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Abstract

Public-key cryptography addresses key distribution and agreement in a very elegant way
by allowing any pair of nodes to generate a common secret without sharing any information
beforehand. In the alternative approach of key pre-distribution schemes (KPS), a trusted-third
party (TTP) securely provides each node with a (node-dependent) secret function allowing pairs
of nodes to agree on a common key in a non-interactive way, which is a big advantage in delay-
critical applications. However, no known KPS is simultaneously secure and efficient.

This paper proposes HIMMO, a KPS which relies on the recently introduced Hiding Infor-
mation (HI) and Mixing Modular Operations (MMO) problems. Our security analysis shows that
HIMMO is fully collusion resistant for appropriate parameter choices. HIMMO is also lightweight
for these parameters and thus makes non-interactive key establishment feasible even in very
large networks. Additionally, the identity-based nature of HIMMO enables implicit certification and
verification of credentials, as well as secure broadcast by the TTP. HIMMO can also accommodate
multiple TTPs so that no single TTP knows the keys shared between nodes. All these features
make HIMMO a very promising candidate to enable more efficient security protocols.

1 INTRODUCTION

Public-key cryptography addresses the security cornerstone of key distribution and
agreement in a very elegant way by allowing any pair of parties to generate a common
secret without sharing any information beforehand.

Matsumoto and Imai proposed an alternative “key pre-distribution scheme” (KPS)
approach in 1987 [12], by generalizing work of Blom from 1984 [4]. In this approach,
a trusted third party (TTP) provides each node with a function which it extracts from
some secret root keying material and the node’s identity. During operation, a node
uses this function to directly compute a common symmetric key with each other node
from the latter’s identity. So no interaction between communicating parties is required
to establish a common key, which is a big advantage in delay-critical applications. KPS
also support adding new nodes to a running network without the need to update
already deployed nodes since the secret functions owned by any of the nodes is
generated by the same root keying material.

As Matsumoto and Imai wrote in [12], identities play very important roles in KPS, and in
this point, KPS are like the ID-based cryptosystem; the independent work of A. Shamir’s [16].
Apart from the non-interactive key agreement using identities as explained above, KPS
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supporting the use of long identities can also enable, other identity-based schemes.
A first identity-based scheme enabled by KPS provides implicit certification and veri-
fication of credentials in a one-to-one communication setting. Since a KPS is identity-
based, we can link the credentials of a node to its identifier, and therefore also its
secret function. A node sending a message to another node can attach its creden-
tials. From the received credentials, the receiving node can then obtain the identity
of the sender and subsequently generate the common key. Authentication of the sent
message, using the common key, allows verification of the credentials of the server.
This construction allows embedding information in the credentials that can be verified
during operation such as the node features, the roles of the node, or dates specifying
the expiration date of the keying material. Another identity-based scheme relates to
secure broadcast [12], [18] by the TTP, in which the broadcast message is linked to
a function obtained from the root keying material and a fingerprint of the message.
In such a configuration, nodes can directly communicate with each other in a secure
way and also perform source authentication of any broadcast message generated by
the TTP. Other identity-based schemes enable direct key agreement between t parties
or differentiating between groups of nodes by using root keying material with specific
features [5]. Finally, as already identified by Matsumoto and Imai [12], KPS can also
operate with multiple TTPs removing a single point of failure and eliminating privacy
issues caused by a single TTP being able to decrypt all the messages exchanged between
any pair of nodes in the network.

All the features enabled by the above identity-based schemes make KPS useful.
However, existing KPS fail in an important aspect: there is no known KPS scheme
that is both efficient and secure – in the sense of fully collusion resistant – at the same
time. This is the reason why the above identity-based schemes are also not feasible
today.

In the literature we find several KPS. A straightforward and efficient KPS scheme
was described by Blundo et al. [5] in 1992. In this scheme, which we will call Blundo’s
scheme, the TTP first randomly generates a symmetric bivariate polynomial R(x, y) of
degree α in each of the variables with coefficients from Zp, the ring of integers modulo
p. Next, the TTP provides, in a secure manner, to any node ξ in the network the keying
material l R(ξ, y) ∈ Zp[y]. The key that node ξ uses in order to communicate with node
η equals R(ξ, η) (computed modulo p). As node η uses key R(η, ξ) to communicate with
ξ, and R is symmetric, nodes ξ and η use the same keys for communicating with each
other. Blundo’s scheme is fast and requires little storage. Other advantages are that it
allows for any network of size at most p, so that it scales well, e.g., to the Internet, and
that nodes can be added to a running network without the need to update already
deployed nodes. Unfortunately, this scheme offers information-theoretic security only
if at most α nodes are compromised. However, simple interpolation using the keying
material of any α + 1 nodes allows the retrieve the root keying material [5], thereby
compromising the complete system. Also, the keying material of a single node ξ can
be obtained by simple interpolation of the keys of any α+ 1 colluding nodes with ξ.
More recently, Zhang et al. [19] presented a scheme that aimed to overcome the lim-
ited resistance of Blundo’s scheme against attacks by colluding nodes by offering
complexity-theoretic security. In their scheme, the TTP generates, apart from the root
keying material R(x, y), two univariate polynomials g and h. The set of the nodes
is determined such that g(η) and h(η) both are small for each node η. Next, the TTP
randomly provides, in a secure manner, to any node ξ in the network as keying material
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either R(ξ, y)+g(y) or R(ξ, y)+h(y). Key generation is performed as in Blundo’s scheme,
with a small additional key reconciliation step to ensure that nodes ξ and η will use
the same key for communicating with each other.
Zhang’s scheme was broken by Albrecht et al. [1] who showed that the coefficients of
g and h can be obtained by finding short vectors in a well-defined lattice of which the
dimension does not depend on the degree of R, and is very small for the parameters
suggested in [19].
KPS schemes are related —to some extent—to identity-based encryption [6]. The main
different is that identities in identity-based encryption are public keys. In identity-based
encryption, a symmetric key is not directly generated as in a KPS. Instead, direct key
sharing is done by encrypting a symmetric key with the public key (identifier) of
the other party that can decrypt with its private key. This leads to higher resource
requirements.
There is also some relation with non-interactive key exchange schemes (NIKE) [8]. In
NIKE, nodes are pre-configured with public and private keys and any pair of nodes
can obtain a common secret by combining the public-key of the other node and its own
private key in a non-interactive way. However, NIKE schemes have two limitations.
First, any node needs to know the public keys of any node with whom it wishes to
communicate, potentially requiring some information exchange. Second, public-keys
need certification to link them to the identities of the involved parties.

The contributions of this paper are HIMMO and identity-based schemes enabled by
HIMMO. HIMMO is a KPS with similar operational characteristics as previous key pre-
distribution schemes, [5], [12], [19] allowing for efficient pairwise key generation from
identifiers even in very large networks, but it is also fully collusion resistant for suitable
configuration parameters. The acronym “HIMMO” is derived from two interpolation
problems that are essential for the security of the scheme: the HI problem [13], which
is related to the well-known noisy interpolation problem, and the MMO problem [10].
HIMMO, as any KPS, is non-interactive: nodes in a network can directly generate a
common key without exchanging messages, saving valuable round-trip time. Each node
in the network has an identifier, and a TTP provides it with secret keying material—
linked to the node identifier—in a secure way. A node that wishes to communicate
with another node uses its own secret keying material and the identity of the other
node to generate a common pairwise key. HIMMO allows for efficient operation with
respect to both the amount of stored keying material and the key computation time,
which is especially relevant for resource-constrained devices. Beyond non-interactive
key agreement, HIMMO enables all the above multiple identity-based schemes. For
instance, HIMMO achieves combined key agreement and implicit credential verification
at least around one order of magnitude faster than when using ECDH and ECDSA and
without involving any communication interaction.

The paper is organized as follows. In Section 2, we review the HI problem and
the MMO problem. Section 3 describes the HIMMO scheme. In Section 4, we discuss
the security model, the impact of the HI and MMO problems on the security of
HIMMO, and finally, we discuss the parameters that make HIMMO secure. In Section 5,
we describe the experimental results supporting our security analysis. In Section 6,
we detail how HIMMO enables all above identity-based schemes. Section 7 briefly
discusses HIMMO’s performance advantages compared with other other solutions. In
Section 8, we draw conclusions and indicate directions for further research. In the
appendix, we validate the HIMMO scheme in that we show that the generated keys
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indeed are pairwise the same.

2 HI AND MMO PROBLEMS

In this section, we formally describe two mathematical problems that are essential
in attacks on HIMMO, namely the Hiding Information (HI) problem and the Mixing
Modular Operations (MMO) problem.

Problem 1 (Hiding Information (HI) problem). Let f ∈ Z[x] be of degree at most α, and
let xi ∈ Z and yi = 〈〈f(xi)〉N 〉s for 0 ≤ i ≤ c.
HI problem: given α, N , s, x0, (x1, y1), . . . , (xc, yc), find y0.

As shown in [13], the HI problem is equivalent to a noisy polynomial interpolation
problem, which in turn is shown to be related to an approximation problem in a certain
lattice.

Problem 2 (Mixing Modular Operations (MMO) Problems). Let g1, . . . , gm ∈ Z[x], all of
degree at most α, and let xi ∈ Z and yi =

∑m
j=1〈gj(xi)〉qj , for 0 ≤ i ≤ c.

MMO problem with known moduli: given α, q1, . . . , qm, x0, (x1, y1), . . . , (xc, yc), find y0.
MMO problem with unknown moduli: given α, m, x0, (x1, y1), . . . , (xc, yc), find y0.

The MMO problem has been introduced in [10]. There it was shown that the MMO
problem with known moduli is equivalent to a lattice problem of the same kind as for
the HI problem, whereas no solution is known for the MMO problem with unknown
moduli.

3 DESCRIPTION OF THE HIMMO SCHEME FOR KEY ESTABLISHMENT

In this section, we describe the HIMMO scheme for key establishment. The other
applications of HIMMO outlined in the introduction are detailed in Section 6. In this
description, we use the following notation: for each integer x and positive integer M ,
we denote by 〈x〉M the unique integer y ∈ {0, 1, . . . ,M − 1} such that x ≡ y modM .

Like for any KPS, a trusted third party (TTP) is required, and three phases can be
distinguished [12].

In the setup phase, the TTP obtains or selects positive integers B, b,m and α, where
m ≥ 2. The number B is the bit length of the identifiers that will be used in the system,
while b denotes the bit length of the keys that will be generated. The TTP randomly
generates the public modulus N , an odd number of length exactly (α + 1)B + b bits
(so 2(α+1)B+b−1 < N < 2(α+1)B+b). It also randomly generates m distinct secret moduli
q1, . . . , qm of the qi = N − 2bβi, where 0 ≤ βi < 2B and at least one of β1, . . . , βm
is odd. Finally, the TTP generates the secret root keying material, that consists of the
coefficients of m bi-variate symmetric polynomials of degree at most α in each variable.
For 1 ≤ i ≤ m, the i-th root keying polynomial R(i)(x, y) is written as

R(i)(x, y) =

α∑
j=0

α∑
k=0

R
(i)
j,kx

jyk with 0 ≤ R(i)
j,k = R

(i)
k,j ≤ qi − 1.

In the keying material extraction phase, the TTP provides to each node ξ in the
system, with 0 ≤ ξ < 2B , the coefficients of the key generating polynomial Gξ:

Gξ(y) =

α∑
k=0

Gξ,ky
k where Gξ,k =

〈 m∑
i=1

〈
α∑
j=0

R
(i)
j,kξ

j〉qi
〉
N
. (1)
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In the key generation phase, in which a node ξ wishing to communicate with node
η with 0 ≤ η < 2B , computes

Kξ,η =
〈
〈Gξ(η)〉N

〉
2b
.

It can be shown that Kξ,η and Kη,ξ need not be equal. However, as shown in Theo-
rem A.1 in the appendix, for all identifiers ξ and η with 0 ≤ ξ, η ≤ 2B ,

Kξ,η ∈ {〈Kη,ξ + jN〉2b | 0 ≤| j |≤ 2m}

In order to perform key reconciliation , i.e. to make sure that ξ and η use the same key
to protect their future communications, the initiator of the key generation (say node ξ)
sends to the other node, simultaneously with an encrypted message, information on
Kξ,η that enables node η to select Kξ,η from the candidate set C = {〈Kη,ξ + jN〉2b | 0 ≤
|j| ≤ 2m}. No additional communication thus is required for key reconciliation. The
key Kξ,η will be used for securing future communication between ξ and η.
As an example of information used for key reconciliation, node ξ sends a hash-value
H of Kξ,η, cf. [18]. Node η computes the hash value for all candidates in C and selects
as common key the element of C with hash value H . This method incurs additional
delay as node η needs to compute hashes for all candidates, and compare them with H .
Alternatively, node ξ sends to node η the number r = 〈Kξ,η〉2s , where s = dlog2(4m+1)e.
Node η can efficiently obtain the integer j such that |j| ≤ 2m and Kξ,η ≡ Kη,ξ+jN mod
2b by using that jN ≡ Kξ,η−Kη,ξ ≡ r−Kη,ξ mod 2s. As r reveals the s least significant
bits of Kξ,η, only the b − s most significant bits Kξ,η, that is, the number b2−sKξ,ηc,
should be used as key.

4 SECURITY ANALYSIS

We consider a security model in which an adversary has obtained the secret keying
material shares of c distinct nodes η1, . . . , ηc. The adversary aims to find the key Kξ,η

between two nodes ξ and η, neither of which is in the set {η1, . . . , ηc}. Inspired by the
security model of Matsumoto and Imai [12] and related attacks on Blundo’s scheme
and Zhang’s scheme, we consider that the adversary has two options for doing so.

1) Attacking node ξ’s keying material: The adversary finds keying material for node
ξ that is consistent with the keys Kηi,ξ, which he can calculate from the keying
materials of nodes η1, . . . , ηc. From the keying material that the adversary obtained
for node ξ, he calculates Kξ,η.

2) Attacking the root keying material: The adversary finds root keying material that
is consistent with the keying materials of nodes η1, . . . , ηc. From this root keying
material, he calculates the keying material of node ξ, and from that he calculates
Kξ,η.

Note that the attacks need not retrieve the atual polynomial Gξ(y) of node ξ or the
actual root keying material, it is sufficient that the consistency requirements in either
of these scenarios limit the possible outcomes of his guess for Kξ,η, as this increases
his odds for finding the correct key.

Matsumoto and Imai identified two KPS types: schemes relying on information-
theoretic security (such as Blundo’s scheme) and schemes relying on complexity-theoretic
security (as Zhang’s scheme pretended to be). We shall argue that HIMMO belongs to
both categories: for small c, the colluding nodes do not have enough information to
obtain a good estimate of Kξ,η. Only when c is greater than a certain minimum value
cmin, the consistency requirements limit the possible outcomes of the keying material
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or root keying material such that the odds for finding the correct key are increased.
However, the system parameters m and α can be chosen such that cmin becomes so
large that finding a keying material or root keying material that is consistent with all
requirements becomes computationally infeasible.

Our analysis shows that HIMMO can be the first KPS that make interpolation or
other standard algebraic techniques infeasible, if suitable parameters are chosen.

4.1 Symmetry of 〈Gη(ξ)〉N and 〈Gξ(η)〉N
This section argues the following conjecture that is critical for the security analysis of
HIMMO.

Conjecture 4.1. It is infeasible to relate the (α + 1)B most significant bits of 〈Gξ(η)〉N to
those of 〈Gη(ξ)〉N .

To support this conjecture, recall that from Lemma A.1, 〈Gξ(η)〉N is the sum of three
terms. The first term is invariant under the exchange of ξ and η, the second and the
third terms are small multiples of N and 2b, respectively.

We consider the effect of the last term in the difference between 〈Gξ(η)〉N and
〈Gη(ξ)〉N , i.e., (µη(ξ)− µξ(η))2b, where according to Lemma A.1 in the appendix,

µξ(η) =

m∑
i=1

βi

⌊Ai(ξ, η)
qi

⌋
, with Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk, and R

(i)
k (ξ) =

α∑
j=0

R
(i)
j,kξ

j .

Although each R(i) is symmetric, the function Ai(ξ, η) is not, as R(i)
k is evaluated

modulo qi, while the evaluation of Ai in η is performed over the integers (as is the
summation and multiplication with the βi’s). If η is large, then Ai(ξ, η) influences all
bits, including the highest order bits; if the β′is are large, µξ(η) affects all bits, including
the highest order bits.
Indeed, assume that the coefficients of Ai(ξ, η), i.e., the integers

〈
R

(i)
k (ξ)

〉
qi

are uniformly
distributed in {0, 1, . . . , qi−1} then the expected value of Ai(ξ, η) equals 1

2qi
∑α

k=0 η
k ≈

1
2qiη

α. We further assume that each βi is uniformly chosen from the integers in [0, 2B).
Then the expected value of µξ(η) is m2B−2ηα. Hence, if we take

η > 2B(2/m)1/α, (2)

then we expect that 2bµξ(η) is larger than 2bm2B−2ηα > 2(α+1)B+b−1, so that 2bµξ(η)
affects all bits of 〈Gξ(η)〉N . Since the µξ(η) and µη(ξ) are affected by the mixing of
modular operations, we conjecture that with identifiers η satisfying (2), no information
on the (α+ 1)B most significant bits of 〈Gξ(η)〉N can be obtained from 〈Gη(ξ)〉N .
The requirement on η expressed in (2) reduces the number of identifiers that we can use
from 2B to 2B

(
1−(2/m)1/α

)
. In other words, the “effective bit length” of the identifiers

is reduced by
⌈
− log2

(
1− (2/m)1/α

)⌉
bits. For reasonable parameters, this is not a very

big number, e.g., for m = 10 and α = 25, the loss is three bits in the identifier space.
In Figure 1 we show experimental evidence for the claim that the (α + 1)B most

significant bits of 〈Gξ(η)〉N and 〈Gη(ξ)〉N are uncorrelated if the identifier interval is
restricted according to Equation 2. Note that this property does not appear to hold
for a few most significant bits, which are equal with probability significantly above
0.5. This is because in our simulations some coefficients or identifiers might be slightly
smaller so that the mixing of modular operations effect does not propagate to the very
most significant bits. These bits may thus be used in an attack as well.
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Figure 1. The probability that the i-th bit of 〈Gξ(η)〉N equals the i-th bit of 〈Gη(ξ)〉N when
Kξ,η = Kη,ξ as a function of i in a HIMMO system with α = 6, b = B = 32 and m = 5. In
the plot on the left, ξ and η are averaged over the interval [0, 2B), in the plot on the right
ξ and η are averaged over the interval [2B(2/m)(1/α), 2B).

4.2 Attacking node ξ’s keying material
The first attack scenario involves finding a polynomial G ∈ ZN [y] as in TheoremA.1,
in other words,〈

G(ηi)
〉
N

=
〈
Kηi,ξ + λiN

〉
2b
+ µi2

b with |λi| ≤ 2m and 0 ≤ µi ≤
⌊
N/2b

⌋
, 1 ≤ i ≤ c.

If λ1, . . . , λc are known, finding a G and guessing the key Kξ,η as 〈Gξ(η)〉2b amounts
to solving a HI problem.
As argued in Section 4.1, it seems that the adversary cannot learn much more about
Gξ(ηi) from Gηi(ξ) than from 〈Gηi(ξ)〉2b because of the mixing in the most significant
bits. The analysis in [13] shows that the HI problem with c colluding nodes can be
reduced to finding a vector in a lattice of dimension α+ c+1 which is close (in infinity
norm) to a well-defined target vector. Even if the lattice vector so obtained corresponds
to candidate keying material that generates the correct keys for all colluding nodes,
it may generate incorrect keys between the node under attack and other nodes. An
estimate of the length of the shortest lattice vector that corresponds to a solution that
fits the last b bits of G in the observed values, but does not agree in other points is
also given. If the length of this vector is large enough, all lattice vectors that are close
to the target vector must correspond to solutions that agree with the last b bits of G in
most points.
Specifically, [13] considers the lattice as a direct sum of two lattices, one of which
being the lattice spanned by the short vectors that correspond to the polynomials that
evaluate, modulo N , to numbers that are zero modulo 2b in the entire interval [0, 2B).
The short vectors in the other lattice correspond to polynomials that evaluate modulo N
to numbers that are zero modulo 2b in the points η1, . . . , ηc, but non-zero in other points.
The expectation value of the inverse squared volume of this lattice can be calculated
explicitly, when η1, . . . , ηc are uniformly distributed over [0, 2B), and taking this result
to the power −1/(2d), where d = c − α − 1 is the dimension of this lattice, gives an
estimate of the average length of a short vector in this lattice. They define the function
S as the logarithm of this length divided by half the length of the diagonal of the
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hypercube, which gives

S(α, b,B, c) = log

(
2b+1

√
c

)
+

1

2(c− α− 1)

( α∑
i=1

(
log((α+ 1 + i)!)− log(i!)

)
− log

(
c

α+ 1

)
− α(α+ 1) log(2B)

)
, (3)

where we correct an error in the result from [13] and adapt their notation to the one
used in this paper.
When S > 0, a good fit is thus expected to be a good interpolation, while for S < 0
this is not guaranteed.

Numerical experiments in [13] confirm the validity of using this indicator. When
B = b and |I| = 2b, the indicator function is negative if c ≈ (α+ 1)(α+ 2)/2.

A simpler way to understand this is to count the number of bits of each polynomial
coefficient that can influence the last b bits of the evaluation of the polynomial in a
identifier η < 2b: only the b least significant bits and the kb most significant bits of
the coefficient of ηk have any significant impact, the other bits of that coefficient can
affect the final result only through a carry in the addition of the polynomial terms.
The attacker must thus estimate

∑α
k=0(b + kb) = b(α + 1)(α + 2)/2 bits, while each

observation gives him b bits. So with fewer than (α + 1)(α + 2)/2 observations, there
will be many fits to the observed points and the predictive power is negligible. If we
assume that the attacker cannot choose the identifiers η1, . . . , ηc, but these are given
to him randomly from the set of all possible identifiers, then c must be greater than
(α+1)(α+2)/2. The lower bound on c, and thus the minimum lattice dimension, grows
quadratically in α.

For α = 40 the attacker must solve a lattice problem in about 900 dimensions, which
lies above the upper limit for practical lattice reduction algorithms. We must point out
that the record in the Ideal Lattice Challenge is in dimension 825, see [7]. Increasing α
makes this lattice attack even more infeasible.

The above analysis holds when the identifiers are uniformly distributed in [0, 2B)
When the attacker can choose the identifiers η1, . . . , ηc, then he can pick them from
a smaller interval containing the identifier of the node under attack, improving his
chances to attack the system. For instance, in the previous case with α = 40, b = B = 32
and |I| = 256, the indicator function is positive for c ≥ 120. Simulations confirm this
lower bound for a successful attack.

4.3 Attacking the root keying material
In Section 4.1 we have argued that the generated keys and coefficients of the keying
materials contain the contributions of the evaluation of multiple polynomials in differ-
ent rings. Therefore, the second attack scenario can be reduced to a slightly modified
MMO problem in which the values of function h are reduced modulo N , see Problem 2.
Thus, finding an equivalent root keying material involves solving α + 1 instances of
this problem, (viz. obtaining the coefficients of the root keying polynomials from (1) for
0 ≤ k ≤ α). In [10], it was shown that the MMO problem with known moduli q1, . . . , qm
and c colluding nodes can be reduced to finding a vector in a lattice of dimension
m(α+ c+1) which is close (in infinity norm) to a well-defined target vector. Setting up
the lattice requires knowledge of the secret moduli q1, . . . , qm. In HIMMO, these moduli
are kept secret by the TTP, and there is no efficient way to reconstruct them from



9

any c observations. For this reason, we consider recovering the root keying material
infeasible. Moreover, even if the moduli were known to the attacker, by increasing
m, the lattice dimension can be made too big (tens of thousands) to be handled with
current lattice-based algorithms.

4.4 HIMMO Security Parameters
The selection of the parameters of the system to be secure involves the following:
• large value b so that a generated keys cannot be guessed by brute-force.
• large value α parameter and uniformily distributed identifiers so that attacking a

keying material Gξ(y) requires solving a lattice of big dimension.
• keeping the qi’s secret and optionally taking a relatively high value of m to ensure

that attacking the root keying material R(i)(x, y) involves solving a lattice of big
dimension.

A configuration that the authors consider to be complexity-theoretic secure is to take
b = B = 128 bits, α = 26, and m = 10. We remark that the identifiers of the nodes
should be uniformily distributed.

5 EXPERIMENTAL RESULTS

Both attack scenarios from Section 4 involve solving a lattice problem. As explained
in Section 4.3, we consider retrieving the root keying material infeasible. For finding
equivalent keying material, the adversary needs to find a vector of dimension α+ c+1
that is close to a well-defined target vector, where c is the number of nodes for which the
adversary has the keying material. In this section, we describe the experimental results
for solving this lattice problem. We restricted ourselves to the case that the identifiers
of the colluding nodes are uniformly distributed over the complete identifier space.

5.1 Description of our experiments
We first choose a value for b, the number of key bits, B, the number of ID bits, and
α, the polynomial degree. We then choose a random odd integer N in the interval
(2(α+1)B+b−1, 2(α+1)B+b) and α + 1 random integer polynomial coefficients g0, . . . , gα
from [0, N). With these coefficients we construct a polynomial G(x) =

∑α
j=0 gjx

j . We
choose a number c and pick c different numbers η1, . . . , ηc from the interval [0, 2b) and
calculate the numbers hk = 〈〈G(ηk)〉N 〉2b , 1 ≤ k ≤ c. The numbers α, b,B,N and the
c pairs (ηk, hk) are input to the reconstruction algorithm. This algorithm outputs a set
of integer coefficients ĝ0, . . . , ĝα in [0, N). We say that the algorithm has produced a
perfect fit to the observed values if

hk = 〈〈
α∑
j=0

ĝjη
j
k〉N 〉2b for 1 ≤ k ≤ c.

For an integer η 6∈ {η1, . . . , ηc}, we say that the algorithm has produced a correct
interpolation in η if 〈〈

∑α
j=0 ĝjη

j〉N 〉2b = 〈〈G(η)〉N 〉2b . We also use the terms ‘good fit’ and
‘good interpolation’, they are defined more precisely in the context of our experiments
in subsection 5.3.
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5.2 Description of the reconstruction algorithm
The algorithm for obtaining the coefficients ĝj , 0 ≤ j ≤ α makes use of the equivalence
of this reconstruction problem to a lattice problem, as described in [13]. The lattice is
spanned by the rows of the block matrix(

NIc 0
V 2−bIα+1

)
,

where Ic and Iα+1 denote unit matrices of size c× c and (α+ 1)× (α+ 1) respectively,
and V denotes the (α+ 1)× c Vandermonde matrix with elements Vi,j = ηij , 0 ≤ i ≤ α,
1 ≤ j ≤ c. The problem is to find a lattice vector that lies inside a hypercube of edge
length N/2b around a target vector that is constructed with the values hk.
This is a relaxed version of the Closest Vector Problem, and we use a standard technique
for finding a lattice vector that is expected to be close to a target vector. The procedure
uses two steps:

1) We perform a basis reduction, in order to make the lattice basis more orthogo-
nal, for that we use LLL, see [14], with default parameters, as implemented in
Sage [15].

2) With the LLL-reduced basis, we use Babai’s nearest plane algorithm [2] to find a
lattice vector close to the target vector.

The coefficients ĝj are obtained from the corresponding components of the resulting
lattice vector. We refer to [13] for details.

5.3 Choosing c

In our experiments, c, the number of observations, is an important parameter. The main
reason is that c must be large enough for a fit to the observations to also be a good
interpolator for the last b bits of G.
According to Subsection 4.2, the probability of finding a good interpolation if S(α, b,B, c)
is negative, where S is defined in Equation (3) depends on the number of short
vectors in this lattice and their lengths, and this cannot be accurately derived from
simple volume considerations alone. With this caveat, the volumetric estimate of this
probability is

λα+1

(√
c

2

)c−α−1
exp ((c− α− 1)S(α, b,B, c)) for some λ ∈ [1,

√
c).

As S is increasing in c, we can define cmin(α, b,B) as the smallest value of c such that
S(α, b,B, c) > 0. In Table 1 we give cmin(α, b,B) for several values of α and b = B, and
compare its value to (α+ 1)(α+ 2)/2.

We thus want to choose c ≥ cmin in order to obtain a good interpolation. For smaller
c, the probability for obtaining a good interpolation is expected to decrease very rapidly
to zero.
On the other hand, approximate algorithms do not necessarily give a perfect fit. The
quality of the fit is expected to decrease as c, and thus the lattice dimension, grows.
We can only obtain a good interpolation if the lattice algorithm still gives a good fit
for c = cmin. Table 2 summarizes our results. We did 10 runs for each case, counting
the number of good fits and interpolations. So, for example, for B = b = 16 and α = 8,
and c = 39, the notation 10,0 means that we obtained a good fit 10 times, and a good
interpolation 0 times. Perfect fits and interpolations turned out to be very rare, which
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Table 1
The value cmin for B = b as a function of α and b and compared with

f(α) := (α+ 1)(α+ 2)/2.

b
α f(α) 8 16 32 64 128

20 231 178 212 223 228 230
24 325 243 297 313 320 323
28 435 317 396 419 428 432
32 561 398 508 539 551 556
36 703 487 635 675 690 697
40 861 582 775 825 845 853

Table 2
Number of good fits and interpolations out of 10 runs for c = b0.9cmine and c = cmin.

b = B = 16 b = B = 32
α = 8 (c = 39) 10, 0 (c = 43) 10, 10 (c = 40) 10, 0 (c = 44) 10, 10
α = 12 (c = 77) 2, 0 (c = 85) 7, 7 (c = 80) 10, 0 (c = 89) 10, 10
α = 16 (c = 128) 0, 0 (c = 142) 0, 0 (c = 133) 10, 0 (c = 148) 0, 0

is why we relax the definition somewhat bit: we call a fit good, if for all k, 1 ≤ k ≤ c
it holds that 〈〈 α∑

j=0

ĝjη
j
k

〉
N

〉
2b

=
〈
hk + λkN

〉
2b

with λk ∈ {−1, 0, 1},

and we call an interpolation good if for many of 1000 randomly chosen η the interpo-
lation at η is correct.
With this definition, our experiments show that, if c is large enough, a good fit leads
to a good interpolation. They also show that no good interpolation is obtained from
a fit that is not good. Finally, they show that the number of good fits goes down as c
grows. For α = 16 the lattice algorithm we use cannot produce a good fit for values
of c that we expect to be such that a good fit yields a good interpolation as well. We
thus conclude that our attack breaks down for lattice dimension larger than 150. This
result is in line with literature in which it is reported that the LLL algorithm breaks
at some point of time when the lattice dimension grows, e.g., in average in dimension
≈ 180 according to [17].

6 SOME IDENTITY-BASED SCHEMES ENABLED BY HIMMO
If we take the following HIMMO configuration parameters: B = 2b = 160 bits, m = 10,
and α = 26, then attacking the 80-bit keys generated by a specific device would require
solving a lattice of dimension 406 for the HI problem once enough nodes have been
compromised. Attacking HIMMO through the MMO problem is hopeless since the
qi’s are secret, and even if they are known, an attacker would have to deal with a
lattice of dimension 40600. Attacking a key by means of a brute force attack is also not
feasible due to the chosen key length. Thus, we believe that HIMMO can achieve the
full collusion property enabling the schemes discussed in the introduction.
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The first application of HIMMO is in non-interactive key agreement, in large net-
works, where nodes can be added to a running network without the need to update
already deployed nodes. With the above parameters, any pair of nodes in a network,
each identified by a 160-bit long identity, can directly agree on a common key based
on their credentials, e.g., MAC addresses.

Another scheme enabled by HIMMO and its identifiers is about implicit certifica-
tion and verification of credentials. A node that wants to register with the system
provides the TTP with its credentials, e.g., device type, manufacturing date, etc. The
TTP, which can also add further information to the node’s credentials such as the
issue date of the keying material and its expiration date, obtains the node’s identity as
ξ = H(credentials), where H is a public hash function. When a first node with identity
ξ wants to securely send a message M to a second node with identity η, the following
steps are taken.
• Step 1: Node ξ computes a common key Kξ,η with node η, and uses Kξ,η to encrypt

and authenticates its credentials and message M , say e = EKξ,η(credentials|M).
• Step 2: Node ξ sends (ξ, e) to node η.
• Step 3: Node η receives (ξ′, e′). It computes its common key Kη,ξ′ with ξ′ to decrypt
e′ obtaining the message M and verifying the authenticity of the received message.
Furthermore, it checks whether the credentials’ in e correspond with ξ′, that is, it
validates if ξ′ = H(credentials’).

This method allows not only for direct secure communication of message M but also
for implicit certification and verification of ξ’s credentials because the key generating
polynomial assigned to a node is linked to its credentials by means of the one-way hash
function H . If the output size of H is long enough, e.g., 256 bits, and H is a secure one-
way hash function, then it is infeasible for an attacker to find any other set of credentials
leading to the same identity ξ. The fact that credential verification might be prone to
Birthday paradox attacks motivates the choice for the relation between identifier and
key sizes, namely, B = 2b. In this way, the scheme provides an equivalent security level
for credential verification and key generation. The capability for credential verification
enables applications such as the verification of the expiration date of the credentials
(and the keying material) of a node or the verification of the access roles of the sender
node ξ.

An extension of a KPS uses multiple TTPs to remove privacy issues caused by
a single TTP being able to decrypt all the messages exchanged between any pair of
nodes in the network 1. The method already outlined in [12] can be used HIMMO as
follows. The setup phase is divided into two sub-phases: in a first step, parameters
(b, B,m, α,N) are centrally determined and published; in a second step, for 1 ≤ l ≤ s,
TTP l independently generates m secret ql,i and the corresponding m secret symmetric
bivariate polynomials R(l,i)(x, y) over Zql,i . In the keying material extraction phase,
each node ξ securely receives from each of the s TTPs a key generating polynomial
G

(l)
ξ (y) ∈ ZN [y]. Node η computes the coefficients of its final key generating polynomial

Gξ by adding the corresponding coefficients of G(1)
ξ , . . . , G

(s)
ξ , so

Gξ(y) =
〈 s∑
l=1

G
(l)
ξ (y)

〉
N
. (4)

Key generation is done as in HIMMO. Note that the scheme operates exactly as a

1. Note that this might be desirable in some applications such as key escrow.
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scheme with a single TTP which generates the ms root keying material polynomials
R(l,i)(x, y) ∈ Zql,i [x, y] for 1 ≤ i ≤ m, 1 ≤ l ≤ s. Clearly, if s > 1, a single TTP cannot
determine the key generating polynomial of individual nodes.

There are other schemes enabled by HIMMO such as secure broadcast in which
the TTP wishes to broadcast a message of which the origin can be verified by the
receiving nodes. This protocol is described in [18]. HIMMO can also be extended to
allow for key agreement with groups of t − 1 devices if the TTP uses polynomials
in t variables and distributes a key generating polynomial in t − 1 variables to the
nodes. Note that in this case the HIMMO parameters need to be adapted to introduce
the HI and MMO problem in the correct parts of the keys and coefficients of the key
generating polynomial.

7 HIMMO PERFORMANCE

Figure 2 provides a brief summary of the performance of the HIMMO scheme. The
first graph shows the key generation time for α = 26 as a function of b = B. In the next
three figures, we see – as a function of α and for b = B = 128 – the key generation
time, the size of the key generating function, and the lattice dimension associated to
the HI problem.
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Figure 2. HIMMO Performance.

A detailed description of an implementation of HIMMO and its performance is not
feasible due to space reasons. However, we include a comparison table (Table 3) to
illustrate the performance advantages of HIMMO compared with ECDH and ECDSA
when implementing a simple interaction between two nodes: a first node ξ wants to
send in a secure way some information to η and η wants to securely receive the message
from ξ and verify its credentials. The first two protocols involve communicating before
node ξ can send an encrypted message, whereas HIMMO allows node ξ to directly
compute the key with η based on its identifier and send the encrypted message. Also,
notice that ECDH only provides key agreement, to get key agreement and verification
of credentials is needed to use also ECDSA increasing the resource requirements. The
results are based on an implementation on the ATMEGA128L running at 8 MHz and
illustrate the performance when this protocol is implemented with ECDH only, ECDH
and ECDSA for a security level of 80 bits and HIMMO using security parameters
α = 26 and 2b = B = 160. In Table 3, CPU refers to the overall computing needs, the
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memory refers to the amount of information that needs to be stored in flash, RAM
is the RAM memory needs, exchanged data refers to the amount of data exchanged
between ξ and η, round trips are the number of interactions between both nodes, and
finally, the security properties illustrate the features of the security protocols.

Table 3
HIMMO performance and comparison with ECDH and ECDH+ECDSA.

CPU time Key material RAM Exchanged Security properties
+ code data

ECDH [11] 3.97 s 16018B 1774B 480B Key agreement
ECDH 11.9 s 35326B 3284B 704B Key agreement and
+ECDSA [11] credential verification
HIMMO 0.290 s 7560B 1220B 448B Key agreement and

credential verification

8 CONCLUSIONS AND FUTURE WORK

The identity-based KPS introduced so far failed because they cannot be both efficient
and secure at the same time.

We describe HIMMO, a KPS with similar operational characteristics as previous
schemes but offering full collusion resistance for adequate parameters. HIMMO is non-
interactive: nodes can directly generate a common key without exchanging messages,
which is particularly attractive in applications requiring short response times. From an
implementation point of view, HIMMO is very attractive as well. HIMMO can also be
used as a building block for enabling implicit certification and verification of credentials
and for enabling secure broadcast. To remove privacy concerns resulting from the TTP
knowing the keying material from all nodes and thus being able to construct all keys
used in the network, a version of HIMMO with multiple TTPs can be applied.

We have shown the relevance of the HI and MMO problems [10], [13] in the context
of the HIMMO scheme and analyzed its security. In particular, we show that HIMMO’s
design combines both problems preventing an attacker from either attacking the keying
material of a node or the root keying material of the TTP. The experimental results from
Section 5 strongly suggest that application of the LLL algorithm followed by Babai’s
nearest plane algorithm used to attack the HI problem does not yield the correct result if
α > 20. For parameters considered secure according to our analysis, HIMMO performs
better than alternative schemes such as ECDH and ECDH combined with ECDSA.
The operational features of HIMMO together with its identity-based nature, its fully
collusion resistant property and its very low resource needs, make HIMMO a promising
candidate to enable secure communication links in many applications areas such as the
Internet of Things.

Future work can include using more accurate algorithms than LLL in the attack,
for example, the BKZ algorithm. The comprehensive summary of the experiments of
Gama and Nguyen [9] helps analyzing the practical behavior of LLL, BKZ and the
”deep insertion” variant of LLL. However, the specific form of the lattices derived
from HIMMO may make drawing conclusions from this reference without sufficient
experiments a little risky. For exact algorithms for finding the closest vector, both the
running time and the memory requirements are exponential in the lattice dimension
and thus quickly become impractical. For example, the algorithm from [3] is reported to
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require 3TB of memory and 2080 hours of computation time for a lattice of dimension
90.
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APPENDIX

VALIDATION OF HIMMO
As stated before, Kξ,η and Kη,ξ need not be equal. In this appendix, we describe a set
of candidates values for Kη,ξ given Kξ,η. In this way, we show that with HIMMO, as
described in Section 3, any pair of nodes ξ and η arrive at a common key.

Lemma A.1. For all integers ξ and η we have that〈
Gξ(η)

〉
N

=

m∑
i=1

〈
R(i)(ξ, η)

〉
qi
+ λξ(η)N − µξ(η)2b, with

λξ(η) =

m∑
i=1

⌊Ai(ξ, η)
qi

⌋
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋

and µξ(η) =
m∑
i=1

βi

⌊Ai(ξ, η)
qi

⌋
, where

Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk and R(i)

k (ξ) =

α∑
j=0

R
(i)
j,kξ

j .

Proof We clearly have that〈
Gξ(η)

〉
N

=
〈
Hξ(η)

〉
N

where Hξ(η) =

α∑
k=0

m∑
i=1

〈
R

(i)
k (ξ)

〉
qi
ηk.

As a consequence,

Hξ(η) =

m∑
i=1

(〈 α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk
〉
qi
+ qi

⌊ 1
qi

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk
⌋)

.

Using the definition of Ai(ξ, η), we find that

Hξ(η) =

m∑
i=1

〈
R(i)(ξ, η)

〉
qi
+N

m∑
i=1

⌊Ai(ξ, η)
qi

⌋
−

m∑
i=1

(N − qi)
⌊Ai(ξ, η)

qi

⌋
.

As
〈
Hξ(η)

〉
N

= Hξ(η)−N
⌊
Hξ(η)/N

⌋
, and Hξ(η) =

∑m
i=1Ai(ξ, η), we infer that

〈
Hξ(η)

〉
N

=

m∑
i=1

〈
R(i)(ξ, η)

〉
qi

+N

(
m∑
i=1

⌊Ai(ξ, η)
qi

⌋
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋)
−

m∑
i=1

(N − qi)
⌊Ai(ξ, η)

qi

⌋
. �

Theorem A.1. Let 0 ≤ ξ, η ≤ 2B − 1. We have that

Kη,ξ ∈
{〈
Kξ,η + jN

〉
2b

∣∣∣ j ∈ Z, |j| ≤ 2m}.

Proof Using the notation from Lemma A.1, we have

Kξ,η =
〈〈
Gξ(η)

〉
N

〉
2b

=
〈 m∑
i=1

〈
R(i)(ξ, η)

〉
qi
+Nλξ(η)

〉
2b
, and

Kη,ξ =
〈 m∑
i=1

〈
R(i)(η, ξ)

〉
qi
+Nλη(ξ)

〉
2b
.
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As each root keying polynomial R(i) is symmetric,

Kξ,η =
〈
Kη,ξ +N(λξ(η)− λη(ξ))

〉
2b
.

We now give an upper bound to the absolute value of λξ(η)− λη(ξ).
By definition, 〈Ai(ξ, η)〉qi = Ai(ξ, η)− qi

⌊
Ai(ξ, η)/qi

⌋
for each i, whence

λξ(η) =

m∑
i=1

Ai(ξ, η)

qi
−

m∑
i=1

〈Ai(ξ, η)〉qi
qi

−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋

= λ̃ξ(η)−
m∑
i=1

〈
R(i)(ξ, η)

〉
qi

qi
, where λ̃ξ(η) =

m∑
i=1

Ai(ξ, η)

qi
−
⌊ 1

N

m∑
i=1

Ai(ξ, η)
⌋
.

The symmetry of the root keying polynomials implies that

λξ(η)− λη(ξ) = λ̃ξ(η)− λ̃η(ξ). (5)

We continue with providing upper and lower bounds on λ̃ξ(η).
As bxc ≤ x for all x, and for all i, Ai(ξ, η) ≥ 0 and qi ≤ N , it follows that λ̃ξ(η) ≥ 0.
We clearly have that

λ̃ξ(η) ≤
m∑
i=1

Ai(ξ, η)

qi
+
(
1− 1

N

m∑
i=1

Ai(ξ, η)
)
= 1 +

m∑
i=1

N − qi
Nqi

Ai(ξ, η).

Moreover, for each i we have that

Ai(ξ, η) =

α∑
k=0

〈
R

(i)
k (ξ)

〉
qi
ηk ≤

α∑
k=0

(qi − 1)ηk ≤ (qi − 1)

α∑
k=0

(2B − 1)k

< qi

α∑
k=0

(
α

k

)
(2B − 1)k = qi2

αB.

We conclude that 0 ≤ λ′ξ(η) < 1 +
∑m

i=1(N − qi)2αB/N . As 0 ≤ N − qi = βi2
b ≤ 2B+b,

and N > 2(α+1)B+b−1, we have that

0 ≤ λ′ξ(η) < 1 + 2m.

Of course, the same bounds are valid for λ̃ξ(η). Combining these bounds with (5), and
the fact λξ(η)− λη(ξ) is an integer number, the theorem follows. �

Corollary A.1. The key generation phase in HIMMO system works. In other words, any two
nodes η, ξ following the HIMMO protocol generate the same key.

Proof This is a direct consequence of Theorem A.1 and the discussion on the sending
of additional information at the end of Section 3. �

It can be shown that under reasonable conditions, the bound from Theorem A.1
cannot be significantly improved.


