
A Fully Homomorphic Encryption Scheme with Better Key Size

Zhigang Chen 1,2a,3, Jian Wang 1, ZengNian Zhang 2b , Xinxia Song 2c

1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P.R. China.

2a. College of Computer and Information, Zhejiang Wanli University, Zhejiang NingBo 315100, P.R. China.

2b. Faculty of Electronic and Information Engineering, Zhejiang Wanli University, Zhejiang NingBo 315100, P.R. China.

2c. College of Junior，Zhejiang Wanli University, Zhejiang Ningbo 31510, P.R.China

3. Information Security Group, Royal Holloway, University of London,UK.

Abstract: Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic

encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In

this paper, we propose a fully homomorphic encryption scheme based on LWE, which has better key size. Our

main contributions are: (1) According to the binary-LWE recently, we choose secret key from binary set and

modify the basic encryption scheme proposed in Linder and Peikert in 2010. We propose a fully homomorphic

encryption scheme based on the new basic encryption scheme. We analyze the correctness and give the proof of

the security of our scheme. The public key, evaluation keys and tensored ciphertext have better size in our scheme.

(2) Estimating parameters for fully homomorphic encryption scheme is an important work. We estimate the

concert parameters for our scheme. We compare these parameters between our scheme and Bra12 scheme. Our

scheme have public key and private key that smaller by a factor of about logq than in Bra12 scheme. Tensored

ciphertext in our scheme is smaller by a factor of about log2q than in Bra12 scheme. Key switching matrix in our

scheme is smaller by a factor of about log3q than in Bra12 scheme.

.

Key words: Fully Homomorphic Encryption; public key encryption; Learning with error; concert parameters

I. INTRODUCTION

Fully homomorphic encryption (FHE) can compute arbitrary function on encrypted data without using secret key.

This powerful primitive has a myriad of potential applications such as private cloud computing. Since Gentry

proposed the first FHE scheme [1], some schemes based on different hardness assumptions have been proposed [1,

2, 3, 4, 5, 6, 7] and have developed some techniques to improve efficiency [8, 9].

The efficiency of FHE has been the big question following its invention, which hinder application of FHE in

practical. Specially, the size of key in FHE scheme is big. A FHE scheme based on LWE not only includes public

key and private key but also includes some evaluation keys. For an L-leveled FHE scheme, there are L evaluation

keys. Each evaluation key is a (n+1)2 log q  ×(n+1) matrix. A public key is at least 2nlogq×(n+1) matrix.

Clearly, these matrixes are high dimension, which not only need a lot of space to store but also affect the

efficiency of computation.

Recently, there is a variant of LWE problem called binary-LWE. It means the secret key in LWE are chosen

uniformly from the binary set {0,1}n or {-1,0,1}n. Both papers [10, 11] recently show that binary-LWE is hard, but

those results require increasing the parameter n to approximately nlogn. But Bai and Galbraith in paper [12] show

one can use binary-LWE with parameter nlog(logn), which is more than sufficient. This is much smaller and even

the increasing dimension cannot cause any impact on the application. The paper [13] also has similar result.

The goal of this paper is to construct a FHE scheme with better key size. The style of the basic encryption

scheme our scheme builds on is different from previous works [3, 4, 5]. Previous works is based on the Regev’s

encryption scheme in [15] to construct FHE scheme, which choose a random set uniformly and add these LWE

samples according to the random set. In our basic encryption scheme, we choose LWE samples from Gaussian

distribution and add Gaussian error to it, which result in that the number of LWE samples decrease from 2nlogq to

n+1. The proof for our scheme uses the LWE assumption twice, which is different with prior LWE-based scheme

involve a statistical arguments, but this requires larger keys. In addition, in order to achieve homomorphic

property, we choose the secret key from {0,1}n rather than using binary decomposition for secret key as in

Brakerski’s scheme proposed in 2012 (Bra12)[5]. It results in that our scheme has the smaller tensored ciphertext

and key switching matrix.

We note that our scheme and Bra12 scheme have the similar noise growth, but our scheme is different with

Bra12 scheme. On the one hand, both FHE scheme build on the different basic encryption scheme. Our FHE

scheme build on the Linder and Peikert’s encryption scheme (LP10) proposed in [14], while Bra12 scheme build

on the Regev’s encryption scheme in [15]. On the other hand, we take the different method to reduce the noise.

We do not use binary decomposition for secret key to reduce the noise but choose the secret key from {0,1}n . Our

scheme have public key and private key that smaller by a factor of about logq than in Bra12 scheme. Tensored

ciphertext in our scheme is smaller by a factor of about log2q than in Bra12 scheme. Key switching matrix in our

scheme is smaller by a factor of about log3q than in Bra12 scheme. It is most important that our FHE scheme is

more space efficient than the FHE schemes based on LWE commonly known in the literature. Not just than Bra12

scheme. The smaller key come from the different style of the basic encryption scheme.

Estimating parameters for FHE scheme is an important work. We estimate the concert parameters for our

scheme. These parameters include circuit depth L, dimension n, modulus q and Gaussian parameter r. From these

parameters, we can obtain public key size, ciphertext size, the size of tensored ciphertext for multiplication and

the size of key switching matrix. We compare the size of these parameters between our scheme and Bra12 scheme.

This paper is organized as follows. Section 2 defines notational conventions, introduces the LWE assumption

and defines homomorphic encryption and its related terms. Section 3 describes the basic encryption scheme.

Section 4 defines homomorphic addition and homomorphic multiplication so that we achieve homomorphic

property for the basic encryption scheme. Section 5 describes a FHE scheme. Section 6 analyzes the noise in

homomorphic addition and homomorphic multiplication, which show it is possible to achieve a leveled FHE

scheme. Section 7 gives the parameters property and concert parameters.

II. PRELIMINARIES

2.1 Basic Notation

We We use x  to indicate rounding x to the nearest integer, and x   ， x   (for x≥0)to indicate rounding down

or up. When q is not a power of two, we will use log q   to denote 1+ log q   .For an integer q, we define the set

q = (-q/2, q/2]∩ . For any x ,let y=[x]q denote the unique value y∈(-q/2, q/2]. x←D means that x is a

sample from a distribution D .We define B-bounded distributions as ones whose magnitudes never exceed B.

For two vectors v, u of dimension n, its inner product <v, u> is defined as <v, u>= vT•u. The tensor product of

two vectors v, u of dimension n, denoted v u，is the n2 dimensional vector containing all elements of the form

v[i]u[j]. Note that <v u , x y> = < v , x >•< u , y >.

2.2 Learning with Error (LWE)

The learning with errors (LWE) problem was introduced by Regev [15] as a generalization of the well-known

“learning parity with noise” problem, to larger moduli. This problem was later generalized as the ring learning

with errors (RLWE) problem by Lyubaskevsky, Peikert and Regev [16].

The LWE problem is parameterized by a dimension n≥1 and integer modulus q≥2, as well as a probability

distribution χ over  or q . For a vector s∈ n
q , the LWE distribution , χS is obtained by choosing a vector

a from n
q uniformly at random and a noise term e← χ ，and outputting (a, b = <a, s> + e mod q) ∈ n

q q  .

The search-LWE problem is, given an arbitrary number of independent samples (ai, bi) ← , χS , to find s. We are

primarily interested in the decision-LWE (DLWE) problem for cryptographic applications. The decision-LWE

problem is to distinguish with some non-negligible advantage between the two cases. One case is any desired

number of independent samples (ai, bi) ← , χS . Another case is the same number of independent samples drawn

from the uniform distribution over n
q q  .

There are two kinds of reductions such as quantum reduction [15] and classical reduction [10, 17] from

worst-case lattice problems to the LWE problem. In addition, if the vector s is sampled from the distribution χ ,

then the LWE problem is still hard.

For a lattice Λ and a positive real r > 0, we denote Λ,rD as the discrete Gaussian distribution over Λ and

parameter r , which is the probability distribution that assigns mass proportional to exp(2 2/π s x) to each point

Λx . ForΛ n  , the discrete Gaussian
,n r

D


 is simply the product distribution of n independent copies of ,rD .

We will need two tail bounds on discrete Gaussians that come from paper [18, 19].

Lemma 2.1 . Let c ≥ 1 and C = c  exp(
21

2

c
) < 1. Then for any real r > 0 and any integer n ≥ 1, we have

,

1
Pr

2
n r

D c r n
π

    
 

≤ Cn.

Lemma 2.2 . For any real r > 0, T > 0, and nx  , we have 2

,
Pr , 2exp()n r

D T r π T        x x


.

2.3 Leveled Homomorphic Encryption

A homomorphic encryption scheme HE=(Keygen, Enc, Dec, Eval) includes a quadruple of PPT algorithms. For

the definition of full homomorphic encryption, readers can refer to these papers [1, 5].

At present, there are two types of fully homomorphic encryption schemes. One is leveled fully homomorphic

encryption schemes, in which the parameters of a scheme depend on the depth of the circuits that the scheme can

evaluate. In this case any circuit with a polynomial depth can be evaluated. The other is pure fully

homomorphic encryption schemes, which can be built from a leveled fully homomorphic encryption scheme with

the assumption of circular security. A pure fully homomorphic encryption scheme can evaluate the circuit whose

depth is not limited. The following definitions are taken from [5].

Definition 2 (L-homomorphism). A scheme HE is L-homomorphic, for L=L(λ), if for any depth L arithmetic

circuit f (over GF(2)) and any set of inputs m1,…,ml, it holds that

Pr[HE.Decsk (HE.Evalevk(f,c1,…,cl))≠f(m1,…,ml)] = negl(λ) ,

where (pk, evk, sk)←HE.Keygen(1λ) and ci← HE.Encpk(mi).

Definition 3 (compactness, full homomorphism and leveled full homomorphism). A homomorphic scheme is

compact if its decryption circuit is independent of the evaluated function. A compact scheme is fully

homomorphic if it is L-homomorphic for any polynomial L. The scheme is leveled fully homomorphic if it takes

1L as additional input in key generation.

III. THE BASIC ENCRYPTION SCHEME

We take the encryption scheme proposed by Lindner and Peikert [14] as building blocks. Their scheme is an abstract

system described by Daniele and Oded [20]. We instantiate their scheme in here and do a little change. The secret

key was chosen from a Gaussian distribution
,n r

D
in original Lindner and Peikert’s encryption scheme. However,

we choose the secret key from the set {0,1}n in this basic encryption scheme in order to improve the efficiency of

fully homomorphic scheme we describe late. The security of this scheme is still hard under the assumption of

binary-LWE that means the secret vectors are chosen uniformly from the set {0,1}n or {-1,0,1}n . Recently, both

paper [10, 11] give reductions that ensure the hardness of binary-LWE.

An integer modulus q ≥ 2, integer dimension n = n′  log(logn′) where n′ is the dimension of LWE problem in paper

[15], and a Gaussian distribution
,n r

D
denoted as nχ , which relate to the underlying binary-LWE problem. In order

for the smallest public keys, a uniformly random public matrix A n n
q
 can be generated by a trusted source, and is

used by all parties in the system. If the trusted source is not got in the system, A may be generated in the step of key

generation and as part of public key. The basic encryption scheme is described as follows.

E.SecretKeygen(1n):Choose uniformly s′← {0, 1} n. Output sk = s ←(1, s′).

E.PublicKeygen(A, s): Choose e1 ←
nχ ,and let p = e1 - A  s′ n

q . Set the public key pk = p.

E.Enc(A, pk, m)：To encrypt a message m∈{0,1}，sample e2 ←
nχ , e3 ←

nχ , and e4 ← χ , and output c←(pt e2

+ e4 +
2

q 
  

m, At e2 + e3) 1n
q
 .

E.Dec(sk, c)：Output m ← 2
, mod 2qq

   c s .

To illustrate the correctness of this basic encryption, we analyze the noise magnitude at encryption and

decryption.

Lemma 3.1 (encryption noise). Let q, n, A, χ B be parameters in above encryption scheme. The secret key s

and public key p are generated from E.SecretKeygen(1n) and E.PublicKeygen(A, s). Set c←E.Enc(A, pk, m).

Then for some e with |e|≤nB2+ nB + B, it holds that

< c , s > =
2

q 
  

m + e （mod q）.

Proof. By definition

< c , s > = pt e2 + e4 +
2

q 
  

m + (At e2 + e3)
t  s′（mod q）

 = e2
t  (e1 - A  s′) + e4 +

2

q 
  

m + e2
t A  s′+ e3

t  s′（mod q）

 =
2

q 
  

m + e2
t e1 + e3

t s′+ e4（mod q）.

Since χ B , we have | e2
t e1 + e3

t  s′+ e4 |≤nB2+ nB + B and the lemma follows.

The correctness of decryption is decided by the noise magnitude in ciphertexts. The bound of noise magnitude is

4

q 
  

, which is as same as Regev’s encryption scheme in [15].

Lemma 3.2 (decryption noise). Let c 1n
q
 and s ∈{0,1}n be two vectors such that

< c , s > =
2

q 
  

m + e （mod q）,

where m∈{0,1}. If |e| <
4

q 
  

, then we have m← E.Dec(s, c).

This proof is as same as the proof in Regev’s encryption scheme and is omitted.

Lemma 3.3 (security). The above encryption scheme is CPA-security, assuming the hardness of decision-LWE

with parameters n, q, χ for: (i) secret sample from binary secret, and (ii) secret sample from a Gaussian

distribution.

Proof. For any plaintext bit m encrypted by the encryption scheme, the adversary’s view consists of (A, p, c),

where A n n
q
 is uniformly random, p←E.PublicKeygen, and c←E.Enc(A, p, m). It is sufficient to show that the

triples (A, p, c) in the IND-CPA attack is computationally indistinguishable from uniformly random (A, p*, c*),

where p* n
q and c* 1n

q
 . First, we show it is computationally indistinguishable between (A, p) and (A, p*). Since

p = e1 - A  s′, where s′ is chosen uniformly from {0,1}n and e1 is drawn from a Gaussian distribution nχ , (A, p) is

computationally indistinguishable from uniformly random (A, p*) under the assumption (i) in the lemma statement.

We say the adversary’s view (A, p, c) is computationally indistinguishable from uniformly random (A, p*, c). Since

c is computationally indistinguishable from c′, where c′←E.Enc(A, p*, m), we can replace c with c′ in the triples

(A, p*, c). We have (A, p, c) is computationally indistinguishable from (A, p*, c′). Second, we show it is

computationally indistinguishable between (A, p*, c′) and uniformly random (A, p*, c*). Let A′ = (A, p*). Since c′

= ((A′)t e2 + 3

4e

 
 
 

e
) +

0

/ 2q m

 
    

, where A′ is uniform and e2, e3, e4 are drawn from a Gaussian distribution, we

have (A, p*, c′) is computationally indistinguishable from (A, p*, c*) under assumption (ii) in the lemma statement.

Therefore, it is computationally indistinguishable between the adversary’s view (A, p, c) and uniformly random (A,

p*, c*).

IV. HOMOMORPHIC OPERATION

Suppose c1 and c2 under the secret key s encrypt m1 and m2 in that < ci , s > =
2

q 
  

mi + ei（mod q）=
2

q 
  

mi + ei +

kiq for small ei. If the ciphertext c resulted from addition or multiplication of two ciphertext c1 and c2 can hold < c,

s > =
2

q 
  

(m1+ m2)+ e（mod q）or < c, s > =
2

q 
  

(m1 m2)+ e（mod q）for small e, we say that addition or

multiplicative homomorphism could be achieved. So this structure like
2

q 
  

mi + ei is most important in

homomorphic operation, we call
2

q 
  

mi + ei as invariant structure. For the basic encryption scheme described

above, homomorphic addition can be achieved directly, but homomorphic multiplication cannot be achieved

directly. We need to construct the ciphertext of homomorphic multiplication to satisfy invariant structure.

4.1 Homomorphic Addition

By definition

< c1+c2 , s > = < c1 , s > +< c2 , s >=
2

q 
  

•(m1+ m2)+ e1+e2 (mod q).

The noise magnitude e1+e2 increase a little as previous fully homomorphic encryption scheme. If the noise

magnitude is small, namely, | e1+e2 |< / 2
2

q 
  

, the ciphertext c1+c2 can be decrypted correctly. It means the sum of

ciphertext encrypts the sum of the message.

4.2 Homomorphic Multiplication

Since the basic encryption scheme itself does not has the property of homomorphic multiplication, we require to

define the representation of the ciphertext resulted from homomorphic multiplication so as to achieve he property

of homomorphic multiplication. We define the ciphertext for multiplication as 1 2

2

q
    c c like definition in

paper [5], which can be decrypted using a tensored secret key s s. The reasons of this definition are as follows.

Let an error r = 1 2

2

q
    c c – 2

q
•(c1  c2). By definition

< 1 2

2

q
    c c , s s > = < 2

q
•(c1 c2)，s s > + < r , s s >

 =
2

q 
  

•m1m2 + m1e2 + m2 e1+ 2(e1k2+ k1e2) + q•(m1k2 + k1m2 +2k1k2) –[q]2•(m1k2 + k1m2) +
 2
q

q
•(m1e2–m2

e1–
2

q 
  

•(m1m2)) +
2

q
•e1e2 + < r , s s > (1)

=
2

q 
  

•m1m2 + 1
multe + 2

multe ,

where 1
multe = m1e2 + m2 e1+ 2(e1k2+ k1e2) + q•(m1k2 + k1m2 +2k1k2) –[q]2•(m1k2 + k1m2) +

 2
q

q
•(m1e2–m2 e1–

2

q 
  

•(m1m2)) +
2

q
•e1e2 and 2

multe =|< r , s s >|.

The invariant structure appears in the above equation (1). If | 1
multe + 2

multe |< / 2
2

q 
  

, the tensored ciphertext for

multiplication 2

q
•(c1  c2) can be decrypted correctly. It means multiplicative homomorphism is achieved by the

above definition for multiplication.

4.3 Key Switching

Even though the tensored ciphertext for multiplication enable us to achieve the property of homomorphic

multiplication, there is a problem that the dimension of the ciphertext increases from n+1 to (n+1)2 after a

homomorphic multiplication. We use the key switching technique to solve this problem. Key switching consists of

two procedures, namely SwitchKeyGen (s1, s2 ,n1 , n2 , q) and SwitchKey(τ , c1, n1 , n2 , q). The goal of Key

switching is to transform a ciphertext c1 under a secret key s1 to a new ciphertext c2 under a secret key s2, in which c1

and c2 encrypt the same message. If the dimension of c2 and s2 is lower than the dimension of c1 and s1, the

dimension of the key and ciphertext vectors is reduced by key switching.

SwitchKeyGen(s1
1 n

q ，s2
2 n

q)：

（1） Run A←E.PublicKeygen(s2) for N = n1• log q  ，namely A=[b|-A′].

（2） Set B← [(Powerof2(s1) + b) |-A′]，which means to add the Powerof2(s1) N
q to -A′ ’s first column

and add b to -A′ ’s second column. Output
1 2s sτ =B.

SwitchKey(
1 2s sτ , c1)：Output c2 = BitDecomp(c1)

T•B 2n
q .

Key switching is essentially the product of a high dimension vector and a high dimension matrix. Next, we

describe the correctness of key switching, namely the decryption of the new ciphertext can preserve correctness.

The proof is based on the definition (see [4]).

Lemma 4.1 Let s1, s2 , q，A，B =
1 2s sτ be parameters as described in SwitchKeyGen, and have A•s2 = e2

N
q .

Let c1
N
q and c2 ← SwitchKey(

1 2s sτ , c1) . Then, < c2, s2> = < BitDecomp(c1) , e2> + < c1 , s1> (mod q).

V. A HOMOMORPHIC ENCYPTION SCHEME.

5.1 A Leveled Homomorphic Encryption Scheme

We construct a leveled homomorphic encryption scheme based on the basic encryption scheme described in

section 3 and homomorphic property described in section 4. For a leveled homomorphic encryption scheme,

different level has different secret key in circuit. Homomorphic operations are just to be performed from level L to

1. The first level is level L, and the last level is level 0. The level 0 is only used to switch key. After each

homomorphic operation, we need to transform the result to enter the next level of circuit. Before each

homomorphic operation, it requires that the two ciphertext have the same secret key (namely, the same level).

Otherwise, we need transform the higher level ciphertext between the two ciphertext to the same level with

another lower level ciphertext. The function of FHE.RefreshNextLevel is to do it. We note the operation of key

switching is just used for tensored ciphertext. Thus the ciphertext of normal dimension need to tensor with a trivial

ciphertext (1,0,…,0) before using key switching.

FHE.Setup(λ , L): Input the security parameter λ and the circuit level L, output the noise distribution χ , and

the dimension n. Note that χ and n are as same as in the above basic encryption scheme. If there is a trusted source

in the system, all parties in the system would the trusted source to generate a uniformly random public matrix

A n n
q
 . If not, A may be generated in the step of key generation and as part of public key.

FHE.KeyGen(n, L)：For i =L down to 0, do the following:：

(1) Run si←E.SecretKeygen(1n) . Let sk={si}.

(2) When i =L do this step. Run pL←E.PublicKeygen(A, sL). Let pk1={ pL }.

(3) Set si′← si si
2(1)(0,1) n .（Omit this step when i=0.）

(4) Run ,
1ii s s

τ ← SwitchKeyGen(si′,si-1).（Omit this step when i=0.）Let pk2={ ,
1ii s s

τ } .

Then output sk={si} and pk=（pk1，pk2）.

FHE.Enc(pk1, m)：Take a message m∈{0,1}. Run E.Enc(pL, m).

FHE.Dec(sk, ci)：Assume that ci is a ciphertext under the secret key si. Run E.Dec(sk, ci).

FHE.Add(pk2, c1, c2)：Do the following steps.

(1) If ciphertexts c1, c2 has the same secret key si, first compute c3←c1+c2. In order to provide an output that

corresponds to the next level key si-1 and not si, we call FHE.RefreshNextLevel to do it. Output cadd←

FHE.RefreshNextLevel(i, c3, ,
1ii s s

τ) 1n
q
 .

(2) If ciphertexts c1, c2 has the different secret key, we input the higher level ciphertext between c1 and c2 to

FHE.RefreshNextLevel. We can repeat to call FHE.RefreshNextLevel till the output from

FHE.RefreshNextLevel has the same secret key with the lower level ciphertext between c1 and c2 . Then go to

step (1).

FHE.Mult(pk2, c1, c2)：Do the following steps.

(1) If ciphertexts c1, c2 has the same secret key si, first compute c3← 1 2

2
()

q
   c c that corresponds to si′. Then

output cmult← SwitchKey(,
1ii s s

τ , c3).

(2) If ciphertexts c1, c2 has the different secret key, what we do as same as the step (2) in FHE.Add(pk2, c1, c2).

FHE.RefreshNextLevel(i, c, ,
1ii s s

τ): First compute c′= c (1,0,…,0), then output SwitchKey(,
1ii s s

τ ,c′).

VI. NOISE ANALYSIS

Suppose ciphertext ci under the secret key s is a fresh ciphertext, namely, ci←E.Enc(A, pk, mi). By lemma 3.1, we

have < ci, s > =
2

q 
  

mi + ei（mod q）, where | ei |≤ E = nB2+ nB + B. Next we analyze the noise magnitude in

ciphertext after one addition or one multiplication.

6.1 Analysis for Addition

By definition

< c1 + c2, s > = < c1, s > + < c2, s > (mod q)

 =
2

q 
  

[m1 + m2]2 + 2 
2

q 
  

 1 2() / 2m m   + e1 + e2（mod q）.

Then we get |eadd | = | 2 
2

q 
  

 1 2() / 2m m   + e1 + e2 | ≤ 2nB2+ 2nB + 2B +1.

6.2 Analysis for Multiplication

Let cmult be the output of FHE.Mult(pk2, c1, c2) under the secret key s′. According to the result in section 4.2 and

Lema 4.1, we have

< cmult , s′ > = < 1 2

2

q
    c c , s s > + < BitDecomp(1 2

2

q
    c c) , e>

 =
2

q 
  

m1m2 + 1
multe + 2

multe + 3e （mod q）,

where 1
multe = m1e2 + m2e1+ 2(e1k2+ k1e2) – [q]2•(m1k2 + k1m2) +

 2
q

q
•(m1e2 – m2 e1 –

2

q 
  

 (m1m2)) +
2

q
e1e2 , 2

multe

=|< r , s s >| and 3e < BitDecomp(1 2

2

q
    c c) , e >.

We first analyze the bound of 1
multe . The magnitude of 1

multe mainly depends on the term 2(e1k2+ k1e2), so we

check the bound of the absolute value of k1 (the same bound also holds for k2):

| k1|=|< c1, s >–
2

q 
  

m1–e1| / q ≤ |< c1, s > | / q +1≤(1 
c /q) 

1
s +1≤n+1.

We have | 1
multe |≤2E(n+3)+2. Furthermore, we have | 2

multe | = |<r , s s > | ≤


r  | s s |≤(1/2)  (n+1)2 and

2
3 (1) loge n q B     .

Putting these together, we get the bound of noise magnitude after one multiplication for fresh ciphertext such as

| 1
multe + 2

multe + 3e | ≤ 2E  (n+3) + 2 1
(1) (log)

2
n q B      .

After we evaluate a circuit of depth L, the upper bound on the noise magnitude in resulting ciphertext is

1
1 1 2
L Lc E L c c    , where c1=2(n+3), c2= 2 1

(1) (log)
2

n q B      . As long as the parameters of this scheme

satisfy 1
1 1 2 / 4L Lc E L c c q        , we can evaluate homomorphic operation with L multiplication. For security, the

best known algorithm for LWE runs in time approximately 2n/log(q/B). Therefore we choose B to be polynomial in n

= λ and q = 2
εn for every ε <1, we can get L≈ log q ≈ εn . It means we could evaluate a circuit of polynomial depth.

In short, we would have a leveled fully homomorphic encryption scheme. Thus we can obtain the following

theorem.

Theorem 6.1. For every L > 0, there exists ε < 1 and a L-leveled fully homomorphic encryption scheme under

LWE assumption, where q/B ≤ 2
εn .

VII. PARAMETERS SEETING

In this section, we estimate the concert parameters for our scheme. These parameters include circuit depth L,

dimension n, modulus q and Gaussian parameter r. From these parameters, we can obtain public key size,

ciphertext size, the size of tensored ciphertext for multiplication and the size of key switching matrix. Since Bra12

scheme is also a leveled fully homomorphic encryption scheme without modulus switching and homomorphic

property of Bra12 scheme is similar with our scheme, we compare these parameters between our scheme and

Bra12 scheme.

7.1 Parameters Property

We first list some properties of our scheme and Bra12 scheme in table 1. All sizes are in bits. We note the number

of LWE sample in Bra12 scheme we take N=2nlogq. The key switching matrix is a kind of public key, which is

actually evaluation key for homomorphic operation. There are L key switching matrixes in L-leveled fully

homomorphic encryption scheme, which need a lot of space to store.

Table 1. Some properties of our scheme and Bra12 scheme

From above the table 1, the advantage in our scheme is obvious for the parameters size beyond ciphertext.

Specially, the public key size (include key switching matrix) improve a factor log3q at most.

7.2 Concert parameters

In this section, we consider the concert value of parameters. We first choose circuit depth L and dimension n. For

leveled homomorphic encryption scheme, it has to decide the circuit depth L before performance computation.

The dimension n is security parameter. We can choose n according to the requirement of security. Then we choose

modulus q and Gaussian parameter r. Last, we can estimate the values such as public key, private key, ciphertext,

tensored ciphertext and key switching matrix.

 Public key

p

Public key

p & A

Private key

Our scheme nlogq (n+1)2logq n+1

Bra12 scheme 2nlog2q 2n(n+1)log3q (n+1)logq

 Ciphertext Tensored ciphertext Key switching

matrix
Our

scheme
(n+1)logq (n+1)2logq (n+1)3

Bra12

scheme
(n+1)logq ((n+1)  log q)2logq (n+1)3  log q 2logq

As an example parameters, we consider the case that n=128 and L=0,1,5. For a security level λ bits, we need

log(/) (110) / 7.2n q r λ   following the analysis in paper [14], which make us obtain the function about security

level and dimension. Next we state how to choose modulus q and Gaussian parameter r. Recall that the message

decrypts correctly in the basic encryption scheme in section 3 if |<el ,er >|<
4

q 
  

, where
2

3

4

l

e

 
   
  

e

e e and
1

'

1
r

 
   
  

e

e s .

Each entries of el and er are independent and have distribution
,r

D
. By lemma 2.2, we

have 2

,
Pr , 2exp()nl lr

D T r π T        e e


. Let lT r e =
4

q 
  

, then we get / 4 / ()lT q r    e . By lemma 2.1,

there is a c ≥1 such that 1
2

2
l c r n

π
  e . We thus have 2 2 / 4 / (2)r π q c T n     . We denote δ as the

decryption error probability per bit in the basic encryption. We typically use δ =0.01, namely, keeping the error

probability below 1%. By lemma 2.2, we have δ =2exp(2π T ), then ln(2 /) /T δ π . Therefore, we obtain

 2 2 / 4 / (2 ln(2 /))r π q c n δ      . (2)

From inequation (2), we can choose the concert values for modulus q and Gaussian parameter r if we know c.

The parameter c in inequation (2) can be determined as following step. By lemma 2.1, let Pr[1
2

2
l c r n

π
  e]≤

Cn = 2-40, namely, the probability of choosing a unexpected vector el is at most 2-40. Since C = c exp(
21

2

c), we

can solve c from (c exp(
21

2

c))n = 2-40. From inequation (2), we should choose the modulus q to be just large

enough so that Gaussian parameter r ≥ 6, which result in that the discrete Gaussian
,n r

D


 approximates the

continuous Gaussian rD .

In addition, circuit depth also affects the value of modulus q. Recall the noise analysis in section 6.2. In order to

decrypt correctly, for a circuit depth L, modulus q needs to satisfy

 1
1 1 2 / 4L Lc E L c c q        . (3)

From the inequation (2) and (3), we choose the maximum value as the value of modulus q. In table 2, we

provide the sizes of modulus q for dimensions n=1024, 2048, 4096 and levels L= 0, 1, 5 in our scheme and Bra12

scheme.

Table 2. the sizes of modulus q in our scheme and Bra12 scheme.

(a) Bra12 scheme

 (b) Our scheme

VIII. CONCLUSION

The goal of this paper is to construct a FHE scheme with better key size. The smaller key come from the different

style of the basic encryption scheme and we choose secret key from binary set. We analyze the correctness and give

the proof of the security of our scheme. At last, We estimate the concert parameters for our scheme. We compare

these parameters between our scheme and Bra12 scheme. Our scheme have public key and private key that smaller

by a factor of about log q than in Bra12 scheme. Tensored ciphertext in our scheme is smaller by a factor of about

log2q than in Bra12 scheme. Key switching matrix in our scheme is smaller by a factor of about log3q than in Bra12

scheme. It is most important that our FHE scheme is more space efficient than the FHE schemes based on LWE

commonly known in the literature.

Acknowledgements

The first author would like to thank for the Fund of Jiangsu Innovation Program for Graduate Education (No.CXLX12_0162), the

Fundamental Research Funds for the Central Universities, and Ningbo Natural Science Foundation (No.2012A610067) and the

Chinese National Scholarship fund, and also appreciate the benefit to this work from projects in science and technique of Ningbo

municipal. The third author would like to thank for Ningbo Natural Science Foundation (No.2013A610071).

REFERENCES

[1] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices [M]. Proceedings of the 41st annual ACM symposium on Theory of

computing. Bethesda, MD, USA; ACM. 2009: 169-178.

n 1024 2048 4096
L=0 23 24 25
L=1 34 36 38
L=5 79 85 91

n 1024 2048 4096
L=0 20 21 23
L=1 39 42 44
L=5 111 117 124

[2] Marten van Dijk, Craig Gentry, Shai Halevi, Vinod Vaikuntanathan. Fully Homomorphic Encryption over the Integers [M]//GILBERT H.

Advances in Cryptology – Eurocrypt 2010. Springer Berlin / Heidelberg. 2010: 24-43.

[3] Z. Brakerski, V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard) Lwe [M]//OSTROVSKY R. 2011 Ieee 52nd Annual

Symposium on Foundations of Computer Science. Los Alamitos; IEEE Computer Society. 2011: 97-106.

[4] Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. (Leveled) Fully Homomorphic Encryption without Bootstrapping [M]. Proceedings of the

3rd Innovations in Theoretical Computer Science Conference. Cambridge, Massachusetts; ACM. 2012: 309-325.

[5] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical Gapsvp [M]//SAFAVI-NAINI R, CANETTI R.

Advances in Cryptology – Crypto 2012. Springer Berlin Heidelberg. 2012: 868-886.

[6] Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan. On-the-Fly Multiparty Computation on the Cloud Via Multikey Fully Homomorphic

Encryption [M]. Proceedings of the 44th symposium on Theory of Computing. New York, New York, USA; ACM. 2012: 1219-1234.

[7] Craig Gentry, Amit Sahai, Brent Waters. Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,

Attribute-Based [M]//CANETTI R, GARAY J. Advances in Cryptology – Crypto 2013. Springer Berlin Heidelberg. 2013: 75-92.

[8] Craig Gentry, Shai Halevi, Nigel Smart. Fully Homomorphic Encryption with Polylog Overhead [M]//POINTCHEVAL D, JOHANSSON T.

Advances in Cryptology– Eurocrypt 2012. Springer Berlin / Heidelberg. 2012: 465-482.

[9] Zvika Brakerski, Craig Gentry, Shai Halevi. Packed Ciphertexts in Lwe-Based Homomorphic Encryption [M]//KUROSAWA K, HANAOKA G.

Public-Key Cryptography – Pkc 2013. Springer Berlin Heidelberg. 2013: 1-13.

[10] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, Damien Stehl, #233. Classical Hardness of Learning with Errors [M].

Proceedings of the 45th annual ACM symposium on Symposium on theory of computing. Palo Alto, California, USA; ACM. 2013: 575-584.

[11] Daniele Micciancio, Chris Peikert. Hardness of Sis and Lwe with Small Parameters [M]//CANETTI R, GARAY J. Advances in Cryptology –

Crypto 2013. Springer Berlin Heidelberg. 2013: 21-39.

[12] Shi Bai, Steven D. Galbraith. Lattice Decoding Attacks on Binary Lwe [J]. IACR Cryptology ePrint Archive, 2013, 2013(839.

[13] MartinR Albrecht, Jean-Charles Faugère, Robert Fitzpatrick, Ludovic Perret. Lazy Modulus Switching for the Bkw Algorithm on Lwe

[M]//KRAWCZYK H. Public-Key Cryptography – Pkc 2014. Springer Berlin Heidelberg. 2014: 429-445.

[14] Richard Lindner, Chris Peikert. Better Key Sizes (and Attacks) for Lwe-Based Encryption [M]//KIAYIAS A. Topics in Cryptology – Ct-Rsa

2011. Springer Berlin Heidelberg. 2011: 319-339.

[15] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography [M]. Proceedings of the thirty-seventh annual ACM

symposium on Theory of computing. Baltimore, MD, USA; ACM. 2005: 84-93.

[16] Vadim Lyubashevsky, Chris Peikert, Oded Regev. On Ideal Lattices and Learning with Errors over Rings [M]//GILBERT H. Advances in

Cryptology – Eurocrypt 2010. Springer Berlin Heidelberg. 2010: 1-23.

[17] Chris Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem: Extended Abstract [M]. Proceedings of the 41st annual

ACM symposium on Theory of computing. Bethesda, MD, USA; ACM. 2009: 333-342.

[18] W. Banaszczyk. New Bounds in Some Transference Theorems in the Geometry of Numbers [J]. Math Ann, 1993, 296(1): 625-635.

[19] W. Banaszczyk. Inequalities for Convex Bodies and Polar Reciprocal Lattices Inr N [J]. Discrete Comput Geom, 1995, 13(1): 217-231.

[20] Daniele Micciancio, Oded Regev. Lattice-Based Cryptography [M]//BERNSTEIN D, BUCHMANN J, DAHMEN E. Post-Quantum

Cryptography. Springer Berlin Heidelberg. 2009: 147-191.

