
1

HIMMO Security
Oscar Garcı́a-Morchón, Ronald Rietman, Ludo Tolhuizen, Philips

Group Innovation, Research, Eindhoven, The Netherlands;
oscar.garcia,ronald.rietman,ludo.tolhuizen@philips.com

Domingo Gómez-Pérez and Jaime Gutiérrez, University of Cantabria,
Santander, Spain; domingo.gomez,jaime.gutierrez@unican.es

F

1 INTRODUCTION

This paper describes HIMMO, an identity-based pairwise symmetric key
establishment method. The acronym ”HIMMO” is derived from two inter-
polation problems that are essential for the security of the scheme: the HI
problem [6], which is related to the well-known noisy interpolation problem,
and the apparently novel MMO problem [5].

HIMMO is non-interactive: nodes in a network can directly generate a
common key without exchanging messages, saving valuable round-trip time.
Each node in the network has an identifier, and a trusted third pay (TTP)
provides it with secret keying material—linked to the node identifier—in a
secure way. A node that wishes to communicate with another node uses its
own secret keying material and the identity of the other node to generate
a common pairwise key. HIMMO allows for efficient operation with respect
to both the amount of stored keying material and the key computation time,
which is especially relevant for resource-constrained devices. It has similar
operational characteristics as previous ID-based symmetric key establish-
ment methods, but has superior resistance against attacks in which multiple
colluding or compromised nodes co-operate to obtain information on keys
between other non-colluding or non-compromised nodes.

The paper is organized as follows. In Section 2, we describe an ID-based
pairwise symmetric key establishment method in full generality, give a known
example, and define the types of attack against an ID-based symmetric key
establishment scheme that we will consider in this paper. Next, in Section 3,
we present the HI problem and the MMO problem. Then, in Section 4
we present the HIMMO scheme for pairwise symmetric key establishment.
In Section 5, we validate the HIMMO scheme in that we show that the
generated keys indeed are pairwise the same. In Section 6, we investigate
the role of the HI and MMO problems in attacks on HIMMO. In Section 7, we
describe the experimental results of an implementation of one such attack.
On the one hand, the number of colluding nodes must be sufficiently large
to allow to construct keys between a pair of non-colluding nodes. On the

2

other hand, the accuracy of the approximation algorithm we use in this
implementation is diminishing in the number of colluding nodes. If the
number of colluding nodes required for key construction is so large that the
accuracy of the approximation algorithm is too small, then this attack cannot
be successful. We give a recommendation for parameter choices in HIMMO
that make at least this attack infeasible. In Section 8, we draw conclusions
and indicate directions for further research.

2 DEFINITIONS

In this section, we describe an ID-based pairwise symmetric key establish-
ment scheme, provide a well-known example, and discuss the types of attack
against such a scheme considered in this paper.

An Identity-based symmetric key establishment scheme E is specified by
three algorithms: Setup, Keying Material Extraction, and Key Generation.
• Setup: takes a security parameter k and returns public system parame-

ters and secret root keying only known to the Trusted Third Party (TTP)
of the system.

• Keying Material Extraction: executed by the TTP, this algorithm takes
as input the system parameters, root-keying material, and an arbitrary
identifier η in the identifier spaceM and returns a secret keying material
share linked to η.

• Key Generation: Key generation executed by node ξ with node η takes
ξ’s secret keying material and public identifier η as input to Key Gen-
eration algorithm to obtain Kξ,η in a key space K.

The scheme must be such that for all ξ, η ∈ M, Kη,ξ and Kξ,η are exactly
or approximately equal.

A straightforward ID-based scheme has been described by Blundo et al. [3].
The secret root keying material R(x, y) is a symmetric polynomial of degree
α with coefficients from Zp, say R(x, y) =

∑α
i=0

∑α
j=0Rj,kx

jyk with Rj,k =
Rk,j . The Keying Material Extraction algorithm takes as input R(x, y) and
an identifier ξ ∈ Zp, and generates, for 0 ≤ k ≤ α,

Gξ,k = 〈
α∑
j=0

Rj,kξ
j〉p,

where 〈x〉p denotes the integer in {0, . . . , p− 1} such that x ≡ 〈x〉p mod p.
The coefficients Gξ,0, . . . , Gξ,α constitute the secret keying material of node
ξ. In the key generation phase, node ξ computes its key Kξ,η with η as

Kξ,η = 〈
α∑
k=0

Gξ(η)〉p.

As Kξ,η = 〈G(ξ, η)〉p, and G is symmetric, it follows that Kξ,η = Kη,ξ for all
identifiers ξ and η.

3

Blundo’s scheme is fast and requires little storage. Unfortunately, the en-
tire network can be compromised by simple interpolation using the keying
material of any α + 1 colluding nodes [3]. Also, the keying material of a
singe node ξ can be obtained by simple interpolation of the keys of any
α+1 colluding nodes with ξ. HIMMO aims to keep the favorable operational
characteristics of Blundo’s scheme while improving collusion resistance by
making interpolation or other standard algebraic techniques infeasible.

In the security analysis of this paper, we will consider the situation that an
adversary has obtained the secret keying material shares linked to c distinct
nodes η1, . . . , ηc. The adversary aims to find the key Kξ,η between two nodes
ξ and η, neither of which is in the set {η1, . . . , ηc}. The adversary has two
options for doing so.

1) The adversary finds a root keying material that is consistent with the
keying materials of nodes η1, . . . , ηc. From this root keying material, he
calculates the keying material of node ξ, and from that he calculates
Kξ,η.
Note that the adversary does not need to recover the actual root keying
material, but just some information that is consistent with, the operation
of the actual root keying material.

2) The adversary finds a keying material for node ξ that is consistent with
the keys Kηi,ξ that he can calculate from the keying materials of nodes
η1, . . . , ηc. From the keying material for node ξ he calculates Kξ,η.

The adversary hopes that the consistency requirements in either of these
scenarios limit the possible outcomes of his guess for Kξ,η, as this increases
his odds for finding the correct key. On the other hand, the designer wants
to create a system with the property that for each set {η1, . . . , ηc}, it is
computationally infeasible for an adversary to guess Kξ,η with significantly
better odds than a random guess. As stated before, with the Blundo scheme,
both attacks work if c ≥ α+ 1, where α is the x- degree of R(x, y).

3 HI AND MMO PROBLEMS

In this section, we formally describe two mathematical problems that are
relevant in attacks on HIMMO, namely the Hiding Information (HI) problem
and the Mixing Modular Operations (MMO) problem.

Hiding Information Problem Let N, s and α be positive integers, let I be a
sub-interval of {0, 1, . . . , N − 1}. The HI problem in (N, s, α, I) is as follows:

Problem 1. Given x ∈ I and the set J =
{(
xi,
〈
〈f(xi)〉N

〉
s

) ∣∣ 1 ≤ i ≤ c
}

, where
{x1, . . . , xc} ⊂ I , and f ∈ ZN [y] has degree at most α, compute

〈
〈f(x)〉N

〉
s
.

Note that Problem 1 does not require reconstruction of the coefficients of
f , but for a given x, reconstruction of

〈
〈f(x)〉N

〉
s
.

As shown in [6], the HI problem is equivalent to a noisy polynomial in-
terpolation problem on the interval I. Contrary to the conventional settings

4

of the noisy polynomial interpolation problem, in our case, the interval I
over which we interpolate can be a (small) subset of {0, 1, . . . , N − 1}. In [6],
this problem was studied and shown to be equivalent to an approximation
problem in a certain lattice.

Mixing Modular Operations problem One of the new components of HIMMO
is mixing modular operations (MMO). We present the corresponding prob-
lem using the same notation as in the HI problem, i. e. N,m and α are posi-
tive integers and I is a sub-interval of {0, 1, . . . , N−1}. Also, let q1 < . . . < qm
be distinct positive integers. The MMO problem in (N,m, q1, . . . , qm, α, I) is
as follows:

Problem 2. Given x ∈ I and the set

J =
{

(x1, h(x1)), . . . , (xc, h(xc))
}

where {x1, . . . , xc} ⊂ I , and for all y,

h(y) =

m∑
i=1

〈
g(i)(y)

〉
qi

for some unknown polynomials g(1), . . . , g(m) ∈ Z[X] of degree at most α, compute
h(x).

Additionally, we define the MMO problem with unknown moduli as the
same interpolation problem, with the difference that the values of the moduli
qi are not given.

The MMO problem has been introduced in [5]. There it was shown that
the MMO problem with known moduli is equivalent to a lattice problem
of the same type as for the HI problem, whereas no solution is known for
MMO with unknown moduli.

4 DESCRIPTION OF THE HIMMO SYSTEM

In this section, we describe the HIMMO system. We use the following nota-
tion: for each integer x and positive integer M we define 〈x〉M as follows:

〈x〉M is the integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y mod M. (1)

As any ID-based symmetric key establishment scheme, HIMMO system
requires a trusted third party (TTP) and has three phases.

In the set-up phase, the TTP obtains from a system designer positive
integers B, b,m and α, where m ≥ 2. The number B is the bit length of
the identifiers that will be used in the system, while b denotes the bit length
of the keys that will be generated. The TTP randomly generates the pub-
lic modulus N , an odd number of length exactly (α + 1)B + b bits (so
2(α+1)B+b−1 < N < 2(α+1)B+b). It also randomly generates m distinct secret
integers β1, . . . , βm with 0 ≤ βi < 2B and at least one odd βi. For 1 ≤ i ≤ m,
the secret modulus qi is defined as qi = N − 2bβi. Finally, the TTP generates

5

Table 1
Notation Berry suggested to remove it, because it is repeated in the text

〈x〉M (x ∈ Z, M ∈ N>0) the integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y (mod M)
ID size in bits B
key size in bits b
polynomial degree in all variables α
public modulus odd number N of exactly (α+ 1)B + b bits
number of secret moduli m

secret moduli q1, . . . , qm, where qi = N − 2bβi and 0 ≤ βi < 2B

secret root keying material coefficients of m symmetric polynomials R(i)(x, y)

R(i)(x, y) =
∑α
j=0

∑α
k=0R

(i)
j,kx

jyk =
∑α
k=0R

(i)
k (x)yk ,

with 0 ≤ R(i)
j,k = R

(i)
k,j ≤ qi − 1

identifiers ξ, η

keying material of node ξ coefficients of polynomial Gξ(y) =
∑α
k=0Gξ,ky

k,
where Gξ,k =

〈∑m
i=1

〈
R

(i)
k (ξ)

〉
qi

〉
N

key generated by ξ for link with η Kξ,η =
〈〈
Gξ(η)

〉
N

〉
2b

the secret root keying material, that consists of the coefficients of m bi-variate
symmetric polynomials of degree at most α in each variable. For 1 ≤ i ≤ m,
the i-th root keying polynomial R(i)(x, y) is written as

R(i)(x, y) =

α∑
j=0

α∑
k=0

R
(i)
j,kx

jyk with 0 ≤ R(i)
j,k = R

(i)
k,j ≤ qi − 1.

In the keying material extraction phase, the TTP provides to each node
ξ in the system, with 0 ≤ ξ < 2B , the coefficients of the key generating
polynomial Gξ:

Gξ(y) =

α∑
k=0

Gξ,ky
k where Gξ,k =

〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j〉qi
〉
N
. (2)

In the key generation phase, a node ξ wishing to communicate with node
η with 0 ≤ η < 2B , computes

Kξ,η =
〈
〈Gξ(η)〉N

〉
2b .

With examples, it can be shown that Kξ,η and Kη,ξ are not always equal.
However, as will be shown in Section 5, for all identifiers ξ and η with
0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤| j |≤ ∆} with ∆ = 2m.

In order to perform key reconciliation , i.e. to make sure that ξ and η use
the same key to protect their future communications, the initiator of the
key generation (say node ξ) sends to the other node, simultaneously with
an encrypted message, information on Kξ,η that enables node η to select
Kξ,η from the candidate set C = {〈Kη,ξ + jN〉2b | 0 ≤ |j| ≤ ∆}. No extra

6

communication thus is required for key reconciliation. The key Kξ,η will be
used for securing future communication between ξ and η.
As an example of information used for key reconciliation, node ξ sends a
hash-value H of Kξ,η. Node η computes the hash value for all candidates
in C and selects as common key the element of C with hash value H . This
method incurs additional delay as node η needs to compute hashes for all
candidates, and compare them with H . Of course, b should be so large that
brute-force attacks on the has function are infeasible.
Alternatively, node ξ sends to node η the number r = 〈Kξ,η〉2s , where s =
dlog2(2∆ + 1)e. Node η can efficiently obtain the integer j such that |j| ≤ ∆
and Kξ,η ≡ Kη,ξ+jN mod 2b by using that jN ≡ Kξ,η−Kη,ξ ≡ r−Kη,ξ mod 2s.
As r reveals the s least significant bits of Kξ,η, only the b−s most significant
bits Kξ,η should be employed as the key, that is, the number b2−sKξ,ηc.

5 VALIDATION OF HIMMO
As stated before, Kξ,η and Kη,ξ need not be equal. In this section, we will
describe a set of candidates values for Kη,ξ given Kξ,η. In this way, we show
that with HIMMO, as described in Section 4, any pair of nodes ξ and η arrive
at a common key.

Lemma 1. For all integers ξ and η we have that〈
Gξ(η)

〉
N

=

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+ λξ(η)N − µξ(η)2b, with

λξ(η) =

m∑
i=1

⌊Ai(ξ, η)

qi

⌋
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋

and µξ(η) =

m∑
i=1

βi

⌊Ai(ξ, η)

qi

⌋
, where

Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk and R(i)

k (ξ) =

α∑
j=0

R
(i)
j,kξ

j .

Proof We clearly have that〈
Gξ(η)

〉
N

=
〈
Hξ(η)

〉
N

where Hξ(η) =

α∑
k=0

m∑
i=1

〈
R

(i)
k (ξ)

〉
qi
ηk.

As a consequence,

Hξ(η) =

m∑
i=1

(〈 α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk
〉
qi

+ qi

⌊ 1

qi

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk
⌋)

.

Using the definition of Ai(ξ, η), we find that

Hξ(η) =

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+N

m∑
i=1

⌊Ai(ξ, η)

qi

⌋
−

m∑
i=1

(N − qi)
⌊Ai(ξ, η)

qi

⌋
.

7

As
〈
Hξ(η)

〉
N

= Hξ(η) − N
⌊
Hξ(η)/N

⌋
, and Hξ(η) =

∑m
i=1Ai(ξ, η), we infer

that

〈
Hξ(η)

〉
N

=

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+N

(
m∑
i=1

⌊Ai(ξ, η)

qi

⌋
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋)
−

m∑
i=1

(N − qi)
⌊Ai(ξ, η)

qi

⌋
. �

Theorem 1. Let 0 ≤ ξ, η ≤ 2B − 1. We have that

Kη,ξ ∈
{〈
Kξ,η + jN

〉
2b

∣∣∣ j ∈ Z, |j| ≤ 2m}.

Proof Using the notation from Lemma 1, we have

Kξ,η =
〈〈
Gξ(η)

〉
N

〉
2b

=
〈 m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+Nλξ(η)
〉
2b
, and

Kη,ξ =
〈 m∑
i=1

〈
R(i)(η, ξ)

〉
qi

+Nλη(ξ)
〉
2b
.

As each root keying polynomial R(i) is symmetric,

Kξ,η =
〈
Kη,ξ +N(λξ(η)− λη(ξ))

〉
2b .

We now give an upper bound to the absolute value of λξ(η)− λη(ξ).
By definition, 〈Ai(ξ, η)〉qi = Ai(ξ, η)− qi

⌊
Ai(ξ, η)/qi

⌋
for each i, whence

λξ(η) =

m∑
i=1

Ai(ξ, η)

qi
−

m∑
i=1

〈Ai(ξ, η)〉qi
qi

−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋

= λ̃ξ(η)−
m∑
i=1

〈
R(i)(ξ, η)

〉
qi

qi
, where λ̃ξ(η) =

m∑
i=1

Ai(ξ, η)

qi
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋
.

The symmetry of the root keying polynomials implies that

λξ(η)− λη(ξ) = λ̃ξ(η)− λ̃η(ξ). (3)

We continue with providing upper and lower bounds on λ̃ξ(η).
As bxc ≤ x for all x, and for all i, Ai(ξ, η) ≥ 0 and qi ≤ N , it follows that
λ̃ξ(η) ≥ 0.
We clearly have that

λ̃ξ(η) ≤
m∑
i=1

Ai(ξ, η)

qi
+
(

1− 1

N

m∑
i=1

Ai(ξ, η)
)

= 1 +

m∑
i=1

N − qi
Nqi

Ai(ξ, η).

8

Moreover, for each i we have that

Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk ≤

α∑
k=0

(qi − 1)ηk ≤ (qi − 1)

α∑
k=0

(2B − 1)k

< qi

α∑
k=0

(
α

k

)
(2B − 1)k = qi2

αB.

We conclude that 0 ≤ λ′ξ(η) < 1 +
∑m

i=1(N − qi)2αB/N . As 0 ≤ N − qi =

βi2
b ≤ 2B+b, and N > 2(α+1)B+b−1, we have that

0 ≤ λ′ξ(η) < 1 + 2m.

Of course, the same bounds are valid for λ̃ξ(η). Combining these bounds with
(3), and the fact λξ(η)− λη(ξ) is an integer number, the theorem follows. �

Corollary 1. The key generation phase in HIMMO system works. In other words,
any two nodes η, ξ following the HIMMO protocol generate the same key.

Proof This is a direct consequence of Theorem 1 and the discussion on the
sending of additional information at the end of Section 4. �

In the following example, we show that under reasonable conditions, the
bound from Theorem 1 cannot be significantly improved.

Example For 1 ≤ i ≤ m, we choose R(i)(x, y) = (qi − 1)xαyα. We assume
that 2αB < qi. Under this assumption, for each ξ with 0 ≤ ξ ≤ 2B − 1, we
have that ξα < qi, and so

Gξ(y) =
〈 m∑
i=1

〈
(qi − 1)ξα

〉
qi

〉
N
yα =

〈 m∑
i=1

(qi − ξα)
〉
N
yα =

〈 m∑
i=1

(qi −N − ξα)
〉
N
yα

=
[
ρ(ξ)N −

m∑
i=1

βi2
b −mξα

]
yα, where ρ(ξ) =

⌈(m∑
i=1

βi2
b +mξα

)
/N
⌉
.

In particular,

〈Gξ(1)〉N = ρ(ξ)N −
m∑
i=1

βi2
b −mξα.

Moreover, we have that

〈G1(ξ)〉N = σ(ξ)N − (m+

m∑
i=1

βi2
b)ξα, where σ(ξ) =

⌈(
m+

m∑
i=1

βi2
b
)
ξα/N

⌉
.

We thus have
〈
G1(ξ)

〉
N
−
〈
Gξ(1)

〉
N
≡ (σ(ξ)− ρ(ξ))N (mod 2b), and so

K1,ξ ≡ Kξ,1 + [σ(ξ)− ρ(ξ)]N.

It is clear that

σ(ξ)− ρ(ξ) ≈ 1

N
(ξα − 1)

m∑
i=1

βi2
b.

9

So if ξ = 2B − 1, each βi is approximately 2B , and N ≈ 2(α+1)B+b−1, then we
have near equality in the upper bound from Theorem 1.

6 SECURITY ANALYSIS

In this section, we consider the two attacks described for general ID-based
symmetric key establishment schemes in Section 2 when applied to HIMMO.

6.1 First attack scenario: finding equivalent root keying material
The first attack scenario from Section 2 involves solving α+1 instances of an
MMO problem (viz. obtaining the coefficients of the root keying polynomials
from (2) for 0 ≤ k ≤ α), coupled by the requirement that the coefficients of
the bivariate root keying material polynomials are symmetric. In [5], we have
shown that the MMO problem with known moduli q1, . . . , qm and c colluding
nodes can be reduced to finding a vector in a lattice of dimension m(α+c+1)
which is close (in infinity norm) to a well-defined target vector. Setting up
the lattice requires knowledge of the secret moduli q1, . . . , qm. In HIMMO,
these moduli are kept secret by the TTP, and we see no way to reconstruct
them from any c observations. For this reason, we consider recovering the
root keying material infeasible. Moreover, even if the moduli were known
to the attacker, by increasing m, the lattice dimension can be made too big
(tens of thousands) to be handled with current lattice-based algorithms.

6.2 A closer look at the relation between 〈Gξ(η)〉N and 〈Gη(ξ)〉N
In the second attack scenario from Section 2, the adversary tries to emulate
the key generation process of node ξ using the keying materials from the
colluding nodes η1, . . . , ηc. From these keying materials, the adversary can
obtain

〈
Gηi(ξ)

〉
N

for 1 ≤ i ≤ c and, by entering the the key generation
process with node ξ, he can obtain

〈
Gξ(ηi)

〉
N

for 1 ≤ i ≤ c.
In the HI problem, we aim to emulate the key generation process of a node

ξ from its keys Kξ,ηi with colluding nodes η1, . . . , ηc. In this subsection, we
wish to argue that knowledge of all bits of

〈
Gξ(ηi)

〉
N

for 1 ≤ i ≤ c instead
of just the b least significant bits does not help much in trying to emulate
the key generating process of node ξ.

In Lemma 1, we observed that 〈Gξ(η)〉N is the sum of three terms: a term
that is symmetric in ξ and η, a small multiple of N , λξ(η)N ,and a multiple of
2b, −µξ(η)2b. We used this to show that given Kη,ξ, there are at most 4m+ 1
choices for Kξ,η, so that node ξ can ensure that node η can determine ξ, η by
sending about dlog2me+ 2 bits of additional information. We now consider
the effect of the last term in the difference between 〈Gξ(η)〉N and 〈Gη(ξ)〉N ,
i.e., (µη(ξ)− µξ(η))2b, where we recall that

µξ(η) =

m∑
i=1

βi

⌊Ai(ξ, η)

qi

⌋
, with Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk.

10

Although each R(i) is symmetric, the function Ai(ξ, η) is not, as R
(i)
k is

evaluated modulo qi, while the evaluation of Ai in η is performed over the
integers (as is the the summation and multiplication with the βi’s). If η is
large, then Ai(ξ, η) influences all bits, including the highest order bits; if the
β′is are large, µξ(η) affects all bits, including the highest order bits.
Indeed, assume that the coefficients of Ai(ξ, η), i.e., the integers

〈
R

(i)
k (ξ)

〉
qi

are
uniformly distributed in {0, 1, . . . , qi− 1} then the expected value of Ai(ξ, η)
equals 1

2qi
∑α

k=0 η
k ≈ 1

2qiη
α. We further assume that each βi is uniformly

chosen from the integers in [0, 2B). Then the expected value of µξ(η) is
m2B−2ηα. Hence, if we take

η > 2B(2/m)1/α, (4)

then we expect that 2bµξ(η) is larger than 2bm2B−2ηα > 2(α+1)B+b−1, so that
2bµξ(η) affects all bits of 〈Gξ(η)〉N . As we see no way to relate µξ(η) and
µη(ξ), we think that with identifiers η satisfying (4), no information on the
MSB of 〈Gξ(η)〉N can be obtained from 〈Gη(ξ)〉N . In other words, the (α+1)B
most significant bits of the generated keys and the coefficients of 〈Gξ(x)〉N
are affected by mixing of modular operations (the MMO problem) while the
b least significant bits show the evaluation of a polynomial.
The requirement on η expressed in (4) reduces the number of identifiers that
we can use from 2B to 2B

(
1 − (2/m)1/α

)
. In other words, the “effective bit

length” of the identifiers is reduced by
⌈
− log2

(
1− (2/m)1/α

)⌉
bits.

6.3 Second attack scenario: finding equivalent keying material
The second attack scenario from Section 2 involves finding a polynomial
Gξ ∈ ZN [x] for which〈
Gξ(ηi)

〉
N

=
〈
Kηi,ξ+λiN

〉
2b+µi2

b with |λi| ≤ ∆ and 0 ≤ µi ≤
⌊
N/2b

⌋
, 1 ≤ i ≤ c.

If λ1, . . . , λc are known, finding a Gξ and guessing the key Kξ,η as 〈Gξ(η)〉2b

amounts to solving a HI problem.
As argued in Subsection 6.2, it seems that the adversary cannot learn much
more about Gξ(ηi) from Gηi(ξ) than from 〈Gηi(ξ)〉2b because of the mixing in
the most significant bits. The analysis in [6] shows that the HI problem with
c colluding nodes can be reduced to finding a vector in a lattice of dimension
α+c+1 which is close (in infinity norm) to a well-defined target vector. Even
if the lattice vector so obtained corresponds to candidate keying material that
generates the correct keys for all colluding nodes, it may generate incorrect
keys between the node under attack and other nodes. In [6, Section 6.1] a
function is derived, depending on the system parameters α, b,B, the size |I|
of the interval and the number c of colluding nodes with identifiers randomly
distributed over I, the sign of which is an indicator of the “predictive power”
of a lattice vector matching the observed keys. Numerical experiments in [6]
confirm the validity of using this indicator.

11

When B = b and |I| = 2b, the indicator function is negative if c < (α +
1)(α + 2)/2. A simpler way to understand why this must be so it to count
the number of bits of each polynomial coefficient that can influence the last
b bits of the evaluation of the polynomial in a identifier η < 2b: only the b
least significant bits and the kb most significant bits of the coefficient of ηk

have any significant impact, the other bits of that coefficient can affect the
final result only through a carry in the addition of the polynomial terms. The
attacker must thus estimate

∑α
k=0(b+kb) = b(α+1)(α+2)/2 bits, while each

observation gives him b bits. So with fewer than (α+1)(α+2)/2 observations,
there will be many fits to the observed points and the predictive power is
negligible.

If we assume that the attacker cannot choose the identifiers η1, . . . , ηc, but
these are given to him randomly from the set of all possible identifiers, then
c must be greater than (α + 1)(α + 2)/2. The lower bound on c, and thus
the minimum lattice dimension, grows quadratically in α. For α = 26 the
attacker must solve a lattice problem in more than 405 dimensions, which is
about the upper limit for practical lattice reduction algorithms. Increasing α
makes this lattice attack even more infeasible.

When the attacker can choose the identifiers η1, . . . , ηc, he can pick them
from a smaller interval containing the identifier of the node under attack.
For α = 26, b = B = 32 and |I| = 256, the indicator function is positive for
c ≥ 73. Simulations in [6] confirm this lower bound for a successful attack.

7 EXPERIMENTAL RESULTS

Both attack scenarios from Section 6 involve solving a lattice problem. As
explained in Section 6.1, we consider retrieving the root keying material
infeasible. For the second attack scenario, finding equivalent keying mate-
rial, the adversary needs to find a vector of dimension α + c + 1 that is
close to a well-defined target vector, where c is the number of nodes for
which the adversary has the keying material. In this section, we describe the
experimental results for solving this lattice problem. We restricted ourselves
to the case that the identifies of the colluding nodes are uniformly distributed
over the complete identifier space.

7.1 Description of our experiments
We first choose a value for b, the number of key bits, B, the number of ID
bits, and α, the polynomial degree. We then choose a random odd integer
N in the interval (2(α+1)B+b−1, 2(α+1)B+b) and α+ 1 random integer polyno-
mial coefficients g0, . . . , gα from [0, N). With these coefficients we construct
a polynomial G(x) =

∑α
j=0 gjx

j .
We choose a number c and pick c different numbers η1, . . . , ηc from the
interval [0, 2b) and calculate the numbers hk = 〈〈G(ηk)〉N 〉2b , 1 ≤ k ≤ c.
The numbers α, b,B,N and the c pairs (ηk, hk) are input to the reconstruction
algorithm. This algorithm outputs a set of integer coefficients ĝ0, . . . , ĝα in

12

[0, N).
We say that the algorithm has produced a perfect fit to the observed values
if

hk = 〈〈
α∑
j=0

ĝjη
j
k〉N 〉2b for 1 ≤ k ≤ c.

For an integer η 6∈ {η1, . . . , ηc}, we say that the algorithm has produced a
correct interpolation in η if 〈〈

∑α
j=0 ĝjη

j〉N 〉2b = 〈〈G(η)〉N 〉2b .

7.2 Description of the reconstruction algorithm
The algorithm for obtaining the coefficients ĝj , 0 ≤ j ≤ α makes use of the
equivalence of this reconstriction problem to a lattice problem, as described
in [6]. The lattice is spanned by the rows of the block matrix(

NIc 0
V 2−bIα+1

)
,

where Ic and Iα+1 denote unit matrices of size c × c and (α + 1) × (α + 1)
respectively, and V denotes the (α+1)×c Vandermonde matrix with elements
Vi,j = ηij , 0 ≤ i ≤ α, 1 ≤ j ≤ c. The problem is to find a lattice vector that
lies inside a hypercube of iedge length N/2b around a target vector that is
constructed with the values hj .
This is a relaxed version of the Closest Vector Problem, and we use a standard
technique for finding a lattice vector that is expeted to be close to a target
vector. The procedure uses two steps:

1) We perform a basis reduction, in order to make the lattice basis more
orthogonal. We use LLL [7] with default parameters, as implemented
in Sage [8].

2) With the LLL-reduced basis, we use Babai’s nearest plane algorithm [2]
to find a lattice vector close to the target vector.

The coefficients ĝj are obtained from the corresponding components of the
resulting lattice vector. We refer to [6] for details.

7.3 Choosing c

In our experiments, c, the number of observations, is an important parameter.
The main reason is that c must be large enough for a fit to the observations
to also be a good interpolator for the last b bits of G.
In [6] the authors give an estimate of the length of the shortest lattice vector
that corresponds to a solution that fits the last b bits of G in the observed
values, but does not agree in other points. If the length of this vector is large
enough, all lattice vectors that are close to the target vector must correspond
to solutions that agree with the last b bits of G in most points.
Specifically, the authors consider the lattice as a direct sum of two lattices, one
of which being the lattice spanned by the short vectors that correspond to the
polynomials that evaluate, modulo N , to numbers that are zero modulo 2b in

13

the entire interval [0, 2B). The short vectors in the other lattice correspond to
polynomials that evaluate modulo N to numbers that are zero modulo 2b in
the points η1, . . . , ηc, but non-zero in other points. The expectation value of
the inverse squared volume of this lattice can be calculated explicitly, when
η1, . . . , ηc are uniformly distributed over [0, 2B), and taking this result to the
power −1/(2d), where d = c−α− 1 is the dimension of this lattice, gives an
estimate of the average length of a short vector in this lattice. They define
the function S as the logarithm of this length divided by half the length of
the diagonal of the hypercube, which gives

S(α, b,B, c) = log

(
2b+1

√
c

)
+

1

2(c− α− 1)

(α∑
i=1

(
log((α+ 1 + i)!)− log(i!)

)
− log

(
c

α+ 1

)
− α(α+ 1) log(2B)

)
,

where we correct an error in the result from [6] and adapt their notation to
the one used in this paper.
When S > 0, a good fit is thus expected to be a good interpolation, while
for S < 0 this is not guaranteed. The probability of finding a good inter-
polation in this case will depend on the number of short vectors in this
lattice and their lengths, and this cannot be accurately derived from simple
volume considerations alone. With this caveat, the volumetric estimate of
this probability is

λα+1

(√
c

2

)c−α−1
exp ((c− α− 1)S(α, b,B, c)) for some λ ∈ [1,

√
c).

As S is increasing in c, we can define cmin(α, b,B) as the smallest value of c
such that S(α, b,B, c) > 0. In Table 2 we give cmin(α, b,B) for several values
of α and b = B, and compare its value to (α+ 1)(α+ 2)/2.

We thus want to choose c ≥ cmin in order to obtain a good interpolation.
For smaller c, the probability for obtaining a good interpolation is expected
to decrease very rapidly to zero.
On the other hand, rounding algorithms do not necessarily give a perfect fit.
The quality of the fit is expected to decrease as c, and thus the lattice dimen-
sion, grows. We can only obtain a good interpolation if the lattice algorithm
still gives a good fit for c = cmin. Table 3 summarizes our results. We did
10 runs for each case, counting the number of good fits and interpolations.
So, for example, for B = b = 16 and α = 8, and c = 39, the notation 10,0
means that we obtained a good fit 10 times, and a good interpolation 0 times.
Perfect fits and interpolations turned out to be very rare, which is why we
relax the definition a bit: we call a fit good, if for all k, 1 ≤ k ≤ c it holds
that 〈〈 α∑

j=0

ĝjη
j
k

〉
N

〉
2b

=
〈
hk + λkN

〉
2b with λk ∈ {−1, 0, 1},

14

Table 2
The value cmin for B = b as a function of α and b and compared with

f(α) := (α+ 1)(α+ 2)/2.

b
α f(α) 8 16 32 64 128
4 15 14 15 15 15 15
8 45 39 43 44 45 45

12 91 75 85 89 90 91
16 153 122 142 148 151 152
20 231 178 212 223 228 230
24 325 243 297 313 320 323
28 435 317 396 419 428 432
32 561 398 508 539 551 556
36 703 487 635 675 690 697
40 861 582 775 825 845 853

Table 3
Number of good fits and interpolations out of 10 runs for c = b0.9cmine and

c = cmin.

b = B = 16 b = B = 32
α = 8 (c = 39) 10, 0 (c = 43) 10, 10 (c = 40) 10, 0 (c = 44) 10, 10
α = 12 (c = 77) 2, 0 (c = 85) 7, 7 (c = 80) 10, 0 (c = 89) 10, 10
α = 16 (c = 128) 0, 0 (c = 142) 0, 0 (c = 133) 10, 0 (c = 148) 0, 0

and we call an interpolation good if for many of 1000 randomly chosen η the
interpolation at η is correct. With this definition, our experiments show that,
if c is large enough, a good fit leads to a good interpolation. They also show
that no good interpolation is obtained from a fit that is not good. Finally,
they show that the number of good fits goes down as c grows. For α = 16
the lattice algorithm we use cannot produce a good fit for values of c that
we would expect would make a good fit a good interpolation.

8 CONCLUSIONS AND FUTURE WORK

We described HIMMO, a novel identity-based pairwise symmetric key estab-
lishment method. The method is non-interactive: nodes can directly generate
a common key without exchanging messages, saving valuable round-trip
time. From an implementation point of view, HIMMO is very attractive as
well.

We have placed the HI and MMO problems [5], [6] in the context of the
HIMMO scheme and analyzed its security. The experimental results from
Section 7 strongly suggest that application of the LLL algorithm followed by
Babai’s nearest plane algorithm does not yield the correct result if α > 20. The
explanation for this is that the number of colluding nodes required for suc-
cessful reconstruction is so large that the applied approximation algorithm

15

(LLL , followed by Babai’s nearest plane algorithm) is no longer sufficiently
accurate.

Future research can include using more accurate algorithms than LLL in
the attack, for example, the BKZ algorithm. The comprehensive summary
of the experiments of Gama and Nguyen [4] helps analyzing the practical
behaviour of LLL, BKZ and the ”deep insertion” variant of LLL. However,
the specific form of the lattices derived from HIMMO may make drawing
conclusions from this reference without sufficient experiments a little risky.
For exact algorithms for finding the closest vector, both the running time and
the memory requirements are exponential in the lattice dimension and thus
quickly become impractical. For example, the algorithm from [1] is reported
to require 3TB of memory and 2080 hours of computation time for a lattice
of dimension 90.

ACKNOWLEDGEMENTS

We thank Bouke Cloostermans (TU Eindhoven) for reducing the upper bound
in Section 5 from 3m − 1 in a previous version to the current value of 2m,
and Igor Shparlinski and Berry Schoenmakers for their comments on earlier
drafts of this paper.

REFERENCES

[1] Nicolas Gama Anja Becker and Antoine Joux. Solving shortest and closest vector
problems: The decomposition approach. Cryptology ePrint Archive, Report 2013/685,
2013. http://eprint.iacr.org/.

[2] L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica,
6:1–13, 1986.

[3] C. Blundo, A. de Santis, A.Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly secure
key distribution for dynamic conferences. Information and Computation, 146:1–23, 1998.

[4] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart,
editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages 31–51.
Springer, 2008.

[5] Oscar Garcı́a-Morchón, Domingo Gómez-Pérez, Jaime Gutiérrez, Ronald Rietman, and
Ludo Tolhuizen. The MMO problem. In Proceedings ISSAC’14, pages 186–193. ACM,
2014.

[6] Oscar Garcı́a Morchon, Ronald Rietman, Igor E. Shparlinski, and Ludo Tolhuizen.
Interpolation and approximation of polynomials in finite fields over a short interval from
noisy values. Experimental mathematics, Accepted, 2014.

[7] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. Springer, 2010.

[8] Sage.

