 16, in our notations.

Applying extended affine equivalence algorithm, we can recover the secret encodings in n
mn

322m =
229 steps. The total complexity of finding all A’s and B’s is 8 · 229 = 232 and hence is comparable to
the previous result in [15], 232.

Karroumi’s implementation Karroumi presented a white-box AES implementation [12] using
the dual representations of the AES cipher and design technique of Chow et al.’s white-box AES
implementation. A cipher AES is called a dual cipher of AES if there exists an isomorphism ∆ on F28

such that

∆ (AESK(m)) = AES∆(K) (∆(m)) , for all K,m ∈ F28

where ∆ = (∆, · · · , ∆) is the bytewise operation of ∆. Dual ciphers of the AES was first presented
by Barkan and Biham in 2002 [1]. In [1], they present several AES dual ciphers, which are equivalent
to the original, considering modification of the polynomial representation of F28 , the coefficients of
the MixColumn operation, and the affine transformation in the SubByte function. Biryukov et al. [3]
proposed that there are at least 61, 200 AES dual ciphers by expanding the result in [1]. With 61, 200
dual ciphers, Karroumi modify the algebraic operations in each AES round function such as SubBytes,
MixColums, and AddKeyRounds. Then, the subround function F over Z32

2 of Karroumi’s implementation
is the form F = QBMSAP , where P,Q are concatenations of 4-bit nonlinear permutations, A,B are
block diagonal linear mappings with block size 8, M is the mixing bijection of size 32, and S is a
concatenation of S-boxes. For dual cipher, an automorphism ∆ is a block diagonal affine mapping
with block size 8 and it can be merged to the encodings.

As a result, Karroumi’s implementation is of same form with the Chow et al.’s implementation.
Thus, the total attack complexity is 229.

B Proofs of the Lemmas

B.1 Proof of Lemma 1

We may assume that A is linear, because an addition by a constant preserves property Bm when M
has an even number of elements.

Let A =
[
A1 · · · An

]
with column vectors Ai’s and A∗ =

[
Ai1 · · · Aiτ

]
. Then we have A(M) =

{A∗(x′) + b | x′ ∈ πI(M)} for some constant vector b ∈ Zm2 . It is enough to show that the multiset
A∗(πI(M)) has property Bm.

If τ = m and A∗ has rank m, then the multiset A∗(πI(M)) of m-bit values has property Pm and
hence property Bm since m > 1. Otherwise, the size of the kernel of A∗ is 2τ−rank(A∗) and hence the
number of preimage of y ∈ A∗(πI(M)) is 2τ−rank(A∗). Since 2τ−rank(A∗) is even, the multiset A∗(πI(M))
has property Em. It follows that A∗(πI(M)) has property Pm or Em. �

B.2 Proof of Lemma 2

Let L be the linear part of A and b be the constant part of A. Then

∑
y∈A(M)

y =
∑
x∈M

(Lx+ b) = L

(∑
x∈M

x

)
+
∑
x∈M

b = 0

since the multiset M has property Bn and the size of M is even. �

18

C The EAEA with split A

When we use the EAEA for the white-box implementation, we can reduce the complexity for the case
where input encoding A is of some special form.

For convenience, we let A and B are linear. Let’s consider A ∈ (Z2)n×n as a Ã ∈ (Zm×m2)k×k,
where n = km. If Ã is block-diagonal map, then we can perform separately the above attack on each
block. If the size of the each block of block-diagonal map Ã is ki with

∑
i ki = k, Ai ∈ Zkim×kim2 is

i-th block of A and Bi ∈ Zn×kim2 is i-th vertical strip of B correspond to Ai, we can find maps of the
form Fi = Bi ◦ (S|| · · · ||S) ◦Ai, where (S|| · · · ||S) is concatenation of ki S-boxes. Since image of Fi has
rank ki, we can find a ki × n matrix Ci satisfying that Ci ◦ Fi is bijective. Then we obtain bijective
maps of the following form:

F̃i = B̃i ◦ (S|| · · · ||S) ◦Ai
where B̃i = Ci ◦ Bi. Thus we can recover the encodings in complexity

∑
i ki(kim)323m, less than

kn323m.
More generally, if Ã can be split into two or more bijective map, that is, A is split as defined in

section 3.2, we can apply the above argument to Ã. In detail, in the case that (Ã)i,j = 0m×m for
(i, j) ∈ [k1 + 1, k1 + k0]× ([1, n] \ [k2 + 1, k2 + k0]) or (i, j) ∈ ([1, n] \ [k1 + 1, k1 + k0])× [k2 + 1, k2 + k0]
fore some k0, k1, k2 with k1 + k0, k2 + k0 ≤ k,

i.e. Ã is the form of

 ∗ 0 ∗
0 A∗ 0

∗ 0 ∗

 one can obtain a bijective map on Zk0m2 using small submatrix, A∗

in the above.

D Our Design for the White-Box implementation

D.1 Representation for the Lookup Tables when ω=odd

Let ω > 1 be an odd number. If we use Fi(xi, · · · , xi+ω−1) + fi(xi) + · · ·+ fi+ω−1(xi+ω−1) instead of
Fi(xi, · · · , xi+ω−1) as the even case, then

k∑
i=1

(
Fi(xi, · · · , xi+ω−1) + fi(xi) + · · ·+ fi+ω−1(xi+ω−1)

)
= F (x) + f1(x1) + · · ·+ fk(xk) 6= F (x)

because ω is odd. (the notation for the indices follows Section 4)
Hence, We use more functions gi’s and hi’s. For i = 1, . . . , k, we define gi by a random function

from ωm bits to n bits and hi = fi + gi from ωm bits to n bits. Then we can replace Fi with
Fi(xi, · · · , xi+ω−1) by

Fi(xi, · · · , xi+ω−1) + fi(xi) + · · ·+ fi+ω−3(xi+ω−3) + gi+ω−2(xi+ω−2) + hi+ω−1(xi+ω−1),

since the sum of these functions is equal to F (x). Therefore, we can express the encoded round function
F as a sum of 2ωm-by-n tables without revealing Fi’s for all cases ω.

D.2 An instance of Our Design for the White-Box implementation (ω = 2)

In this subsection, we propose a white-box implementation of SLT ciphers based on the above approach.
We use the sparse unsplit encodings as input encodings like in Fig 5 to reduce the storage size. As
seen in the Fig 5, we only consider the case that mA = n and ω = 2.

Let us consider the round function E = M ◦S ◦⊕K of SLT cipher with block size n, where M is a
linear mapping on n bits, S is a concatenation of S-boxes S1, · · · , Sk on m bits, and K = (K1, · · · ,Kk)

19

is an round key of n-bit with n = km. Let A be a linear bijection on n bits and a be a n-bit value
vector. We consider the affine bijection ⊕a ◦A as an input encoding. For an input encoding A′ of the
next round, we define output encoding B by B = (A′)−1 ◦M . Then, the encoded round function F of
E is defined by F = B ◦ S ◦ ⊕K̄ ◦A, where K̄ = K + a.

Consider A ∈ Zn×n2 to be partitioned into k2 blocks Ai,j of size m × m with k = n/m. For
i = 1, · · · , k− 1, we take Ai,j is zero matrix for all j 6= i, i+ 1. If i = k, we take Ak,j is zero matrix for
all j 6= 1, k. That is,

(Ai,j)x,y = A(i−1)m+x,(j−1)m+y

so that

A =

A1,1 A1,2 0 0 · · · 0
0 A2,2 A2,3 0 · · · 0
...

...
...

...
. . .

...
Ak,1 0 0 0 · · · Ak,k

 .
Let Bi be an affine function from m-bit to n-bit such that B(x) = B1(x1) + · · · + Bk(xk) for

x = (x1, · · · , xk) ∈ {0, 1}n where xi is m-bit value. Now, we define Fi : {0, 1}2m → {0, 1}n by
Fi(x, y) = Bi ◦ Si(Ai,i(x) + Ai,i+1(y) + K̄i) for x, y ∈ {0, 1}m, where K̄ = (K̄1, · · · , K̄k). Then, the
encoded round function F can be expressed as a sum of Fi’s:

F (x1, x2, · · · , xk) = F1(x1, x2) + F2(x2, x3) + · · ·+ Fk(xk, x1).

Therefore, we can implement the encoded round function F composed of k lookup tables of 22m-by-n,
instead of constructing a huge table of 2n-by-n.

However, since Fi(x, 0) = Bi ◦ Si ◦ ⊕K̄i ◦ Ai,i(x) for m-bit value x, Fi(x, 0) can be considered as
the bijection on m bits, which is affine equivalent to Si. Then, the EAEA can be applied to each Fi
and it has only O(m3 · 22m) complexity for each i.. To prevent the individual attack, we use random
functions fi to modify the function Fi. We replace Fi(xi, xi+1) by Ti : {0, 1}2m → {0, 1}m such that

Ti(x, y) =

{
Fi(x, y) + fi(x) + fi+1(y), if i 6= k

Fk(x, y) + fk(x) + f1(y), if i = k

for any random function fi from m-bit to n-bit. If we set xk+1 := x1,

k∑
i=1

Ti(xi, xi+1) =
k∑
i=1

Fi(xi, xi+1) = F (x1, · · · , xk)

for x = (x1, · · · , xk) is n-bit value.

Therefore, we can express the encoded round function F as a sum of 22m-by-n tables without
revealing Fi’s. The required storage is n

m · n · 22m bits, which is 16 MB, 36 MB, and 64 MB for
n = 128, 192, 256, respectively, when m = 8. Since fi is an random function which has no certain
structure unlike Fi, we cannot efficiently extract encodings from Ti’s. The effect of fi can be only
removed after Ti’s are combined in F , because fi is circularly blended into Fi−1 and Fi. In that case
mA = n, the proposed implementation has security

O
(

min
{
n
m ·mA

m+3 · 22m, n · logmA · 2mA/2
})

=

O(n · log n · 2n2) = 274, if n = 128

O(nm · nm+3 · 22m) = 2104, if n = 192

O(nm · nm+3 · 22m) = 2109, if n = 256

.

20

E Computing Inverse of F

In the white-box implementation, the encoded round function F consists of several sub-functions as in
Section 2.2. In particular, if the input/output encodings are affine, F can be expressed as F =

∑
j Fj .

Because Fj ’s input/output values are given in the tables, we can easily access to the inverse of Fj .
However, it is not easy to compute the inverse of F when F is the sum of the Fj ’s. In order to use
the EAEA, several number of evaluation of F−1 are required, so we need to check the complexity to
compute the inverse of F .

As in Section 3.2, we let F be a bijection on n bits. For simplicity, we assume F (x) =
∑k

j=1 Fj(xj)
for Fj : Zm2 → Zn2 , where x = (x1, · · · , xk) and xj ’s are m-bit values with n = km. A trivial ap-
proach to invert F is the exhaustive search, which takes 2n time complexity. One can improve it using
the meet-in-the-middle (MITM) attack: By combining functions, we let F (x) = G1(x1, · · ·xb k2c) +

G2(xb k2c+1, · · · , xk). For y ∈ Zn2 , one can make a table of ⊕y ◦ G1, sort it by the output values, and

compare it with the value of G2. Then one can evaluate F−1(y) in O(n2n/2) time complexity with
O(n2n/2) memory. The size of required memory for the MITM attack is quite large to implement -
for example, 238 GB are required for n = 128. We provide another method requiring smaller memory
while maintaining asymptotic time complexity.

For convenience of notations, we let F (x) =
∑4

j=1 Fj(xj) where x = (x1, x2, x3, x4) and each xj is

an m0-bit value with m0 = n
4 . For a function f whose value is on n bits, f̃ denotes the projection of

f on the first m0 bits. To evaluate F−1(y) for any n-bit value y, we perform the following steps:

1. Guess m0-bit value z̃ for f̃1(x1) + f̃2(x2).
2. Perform the MITM attack using f̃1(x1) + f̃2(x2) = z̃ and store the list

L =
{

(x1, x2, f1(x1) + f2(x2) + y) | f̃1(x1) + f̃2(x2) = z̃
}

for the result of the MITM attack.
3. Perform the MITM attack using f̃3(x3) + f̃4(x4) = ỹ + z̃, where ỹ is the first m0-bit of y.
4. For each (x3, x4) satisfying f̃3(x3) + f̃4(x4) = ỹ+ z̃, compare f3(x3) + f4(x4) with the values in L.

Both the average number of elements in L and the number of (x3, x4) satisfying f̃3(x3) + f̃4(x4) =
ỹ + z̃ are 2n/4. For one guessing of n

4 -bit value, we perform 3 times of MITM attacks on the sets

with 2n/4 cardinality. Therefore, we can evaluate F−1(y) in O(n2n/2) time complexity with O(n2n/4)
memory. For the case of n = 128, the required memory is 64 GB, which is practical to implement.

