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Abstract: Fully homomorphic encryption is faced with two problems now. One is candidate fully homomorphic 

encryption schemes are few. Another is that the efficiency of fully homomorphic encryption is a big question. In 

this paper, we propose a fully homomorphic encryption scheme based on LWE, which has better key size. Our 

main contributions are: (1) According to the binary-LWE recently, we choose secret key from binary set and 

modify the basic encryption scheme proposed in Linder and Peikert in 2010. We propose a fully homomorphic 

encryption scheme based on the new basic encryption scheme. We analyze the correctness and give the proof of 

the security of our scheme. The public key, evaluation keys and tensored ciphertext have better size in our scheme. 

(2) Estimating parameters for fully homomorphic encryption scheme is an important work. We estimate the 

concert parameters for our scheme. We compare these parameters between our scheme and Bra12 scheme. Our 

scheme have public key and private key that smaller by a factor of about logq than in Bra12 scheme. Tensored 

ciphertext in our scheme is smaller by a factor of about log2q than in Bra12 scheme. Key switching matrix in our 

scheme is smaller by a factor of about log3q than in Bra12 scheme. 

. 
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I. INTRODUCTION 

Fully homomorphic encryption (FHE) can compute arbitrary function on encrypted data without using secret key. 

This powerful primitive has a myriad of potential applications such as private cloud computing. Since Gentry 



proposed the first FHE scheme [1], some schemes based on different hardness assumptions have been proposed [1, 

2, 3, 4, 5, 6, 7] and have developed some techniques to improve efficiency [8, 9]. 

The efficiency of FHE has been the big question following its invention, which hinder application of FHE in 

practical. Specially, the size of key in FHE scheme is big. A FHE scheme based on LWE not only includes public 

key and private key but also includes some evaluation keys. For an L-leveled FHE scheme, there are L evaluation 

keys. Each evaluation key is a  (n+1)2 log q  ×(n+1) matrix. A public key is at least 2nlogq×(n+1) matrix. 

Clearly, these matrixes are high dimension, which not only need a lot of space to store but also affect the 

efficiency of computation.  

Recently, there is a variant of LWE problem called binary-LWE. It means the secret key in LWE are chosen 

uniformly from the binary set {0,1}n or {-1,0,1}n. Both papers [10, 11] recently show that binary-LWE is hard, but 

those results require increasing the parameter n to approximately nlogn. But Bai and Galbraith in paper [12] show 

one can use binary-LWE with parameter nlog(logn), which is more than sufficient. This is much smaller and even 

the increasing dimension cannot cause any impact on the application. The paper [13] also has similar result. 

The goal of this paper is to construct a FHE scheme with better key size. The style of the basic encryption 

scheme our scheme builds on is different from previous works [3, 4, 5]. Previous works is based on the Regev’s 

encryption scheme in [15] to construct FHE scheme, which choose a random set uniformly and add these LWE 

samples according to the random set. In our basic encryption scheme, we choose LWE samples from Gaussian 

distribution and add Gaussian error to it, which result in that the number of LWE samples decrease from 2nlogq to 

n+1. The proof for our scheme uses the LWE assumption twice, which is different with prior LWE-based scheme 

involve a statistical arguments, but this requires larger keys. In addition, in order to achieve homomorphic 

property, we choose the secret key from {0,1}n rather than using binary decomposition for secret key as in 

Brakerski’s scheme proposed in 2012 (Bra12)[5]. It results in that our scheme has the smaller tensored ciphertext 

and key switching matrix.  

We note that our scheme and Bra12 scheme have the similar noise growth, but our scheme is different with 

Bra12 scheme. On the one hand, both FHE scheme build on the different basic encryption scheme. Our FHE 

scheme build on the Linder and Peikert’s encryption scheme (LP10) proposed in [14], while Bra12 scheme build 

on the Regev’s encryption scheme in [15]. On the other hand, we take the different method to reduce the noise. 

We do not use binary decomposition for secret key to reduce the noise but choose the secret key from {0,1}n . Our 



scheme have public key and private key that smaller by a factor of about logq than in Bra12 scheme. Tensored 

ciphertext in our scheme is smaller by a factor of about log2q than in Bra12 scheme. Key switching matrix in our 

scheme is smaller by a factor of about log3q than in Bra12 scheme. It is most important that our FHE scheme is 

more space efficient than the FHE schemes based on LWE commonly known in the literature. Not just than Bra12 

scheme. The smaller key come from the different style of the basic encryption scheme.  

Estimating parameters for FHE scheme is an important work. We estimate the concert parameters for our 

scheme. These parameters include circuit depth L, dimension n, modulus q and Gaussian parameter r. From these 

parameters, we can obtain public key size, ciphertext size, the size of tensored ciphertext for multiplication and 

the size of key switching matrix. We compare the size of these parameters between our scheme and Bra12 scheme. 

This paper is organized as follows. Section 2 defines notational conventions, introduces the LWE assumption 

and defines homomorphic encryption and its related terms. Section 3 describes the basic encryption scheme. 

Section 4 defines homomorphic addition and homomorphic multiplication so that we achieve homomorphic 

property for the basic encryption scheme. Section 5 describes a FHE scheme. Section 6 analyzes the noise in 

homomorphic addition and homomorphic multiplication, which show it is possible to achieve a leveled FHE 

scheme. Section 7 gives the parameters property and concert parameters. 

II. PRELIMINARIES  

2.1 Basic Notation 

We We use x   to indicate rounding x to the nearest integer, and x   ， x   (for x≥0)to indicate rounding down 

or up. When q is not a power of two, we will use log q   to denote 1+ log q   .For an integer q, we define the set 

q = (-q/2, q/2]∩ . For any x ,let y=[x]q denote the unique value y∈(-q/2, q/2]. x←D means that x is a 

sample from a distribution D .We define B-bounded distributions as ones whose magnitudes never exceed B. 

For two vectors v, u of dimension n, its inner product <v, u> is defined as <v, u>= vT•u. The tensor product of 

two vectors v, u of dimension n, denoted v u，is the n2 dimensional vector containing all elements of the form 

v[i]u[j]. Note that <v u , x y> = < v , x >•< u , y >. 

2.2 Learning with Error (LWE)  

The learning with errors (LWE) problem was introduced by Regev [15] as a generalization of the well-known 



“learning parity with noise” problem, to larger moduli. This problem was later generalized as the ring learning 

with errors (RLWE) problem by Lyubaskevsky, Peikert and Regev [16].  

The LWE problem is parameterized by a dimension n≥1 and integer modulus q≥2, as well as a probability 

distribution χ  over   or q . For a vector s∈ n
q , the LWE distribution , χS  is obtained by choosing a vector 

a from n
q   uniformly at random and a noise term e← χ ，and outputting (a, b = <a, s> + e mod q) ∈ n

q q  . 

The search-LWE problem is, given an arbitrary number of independent samples (ai, bi) ← , χS , to find s. We are 

primarily interested in the decision-LWE (DLWE) problem for cryptographic applications. The decision-LWE 

problem is to distinguish with some non-negligible advantage between the two cases. One case is any desired 

number of independent samples (ai, bi) ← , χS . Another case is the same number of independent samples drawn 

from the uniform distribution over n
q q  .  

There are two kinds of reductions such as quantum reduction [15] and classical reduction [10, 17] from 

worst-case lattice problems to the LWE problem. In addition, if the vector s is sampled from the distribution χ , 

then the LWE problem is still hard.  

For a lattice Λ  and a positive real r > 0, we denote Λ,rD as the discrete Gaussian distribution over Λ  and 

parameter r , which is the probability distribution that assigns mass proportional to exp( 2 2/π s x ) to each point 

Λx . ForΛ n  , the discrete Gaussian 
,n r

D


 is simply the product distribution of n independent copies of ,rD . 

We will need two tail bounds on discrete Gaussians that come from paper [18, 19]. 

Lemma 2.1 . Let c ≥ 1 and C = c  exp(
21

2

c
) < 1. Then for any real r > 0 and any integer n ≥ 1, we have 

,

1
Pr    

2
n r

D c r n
π

    
 

≤ Cn. 

Lemma 2.2 . For any real r > 0, T > 0, and nx  , we have 2

,
Pr  , 2exp( )n r

D T r π T        x x


. 

2.3 Leveled Homomorphic Encryption 

A homomorphic encryption scheme HE=(Keygen, Enc, Dec, Eval) includes a quadruple of PPT algorithms. For 

the definition of full homomorphic encryption, readers can refer to these papers [1, 5]. 

At present, there are two types of fully homomorphic encryption schemes. One is leveled fully homomorphic 

encryption schemes, in which the parameters of a scheme depend on the depth of the circuits that the scheme can 



evaluate. In this case any circuit with a polynomial depth can be evaluated. The other is pure fully 

homomorphic encryption schemes, which can be built from a leveled fully homomorphic encryption scheme with 

the assumption of circular security. A pure fully homomorphic encryption scheme can evaluate the circuit whose 

depth is not limited. The following definitions are taken from [5]. 

Definition 2 (L-homomorphism). A scheme HE is L-homomorphic, for L=L( λ ), if for any depth L arithmetic 

circuit f (over GF(2)) and any set of inputs m1,…,ml, it holds that  

Pr[HE.Decsk (HE.Evalevk(f,c1,…,cl))≠f(m1,…,ml)] = negl( λ ) , 

where (pk, evk, sk)←HE.Keygen(1λ ) and ci← HE.Encpk(mi). 

Definition 3 (compactness, full homomorphism and leveled full homomorphism). A homomorphic scheme is 

compact if its decryption circuit is independent of the evaluated function. A compact scheme is fully 

homomorphic if it is L-homomorphic for any polynomial L. The scheme is leveled fully homomorphic if it takes 

1L as additional input in key generation. 

 

III. THE BASIC ENCRYPTION SCHEME 

We take the encryption scheme proposed by Lindner and Peikert [14] as building blocks. Their scheme is an abstract 

system described by Daniele and Oded [20]. We instantiate their scheme in here and do a little change. The secret 

key was chosen from a Gaussian distribution 
,n r

D
in original Lindner and Peikert’s encryption scheme. However, 

we choose the secret key from the set {0,1}n in this basic encryption scheme in order to improve the efficiency of 

fully homomorphic scheme we describe late. The security of this scheme is still hard under the assumption of 

binary-LWE that means the secret vectors are chosen uniformly from the set {0,1}n or {-1,0,1}n . Recently, both 

paper [10, 11] give reductions that ensure the hardness of binary-LWE. 

An integer modulus q ≥ 2, integer dimension n = n′  log(logn′) where n′ is the dimension of LWE problem in paper 

[15], and a Gaussian distribution 
,n r

D
denoted as nχ , which relate to the underlying binary-LWE problem. In order 

for the smallest public keys, a uniformly random public matrix A n n
q
 can be generated by a trusted source, and is 

used by all parties in the system. If the trusted source is not got in the system, A may be generated in the step of key 

generation and as part of public key. The basic encryption scheme is described as follows. 



 

E.SecretKeygen(1n):Choose uniformly s′← {0, 1} n. Output sk = s ←(1, s′ ). 

E.PublicKeygen(A, s): Choose e1 ←
nχ ,and let p = e1 - A  s′ n

q . Set the public key pk = p. 

E.Enc(A, pk, m)：To encrypt a message m∈{0,1}，sample e2 ←
nχ , e3 ←

nχ , and e4 ← χ , and output c←(pt e2 

+ e4 + 
2

q 
  

m, At e2 + e3) 1n
q
  . 

E.Dec(sk, c)：Output m ← 2
, mod 2qq

   c s . 

To illustrate the correctness of this basic encryption, we analyze the noise magnitude at encryption and 

decryption. 

Lemma 3.1 (encryption noise). Let q, n, A, χ B  be parameters in above encryption scheme. The secret key s 

and public key p are generated from  E.SecretKeygen(1n) and E.PublicKeygen(A, s). Set c←E.Enc(A, pk, m). 

Then for some e with |e|≤nB2+ nB + B, it holds that 

< c , s > =
2

q 
  

m + e （mod q）. 

Proof. By definition   

< c , s > = pt e2 + e4 + 
2

q 
  

m + (At e2 + e3)
t  s′（mod q） 

        = e2
t  ( e1 - A  s′) + e4 + 

2

q 
  

m + e2
t A  s′+ e3

t  s′（mod q） 

        = 
2

q 
  

m + e2
t e1 + e3

t s′+ e4（mod q）. 

Since χ B , we have | e2
t e1 + e3

t  s′+ e4 |≤nB2+ nB + B and the lemma follows. 

The correctness of decryption is decided by the noise magnitude in ciphertexts. The bound of noise magnitude is 

4

q 
  

, which is as same as Regev’s encryption scheme in [15].  

Lemma 3.2 (decryption noise). Let c 1n
q
  and s ∈{0,1}n be two vectors such that 

< c , s > =
2

q 
  

m + e （mod q）, 



where m∈{0,1}. If |e| <
4

q 
  

, then we have m← E.Dec(s, c). 

 

This proof is as same as the proof in Regev’s encryption scheme and is omitted. 

Lemma 3.3 (security). The above encryption scheme is CPA-security, assuming the hardness of decision-LWE 

with parameters n, q, χ for: (i) secret sample from binary secret, and (ii) secret sample from a Gaussian 

distribution.  

Proof. For any plaintext bit m encrypted by the encryption scheme, the adversary’s view consists of (A, p, c), 

where A n n
q
 is uniformly random, p←E.PublicKeygen, and c←E.Enc(A, p, m). It is sufficient to show that the 

triples (A, p, c) in the IND-CPA attack is computationally indistinguishable from uniformly random (A, p*, c*), 

where p* n
q and c* 1n

q
 . First, we show it is computationally indistinguishable between (A, p) and (A, p*). Since 

p = e1 - A  s′, where s′ is chosen uniformly from {0,1}n and e1 is drawn from a Gaussian distribution nχ , (A, p) is 

computationally indistinguishable from uniformly random (A, p*) under the assumption (i) in the lemma statement. 

We say the adversary’s view (A, p, c) is computationally indistinguishable from uniformly random (A, p*, c). Since 

c is computationally indistinguishable from c′, where c′←E.Enc(A, p*, m), we can replace c with c′ in the triples 

(A, p*, c). We have (A, p, c) is computationally indistinguishable from (A, p*, c′). Second, we show it is 

computationally indistinguishable between (A, p*, c′) and uniformly random (A, p*, c*). Let A′ = (A, p*). Since c′ 

= ((A′)t e2 + 3

4e

 
 
 

e
) + 

0

/ 2q m

 
    

, where A′ is uniform and e2, e3, e4 are drawn from a Gaussian distribution, we 

have (A, p*, c′) is computationally indistinguishable from (A, p*, c*) under assumption (ii) in the lemma statement. 

Therefore, it is computationally indistinguishable between the adversary’s view (A, p, c) and uniformly random (A, 

p*, c*). 

IV. HOMOMORPHIC OPERATION 

Suppose c1 and c2 under the secret key s encrypt m1 and m2 in that < ci , s > =
2

q 
  

mi + ei（mod q）=
2

q 
  

mi + ei + 

kiq for small ei. If the ciphertext c resulted from addition or multiplication of two ciphertext c1 and c2 can hold < c, 

s > = 
2

q 
  

(m1+ m2 )+ e（mod q）or < c, s > = 
2

q 
  

(m1 m2 )+ e（mod q）for small e, we say that addition or 



multiplicative homomorphism could be achieved. So this structure like 
2

q 
  

mi + ei is most important in 

homomorphic operation, we call 
2

q 
  

mi + ei as invariant structure. For the basic encryption scheme described 

above, homomorphic addition can be achieved directly, but homomorphic multiplication cannot be achieved 

directly. We need to construct the ciphertext of homomorphic multiplication to satisfy invariant structure.   

4.1 Homomorphic Addition 

By definition 

< c1+c2 , s > = < c1 , s > +< c2 , s >=
2

q 
  

•(m1+ m2 )+ e1+e2 (mod q). 

The noise magnitude e1+e2 increase a little as previous fully homomorphic encryption scheme. If the noise 

magnitude is small, namely, | e1+e2 |< / 2
2

q 
  

, the ciphertext c1+c2 can be decrypted correctly. It means the sum of 

ciphertext encrypts the sum of the message. 

4.2 Homomorphic Multiplication 

Since the basic encryption scheme itself does not has the property of homomorphic multiplication, we require to 

define the representation of the ciphertext resulted from homomorphic multiplication so as to achieve he property 

of homomorphic multiplication. We define the ciphertext for multiplication as 1 2

2

q
    c c  like definition in 

paper [5], which can be decrypted using a tensored secret key s s. The reasons of this definition are as follows. 

Let an error r = 1 2

2

q
    c c – 2

q
•(c1  c2). By definition  

< 1 2

2

q
    c c , s s > =  < 2

q
•(c1 c2)，s s > + < r , s s > 

 = 
2

q 
  

•m1m2 + m1e2 + m2 e1+ 2(e1k2+ k1e2) + q•(m1k2 + k1m2 +2k1k2) –[q]2•(m1k2 + k1m2) +
 2
q

q
•(m1e2–m2 

e1– 
2

q 
  

•(m1m2)) +
2

q
•e1e2 + < r , s s >                                  (1) 

= 
2

q 
  

•m1m2 + 1
multe + 2

multe , 



where 1
multe  = m1e2 + m2 e1+ 2(e1k2+ k1e2) + q•(m1k2 + k1m2 +2k1k2) –[q]2•(m1k2 + k1m2) + 

 2
q

q
•(m1e2–m2 e1– 

2

q 
  

•(m1m2)) +
2

q
•e1e2 and 2

multe  =|< r , s s >|. 

 

The invariant structure appears in the above equation (1). If | 1
multe + 2

multe |< / 2
2

q 
  

, the tensored ciphertext for 

multiplication 2

q
•(c1  c2) can be decrypted correctly. It means multiplicative homomorphism is achieved by the 

above definition for multiplication. 

4.3 Key Switching 

Even though the tensored ciphertext for multiplication enable us to achieve the property of homomorphic 

multiplication, there is a problem that the dimension of the ciphertext increases from n+1 to (n+1)2 after a 

homomorphic multiplication. We use the key switching technique to solve this problem. Key switching consists of 

two procedures, namely SwitchKeyGen (s1, s2 ,n1 , n2 , q) and SwitchKey( τ , c1, n1 , n2 , q). The goal of Key 

switching is to transform a ciphertext c1 under a secret key s1 to a new ciphertext c2 under a secret key s2, in which c1 

and c2 encrypt the same message. If the dimension of c2 and s2 is lower than the dimension of c1 and s1, the 

dimension of the key and ciphertext vectors is reduced by key switching. 

SwitchKeyGen(s1
1 n

q ，s2
2 n

q )： 

（1） Run A←E.PublicKeygen(s2) for N = n1• log q  ，namely A=[b|-A′]. 

（2） Set B← [( Powerof2(s1) + b) |-A′]，which means to add the Powerof2(s1) N
q   to -A′ ’s first column 

and add b to -A′ ’s second column. Output 
1 2s sτ =B. 

SwitchKey(
1 2s sτ , c1 )：Output  c2 = BitDecomp(c1)

T•B 2n
q . 

Key switching is essentially the product of a high dimension vector and a high dimension matrix. Next, we 

describe the correctness of key switching, namely the decryption of the new ciphertext can preserve correctness. 

The proof is based on the definition (see [4]). 

Lemma 4.1 Let s1, s2 , q，A，B =
1 2s sτ  be parameters as described in SwitchKeyGen, and have A•s2 = e2

N
q  . 

Let c1
N
q  and c2 ← SwitchKey(

1 2s sτ , c1) .    Then, < c2, s2> = < BitDecomp(c1) , e2> + < c1 , s1> (mod q). 



V. A HOMOMORPHIC ENCYPTION SCHEME. 

5.1 A Leveled Homomorphic Encryption Scheme 

We construct a leveled homomorphic encryption scheme based on the basic encryption scheme described in 

section 3 and homomorphic property described in section 4. For a leveled homomorphic encryption scheme, 

different level has different secret key in circuit. Homomorphic operations are just to be performed from level L to 

1. The first level is level L, and the last level is level 0. The level 0 is only used to switch key. After each 

homomorphic operation, we need to transform the result to enter the next level of circuit. Before each 

homomorphic operation, it requires that the two ciphertext have the same secret key (namely, the same level). 

Otherwise, we need transform the higher level ciphertext between the two ciphertext to the same level with 

another lower level ciphertext. The function of FHE.RefreshNextLevel is to do it.  We note the operation of key 

switching is just used for tensored ciphertext. Thus the ciphertext of normal dimension need to tensor with a trivial 

ciphertext (1,0,…,0) before using key switching.   

FHE.Setup( λ , L ): Input the security parameter λ  and the circuit level L, output the noise distribution χ , and 

the dimension n. Note that χ and n are as same as in the above basic encryption scheme. If there is a trusted source 

in the system, all parties in the system would the trusted source to generate a uniformly random public matrix 

A n n
q
 . If not, A may be generated in the step of key generation and as part of public key.  

FHE.KeyGen(n, L )：For i =L down to 0, do the following:： 

(1)  Run si←E.SecretKeygen(1n) . Let sk={si}. 

(2) When i =L do this step. Run pL←E.PublicKeygen(A, sL). Let pk1={ pL }. 

(3) Set si′← si si
2( 1)(0,1) n .（Omit this step when i=0.） 

(4) Run ,
1ii s s

τ ← SwitchKeyGen(si′,si-1).（Omit this step when i=0.）Let pk2={ ,
1ii s s

τ } . 

Then output sk={si} and pk=（pk1，pk2）. 

FHE.Enc(pk1, m)：Take a message m∈{0,1}. Run E.Enc(pL, m). 

FHE.Dec(sk, ci)：Assume that ci is a ciphertext under the secret key si. Run E.Dec(sk, ci). 

FHE.Add(pk2, c1, c2)：Do the following steps. 

(1) If ciphertexts c1, c2 has the same secret key si, first compute c3←c1+c2. In order to provide an output that 



corresponds to the next level key si-1 and not si, we call FHE.RefreshNextLevel to do it. Output cadd←

FHE.RefreshNextLevel(i, c3, ,
1ii s s

τ ) 1n
q
 . 

(2) If ciphertexts c1, c2 has the different secret key, we input the higher level ciphertext between c1 and c2 to 

FHE.RefreshNextLevel. We can repeat to call FHE.RefreshNextLevel till the output from 

FHE.RefreshNextLevel has the same secret key with the lower level ciphertext between c1 and c2 . Then go to 

step (1). 

FHE.Mult(pk2, c1, c2)：Do the following steps. 

(1) If ciphertexts c1, c2 has the same secret key si, first compute c3← 1 2

2
( )

q
   c c that corresponds to si′. Then 

output cmult← SwitchKey( ,
1ii s s

τ , c3).  

(2) If ciphertexts c1, c2 has the different secret key, what we do as same as the step (2) in FHE.Add(pk2, c1, c2). 

FHE.RefreshNextLevel(i, c, ,
1ii s s

τ ): First compute c′= c (1,0,…,0), then output SwitchKey( ,
1ii s s

τ ,c′). 

VI. NOISE ANALYSIS 

Suppose ciphertext ci under the secret key s is a fresh ciphertext, namely, ci←E.Enc(A, pk, mi). By lemma 3.1, we 

have  < ci, s > = 
2

q 
  

mi + ei（mod q）, where | ei |≤ E = nB2+ nB + B. Next we analyze the noise magnitude in 

ciphertext after one addition or one multiplication.  

6.1 Analysis for Addition 

By definition 

< c1 + c2, s > = < c1, s > + < c2, s >  (mod q) 

 = 
2

q 
  

[m1 + m2]2 + 2 
2

q 
  

 1 2( ) / 2m m   + e1 + e2（mod q）. 

Then we get |eadd | = | 2 
2

q 
  

 1 2( ) / 2m m    + e1 + e2 | ≤ 2nB2+ 2nB + 2B +1. 

6.2 Analysis for Multiplication 

Let cmult be the output of FHE.Mult(pk2, c1, c2) under the secret key s′. According to the result in section 4.2 and 

Lema 4.1, we have 



< cmult , s′ > = < 1 2

2

q
    c c , s s > + < BitDecomp( 1 2

2

q
    c c ) , e> 

  =
2

q 
  

m1m2 + 1
multe  + 2

multe  + 3e （mod q）, 

where 1
multe = m1e2 + m2e1+ 2(e1k2+ k1e2) – [q]2•(m1k2 + k1m2) +

 2
q

q
•(m1e2 – m2 e1 –

2

q 
  

  (m1m2)) +
2

q
e1e2 , 2

multe  

=|< r , s s >| and 3e < BitDecomp( 1 2

2

q
    c c ) , e >. 

We first analyze the bound of 1
multe . The magnitude of 1

multe  mainly depends on the term 2(e1k2+ k1e2), so we 

check the bound of the absolute value of k1 (the same bound also holds for k2): 

| k1|=|< c1, s >–
2

q 
  

m1–e1| / q ≤ |< c1, s > | / q +1≤( 1 
c /q) 

1
s +1≤n+1. 

We have | 1
multe |≤2E(n+3)+2. Furthermore, we have | 2

multe | = |<r , s s > | ≤ 


r  | s s |≤(1/2)   (n+1)2 and 

2
3  ( 1) loge n q B     . 

Putting these together, we get the bound of noise magnitude after one multiplication for fresh ciphertext such as   

| 1
multe  + 2

multe + 3e | ≤ 2E  (n+3) + 2 1
( 1) ( log  )

2
n q B      . 

After we evaluate a circuit of depth L, the upper bound on the noise magnitude in resulting ciphertext is 

1
1 1 2
L Lc E L c c    , where c1=2(n+3), c2= 2 1

( 1) ( log  )
2

n q B      . As long as the parameters of this scheme 

satisfy 1
1 1 2 / 4L Lc E L c c q        , we can evaluate homomorphic operation with L multiplication. For security, the 

best known algorithm for LWE runs in time approximately 2n/log(q/B). Therefore we choose B to be polynomial in n 

= λ and q = 2
εn for every ε <1, we can get L≈ log q ≈ εn . It means we could evaluate a circuit of polynomial depth. 

In short, we would have a leveled fully homomorphic encryption scheme. Thus we can obtain the following 

theorem. 

Theorem 6.1. For every L > 0, there exists ε < 1 and a L-leveled fully homomorphic encryption scheme under 

LWE assumption, where q/B ≤ 2
εn . 

VII. PARAMETERS SEETING 

In this section, we estimate the concert parameters for our scheme. These parameters include circuit depth L, 



dimension n, modulus q and Gaussian parameter r. From these parameters, we can obtain public key size, 

ciphertext size, the size of tensored ciphertext for multiplication and the size of key switching matrix. Since Bra12 

scheme is also a leveled fully homomorphic encryption scheme without modulus switching and homomorphic 

property of Bra12 scheme is similar with our scheme, we compare these parameters between our scheme and 

Bra12 scheme.  

7.1 Parameters Property 

We first list some properties of our scheme and Bra12 scheme in table 1. All sizes are in bits. We note the number 

of LWE sample in Bra12 scheme we take N=2nlogq. The key switching matrix is a kind of public key, which is 

actually evaluation key for homomorphic operation. There are L key switching matrixes in L-leveled fully 

homomorphic encryption scheme, which need a lot of space to store.   

 

 

Table 1. Some properties of our scheme and Bra12 scheme 

 

 

 

 

 

 

 

From above the table 1, the advantage in our scheme is obvious for the parameters size beyond ciphertext. 

Specially, the public key size (include key switching matrix) improve a factor log3q at most. 

7.2 Concert parameters 

In this section, we consider the concert value of parameters. We first choose circuit depth L and dimension n. For 

leveled homomorphic encryption scheme, it has to decide the circuit depth L before performance computation. 

The dimension n is security parameter. We can choose n according to the requirement of security. Then we choose 

modulus q and Gaussian parameter r. Last, we can estimate the values such as public key, private key, ciphertext, 

tensored ciphertext and key switching matrix. 

 Public key

p

Public key 

p & A

Private key 

Our scheme nlogq (n+1)2logq n+1 

Bra12 scheme 2nlog2q 2n(n+1)log3q (n+1)logq 

 Ciphertext Tensored ciphertext Key switching 

matrix
Our 

scheme 
(n+1)logq (n+1)2logq (n+1)3 

Bra12 

scheme 
(n+1)logq ((n+1)  log q )2logq (n+1)3  log q 2logq



As an example parameters, we consider the case that n=128 and L=0,1,5. For a security level λ  bits, we need 

log( / ) ( 110) / 7.2n q r λ   following the analysis in paper [14], which make us obtain  the function about security 

level and dimension. Next we state how to choose modulus q and Gaussian parameter r. Recall that the message 

decrypts correctly in the basic encryption scheme in section 3 if |<el ,er >|< 
4

q 
  

, where 
2

3

4

l

e

 
   
  

e

e e  and 
1

'

1
r

 
   
  

e

e s . 

Each entries of el and er are independent and have distribution
,r

D
. By lemma 2.2, we 

have 2

,
Pr  , 2exp( )nl lr

D T r π T        e e


. Let lT r e =
4

q 
  

, then we get / 4 / ( )lT q r    e . By lemma 2.1, 

there is a c ≥1 such that 1
2

2
l c r n

π
  e . We thus have 2 2 / 4 / ( 2 )r π q c T n     . We denote δ  as the 

decryption error probability per bit in the basic encryption. We typically use δ =0.01, namely, keeping the error 

probability below 1%. By lemma 2.2, we have δ =2exp( 2π T  ), then ln(2 / ) /T δ π . Therefore, we obtain  

     2 2 / 4 / ( 2 ln(2 / ))r π q c n δ      .       (2) 

From inequation (2), we can choose the concert values for modulus q and Gaussian parameter r if we know c. 

The parameter c in inequation (2) can be determined as following step. By lemma 2.1, let Pr[ 1
2

2
l c r n

π
  e ]≤

Cn = 2-40, namely, the probability of choosing a unexpected vector el is at most 2-40. Since C = c exp(
21

2

c ), we 

can solve c from (c exp(
21

2

c ))n = 2-40. From inequation (2), we should choose the modulus q to be just large 

enough so that Gaussian parameter r ≥ 6, which result in that the discrete Gaussian 
,n r

D


 approximates the 

continuous Gaussian rD .  

In addition, circuit depth also affects the value of modulus q. Recall the noise analysis in section 6.2. In order to 

decrypt correctly, for a circuit depth L, modulus q needs to satisfy  

       1
1 1 2 / 4L Lc E L c c q        .             (3) 

From the inequation (2) and (3), we choose the maximum value as the value of modulus q. In table 2, we 

provide the sizes of modulus q for dimensions n=1024, 2048, 4096 and levels L= 0, 1, 5 in our scheme and Bra12 

scheme.   

 



Table 2. the sizes of modulus q in our scheme and Bra12 scheme. 

(a) Bra12 scheme 

  

 

 

                              (b) Our scheme 

 

 

 

VIII. CONCLUSION 

The goal of this paper is to construct a FHE scheme with better key size. The smaller key come from the different 

style of the basic encryption scheme and we choose secret key from binary set. We analyze the correctness and give 

the proof of the security of our scheme. At last, We estimate the concert parameters for our scheme. We compare 

these parameters between our scheme and Bra12 scheme. Our scheme have public key and private key that smaller 

by a factor of about log q than in Bra12 scheme. Tensored ciphertext in our scheme is smaller by a factor of about 

log2q than in Bra12 scheme. Key switching matrix in our scheme is smaller by a factor of about log3q than in Bra12 

scheme. It is most important that our FHE scheme is more space efficient than the FHE schemes based on LWE 

commonly known in the literature. 
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